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Abstract: The aim of this study is to analyze lunar trajectories with the optimal junction point of
geocentric and selenocentric segments. The major motivation of this research is to answer two
questions: (1) how much of the junction of the trajectory segments at the libration point between
the Earth and the Moon is non-optimal? and (2) how much can the trajectory be improved by
optimizing the junction point of the two segments? The formulation of the end-to-end optimization
problem of power-limited trajectories to the Moon and a description of the method of its solution are
given. The proposed method is based on the application of the maximum principle and continuation
method. Canonical transformation is used to transform the costate variables between geocentric and
selenocentric coordinate systems. For the initial guess, a collinear libration point between the Earth
and the Moon is used as a junction point, and the transformation to the optimal junction of these
segments is carried out using the continuation method. The developed approach does not require
any user-supplied initial guesses. It provides the computation of the optimal transfer duration
for trajectories with a given angular distance and facilitates the incorporation of the perturbing
accelerations in the mathematical model. Numerical examples of low-thrust trajectories from an
elliptical Earth orbit to a circular lunar orbit considering a four-body ephemeris model are given, and
a comparison is made between the trajectories with an optimal junction point and the trajectories
with a junction of geocentric and selenocentric segments at the libration point.

Keywords: low-thrust lunar trajectory; end-to-end trajectory optimization; maximum principle;
continuation method; canonical transformation

1. Introduction

The use of electric propulsion systems (EPS) for space transportation between an
Earth orbit and a lunar orbit is an urgent issue for advanced lunar missions, including the
problems of cargo support for lunar manned programs and the transportation of robotic
spacecrafts, which are launched into Earth orbits as a piggyback payload, to the Moon.
To successfully implement these missions, it is necessary to develop new methods and
improve existing methods to calculate and optimize low-thrust Earth–Moon trajectories.
An efficient, fast, and stable method to solve the problem of the end-to-end optimization of
low-thrust trajectories, which takes into account the gravity of the Earth, the Moon, and
the Sun in all segments of trajectory between an Earth orbit and a lunar orbit, is critically
important for space mission analysis and design.

In [1], the problem of the end-to-end optimization of low-thrust trajectories from the
geosynchronous orbit to the final lunar orbit using nonlinear programming (NLP) was
considered, along with all the advantages and disadvantages of this approach. One of
the disadvantages of this method is the need to solve a high-dimensional problem of NLP.
Therefore, due to the problems with convergence, in [1], solutions to the minimum-time
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problem are shown only with relatively large values of the thrust acceleration of EPS (about
10−3 m/s).

A solution to the minimum-fuel problem was presented in [2], based on the maximum
principle and the continuation method. In this article, low-energy low-thrust lunar tra-
jectories were considered in the framework of the bicircular four-body problem (BR4BP)
model. In the considered scheme of transfer in this article, there was no multi-revolution
geocentric segment for escape from the initial Earth orbit. The similarity between the
optimal geocentric trajectories considered in [2] and impulsive WSB trajectories was noted
by the author of this article.

The author of [3] considered a method of designing lunar captures for spacecrafts,
starting from a high-energy trajectory around the Earth to a lunar orbit, i.e., the considered
scheme of transfer was close to the one that was considered in [2] but with a higher level of
thrust acceleration.

In many studies, the approach of dividing trajectory into several segments has been
considered to solve the optimization problem of low-thrust trajectories to the Moon. For
example, in [4–7], trajectory with three segments (1) a geocentric segment with an operating
EPS; (2) an intermediate segment with a non-operating EPS; and (3) a selenocentric segment
with an operating EPS was considered. Sometimes, the number of segments of trajectory
was increased to five, with the addition of an initial segment of transfer between low and
high orbits around the Earth and a final segment of transfer between high and low orbits
around the Moon. The necessity of dividing trajectory into segments is associated, first
of all, with the difficulty of ensuring the computational stability of methods to solve the
optimization problems of multi-revolution trajectories with a change in the central celestial
body using the numerical integration of differential equations of motion written in any
fixed (geocentric, selenocentric, or barycentric) coordinate system.

If a trajectory is divided into several segments with the connecting conditions of
segments specified in the state space, and the separate trajectory optimization problem is
solved on each segment, then the necessary optimality conditions are usually not satisfied
at the junction points of these segments; in particular, the discontinuities appear in the
optimal control. A violation of the necessary optimality conditions at the junction points of
segments of trajectory leads to the deviation of the obtained “patched” trajectories from
the optimal ones. To calculate an optimal trajectory, it is necessary to solve the end-to-end
optimization problem, which includes the optimization of junction points for each segment
of trajectory.

To reduce the number of divisions of trajectory and obtain trajectories sufficiently
close to optimal ones with insignificant losses in the cost function (transfer duration or
fuel consumption), as an initial guess, some have recommended considering trajectories
consisting of one geocentric segment and one selenocentric segment, with the junction
of these segments at the libration point EML1 of the Earth–Moon system (intermediate
EML1 rendezvous) [8]. The need to pass through the vicinity of the libration point EML1
is a well-known property of low-thrust transfer between an Earth orbit and a lunar orbit.
However, the degree of non-optimality of the solution using EML1 as the junction point of
geocentric and selenocentric segments of trajectory has not been sufficiently studied so far.

In this article, we consider an approach to optimize trajectories based on the application
of the maximum principle for the reduction of the optimal control problem to a boundary
value problem and a continuation method to solve this boundary value problem.

