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Abstract: The forecasted growth in dynamic global air fleet size in the coming decades, together
with the need to introduce disruptive technologies supporting net-zero emission air transport,
demands more efficient design and optimization workflows. This research focuses on developing
an aerodynamic optimization framework suited for multi-objective studies of small aircraft engine
air-intake ducts in multiple flight conditions. In addition to the refinement of the duct’s performance
criteria, the work aims to improve the economic efficiency of the process. The optimization scheme
combines the advantages of Kriging-based Efficient Global Optimization (EGO) with the Radial Basis
Functions (RBF)-based mesh morphing technique and the Chebyshev-type Achievement Scalarizing
Function (ASF) for handling multiple objectives and design points. The proposed framework is
applied to an aerodynamic optimization study of an I-31T aircraft turboprop engine intake system.
The workflow successfully reduces the air-duct pressure losses and mitigates the flow distortion at the
engine compressor’s front face in three considered flight phases. The results prove the framework’s
potential for solving complex multi-point air-intake duct problems and the capacity of the ASF-based
formulation to guide optimization toward the designer’s preferred objective targets.

Keywords: optimization; multi-objective; multi-point; Kriging; metamodel; surrogate; intake;
aerodynamics; CFD; mesh morphing; achievement scalarizing function

1. Introduction

From the time of the famous Wright brothers’ first flight, global air traffic has grown
continuously regardless of economic or political turmoil. In only the last two decades, it has
more than doubled. Two major commercial aircraft suppliers, Boeing and Airbus, forecast
further air traffic growth in the coming decades at a rate of nearly 4% annually, which will
create a demand for global air fleet development of approximately 3% per year [1,2]. Such
an expansion rate will result in doubling the number of passenger and freight airplanes by
the end of the fourth decade of the 21st century.

The foreseen dynamic development coincides with a need to introduce new disruptive
technologies supporting climate-neutral aviation. This target is imposed by the European
Green Deal initiative [3], recently established by the European Commission. The ambitious
goal of achieving net-zero emission air transport by 2050 requires the deployment of
radical innovations within a short period. Such rapid anticipated progress forces aviation
R&D entities to seek more streamlined design processes, which should be supported with
advanced design tools and efficient optimization workflows. More efficient work schemes
should be instituted simultaneously on an integrated aircraft level and for each subsystem
and component.

This paper focuses on developing an optimization framework suited for airplane en-
gine air-intake ducts. There is a long history of aerodynamic optimization studies on ducts
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of various shapes in the literature. Although surrogate-assisted optimization is a visible
trend nowadays, conventional direct strategies are still present in recent investigations. For
instance, Furlan et al. [4] applied a Genetic Algorithm (GA) [5] to optimize an S-shaped
channel parameterized using Bézier curves. D’Ambros et al. [6] employed the Tabu Search
algorithm supported by the Free-Form Deformation (FFD) technique to a multi-objective
optimization problem of a generic S-duct. Zeng et al. [7] used the GA method to enhance
the aerodynamic performance of an S-duct scoop inlet. Sharma and Baloni [8] solved a
multi-objective optimization problem in a turbofan engine compressor transition S-duct
using the Particle Swarm Optimization (PSO) technique [9].

All the abovementioned investigations were successful in improving the correspond-
ing objectives; however, direct strategies come at a significant computational cost resulting
from multiple objective function evaluations. This drawback occurs notably in aerodynamic
problems for which objective values are determined using expensive Computational Fluid
Dynamics (CFD) codes.

Using surrogate-based frameworks allows for a significant reduction in costly eval-
uations by approximating the objective functions with simple analytical representations.
These substitutes are commonly referred to as metamodels [10,11] or surrogates [12–14]. In
such a procedure, conventional optimization techniques (e.g., steepest descent [15], as well
as various quasi-Newton and population-based methods) are used to search for a superior
solution in an artificial response landscape. CFD solver calls are required predominantly
to build a database necessary for the surrogate construction and, to some extent, for its
subsequent improvement.

Surrogates are usually categorized by the class of mathematical functions used for
their creation. Popular types supporting aerodynamic optimization problems are low-order
polynomial Response Surface Models (RSM) [16], regression splines [17], and various
Radial Basis Functions (RBF) [18]. Polynomial-based surrogates have the advantages
of simplicity and ease of use, although they have limited capabilities to approximate
complex objective functions. RBF-based metamodels, instead, can model functions of high
curvature with reasonably higher fitting effort. More complex models, such as Artificial
Neural Networks (ANN) [19], use a nonlinear regression process to fit the surrogate.
Although they are very efficient in applications with numerous variables, the ANN training
process might be computationally expensive as it requires a solution to a high-dimensional
optimization problem.

A characteristic class of metamodels has the ability to consider a stochastic component
in the function approximation to quantify the confidence of the surrogate predictions.
Moreover, this property is extensively used to boost the global search by identifying areas
in the objective space with high improvement potential. These models are predominantly
based on the Gaussian Process (GP); among them, the Kriging surrogate [20–23] is the most
widely exploited.

The abovementioned metamodels have received the most prominent attention in the
field of aerodynamic shape optimization of various ducts and channels. Lu et al. [24]
employed a third-order polynomial RSM to optimize an S-shaped compressor transition
duct. The authors were successful in reducing the pressure losses along the channel,
together with an improvement in outlet pressure and velocity distribution. In the problem
of annular S-duct shape optimization, Immonen [25] used fourth- and fifth-order RSM to
minimize energy loss and improve flow uniformity. The multi-objective study resulted in
considerable refinement in both examined parameters.

An RBF-based metamodel served to approximate the objective function in the opti-
mization study on a stealth aircraft diffusing S-duct performed by Gan et al. [26]. The
problem of simultaneous maximization of the duct pressure recovery and minimization
of total pressure distortion was solved by a GA performing a search in a surrogate-based
space. A significant distortion coefficient improvement and slight pressure recovery factor
improvement characterized the solution located by the optimizer. A similar GA-based
approach was used by Donghai et al. [27]; however, the surrogate was constructed using
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ANN. With such a method, the authors suppressed flow separation in a strutted annular
S-duct, which resulted in a considerable reduction in total pressure loss.

Among contemporary literature sources on duct shape optimization, the use of Krig-
ing has noticeable dominance, chiefly due to its ability to interpolate complex functions and
inherent features supporting global optimization. Zerbinati et al. [28] used the so-called
Multiple-Gradient Descent Algorithm to search for an optimum in an objective space ap-
proximated using the Kriging technique. The algorithm successfully reduced the pressure
loss and velocity variance in an air-cooling S-duct. Verstraete et al. [29] compared the be-
havior of Kriging-based and ANN-based surrogates assisting a Differential Evolution (DE)
algorithm [30] in the minimization of U-shaped cooling channel pressure loss. The authors
reported a superior performance by the Kriging metamodel. The study was broadened by
Verstraete and Li [31] to a multi-objective problem of pressure loss minimization and heat
transfer maximization. Due to the previous research outcomes, Kriging solely assisted the
DE algorithm. Despite having objectives of competing nature, the optimizer was successful
in improving both measures. Koo et al. [32] executed a similar comparison of Kriging and
ANN metamodels in a multi-objective optimization problem of a heat exchanger inlet duct.
The study outcomes resulted in improved pressure loss and flow rate uniformity achieved
by both metamodels, although preferences towards specific objectives were different for
particular surrogates. Wang and Wang [33] employed a Kriging-assisted GA technique
in a multi-objective optimization problem of a UAV S-shaped intake duct. The authors
were successful in the combined improvement of the aerodynamic and electromagnetic
performance of the S-duct diffuser.