We use a system of differential equations of the geocentric and selenocentric motions
of spacecrafts in modified equinoctial elements (MEE) [9] and an auxiliary longitude as an
independent variable [10,11], which ensures the high computational stability of the solu-
tion to the problem of optimizing multi-revolution trajectories. The transformation from
the geocentric coordinate system to the selenocentric one (or vice versa) is conveniently
performed in the Cartesian coordinate system. In this case, the transformation is reduced
to a simple translation of the origin of the coordinate system. The proposed scheme for
the transformation from the geocentric coordinate system to the selenocentric coordinate
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system is as follows: (1) transformation from the geocentric MEE to the geocentric Cartesian
coordinate system; (2) transformation from the geocentric Cartesian coordinate system
to the selenocentric Cartesian coordinate system; (3) transformation from the selenocen-
tric Cartesian coordinate system to the selenocentric MEE. For each of these coordinate
transformations, a canonical transformation of costate variables is derived.

The canonical transformations, which are necessary to preserve the Hamiltonian
structure of the equations of optimal motion when replacing the state variables, are often
used in optimal control problems. For example, in [12], canonical transformations were
used to ensure the continuity of costate variables at the junction point of trajectory segments.
Canonical transformations between the spherical coordinates, the Cartesian coordinates
(CC), the Keplerian, and the equinoctial elements were presented in [13]. In [14], to solve
the problem of optimizing multi-revolution interplanetary transfers using CC, the authors
proposed using costate values from modified equinoctial elements as an initial guess. To
implement this proposal, a canonical transformation of costate variables from the modified
equinoctial elements into a Cartesian coordinate system was used.

In [15], the authors performed a numerical experiment to compare the computational
productivity of solving the optimization problem for low-thrust multi-revolution trajecto-
ries using different state variables. The results of testing with various types of “solvers”
showed that the time needed to solve the problem using MEE was 10 to 35 times lower
than the time needed when using Cartesian or spherical coordinates.

Therefore, to calculate trajectories, including segments of multi-revolution escape
around the Earth and capture around the Moon, it is advisable to use MEE. In this case,
however, the form of the canonical transformation of costate variables at the junction point
of the geo- and selenocentric segments of trajectory, which is necessary for end-to-end
trajectory optimization, becomes more complicated. To implement this, the authors of this
article had to develop a special procedure to calculate it.

The main advantages of the presented method of end-to-end optimization of trajec-
tories to the Moon in this study are the absence of the need to use any initial guess to
calculate an optimal trajectory, the automatic calculation of the optimal transfer duration
for a given angular distance of its segments, and the simplicity of including arbitrary
perturbing accelerations in the mathematical model of motion due to the high-precision
calculation of derivatives using complex dual number automatic differentiation (CDNAD).

It should be noted that in the studies known to us, we could not find the derivation
of the necessary optimality conditions at the junction point of the segments of trajectory
with different gravity centers in the problem statement we are considering. Meanwhile, the
analysis of these conditions leads to the conclusion that the assumption of the continuity
of all costate variables at the junction point is unfounded. This article shows that there
is a discontinuity in some costate variables at the junction point while maintaining the
continuity of the optimal control. In the case of the method using zero sphere of influence,
the existence of such a discontinuity caused by a discontinuity in acceleration on the sphere
of influence was shown in [16]. We show that a discontinuity in terms of costate variables
also exists for the identical mathematical models of acceleration in different segments. This
discontinuity is associated with a translation of the origin of a coordinate system in the
calculation of connected segments of the trajectory.

To date, there are many different problem statements that consider low-thrust transfers
and methods for their solution [17]. In this article, we consider the problem of optimizing
power-limited trajectories to the Moon. The problem in this formulation has already been
considered in a number of studies, for example [18,19]. A solution to the power-limited tra-
jectory optimization problem makes it possible to obtain the estimates of fuel consumption
for the transfer of spacecrafts with constant exhaust velocity and limited thrust [10]. The
practical significance of the problem of optimizing power-limited trajectories is associated
with the possibility of using the solution of this problem as an initial guess to optimize the
trajectories with constant exhaust velocity and limited thrust (CEV-problem) [11,20].
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The article has the following structure. Section 2 formulates the end-to-end optimiza-
tion problem of power-limited trajectories to the Moon, including the derivation of the
necessary optimality conditions at the junction point of the geocentric and selenocentric
segments of trajectory. Section 3 presents the canonical transformations of costate variables,
which are necessary to solve the problem of the end-to-end optimization of trajectories.
Section 4 describes a method for solving the boundary value problem, to which the trajec-
tory optimization problem is reduced after applying the maximum principle. Section 5
presents numerical examples of optimal low-thrust trajectories to the Moon with optimal
junction points of the geocentric and selenocentric segments and their comparison with
the optimal trajectories with intermediate EML1 rendezvous. Concluding remarks are
presented in Section 6.

2. End-to-End Optimization of the Perturbed Power-Limited Trajectories

Let us consider the problem of optimizing the trajectories of spacecrafts with limited
power to the Moon, which is called the LP-problem. We take into account the gravity of the
Earth, the Moon, and the Sun on all segments of trajectory, and the position and velocity
vectors of the primaries are calculated using JPL ephemeris software [21].

We use the approach given in [10,11] to solve the problem of optimizing the multi-
revolution power-limited orbital transfer with a fixed angular distance and free transfer
duration. In [10,11], the optimization problems of unperturbed power-limited orbital
transfer were considered. In this article, we consider the problem of optimizing perturbed
LP-trajectories to the Moon. The dynamic equations of the perturbed motion of spacecrafts
with limited power have the following form:

dp
dK =

2p3

µq3 ·
(
aLPt + apt

)
,

dex
dK =

p2

µq2

[
sin L ·

(
aLPr + apr

)
+ (q+1) cos L+ex

q ·
(
aLPt + apt

)
− eyξ

q ·
(
aLPn + apn

)]
,

dey
dK =

p2

µq2

[
− cos L ·

(
aLPr + apr

)
+

(q+1) sin L+ey
q ·

(
aLPt + apt

)
+ exξ

q ·
(
aLPn + apn

)]
,

dix
dK =

p2s2

2µq3 cos L ·
(
aLPn + apn

)
, diy

dK =
p2s2

2µq3 sin L ·
(
aLPn + apn

)
, dLK

dK =
p2

µq3 ξ ·
(
aLPn + apn

)
,

dt
dK = 1√

µp

(
p
q

)2
,

(1)

where p is the semi-latus rectum, ex = e cos(ω + Ω), ey = e sin(ω + Ω) are the components
of eccentricity vector, ix = tg i

2 cos Ω, iy = tg i
2 sin Ω are the components of inclination

vector, LK = L− K is the deviation of true longitude L = ν+ω +Ω from auxiliary longitude
K, e is the eccentricity, ω is the argument of perigee, Ω is the right ascension of ascending
node, i is the inclination, ν is the true anomaly, s2 = 1 + i2x + i2y, q = 1 + ex cos L + ey sin L,
ξ = ix sin L− iy cos L, µ is the gravitational parameter of the central celestial body, aLPr, aLPt,
aLPn are the circumferential, radial, and binormal components of the thrust acceleration,
respectively, and apt, apr, and apn are the components of the perturbing acceleration.

It was shown in [10] that for transfers in the central Newtonian gravitational field
and in the case when the perturbing accelerations do not explicitly depend on time, the
differential equation for time can be excluded from the system of differential equations
of motion, and the time costate variable has the form dpt/dK ≡ 0. However, during the
process of designing multi-revolution trajectories to the Moon, it is necessary to take into
account perturbing accelerations from the gravity of other celestial bodies, which explicitly
depend on time. Therefore, the differential equation for t must be included in system (1).

In many studies [8,10,11,22] that used the auxiliary longitude K as an independent
variable, the problems of a transfer with a fixed angular distance ∆L and a free transfer
duration were considered. These studies showed that the value of LK varies very little in
typical multi-revolution optimal trajectories. For example, in the 500-revolution optimal
perturbed orbit transfer presented in [23], the value of LK varies from 0 to −0.092 degrees.
Therefore, in this article, we will limit ourselves to considering the problems of transfer
with a fixed angular distance along the auxiliary longitude ∆K instead of ∆L, and we will
optimize the values of LK at the left or right ends of the trajectory. In this case, the final
value of the auxiliary longitude will be fixed: Kf = K0 + ∆K.
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To calculate the trajectory, we will separately compute the geocentric and selenocentric
segments, integrate the system of differential Equation (1), and connect them at the junction
point that satisfies the necessary optimality conditions. On the geocentric segment of
trajectory, the central celestial body is the Earth, and on the selenocentric segment, it is
the Moon. Therefore, on the right-hand side of differential Equation (1), the gravitational
parameter µ is determined by the segment of trajectory. Further, the parameters associated
with the geocentric segment of trajectory will be denoted by the subscript “gc”, and those
associated with the selenocentric segment of trajectory by the subscript “sc”.

The mathematical model of the perturbing acceleration vector on the geocentric apgc
and selenocentric apsc segments has the form:

apgc = µM

(
rM−r
|rM−r|3

− rM
|rM |3

)
+ µS

(
rS−r
|rS−r|3

− rS
|rS |3

)
,

apsc = µE

(
rE−r
|rE−r|3

− rE
|rE |3

)
+ µS

(
rS−r
|rS−r|3

− rS
|rS |3

)
respectively, where r is the vector of the spacecraft’s position with respect to the central
celestial body, rM is the vector of the geocentric position of the Moon, rE is the vector of the
selenocentric position of the Earth, rS is the vector of the geocentric or the selenocentric
position of the Sun, and µE, µM, and µS are the gravitational parameters of the Earth, the
Moon, and the Sun.

The power-limited trajectory optimization problem is considered. It is assumed that
the power of the EPS Pb = Tc/2 is given, but within this limitation, the thrust magnitude
T and the exhaust velocity magnitude c can be varied arbitrarily. It is known that the
differential equations of the optimal motion of a spacecraft for the LP-problem are divided
into dynamic and parametric parts [24]. The dynamic part (1) does not depend on the
spacecraft mass m. The dependence of the spacecraft mass on time t is calculated by
the relation m(t) = m0Pb/[Pb + m0 JLP(t)], where JLP(t) = 1

2

∫ t
t0

a2
LP(t)dt and aLP(t) =√

a2
LPr(t) + a2

LPt(t) + a2
LPn(t). Therefore, in the case under consideration, the problem of

minimizing fuel consumption mp = m0−mf is equivalent to the problem of minimizing
the cost function JLP [10]. The cost function of the form JLP is often called the “energy”
criteria. The choice of this cost function facilitates the numerical solution of the problem.
However, the main reason for choosing such a criterion is the possibility of the continuation
of the obtained solutions to optimal trajectories with a constant exhaust velocity and finite
thrust [11,20,22].