The studies referenced in the previous paragraph used merely Kriging-based objective
landscape approximation to search for the optimum. The full potential of Kriging, however,
manifests itself in its ability to not only predict the objective value but also assess the
uncertainty of this prediction. This property is extensively used to balance local and global
searches by probing the objective space in regions with a high likelihood of improvement.
The search strategy based on this unique Kriging feature constitutes the Efficient Global
Optimization (EGO) proposed by Jones et al. [23]. This algorithm is proven to balance
the exploration and exploitation properties efficiently and, as such, has been applied in
numerous shape optimization studies.

Bea et al. [34] used the Kriging-based EGO strategy to successfully improve the
pressure recovery factor in a diffusing S-duct. A similar objective measure was optimized
by Dehghani et al. [35]. The authors employed EGO to enhance the performance of an
axisymmetric diffuser channel. Marchlewski et al. [36] employed a similar search technique
utilizing Kriging’s uncertainty assessment in multi-objective optimization of U-shaped
engine intake. Using Pareto front delimitation in an objective space, the authors reduced
the duct pressure loss while maintaining the initial level of exiting flow uniformity. Drężek
et al. [37] optimized analogous intake geometry using GA-assisted EGO. The two objectives
were combined using the Achievement Scalarizing Function (ASF) [38]. The optimizer was
successful in the simultaneous improvement of the duct’s pressure loss and flow distortion.

Every aerodynamic optimization problem requires design variables representing ge-
ometry as the subject of improvement. Expressing generic models using independent
parameters (variables) is usually referred to as parameterization, for which a variety of
methods is possible. The choice of a specific technique may profoundly impact the optimiza-
tion process’s computational cost and the final result. The vast majority of literature sources
referenced above use parameterization techniques that focus on modifying geometry defini-
tion, namely, direct engineering parameters [24,32], Bézier curves [4,8], B-splines [27–29,31],
Non-Uniform Rational B-Splines (NURBS) [7,35], and Free-Form Deformation [6]. Such
an approach requires a subsequent mesh regeneration at each reshaping step. The mesh
morphing technique is an efficient alternative to reduce the overall computational cost of
the process. This method requires only initial generation of a mesh, which is adjusted in
the subsequent steps while preserving the original grid topology. Although some recent
literature sources describe the combined use of surrogates and mesh morphing (applied
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to, e.g., fuselage–wing junction [39,40], generic car model [40], effusion cooling plate [41],
and cooling channel rib [42]), only a few studies report such an application to intake duct
optimization. To the best of our knowledge, these are [36,37].

Most intake duct optimization studies available in the literature consider only one
operating condition, usually the nominal on-design point. Such an approach is commonly
called Single-Point Optimization (SPO). As the conditions may change substantially at
various mission stages, such a strategy may lead to a suboptimal performance at off-
design points. Some studies (e.g., [33,43]) evaluate the off-design conditions in the post-
optimization phase to secure the design against severe performance deterioration. A few
literature sources report simultaneous optimization under multiple flight conditions—often
referred to as Multi-Point Optimization (MPO). Brahmachary et al. [44] and Fujio and
Ogawa [45] executed multi-point studies on axisymmetric scramjet intake. The authors
employed a surrogate-assisted GA algorithm to improve multiple performance parameters
via Pareto front evaluation. Chiang et al. [46] enhanced the shape of a Boundary-Layer
Ingesting (BLI) engine S-duct intake. The performance objectives for cruise, descent, and
climb conditions were combined using a simple weighted sum function. The foreseen
importance of MPO in prospective design processes should lead to investigations into
advanced scalarization methods allowing simultaneous involvement of multiple objectives
and flight conditions while overcoming the well-known deficiencies of the weighted sum
technique. Such studies are absent in the state-of-the-art literature.

This paper concentrates on designing an optimization scheme combining the ad-
vantages of the Kriging metamodel, mesh morphing technique, and advanced objectives
scalarization method. The components are duly integrated to create a synergistic effect of
improvements in the economic efficiency of the design process. To assess the usefulness
of the proposed framework in practical engineering problems, the algorithm is applied to
multi-point aerodynamic optimization of an I-31T turboprop aircraft’s air intake. The proce-
dure simultaneously reduces the air-duct pressure losses and mitigates the flow distortion
at the engine compressor’s front face while considering multiple flight conditions.

The novelty of this study is the use of the augmented Chebyshev-type ASF to combine
multiple performance objectives under multiple flight conditions. Such a strategy integrated
with the Kriging surrogate and the mesh morphing technique creates a synergistic effect of
cost-efficient MPO.

2. Materials and Methods
2.1. Optimization Framework

The optimization framework reported in this study is founded on three pillars: Kriging
surrogate for objective function approximation, mesh morphing technique for geometry
parameterization, and ASF method for handling multiple objectives and conditions. The
framework integrated from the abovementioned components is presented schematically
in Figure 1.
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2.1.1. Kriging Surrogate

The concept of Kriging originates from geostatistical modeling inspired by the work
of a South African engineer named Daniel Krige [20], further formalized by Matheron [21],
and eventually adapted for deterministic numerical simulations by Sacks et al. [22] and
Jones et al. [23]. The Kriging-based surrogate is founded on the hypothesis that any black-
box simulation response function y = f (x) can be expressed as a realization of the Gaussian
random process Y(x).

The Kriging surrogate is composed of a global trend function µ(x) and centered GP
Z(x) with zero mean and non-zero covariance (Equation (1)).

Y(x) = µ(x) + Z(x) (1)

The trend function is a regression model that captures a general tendency in the
observed data. It is expressed as a linear combination of n deterministic basis functions
φ(x), based on regression of N response function evaluations (n ≤ N):

µ(x) = ∑n
k=0 φk(x)βk (2)

Depending on the trend formulation, the Kriging metamodel can be classified into
three categories: Simple Kriging (SK)—for which the trend is a known constant; Ordinary
Kriging (OK)—for which the trend is constant but unknown; and Universal Kriging (UK)—
for which the basis functions φ(x) are known and fixed, but the coefficients βk ∈ R\{0} are
unknown and are estimated in the surrogate construction process. In this study, we use the
most general, i.e., UK formulation, due to the anticipated high curvature of the objective
function. The trend is defined as a p-dimensional full first-order polynomial (Equation (3)).

µ(x) = ∑p
j=0 β jxj (3)

The stochastic component Z(x) in Equation (1) models a local deviation from the
global trend to the true objective function. It is characterized by constant but unknown
variance σ2 and non-zero covariance (Equation (4)).