After replacing the independent variable t by K, taking into account the last equation
in (1), the expressions for the considered cost function on the geocentric and selenocentric
segments of trajectory will take the form [10,11]:

JLP gc =
1
2

∫ t1
t0

a2
LPdt = 1

2

∫ K−1
K0

a2
LP
q2

√
p3

µ dK,

JLP sc =
1
2

∫ t f
t1

a2
LPdt = 1

2

∫ K f

K+
1

a2
LP
q2

√
p3

µ dK,
(2)

where t1 is the time of passing the junction point of the geocentric and selenocentric
segments, and K1 is the intermediate value of the auxiliary longitude value K0 < K1 < Kf.
The value of K−1 is calculated by the relation of K−1 = K0 + ∆Kgc, and the final auxiliary
longitude is K f = K+

1 + ∆Ksc. As was shown in [10,11], the zero value of K0 and K+
1 =

K−1 = K1 can be used without a loss of generality.
The Pontryagin function of the optimal control problem (1), (2) has the form:

H = HLP + Hp + Ht, (3)

where HLP = − 1
2 k1a2

LP + k1k2ATaLP, Hp = k1k2 ·
(

Arapr + Atapt + Anapn
)
, and Ht = k1 pt

are the parts of the Pontryagin function depending, respectively, on the thrust acceleration
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aLP, the perturbing accelerations, and the time costate variable, aLP = [aLPt, aLPr, aLPn]T, aLP
= |aLP|, AT = (At, Ar, An),

At = 2p · pp + [(q + 1) cos L + ex]pex +
[
(q + 1) sin L + ey

]
pey,

Ar = q ·
(
sin L · pex − cos L · pey

)
,

An = ξ ·
(
−ey pex + ex pey + pLK

)
+ s2

2
(
cos L · pix + sin L · piy

)
,

(4)

and pp, pex, pey, pix, piy, pLK, pm, and pt are the costate variables to the corresponding state

variables of the system p, ex, ey, ix, iy, LK, m, t, k1 = 1
q2

√
p3

µ , k2 = 1
q

√
p
µ . From the maximum

condition for the Pontryagin function (3) with respect to the control aLP, it is easy to obtain
an expression for the optimal control:

aLP = k2A (5)

substituting an expression for the Hamiltonian of the optimal control problem under
consideration, which we obtain in (3):

H = HLP + Hp + Ht = kATA + k1k2 ·
(

Arapr + Atapt + Anapn
)
+ k1 pt (6)

where k = 1
2 k1k2

2 = 1
2q4

√
p5

µ3 . In contrast to the unperturbed problem, the Hamiltonian

explicitly depends on time; therefore, dpt/dK 6= 0 and pt(K) 6= 0. The equations of optimal
motion have the form:

dx
dK

=
∂H
∂px

,
dLK
dK

=
∂H

∂pLK
,

dt
dK

=
∂H
∂pt

,
dpx
dK

= −∂H
∂x

,
dpLK
dK

= − ∂H
∂LK

,
dpt

dK
= −∂H

∂t
. (7)

where xT = (p, ex, ey, ix, iy), px
T = (pp, pex, pey, pix, piy).

When calculating trajectories to the Moon, the time t1 of passing the junction point
(optimal junction point or libration point EML1), is fixed and the time of departure from
the initial Earth orbit and the time of insertion into the final lunar orbit must satisfy the
necessary optimality conditions.

The initial conditions of the geocentric segment of trajectory, considering the possibility
to set K0 = 0 without loss of generality [10], can be written as:

x(0) = x0, pLK(0) = 0, pt(0) = 0. (8)

The final conditions of the selenocentric segment of trajectory can be written as:

x
(

K f

)
= x f , pLK

(
K f

)
= 0, pt

(
K f

)
= 0. (9)

To ensure the continuity of the state vector, the conditions for connecting the geocentric
and selenocentric segments of trajectory at the given time t1 have the following form:

LK
(
K−1
)
+ K−1 = LK

(
K+

1
)
+ K+

1 , x
(
K−1
)
= x

(
K+

1
)
, t
(
K−1
)
= t
(
K+

1
)
= t1 (10)

where the orbital elements at the end of the geocentric and at the beginning of the se-
lenocentric segments of trajectory are calculated in the geocentric coordinate system,
K+

1 = K−1 = ∆Kgc.
To solve the boundary value problem (7)–(10), it is necessary to calculate five compo-

nents of the vector px(0), initial values of LK and t for the geocentric segment, as well as
five components of the vector px(K1

+), the initial value of pt, and the final value of LK for
the selenocentric segment (a total of 14 decision variables). In addition, the six elements
of the geocentric orbit x(K1

+) and LK(K1
+) at the junction point at the beginning of the

selenocentric segment are unknown. Thus, the problem under consideration contains
14 + 6 = 20 decision variables.



Aerospace 2023, 10, 231 7 of 22

Boundary conditions (8), (9), and (10) determine only seven equations for the geo-
centric segment and seven equations for the selenocentric segment, which, in total, is
7 + 7 = 14 equations to calculate these 20 decision variables. These 14 equations must be
supplemented with 6 additional necessary optimality conditions for the junction point.

The choice of the condition type, under which the transformation from the geocentric
motion to the selenocentric motion occurs, is rather arbitrary. From our point of view, it is
convenient to locate the junction point of the geocentric and the selenocentric segments
of trajectory on the instantaneous Hill sphere of the Moon, i.e., on the sphere with the
center at the Moon’s center and with the radius r1*, which is equal to the selenocentric
distance of the EML1 point at the junction moment t1. This choice allows us to use a smooth
continuation from the trajectory with intermediate EML1 rendezvous to the trajectory with
an optimal junction point.