Cov(Zi, Zi′) = σ2R(xi − xi′, ψ) i, i′ = 1, . . . , N (4)

Here, R(xi − xi′, ψ) denotes the spatial correlation function between any two samples
xi and xi′, and is often referred to as the covariance kernel. In multi-dimensional prob-
lems, the kernel turns into a tensor product of p one-dimensional correlation functions
r(xi − xi′, ψ):

R(xi − xi′, ψ) = ∏p
j=1 r

(
(xi − xi′)

δj
j , ψj

)
(5)

The level of impact of j-th dimension correlations on the Kriging prediction is con-
trolled by the covariance kernel hyperparameters grouped in the vector ψ. The smoothness
coefficient δ governs the differentiability of the metamodel surface. In the present study,
we assume that the true objective function is smooth, which justifies using an infinitely
differentiable Gaussian-type kernel (δj = 2 ∀ j = 1, . . . , p). In one dimension, the Gaussian
kernel is formulated as:

rj(xi, xi′, ψ) = exp

(
−
(xi − xi′)

2
j

2ψ2
j

)
(6)

The values of unknown hyperparameters β, σ2, ψ are estimated in the process called
“fitting” the metamodel to the available data samples. This procedure is based on the
maximization of a function L, expressing the probability of predicting the evaluated objec-
tive values at sampled locations. This method is called Maximum Likelihood Estimation
(MLE) and is a non-trivial optimization problem of minimizing a multi-modal likelihood
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function. For the purpose of this study, we used an algorithm relying on the quasi-Newton
method [47], available in the R language package DiceKriging [48].

The Kriging predictor Ŷ(x) at an arbitrary unobserved location x0 is defined using
random function evaluations at sampled positions Y(xi). The estimator holds the properties
of the Best Linear Unbiased Predictor (BLUP), i.e.:

• Linearity—linear combination of random functions

Ŷ(x0) = ∑N
i=1 λi(x0)Y(xi) (7)

• Unbiasedness—absence of systematic bias

E
[
Ŷ(x0)

]
= E[Y(x0)] (8)

• Minimal prediction variance—minimizing the mean squared error

MSE
[
Ŷ(x0)

]
= E

[(
Ŷ(x0)−Y(x0)

2
)]

(9)

Solving the above system of equations for optimal weights λT ∈ RN allows computa-
tion of the GP predictor’s mean and variance, which defines it entirely.

The Kriging surrogate requires input data from objective function evaluations at a set
of discrete locations. The spatial distribution of these observations across the design space
may profoundly influence the metamodel prediction quality [49]. Historically, various
sampling strategies were developed for planning the empirical experiments, so the selection
of an observation pattern is often called the Design of Experiment (DoE). The original DoE
methods locate the majority of samples close to the design space boundaries and only a few
observations in its interior [10]. Deterministic numerical simulations, however, are prone
to systematic rather than random error. For this reason, space-filling strategies, distributing
samples over the entire domain, are more convenient for such applications. Using classic
DoE methods in computer experiments might be highly inefficient [22].

Although a variety of space-filling techniques well-suited for deterministic simulations
is available, the Latin Hypercube Sampling (LHS) [50] strategy has attracted the most
attention in recent years [49,51]. The LHS algorithm distributes the observations in a
p-dimensional hypercube so that the samples’ projections into (p− 1)-dimensional space
do not share the exact location along the axes [52]. In a two-dimensional simplification,
this criterion would result in samples being distributed on a grid in which only one sample
is located in each row and each column. The designer can arbitrarily select the number
of observations, which makes the LHS method attractive for studies based on expensive
aerodynamic simulations.

In this paper, we use the Optimal Latin Hypercube (OLH) technique, which improves
LHS’s space-filling properties using a columnwise-pairwise algorithm [53] to optimize
sample distribution with respect to the S-optimality criterion [54]. The algorithm is executed
using the lhs R package [55].

For the sake of computational efficiency of the optimization process, the initial dataset
is limited to a number ensuring sufficient initial prediction quality to initiate the follow-
ing adaptive sampling stage. The optimal number is unknown a priori, although some
respected studies suggest approximation using the “10p” rule-of-thumb [23,56], where
p is the number of design variables. Here, the design space has 12 dimensions, which
would result in 120 initial samples; however, we follow the suggestion of a finite-decimal
spacing between observations [23]. Ultimately, the DoE contains 126 elements with an
inter-distance of 1

(126−1) = 0.008.
The computational expense required to generate samples that construct the Kriging

surrogate increases with the problem dimensionality, which restricts this method’s appli-
cability to a moderate number of design variables. The limiting problem size reported
in the literature is not accurate (e.g., p < 50 in [11], p < 20 in [14]) as it is dependent
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on the available resources. Nevertheless, the Kriging technique is prone to the curse of
dimensionality and, as such, is not suited for extensively large optimization problems.

The adaptive sampling, subsequent to the initial DoE, sequentially adds new obser-
vations to the dataset using current information about the predicted properties of the
objective landscape. The process locates new samples with respect to the preselected
infill criterion. For this purpose, we use the Expected Improvement (EI) function, pro-
posed by Jones et al. [23], which takes advantage of the Kriging ability to estimate the
prediction uncertainty.

The EI criterion uses the Kriging variance to assess the possibility of the objective
function value being lower than the current best prediction ymin at any unobserved location.
The addition of a new sample may bring an improvement I(x) equal to max(ymin − y(x), 0).

The value of y(x) has yet to be discovered in unevaluated points, and it is modeled using
the Kriging predictor Ŷ(x). As a result, the improvement becomes a random variable for
which an expected value constitutes the EI function (Equation (10)).

EI(x) = E[I(x)] = E
{

ymin − Ŷ(x) i f Ŷ(x) < ymin
0 otherwise

}
(10)

Integration by parts of Equation (10) gives the following analytical formulation of
the EI:

EI(x) =

{
(ymin − m̂(x))CDF

(
ymin−m̂(x)

ŝ(x)

)
+ ŝ(x)PDF

(
ymin−m̂(x)

ŝ(x)

)
i f ŝ(x) > 0

0 i f ŝ(x) = 0

}
(11)

Here, m̂(x) and ŝ(x) are the Kriging prediction mean and variance, CDF is a cu-
mulative distribution function, and PDF is a probability density function of a standard
normal distribution.

Iterative introduction of new samples x∗ at locations maximizing the EI function
constitutes the EGO algorithm (Equation (12)).

x∗ = argmax
x∈X

EI(x) (12)

Maximization of the EI criterion might not be trivial because of its strong multimodality.
This study uses for this purpose a derivative-supported GA algorithm genoud [57] available
under the R package DiceOptim [48].

2.1.2. RBF-Based Mesh Morphing

Out of a variety of mesh morphing methods, this study employs the RBF-based
technique. RBF are mathematical functions originating from a multivariate approximation
of scattered data. Their value depends only on the distance from the function argument to
the origin, called a control point. The RBF interpolates the value between control points
according to the specific basis function properties while preserving it in the points’ location.

A deliberate displacement of the control points introduces the desired deformation of
the initial mesh. The motion is interpolated on the surrounding grid nodes’ positions ac-
cording to the characteristics of the selected RBF. The interpolation function h(x) : R3 → R ,
(Equation (13)) defines particular nodes’ locations after deformation x′ = x + h(x).

h(x) = ∑NC
i=1 γi ϕ

(
‖x− xCi‖

)
+ p(x) (13)

Here, x ∈ R3 : x = (x, y, z) is an arbitrary spatial position, xCi is a known position of
the i-th control point from a set of NC elements, and γi is a corresponding weight coefficient
describing the strength of the i-th interaction. The interpolation function comprises a
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linear combination of radial contributions described by RBF ϕ(·)—depending solely on the
Euclidean distance ‖x− xCi‖—and a linear polynomial:

p(x) = α0 + α1x + α2y + α3z (14)

The introduction of the polynomial p(x) ensures the uniqueness of the fit and allows
for the affine motion.