The conditions for continuity of the trajectory at the junction point of geocentric and
selenocentric segments (10) at a given time t1 can be rewritten using variables in Cartesian
coordinates:

r− = r+ + rM, v− = v+ + vM, t− = t+ = t1, (11)

where r− and v− are the position and velocity vectors of the spacecraft in the geocentric
coordinate system at the final moment t− of the geocentric segment, r+ and v+ are the
position and velocity vectors of the spacecraft in the selenocentric coordinate system at the
initial moment t+ of the selenocentric segment, and rM and vM are the position and velocity
vectors of the Moon in the geocentric coordinate system at a fixed moment of junction t1,
t
(
K−1
)
= t− and t

(
K+

1
)
= t+.

The selected junction condition on the Hill sphere of the Moon has the form:

r+ = r ∗1 ↔
(
r− − rM

)T(r− − rM
)
= (r ∗1 )2, (12)

where r+ = |r+|.
To derive the necessary optimality conditions at the junction point, we write the

Lagrange endpoint function in the form:

l =
(
r+ + rM − r−

)
· λr +

(
v+ + vM − v−

)
· λv +

(
r+ − r ∗1

)
· λ1 +

(
t+ − t−

)
· λt +

(
t− − t1

)
· λt1, (13)

where λr,λv, λ1, λt, λt1 are the Lagrange multipliers. For such a Lagrange endpoint function,
the transversality conditions take the following form:

p−r = − ∂l
∂r− = λr,

p+
r = ∂l

∂r+ = λr + λ1
∂r+
∂r+ = λr + λ1

r+
r+ ,

p−v = − ∂l
∂v− = λv, p+

v = ∂l
∂v+ = λv,

p−t = − ∂l
∂t− = λt − λt1, p+t = ∂l

∂t+ = λt.

(14)

From these conditions follow the relations p−t = p+t − λt1 and

p−r = p+
r − λ1

r+

r+
, p−v = p+

v (15)

To calculate the boundary conditions (11) and (12), the transformation from the system
of modified equinoctial elements into a Cartesian state vector is required, and to calculate
the necessary optimality conditions (15), the corresponding canonical transformation of the
costate vector is required. The required transformation functions to calculate (11), (12), and
(15) are given in the next section and in the Appendix A of the article. It follows from the
Equation (15) that the vector pv is continuous at the junction point, the vector pr undergoes
a discontinuity along the selenocentric radius of the junction point, and the time costate
variable pt also undergoes a discontinuity due to the fixed value of t1.
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The conditions (12) and (15) close the system of boundary conditions for the considered
boundary value problem of the maximum principle. The decision vector of the boundary
value problem (7)–(10), (12), (15) consists of the following decision variables:

• the values of five components of the vector px(0);
• the initial values of LK and t for the geocentric segment;
• the values of five components of the vector px(K1

+);
• the initial value of pt(K1

+) and the final value of LK(Kf) for the selenocentric segment;
• the values of six osculating elements of the orbit (x(K1), LK(K1)) at the junction point;
• the value of Lagrange multiplier λ1.

The values of these 21 decision variables must be chosen to satisfy 7 equations in (9), 7
equations in (10), 1 equation in (12), and 6 equations in (15) (21 equations in total).

3. Canonical Transformation of Costate Variables

The division of the entire trajectory into geocentric and selenocentric segments requires
the transformation of state and costate variables. To transform state variables between
non-rotating Cartesian geoequatorial geocentric and selenocentric coordinate systems, only
the translation of the origin of the coordinate system between the centers of the Earth
and the Moon is necessary. If the MEEs are used as state variables, then it is additionally
required to calculate the geocentric vectors of the position and velocity of spacecraft from
the known values of the geocentric orbital elements at the junction point. Additionally,
during the calculation of the selenocentric vectors of the position and velocity of spacecraft
at the junction point, it is necessary to calculate the selenocentric orbital elements.

To transform costate variables from the geocentric coordinate system to the selenocen-
tric one (or vice versa), a canonical transformation [25] that preserves the Hamiltonian form
of Equation (7) must be used. Canonical transformations are often used in optimal con-
trol problems for the transformation of the costate variables between different coordinate
systems and/or orbital elements [13,14].

Let x = (x1, x2, . . . , xn)T, p = (p1, p2, . . . , pn)T represent the (old) system of state and
costate variables and x* = (x*1, x*2, . . . , x*n)T, p* = (p*1, p*2, . . . , p*n)T represent another
(new) system. The transformation between the coordinates x and x* can be expressed in
terms of the transformation function of the state variable F:

x∗(t) =

 x∗1(x1(t), x2(t), . . . , xn(t)),
. . .

x∗n(x1(t), x2(t), . . . , xn(t))

 = F(x(t)). (16)

If the transformation of state variables (16) is used, then the old and new costate
variables of the Hamiltonian system are obeyed to the following canonical transformation:

p(t) =


∂x∗1(x1,x2,...,xn)

∂x1
. . . ∂x∗1(x1,x2,...,xn)

∂xn
. . . . . . . . .

∂x∗n(x1,x2,...,xn)
∂x1

. . . ∂x∗n(x1,x2,...,xn)
∂xn


T∣∣∣∣∣∣∣∣

t

· p∗(t) =
[

∂F(x)
∂x

]T
∣∣∣∣∣
t

· p∗(t). (17)

A transformation of costate variables in the opposite direction, i.e., from the old system
to the new one can be represented as:

p∗(t) =
[

∂S(x∗)
∂x∗

]T
∣∣∣∣∣
t

· p(t) =
[[

∂F(x)
∂x

]T
]−1

∣∣∣∣∣∣
t

· p(t), (18)

where S is the transformation function of the state variables from x* to x.
Thus, to calculate new costate variables p*, it is necessary to calculate the Jacobian

matrix ∂S(x*)/∂x*. If the vector function S has a complex analytical representation that
makes it difficult to calculate its Jacobian, and the vector function of the direct transforma-
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tion of state variables F is simpler, then the second part of the Equation (18) can be used,
for which the matrix ∂F(x)/∂x must be calculated. The high-precision calculation of the
matrices ∂S(x*)/∂x* and ∂F(x)/∂x is possible via the complex step differentiation [26] or via
automatic differentiation using the algebra of dual numbers [27] if necessary.

In this study, the modified equinoctial orbital elements xmee =
(

p, ex, ey, ix, iy, LK
)T are

used as state variables, and the necessary optimality conditions of the junction point are
most conveniently represented in the Cartesian coordinate system using state variables
xcc =

(
rT, vT)T. In this regard, canonical transformations are needed from the system of

modified equinoctial elements to the Cartesian coordinate system at the end of the geo-
centric segment, between the geocentric and selenocentric Cartesian coordinate systems
considering the necessary optimality conditions at the junction point, and from the Carte-
sian coordinate system to the system of modified equinoctial elements at the beginning of
the selenocentric segment of trajectory.

To transform between the Cartesian coordinates and the modified equinoctial elements
at the known value of the auxiliary longitude K, the transformation functions Q and G are
used:

xcc(K) = Q(xmee(K)), xmee(K) = G(xcc(K)) (19)

Expressions for these transformation functions are given in the Appendix A.
For the canonical transformation from a system of modified equinoctial elements to a

non-rotating Cartesian coordinate system, the first equation in (19) must be supplemented
with one of the following equations:

px cc(K) =
[

∂G(xcc)

∂xcc

]T
∣∣∣∣∣
K

· px mee(K) =

[[
∂Q(xmee)

∂xmee

]T
]−1

∣∣∣∣∣∣
K

· px mee(K). (20)

where pxmee =
(

pp, pex, pey, pix, piy, pLK
)T, pxcc =

(
pr

T, pv
T)T. It is obvious that the analytic

representation of the transformation Q is much simpler than that of G, so it is reasonable to
use the second equation in (20) for the canonical transformation.

To implement the inverse canonical transformation (from a non-rotating Cartesian co-
ordinate system to a system of modified equinoctial elements), it is necessary to supplement
the second equation in (19) with the equation:

px mee(K) =
[

∂Q(xmee)

∂xmee

]T
∣∣∣∣∣
K

· px cc(K). (21)

The accuracy of canonical transformations was verified via comparison with the results
presented in [14]. The values of costate variables after canonical transformations (20) and
(21) coincided with the corresponding values from [14] up to 12 decimal places.

4. General Scheme for The Solution of End-to-End Trajectory Optimization

The boundary value problem (7), (8), (9), (10), (12), and (15) of the maximum principle
can be formally represented as the system of nonlinear equations for residuals on the
geocentric segment of trajectory fgc, at the junction point fjunc, and on the selenocentric
segment of trajectory fsc: f = [fgc

T, fjunc
T, fsc

T]:

fgc(z) =


p+

v − p−v
p+

r − p−r + λ1
(r−−rM)√

(r−−rM)T(r−−rM)

(r− − rM)
T
(r− − rM)− (r1∗)2

t− − t1

 = 0, (22)

fjunc(z) = x−mee −Ggc
[
Qsc
(
x+mee

)
+ xM

]
= 0, (23)
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fsc(z) =


x
(

K f

)
− x f

pLK

(
K f

)
pt

(
K f

)
 = 0, (24)

where Ggc is the transformation function from xcc to xmee in geocentric motion (using the
gravitational parameter of the Earth), Qsc is the transformation function from xmee to xcc in
selenocentric motion (using the gravitational parameter of the Moon), and xM =

(
rT

M, vT
M
)T

is the vector of geocentric position and the velocity of the Moon. To solve systems (22),
(23), and (24), it is necessary to calculate the decision vector z = [zgc

T, zjunc
T, zsc

T], which
includes eight decision variables of the geocentric segment zgc = [px

T (0), LK (0), t (0), λ1]T,
six decision variables of the junction zone zjunc = x+mee, and seven decision variables of
the selenocentric segment zsc = [pr

+T, pv
+T, pt

+]T. A canonical transformation, based on
function Q, is used to calculate the Cartesian coordinates, the components of velocity, and
their costate variables at the junction point.

It should be noted that Equation (23) is introduced into the vector of residuals to
improve the convergence and stability of the numerical method in the same way as using
the intermediate nodes in the multiple shooting method. This approach makes it possible
to reduce the sensitivity of the vector of residuals f to variations of the decision vector z in
the process of solving the boundary value problem.

An effective method of solving the considered class of boundary value problems is
the continuation method [10,11,20,22]. To calculate the right-hand sides of differential
equations of the continuation method, it is required to calculate the partial derivatives of
the residual vector with respect to decision vector of the boundary value problem:

∂f
∂z

=


∂fgc
∂zgc

∂fgc
∂zjunc

∂fgc
∂zsc

∂fjunc
∂zgc

∂fjunc
∂zjunc

∂fjunc
∂zsc

∂fsc
∂zgc

∂fsc
∂zjunc

∂fsc
∂zsc

. (25)

When calculating the trajectory, we will separately compute the geocentric and seleno-
centric segments so that the decision variables of the selenocentric segment do not affect to
the residual vector of the geocentric segment: ∂fgc/∂zsc = 0.