From among several RBF suited for multivariate problems (see, e.g., [58–62]), we select
the smooth Gaussian RBF to prioritize the preservation of the mesh quality (Equation (15)).

ϕ
(
‖x− xCi‖

)
= e−‖x−xCi

‖2/c2
(15)

The function’s shape is tuned by a parameter c, whose value was selected for this
study in a trial-and-error process as equal to 150.

The unknown values of weights γi (Equation (13)) and polynomial coefficients αi
(Equation (14)) are computed to satisfy the known displacement gi of each control point
(Equation (16)).

h(xCi) = gi for i = 1, . . . , NC (16)

The given displacements are stored in an NC × 3 matrix g. Moreover, additional or-
thogonality requirements (Equation (17)) are introduced to equate the number of equations
with the number of degrees of freedom, increased by the presence of the polynomial p(x).

∑NC
i=1 γi = 0

∑NC
i=1 γixCi = 0

∑NC
i=1 γiyCi = 0

∑NC
i=1 γizCi = 0 (17)

A linear system of equations (Equation (18)) is constructed using the above conditions,
which is subsequently solved for NC × 3 matrix γ of the interpolation function weights and
4× 3 matrix α of polynomial coefficients.[

M P
PT 0

][
γ
α

]
=

[
g

0

]
(18)

The NC × NC interpolation matrix M gathers RBF evaluations with respect to the
distances between all considered control points (Equation (19)).

M =


ϕ
(
‖xC1 − xC1‖

)
· · · ϕ

(
‖xC1 − xCNC

‖
)

...
. . .

...
ϕ
(
‖xCNC

− xC1‖
)
· · · ϕ

(
‖xCNC

− xCNC
‖
)
 (19)

The orthogonality conditions (see Equation (17)) result in NC × 4 matrix P containing
a unity column and all control points’ positions (Equation (20)).

P =

1 xC1 yC1 zC1
...

...
...

...
1 xCNC

yCNC
zCNC

 (20)
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After solving the system above, the post-deformation spatial position x′ = (x′, y′, z′)
of an arbitrary location is computed as an incremental displacement (Equation (21)).

x′ = x + hx(x)
y′ = y + hy(x)
z′ = z + hz(x)

 (21)

In the definition of the optimization problem considered in the present paper, the
Cartesian components of control points’ translation vectors serve as design variables.

This study implements the mesh morphing algorithms using the RBF module of
PyGeM (Python Geometrical Morphing) [63], an open-source Python programming lan-
guage library for parameterization and deformation of complex geometries.

A vital aspect of the functional mesh morphing process is maintaining the mesh
quality. Such a problem usually comes down to controlling an appropriate quality metric.
Selecting a measure essential for the specific flow solver’s error-free operation is funda-
mental. From the various metrics available in the literature [64,65], we select the mesh
element orthogonality angle diagnostic as appropriate for the employed fluid dynamics
solver. This measure compares the angle between adjoining mesh cell faces to the ideal
level (Equation (22)).

90◦ − cos−1(d · n) (22)

The vector d connects two element centroids, and n is a face normal vector. The
orthogonality metric positively correlates with the mesh quality as the grid element shape
approaches the idealized form for high values. An area-weighted averaging over relevant
faces gives a value for the specific control volume. Quality control involves monitoring
the minimum of the metric among all mesh elements and comparing it to the value for the
initial mesh as a reference.

2.1.3. Achievement Scalarizing Function

Multiple objectives and flight conditions considered in this study are combined using
the augmented Chebyshev-type ASF [38]. This technique belongs to the a priori methods,
for which the designer articulates their preferences about the relative importance of the
objectives and conditions before the optimization process starts. Such an approach is
particularly attractive for studies involving computationally expensive simulations, as only
a fraction of the objective space needs to be resolved.

Combining preferences into one function, such that the problem can be solved with
a single objective optimizer, is usually called scalarization. Consequently, the resulting
function is referred to as a scalarizing function. Although the weighted sum method [66]
is the most intuitive representant of this class, it has an inherent drawback in its inability
to find solutions on a non-convex portion of a Pareto front (see Figure 2a). This issue is
not present in methods minimizing a metric of distance to a reference point arbitrarily
located in the objective space (see Figure 2b). The ASF selected for this study employs
the Chebyshev metric as a measure of distance and the optimization target f T , expressing
the designer’s aspirations about particular objectives, as a reference point. The scalarizing
function in a multi-point formulation is defined as follows:

YMP
ASF(x) = max

{
λjk

(
f jk(x)− f T

jk

)}
+ $ ∑j ∑k λjk

(
f jk(x)− f T

jk

)
(23)

Above, subscripts j and k refer to particular design conditions and objectives, respec-
tively. The augmentation coefficient $ (together with the following term) guarantees proper
Pareto optimality and takes an arbitrarily small positive value, here 0.05.
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The coefficients λjk serve to normalize the objective values to a similar
range (Equation (24)).

λjk =
1

f N
jk − f T

jk
(24)

The f N is called the nadir point and represents the upper bound of an objective value.
The designer usually estimates its value based on knowledge about the landscape of the
objective supported by their educated judgment.

Except for the advantages referred to above and the proven efficiency, the ASF is
characterized by an intuitive concept of setting a target and aiming at advancing on it.

2.2. Optimization Problem

The surrogate-based framework is applied to the I-31T aircraft air-intake duct multi-
point optimization problem. The I-31T flight demonstrator is a retrofitted make of the I-23
“Manager” airplane. The plane was designed in Łukasiewicz Research Network—Institute
of Aviation [67] and modified under the EU R&D program ESPOSA (Efficient Systems and
Propulsion for Small Aircraft) [68]. The redesign had in scope a replacement of the piston
motor with the PBS TP100 turboprop engine [69–72]. Integration of the nominally pusher-
purpose engine with the tractor-type airplane required the introduction of a tailored air
delivery U-shaped duct. The duct was designed by Stalewski and Żółtak [73] using a para-
metric design strategy [74,75] relying on the NURBS-based in-house code PARADES [76].
This study takes the outcome of the abovementioned work as an initial point and aims to
further improve the duct’s performance characteristics in various flight conditions.

Figure 3 presents the initial air-intake duct geometry. The upstream portion of the
channel is slightly S-shaped and transitions into a U-shaped duct with the flow direction.
Further downstream, the U-duct interfaces with the engine compressor front face at the
location marked as the Aerodynamic Interface Plane (AIP). The intake channel has a slightly
converging character with a hydraulic diameter equal to 0.180 m at the duct’s entrance
and 0.147 m at the AIP. The dummy extension, of a length of two diameters, is an artificial
portion introduced to secure the flow solver’s stability. The duct’s inlet and AIP shapes
and positions are constrained, i.e., not subject to shape deformation.

The surface of the duct in Figure 3 shows the initial computational mesh. The nine
points surrounding the geometry indicate the baseline location of the mesh morpher
control points subject to displacement during optimization. They are located in regions
where presumed deformation should have a significant impact on the duct performance.
The horizontal and vertical translation vector components form a set of design variables.
Three pairs of points are bounded so that each duplet shares the exact translation. This
strategy guarantees the maintenance of duct symmetry. Such a formulation results in
twelve design variables, shown in Figure 3, whose ranges are defined in Table 1. The
ranges corresponding to control points close to the AIP are narrower to avoid excessive
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deformations in the vicinity of the constrained section. Such distorted geometries would
have a low probability of generating superior solutions.
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Table 1. Ranges of design variables.

Design Variable Range of Displacement

x1, . . . , x4 ±100 mm
x5, x7, x8 ±50 mm
x6 ±75 mm
x9, . . . , x12 ±15 mm

The amount of pressure loss along the air intake and the level of circumferential pres-
sure distortion at the compressor entrance substantially influence the ultimate performance
and operability of the airplane engine. These two objectives are subject to minimization in
the present study:

pressure loss coefficient : f1 ≡ dP =
PIN

t − PAIP
t

PIN
t

(25)

distortion coefficient : f2 ≡ DC60 =

PAIP
t − min

θ∈[0,2π]
PAIP

t
(
θ − π

6 , θ + π
6
)

qAIP (26)

In the above equations, PIN
t and PAIP

t denote total pressure values mass-averaged
over the inlet and AIP cross-sections, respectively, and qAIP indicates dynamic pressure
mass-averaged across the AIP. The term min

θ∈[0,2π]
PAIP

t
(
θ − π

6 , θ + π
6
)

refers to the lowest

average pressure in the 60◦ sector, which is proven to have the most detrimental impact on
the compressor performance [77]. This evaluation is realized by clocking a virtual sector
around the AIP with ∆θ = 10◦ angular intervals—as given schematically in Figure 4.
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The multi-point optimization problem considers three I-31T airplane flight conditions:
DP1—nominal cruise, DP2—low-altitude climb, and DP3—high-altitude cruise. Details
of the design points and related environmental properties are gathered in Table 2. The
corresponding targets and nadir points are given in Table 3. The goal for the nominal cruise
has a priority over the off-design conditions to reflect the contribution of this design point
to the aggregated efficiency over the entire flight mission. Both performance objectives are
considered to be of equal importance and share similar targets for particular design points.
On the grounds of the designer’s experience, the possible falloff of 200% for each objective
gives a basis for the function’s upper bound estimation.

Table 2. Details of operating conditions for considered design points.

Design Point Altitude
(m)

A/C Velocity
(m/s)

Ambient
Pressure

(Pa)

Ambient
Temperature

(K)

Ambient
Density
(kg/m3)

Engine Mass
Flow Rate

(kg/s)

DP1: Nominal cruise 3000 65 69,700 268.6 0.909 1.5
DP2: Low-altitude climb 100 46 100,129 287.5 1.213 1.9
DP3: High-altitude cruise 3700 71 64,089 264.1 0.845 1.3

Ambient conditions were evaluated with use of the U.S. Standard Atmosphere model [78].

Table 3. Target and nadir points for objectives under selected flight conditions.

Design Point dP DC60

DP1: Nominal cruise target: 10%
nadir: 200%

target: 10%
nadir: 200%

DP2: Low-altitude climb target: 5%
nadir: 200%

target: 5%
nadir: 200%

DP3: High-altitude cruise target: 5%
nadir: 200%

target: 5%
nadir: 200%

2.3. Evaluation of Objectives
2.3.1. Flow Solver Governing Equations

The values of the objective functions are derived from the flow field solution of the
air-intake duct CFD simulations. For this purpose, we use a Reynolds-averaged Navier–
Stokes (RANS) solver capable of modeling three-dimensional turbulent viscous flow to
accurately predict flow features characterized by a secondary flow motion, strong pressure
gradients, and occurrence of separation. Such flow features are highly expected in channels
of high curvature [79]. The solver is implemented using a commercial CFD code: ANSYS
CFX Release 18.0.

In this study, the code solves the following Favre-averaged Navier–Stokes
conservation equations:
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• The continuity equation:

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (27)

• The momentum conservation equation:

∂

∂t
(ρũi) +

∂

∂xj

(
ρũiũj

)
=

∂

∂xj

(
−pδij + tij + ρτij

)
(28)

In the above formulations, ρ, ui, and p denote fluid density, velocity components,
and static pressure, respectively. The tensor tij indicates the viscous shear stress com-

ponent. The operators (·) and (̃·) stand for the Reynolds-averaged and Favre-averaged
mean variables, respectively [80]. The presence of the turbulent (Reynolds) stress tensor
ρτij = −ρu′′i u′′j requires additional closure for the system of RANS equations. By employ-
ing the Boussinesq hypothesis, which is the foundation of eddy viscosity-based turbulence
models, the Reynolds stress tensor is approximated as:

ρτij = −ρu′′i u′′j
∼= µt

(
∂ũi
∂xj

+
∂ũj

∂xi
− 2

3
∂ũk
∂xk

δij

)
− 2

3
ρkδij (29)

where µt is the turbulent viscosity determined using the selected turbulence model. Here,
we use the two-equation SST k-ω turbulence model by Menter [81,82]. This model com-
putes µt from a solution of additional transport equations for two variables: the turbulent
kinetic energy k and the specific dissipation rate ω (Equations (30) and (31)).

∂ρ

∂t
(ρk) +

∂

∂xj

(
ρũjk

)
= ρτij

∂ũi
∂xj
− β∗ρkω +

∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
(30)

∂

∂t
(ρω) +

∂

∂xj

(
ρũjω

)
=

α

νt
ρτij

∂ũi
∂xj
− βρω2 +

∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k
∂xj

∂ω

∂xj
(31)

Details of the SST k-ω model formulation used in this paper and a specification of the
closure coefficients are available in [83].

The system of transport equations is closed with the ideal gas law equation, solved for
the density (Equation (32)).

p = ρRT̃ (32)

Here, R is the specific gas constant for air, and T is the fluid temperature. This study
employs an isothermal model, for which the temperature is selected and kept constant
according to the specifics of particular design points. Such an assumption is well grounded
for a low Ma number flow regime and the absence of heat sources, which is accurate for
the intake duct conditions.

2.3.2. Validation of Turbulence Modeling Technique

The selection of the SST k-ω turbulence model was validated prior to the optimization
study. The model’s predictive quality was compared with the eddy viscosity-based k-ε
turbulence model and the non-linear k-ε Explicit Algebraic Reynolds Stress Model (k-ε
EARSM). All three models were considered in two options: with and without the curvature
correction (CC) term. The flow field predictions for the six abovementioned models
were compared with the experimental data for a benchmark U-duct provided by Azzola
et al. [84,85]. Details of the validation study are available in [37].

Figure 5 groups the study results for the longitudinal (U) and circumferential (V)
velocity components normalized by the bulk velocity (Ub) at the entrance to the duct’s
curved portion. The k-ε turbulence model showed the most drastic underprediction in
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the core flow (r/D = 0) deceleration at the duct bend (see Figure 5a). Quite oppositely,
the k-ε EARSM model failed to predict the circumferential flow motion at the station
downstream of the curved portion. Overall, the study showed the best agreement between
the flow simulations and the experimental reference data for the SST k-ω turbulence model.
Moreover, no significant beneficial influence of the curvature correction term was detected.
Following this reasoning, the SST k-ω model with deactivated CC term is employed in
this work.
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for various turbulence models in a 180◦ curved duct with a circular cross-section. Station: (a,b) at
90◦ bend; (c,d) two diameters downstream of the curved section. Adapted from [37].