The following scheme for solving the end-to-end optimization problem of trajectories
to the Moon is used:

1. The input data are set: the time t1 of passing the junction point (in the case of solving
the optimization problem of trajectories with intermediate EML1 rendezvous, t1 is
equal to the time tEML1 of passing the libration point), the elements of the initial Earth
orbit x0gc = (p0gc, ex0gc, ey0gc, ix0gc, iy0gc)T, the elements of the final lunar orbit xfsc =
(pfsc, exfsc, eyfsc, ixfsc, iyfsc)T, the angular distance of geocentric segment of trajectory
∆Kgc, and the angular distance of selenocentric segment of trajectory ∆Ksc;

2. The continuation method is used to solve a boundary value problem for calculating
the optimal perturbed LP-trajectory with a junction of the geocentric and selenocentric
segments at the EML1 point. The continuation parameter τ is introduced into the
right-hand sides of the differential equations for the state and costate variables in
such a way that for τ = 0, the differential equations coincide with the equations of
the unperturbed LP-problem, and for τ = 1, they coincide with the equations of the
perturbed LP-problem, including the perturbed part of the Hamiltonian Hp and the
pt-dependent part of Hamiltonian Ht (with additional equations for the time variable
and its costate variable). To use the Hamiltonian form of writing these equations, the
Hamiltonian must have the form HLP + τ·(Hp + Ht). As an initial guess for the decision
vector, the zero values of costate variables are used in both segments of the trajectory:
pp(0) = pex(0) = pey(0) = pix(0) = piy(0) = pLK(0) = 0 (which corresponds to the coasting
motion of the spacecraft along the initial orbit of each segment of trajectory). At first,
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the geocentric segment of the LP-trajectory is calculated, and then, the selenocentric
segment of the LP-trajectory is sequentially calculated;

3. The continuation method is used to solve a boundary value problem for calculating
the optimal perturbed LP-trajectory with an optimal junction point. The values ob-
tained for the perturbed LP-trajectory with intermediate EML1 rendezvous are used
as an initial guess for the decision vector of the end-to-end optimization problem.
After setting the initial conditions, the system of differential equations of geocentric
motion is numerically integrated from K0 to K−1 . The residual vector of the boundary
value problem of geocentric segment fgc is calculated after integrating the differential
equations of the geocentric motion using the technique specified in Section 3. The vec-
tor of residuals fjunc is calculated using (23). The initial conditions of the selenocentric
segment are set at K = K+

1 , and the numerical integration of the system of differential
equations of selenocentric motion from K+

1 to Kf is carried out. The vector of residuals
of the boundary value problem of selenocentric segment fsc is calculated. The matrix
∂f/∂z, which is required to calculate the right-hand sides of the differential equations
of the continuation method, is calculated based on the use of automatic differentiation
using CDNAD [22].

One of the ways to estimate the degree of difference between the trajectory with an
optimal junction point and with a junction at the EML1 point is the magnitude of the
velocity when passing through the junction point of two segments. To calculate the velocity
of a spacecraft in a rotating coordinate system at the time of passing the optimal junction
point in the framework of the perturbed ephemeris model, it is necessary to transform from
the inertial coordinate system J2000 to the rotating coordinate system.

Let us introduce a rotating coordinate system related to the current position and
velocity of the Moon (rM, vM) in the geocentric coordinate system J2000 as follows. The
unit vectors along the coordinate axes of this system in the J2000 system

(
ex, ey, ez

)
are

calculated via the following expressions:

ex =
rM

|rM|
, ez =

rM × vM

|rM × vM|
, ey = ez × ex,

and the instantaneous angular velocity of the Moon’s rotation is calculated by the expres-
sion:

.
ϑ =

|rM × vM|
|rM|2

.

The position and velocity vectors of the spacecraft relative to the Earth in the inertial
coordinate system can be expressed using the coordinates and the components of velocity
of the spacecraft in the rotating system relative to the Earth in the following form:{

rJ2000 =
(

ex ey ez
)
· rrotating,

vJ2000 = rJ2000
.
ϑey +

(
ex ey ez

)
· vrotating.

where rrotating, vrotating are the position vector and velocity vector of the spacecraft in the
rotating system. Further, the adimensional position vector rrotating/|rM| of the spacecraft in
the rotating coordinate system will be used to present the numerical results.

5. Numerical Examples

We consider the results of calculating the trajectories with an optimal junction point
from the initial highly elliptical Earth orbit having the perigee altitude of 4500 km, the
apogee altitude of 50,000 km, the inclination of 25◦, the argument of perigee of 248◦, and
the right ascension of the ascending node (RAAN) of 4◦ to the circular orbit around the
Moon having the altitude of 5000 km, the inclination of 30◦, and the RAAN of 4◦. The
size, shape, and inclination of the selected departure orbit in the considered numerical
example are close to typical super geostationary transfer orbit (GTO) when launching via
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the “Proton-M” launch vehicle. The values of the argument of perigee and the RAAN are
chosen close to the values of the corresponding osculating orbital elements of EML1 for
a given date of passing the junction point. The problem of optimizing the argument of
perigee and the RAAN of the initial orbit was not considered in this study.

For the geocentric segment of trajectory, all altitudes are given relative to the mean
radius of the Earth, 6371 km, and the gravitational parameter of the Earth is taken equal
to 398,600.436 km3/s2. For the selenocentric segment of trajectory, all altitudes are given
relative to the mean radius of the Moon, 1738 km, and the gravitational parameter of the
Moon is taken equal to 4902.799 km3/s2. The gravitational parameter of the Sun is taken
equal to 132,712,440,018 km3/s2. The date of passing the junction point is 25 December
2023, 00:00:00 UTC. On the corresponding fixed date of the passage of the junction point,
the radius of the Hill sphere of the Moon in the selenocentric inertial coordinate system is
58,082.52 km.