2.3.3. Details of the Flow Field Modeling Approach

Steady Navier–Stokes equations are discretized by the element-based finite volume
method, with a second-order upwind approximation of convective fluxes and a
second-order central representation of diffusive fluxes. An additional limiter using the
Barth and Jespersen principles [86] is activated to maintain the solution’s boundedness. The
solution to the equations is obtained using the coupled pressure-based algorithm iterated
until the normalized residuals of the momentum and transport equations drop below 10−5.

The boundary conditions mimic the mission characteristics given in Table 2. The duct’s
inlet flow conditions are defined, with the total pressure value calculated using Bernoulli’s
equation for specific flight speed and altitude. Furthermore, the inlet turbulence intensity is
set to Tu = 10%, and the eddy-to-molecular viscosity ratio equals νt/ν = 100. The amount
of airflow accepted by the engine at specific design points is reflected through the mass flow
rate condition at the domain outlet. The duct’s walls obey the non-slip boundary condition.

The flow domain corresponding to the duct’s interior is discretized using a structured
hexahedral mesh. To secure a high-level resolution in the near-wall region accompanied
by quality elements in the flow core, the mesh is built in the hybrid O-H grid topology
(see Figure 6). On average, the non-dimensional wall distance is y+ ∼ 1.7 with extreme
variation up to y+ ≤ 3.5. These values hold throughout the optimization process.



Aerospace 2023, 10, 266 15 of 30

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 32 
 

 

The flow domain corresponding to the duct’s interior is discretized using a 
structured hexahedral mesh. To secure a high-level resolution in the near-wall region 
accompanied by quality elements in the flow core, the mesh is built in the hybrid O-H 
grid topology (see Error! Reference source not found.). On average, the non-dimensional 
wall distance is 𝑦ା~1.7  with extreme variation up to 𝑦ା ≤ 3.5 . These values hold 
throughout the optimization process. 

 
Figure 6. O-H grid at the duct’s AIP. 

The execution of the comparative study secures the optimization results’ 
independence from the mesh size. Four different grid sizes are compared against the duct-
wise pressure distribution. The mass-averaged total pressure values are normalized using 
the duct inlet pressure. The results are compared in Error! Reference source not found.. 
The two finest grids (1,451,000 and 8,007,000 cells) show no difference in predictions for 
the vast majority of the duct length (~95%). A minor deviation is observable close to the 
duct’s outlet. Hence, the mesh with 1,451,000 elements is used as it has sufficient 
prediction quality and protects the computational economy of the simulations. 

 
Figure 7. Results of the duct grid independence study. L = duct centerline length. Numerical values 
indicate the number of mesh elements. 

3. Results and Discussion 
3.1. Metamodel Fit Validation 

Before the optimization began, the Kriging surrogate was assessed for its ability to 
generalize given data, i.e., to predict objective values at unobserved locations. For this 

Figure 6. O-H grid at the duct’s AIP.

The execution of the comparative study secures the optimization results’ independence
from the mesh size. Four different grid sizes are compared against the duct-wise pressure
distribution. The mass-averaged total pressure values are normalized using the duct
inlet pressure. The results are compared in Figure 7. The two finest grids (1,451,000 and
8,007,000 cells) show no difference in predictions for the vast majority of the duct length
(~95%). A minor deviation is observable close to the duct’s outlet. Hence, the mesh
with 1,451,000 elements is used as it has sufficient prediction quality and protects the
computational economy of the simulations.
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3. Results and Discussion
3.1. Metamodel Fit Validation

Before the optimization began, the Kriging surrogate was assessed for its ability to
generalize given data, i.e., to predict objective values at unobserved locations. For this
purpose, we used the leave-one-out cross-validation (LOO-CV) procedure, described in
detail in Appendix A.

The validation process was executed for the nominal ASF formulation and its math-
ematical transformations given in Table 4. This action anticipates potential deficiencies
in the surrogate’s prediction accuracy. In such a scenario, a deterministic mathematical
function can be applied to the data set to deliberately impact its distribution and potentially
improve the metamodel’s fit quality.
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Table 4. ASF transformation functions.

Transforming Function Definition

Natural logarithm ln y
Square root

√
y

Negative inverse square root −1√
y

Negative inverse −1
y

Cube root 3
√

y

The outcome of the LOO-CV is presented graphically using diagnostic plots in
Figures 8–10. In Figure 8, values on the horizontal axis denote exact evaluations of each
observation, while the vertical axis shows the surrogate prediction when the corresponding
sample is omitted. The markers would be distributed perfectly on a diagonal in a utopian
metamodel with zero-error predictions. A realizable high-performing surrogate would be
characterized by samples located in close proximity to the imaginary line. Figure 8a shows
the results for the nominal ASF. The samples approximately follow the diagonal and are
reasonably distributed along the reference line. Only a few observations slightly depart
from the ideal arrangement. The results for transformed data (see Figure 8b–f) present
a similar pattern, with a slight tendency in some functions to cluster around the higher
values (e.g., Figure 8d,e).
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Figure 9 shows the distribution of the cross-validated residuals, which—as discussed
in Appendix A—should be bounded in a ±3 interval. Inspection of the residuals for
nominal ASF (see Figure 9a) reveals one observation that slightly exceeds the desired limits
with a residual value of ~3.5. Except for that fault, the residuals are randomly distributed
along the sample values with no apparent pattern. The abovementioned deficiency does not
impose a rejection of the model, although it might adversely affect its prediction accuracy.
Most of the considered data transformations (see Figure 9b–e) do not remove the outlier,
although the negative inverse function reduces it to the threshold value. Quite oppositely,
the cube root transformation, given in Figure 9f, reduces the error variance to a healthy
range without affecting randomized distribution.

The quantile-quantile plot (Q-Q plot) in Figure 10 helps to examine the standardized
residuals’ normality and homoscedasticity. The assumption of normal distribution should
be satisfied for the legitimate use of MLE in the surrogate’s hyperparameter estimation.
Moreover, following the Kriging principles, the residuals should be homoscedastic, i.e.,
the variance ought to be homogeneous across the design space [87]. The Q-Q plot draws
the residuals’ quantiles sorted in ascending order (vertical axis) against the quantiles from
the theoretical Gaussian distribution (horizontal axis). For normally distributed residuals,
markers on the plot would follow the diagonal. A random spread of points along this line
manifests residuals’ homoscedasticity.
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The Q-Q plot for the original ASF (see Figure 10a) reveals that the extreme positive
residuals tend to deviate counter-clockwise relative to the reference line. Such a pattern
indicates that more data are located on the range’s right bound, i.e., the distribution is
‘heavy-tailed’. Moreover, the lack of a similar pattern on the left tail suggests asymmetry in
the distribution with a tendency to right-skewness. Inspection of the remaining Q-Q plots
reveals that only two transformations, negative inverse square root (Figure 10d) and cube
root (Figure 10f), normalize the distribution of the standardized residuals.

As the cube root transformation is superior in the normalization of residuals and
maintains the error variance in a healthy span, we use it to transform the ASF in further
studies. Moreover, this transformation is insensitive to the sign of input, which supports the
robustness of the process. Although this is an optimistic scenario, the ASF formulation po-
tentially produces negative values for solutions superior to the presumed target. Although
less popular than other considered transformations, the cube root has been recognized in
applications for long-tailed data [88].

3.2. Sensitivity Analysis

A sensitivity analysis was executed to assess how strong is the dependence of the
surrogate’s output (i.e., the objective function prediction) on variance in particular design
variables. As a result, less impactful variables could be identified and removed from further
consideration, thus reducing the computational cost of the optimization.

We used Functional Analysis of Variance (FANOVA), described in detail in Ap-
pendix B. This method assesses the contribution of particular inputs and interactions
between them using the notion of Sobol’ indices [89,90]. FANOVA is particularly beneficial
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in use with surrogates that might be non-linear and non-monotonic but are inexpensive in
the output estimation.

Figure 11 displays graphically the outcome of the FANOVA analysis applied to the
Kriging surrogate constructed on the DoE observations. The height of the bars represents
the value of the total effect Sobol’ indices, while black and gray bars’ fractions denote the
main effect and aggregated higher-order interactions, respectively.
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Undoubtedly, the design variable x11 has the most substantial influence on variance
in the objective function. The second most impactful is the variable x12. Both factors
correspond to the spatial motion of the control point located in the duct’s inner wall area
(see Figure 3). Except for the high total index value, these variables are characterized by a
strong direct effect, suggesting their crucial influence on the final optimization results.

Quite oppositely, the impact of variables {x1, x5, x7, x10} is less significant. Their
already low total effect value is related mainly to the higher-order interactions rather
than to the direct impact. For this reason, these variables are removed from the design
space, notably reducing its dimensions and increasing the process’s cost-efficiency. Variable
x6 presents a similar level of total impact to x7, although its main influence is slightly
more prominent. Contrarily, the direct effect of x9 is minor; however, strong higher-order
interactions result in a meaningful value of the total effect index. It depends on the
designer’s intuition whether such variables should be further considered; here, we preserve
them in the study.

3.3. Assessment of Deformed Mesh Quality

This section discusses the influence of shape deformation on the mesh quality using
the metric defined in Section 2.1.2. Figure 12a displays the mesh orthogonality angle
distribution plotted on a symmetry plane of selected exceptionally deformed duct geometry.
Although a fall in the quality criterion is evident in the strongly warped regions, the bulk
values are well above the warning limit of 20◦.

Figure 12b shows a histogram of the minimum value of the orthogonality angle for
all solutions produced in the course of optimization. The dashed line denotes the metric’s
reference value for the baseline geometry. The bulk of generated solutions maintain
the quality criterion value close to the reference level. Some cases, however, report a
reduction in the orthogonality angle, yet still without violating the warning limit. Finally,
a few solutions show criterion values below 20◦. Such distortion in the mesh elements
might trigger a warning for the flow solver. After inspection, the cases were identified as
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excessively deformed and, as such, located far from the objective target. These instances
did not harm the solver’s stability and convergence; hence, they were accepted.
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angle value for the reference case.

3.4. Optimization Results

Figure 13 shows the contours of the baseline and optimized shape displayed on
the duct’s symmetry cross-section. The optimization affects the geometry mostly in the
transition from the channel to the AIP. The sharp shape change from the inner wall to the
compressor entrance is moderated in the final solution. Moreover, the optimizer reduced
the curvature of the inner and outer walls; however, the effect on the concave side is
more apparent.
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Table 5 groups the optimized objective function values for all considered conditions
and compares them with the reference levels. The results are presented on an absolute
scale and as a percentage of improvement with respect to the baseline shape. Undoubtedly,
the optimizer was successful in finding a solution that improves both objectives for all
considered design points.
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Table 5. Quantitative optimization results.

Reference Optimized Solution

dP DC60 dP DC60

Design Point Absolute Relative Absolute Relative

DP1: Nominal cruise 0.00512 0.09640 0.00493 −3.71% 0.09190 −4.67%
DP2: Low-altitude climb 0.00459 0.09369 0.00443 −3.49% 0.08943 −4.55%
DP3: High-altitude cruise 0.00471 0.09679 0.00454 −3.61% 0.09252 −4.41%

The greatest improvement level in both objectives is attained for the nominal cruise,
which corresponds with the predefined preferences in targets (see Table 3). Furthermore,
comparable gains in the pressure loss and the distortion coefficient coincide with the
equality in targets set for both objectives. However, a slight consistent preference towards
refinement in the distortion coefficient is noticeable. Such an outcome confirms the ability
of the ASF formulation to guide optimization toward the presumed target, although a
margin has to be considered for potential moderate departures.

Figure 14 shows a cumulated best value of the ASF and the convergence criterion
value along the EGO steps. A rapid convergence towards the optimized solutions is evident.
The optimizer finds a case significantly improving the initial ASF value (marked by the
dashed red line) already in the first iteration. Such superior performance results from a fine
design space sampling and high-quality surrogate fit.

Figure 14. Cumulated minimum value of the ASF (a) and convergence criterion evolution (b) in the
course of optimization.

The objective space with DoE and EGO evaluations is displayed in Figure 15 for the
three considered design points. For all conditions, the instances from the optimization
stage converge towards an imaginary line connecting the reference and target points. The
vast majority of the Pareto front is not resolved, which is intentional and prioritizes the use
of computational resources in the target’s neighborhood. Such an observation shows the
algorithm’s ability to follow the direction defined by a predetermined target.
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Figure 16 gives insights into the improvements in the distortion coefficient. Figure 16a
contrasts radially averaged total pressure values for the reference and optimized solutions.
The pressure value is normalized against the average dynamic pressure over the AIP
and plotted against the azimuthal position at the compressor face. For the optimized
solution, an apparent reduction in the total pressure’s lowest peak value manifests for
all considered design points. The source of refinement is located in the 150–210◦ sector,
corresponding with the transition area from the duct’s inner wall to the AIP. Such an
improvement translates directly to an enhancement in the distortion coefficient. A slight
shift in the total pressure curves for the optimized solution toward higher values is an
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effect of reduction in the duct’s pressure loss; however, it does not directly impact the
distortion metric.
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The distortion coefficient value can be visualized intuitively as an area between a
plane-averaged total pressure (solid lines in Figure 16a) and total pressure averaged over
the worst 60◦ sector (dashed lines in Figure 16a). The areas are marked with shaded fields
with a color corresponding to the reference (gray) and optimized (blue) solutions. The area
of the fields representing the improved solution is visibly smaller than the corresponding
regions for the baseline case. Such an observation confirms the quantitative results given
above in Table 5.

Figure 16b groups the maps of total pressure normalized by the average dynamic
head and plotted at the AIP. The pressure field homogenization is visible for all conditions,
although the most significant effect is noticeable for Design Point 1. This corresponds
with the highest DC60 improvement observed in the quantitative data. The reduction in
the low-pressure zone visible in the six o’clock position matches the improvement in the
150–210◦ sector discussed above. A slight improvement is observable in the twelve o’clock
region corresponding to the convex wall transition to the AIP. This local enhancement
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can also be seen in Figure 16a for sector ~360 ± 30◦. Even though such improvement
does not influence the distortion metric, an increase in the pressure field uniformity at the
compressor face is a positive effect.

Figure 17 shows details of the flow field with regard to the pressure loss coefficient
improvements. Figure 17a displays the flow loss evolution along the duct through a
local pressure loss coefficient contour. This metric is conceptually similar to the pres-
sure loss objective; however, it quantifies the drop from the duct’s inlet to each spatial
location (Equation (33)).

dP∗ =
PIN

t − Pt

PIN
t

(33)
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The most apparent enhancement is the reduction in pressure loss in the transition
region from the duct’s convex wall to the AIP. Adjusting the shape of the wall’s top sector
and the above-discussed reduction in the low-pressure zone on the concave side transition
removes a secondary flow motion downstream of the AIP. This improvement is visualized
in Figure 17b, in which the vertical velocity component values color flow streamlines. The
two counter-rotating vortices, visible at the twelve o’clock position in the baseline case, are
evidently removed in the optimized solution.

The reduction in the concave wall curvature and expansion of the duct’s cross-section
results in a diffusing shape, bringing additional pressure recovery from the flow kinetic
energy. This effect is subtle but still contributes to the duct’s overall performance.
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4. Conclusions

The proposed aerodynamic optimization framework, constructed from state-of-the-art
components in advanced surrogates, mesh morphing, and distance-based scalarization, was
applied to the multi-point optimization problem of an I-31T airplane air-intake duct. The
study aimed to simultaneously improve the duct’s pressure loss and flow distortion under
three flight conditions: nominal cruise, low-altitude climbing, and high-altitude cruise.

The optimizer obtained both objective values superior to the reference configuration
for all considered design points. The consistent level of improvements in the pressure
loss and flow distortion confirms the capacity of the ASF-based formulation to guide
optimization toward the presumed target. The study results prove the methodology’s
potential for optimizing complex multi-objective air-intake duct problems in multiple flight
conditions while saving substantial computational resources.

Moreover, FANOVA-based sensitivity analysis was recognized as a valuable tool for
assessing the importance of particular design variables. Application of this technique is
particularly beneficial in Kriging-based frameworks where the use of surrogate predictions
balances high computational costs related to the variance-based techniques.

This research, however, may be subject to potential limitations regarding the general-
ization of its results. Primarily, the number of design variables was relatively moderate,
which favors the use of the Kriging surrogate. Although literature sources report a consid-
erable margin for increased design space dimensions, studies on larger problems should be
executed to prove the framework’s efficiency. Moreover, the results revealed that all con-
sidered flight conditions were coherent in the direction of shape improvements. Although
justified for this particular application, this scenario might only represent part of the class of
problems. Future studies should cover scenarios with design points of contradicting perfor-
mance requirements to generalize the results. Finally, the optimization was initiated from
an already well-designed solution, which aimed to set an ambitious task for the optimizer
but also resulted in a relatively low level of required deformations. Optimization studies
demanding significant geometry adjustments may be subject to numerical errors resulting
from an excessively distorted mesh. Such problems may require the implementation of a
solution for handling erroneous data samples.

Optimization studies using the proposed framework could be expanded to more holis-
tic multi-disciplinary problems. The most natural development would include solid body
mechanics addressing the structural targets, although involvement of the intuitively more
distant performance and economic objectives seems feasible. No fundamental reasons were
identified that might inhibit the ASF-based formulation in handling such heterogeneous
goals, although this would need to be proved in further studies.
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Appendix A. Leave-One-Out Cross-Validation

The leave-one-out cross-validation (LOO-CV) technique [91] sequentially omits one
sample from the set of N observations, and the metamodel is constructed from the remain-
ing N− 1 points. Afterward, the objective is predicted at the left-out sample’s location, and
the estimated value is compared with the known evaluation. The concept of LOO-CV is
demonstrated schematically in Figure A1. The operation repeats N times, resulting in an
assessment of prediction accuracy for the whole observation set.
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The measure of difference between the true objective value y(xi) and the corresponding
LOO-CV prediction ŷD−i(xi) is termed a residual (Equation (A1)).

εi = y(xi)− ŷD−i(xi) (A1)

The residuals are standardized using the variance estimator ŝ2
D−i(xi) available in the

Kriging surrogate (Equation (A2)).

εz
i =

εi√
ŝ2
D−i

(A2)

If the residuals approximately follow the Gaussian distribution, the objective eval-
uation locates within three standard deviations from the predicted Kriging mean with
a confidence level of 99.7%. Thus, a surrogate with good prediction quality should be
characterized by standardized residuals bounded in a ±3 interval [23]. The probability of a
residual being further away is less than 0.3%. Detecting such an outlier may suggest poor
prediction quality in the vicinity of the corresponding observation.

Appendix B. Functional Analysis of Variance (FANOVA)

Consider that the design space X forms a p-dimensional hypercube and x ∈ X is
a vector of independent random variables normalized to a range [0, 1]. The surrogate
model is described by a square-integrable function Y = f (x) defined in X, which can be
decomposed using the FANOVA representation [89]:

Y(x) = f0 + ∑p
i=1 fi(xi) + ∑1≤i<j≤p fij

(
xi, xj

)
+ · · ·+ f1,...,p

(
x1, . . . , xp

)
(A3)

In the above equation, the centered and orthogonal terms denote:

mean value f0 = E[Y(x)] (A4)

main effects fi(xi) = E[Y(x)|xi]− f0 (A5)

second-order interactions fij
(
xi, xj

)
= E

[
Y(x)

∣∣xi, xj
]
− f0 − fi(xi)− f j

(
xj
)

(A6)

The interactions of higher orders can be constructed accordingly as conditional ex-
pected values.
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A similar technique serves for a decomposition of the model output’s variance:

Var(Y(x)) = ∑p
i=1 Var( fi(xi)) + ∑1≤i<j≤p Var

(
fij
(

xi, xj
))

+ · · ·+Var
(

f1,...,p
(

x1, . . . , xp
))

(A7)
The individual contribution of variable xi to the variance in the model’s output is

quantified by the main effect Sobol index:

Si =
Var( fi(xi))

Var(Y(x))
(A8)

The influence of interaction between any two variables xi and xj is described by the
second-order Sobol’ index:

Sij =
Var

(
fij
(
xi, xj

))
Var(Y(x))

(A9)

All higher-order interactions can be assessed by Sobol’ indices, constructed following
a similar concept of ratios between decomposed higher-order terms and the overall output
variance. The values of main and higher-order indices for all variables sum to unity
(Equation (A10)).

∑p
i=1 Si + ∑1≤i<j≤p Sij + · · ·+ S1,...,p = 1 (A10)

The aggregated contribution to the model’s output variance of the i-th variable is
measured by the total effect Sobol’ index:

ST
i =

E[Var(Y(x)|x\{xi})]
Var(Y(x))

(A11)

In practice, only main and total indices are assessed for economic reasons. Knowing
them allows for an estimation of the combined influence of all-order interactions.

The values of the Sobol’ indices are to be computed numerically. For this purpose, this
study employs the FAST algorithm [92] available in the R package sensitivity [93].
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69. Guła, P.; Ulma, D.; Żurek, K.; Żurawski, R. Challenges of turboprop engine installation on small aircraft. Aircr. Eng. Aerosp.

Technol. 2019, 91, 938–948. [CrossRef]
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