The trajectories with an optimal junction point are compared with the trajectories with
a junction of the geocentric and selenocentric segments at the EML1 point for the identically
given orbital elements of the boundary orbits and time of passing the optimal junction
point and the libration point EML1. The angular distances of the transfer are fixed from 4 to
28 revolutions for the geocentric segment and from 1 to 7 revolutions for the selenocentric
segment. The total value of the angular distances for transfer to the Moon is calculated as
the sum of these values in the geocentric and selenocentric segments: ∆KΣ = ∆Kgc + ∆Ksc.
In this study, trajectories with a ratio of the number of revolutions in the geocentric and
selenocentric segments of 4:1 are considered, and the total number of revolutions will be
varied in the range of 5 to 35 revolutions. The main criterion to choose the angular distance
of trajectory segments is the level of thrust acceleration of EPS. The ratio of the number
of revolutions in the geo- and selenocentric segments was selected from the approximate
equality condition of the average values of thrust acceleration in these segments.

Tables 1 and 2 present the main parameters of the optimal trajectories with an opti-
mal junction point and with an intermediate EML1 rendezvous for the different angular
distances of transfer.

Table 1. The main parameters of the optimal trajectories with an optimal junction point.

∆KΣ ∆t, Days ∆vch, m/s JLP, m2/s3 ~
agc, mm/s2 ~

asc, mm/s2 ∆Lgc, Orbits ∆Lsc, Orbits

5 12.5019 2426.431 4.166911 5.019797 4.437600 4.000847 1.001065
10 23.2934 2423.336 2.061159 2.488547 2.153214 8.000450 2.000285
15 34.1184 2414.030 1.367589 1.654349 1.415061 12.00030 2.999980
20 44.9189 2407.796 1.023116 1.240632 1.056037 16.00022 3.999832
25 55.7171 2403.652 0.817266 0.992601 0.843267 20.00017 4.999750
30 66.5044 2400.837 0.680367 0.826451 0.702236 24.00014 5.999701
35 77.3294 2398.331 0.582603 0.708573 0.601601 28.00011 6.999663

Table 2. The main parameters of the optimal trajectories with an intermediate EML1 rendezvous.

∆KΣ ∆t, Days ∆vch, m/s JLP, m2/s3 ~
agc, mm/s2 ~

asc, mm/s2 ∆Lgc, Orbits ∆Lsc, Orbits

5 16.3599 2666.178 4.512647 4.897396 4.544912 4.000075 0.999946
10 27.9986 2671.468 2.239662 2.426028 2.176598 8.000047 1.999964
15 39.6325 2672.903 1.498561 1.611979 1.448160 12.00002 2.999969
20 51.1954 2663.745 1.128752 1.205753 1.091558 16.00001 3.999971
25 62.8006 2649.619 0.905442 0.962620 0.878230 20.00000 4.999972
30 74.6966 2637.367 0.75464 0.801968 0.734214 24.00000 5.999972
35 86.8793 2623.987 0.645747 0.687248 0.625917 27.99999 6.999971

In Tables 1 and 2, we use the following symbols: ∆t is the total time of transfer to the
Moon, ∆vch is the characteristic velocity, JLP is the cost function of the considered problem,
ãgc and ãsc are the mean values of the thrust acceleration for the geocentric and selenocentric
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segments of the LP-trajectory, and ∆Lgc and ∆Lsc are the increments of the true longitudes
on the geocentric and selenocentric segments of trajectory.

As can be seen from Tables 1 and 2, the optimization of the junction point leads not only
to a decrease in the value of cost function but also to a decrease in the required characteristic
velocity value. The cost function of the problem under consideration decreases by a
minimum of 7.661% (on the 5-revolution trajectory) and a maximum of 9.842% (on the
30-revolution trajectory), while the characteristic velocity value decreases by a minimum of
8.600% (on the 35-revolution trajectory) and a maximum of 9.685% (on the 15-revolution
trajectory).

In the considered cases, the optimization of the junction point made it possible to
reduce the total transfer duration along the LP-trajectory to the Moon by at least 10.967% (on
the 30-revolution trajectory) and by a maximum of 23.582% (on the 5-revolution trajectory).

Figure 1 shows the projections of the optimal trajectories, which have the angular
distance of 5, 20, and 35 revolutions, with an optimal junction point and with a junction
of the geocentric and selenocentric segments at the EML1 point in the inertial coordinate
system J2000. In Figure 1 and everywhere else in this article, the position of the EML1
libration point is indicated by the red marker “×”, and the position of the optimal junction
point is indicated by the red circle. The motion of the Moon is indicated by the dashed
gray line. Everywhere else in this article, the solution associated with the trajectory with an
optimal junction point is indicated by a blue line, and the trajectory with an intermediate
EML1 rendezvous by an orange line.

On the last revolution of the optimal trajectories with a junction at the EML1 point, the
radius of perigee increases compared to trajectories with an optimal junction point, and
this is necessary to ensure the approach to the libration point with zero relative velocity.
Figure 2 shows the projections of the same optimal trajectories as in Figure 1 onto the XY
plane of the rotating coordinate system.

This figure shows a significant difference between the optimal LP-trajectories with an
optimal junction point and with a junction at the EML1 point in the rotating coordinate
system. On the right side of Figure 2, a part of the trajectories near the junction point are
shown on an enlarged scale.

According to the results of calculation, as expected, an increase in the number of
revolutions leads to a decrease in thrust acceleration (see Table 1) and to a decrease in the
distance from the optimal junction point to EML1 point. This is due to the fact that the
smaller the thrust acceleration magnitude, the narrower the allowable size of the opening
in the vicinity of the libration point EML1 when spacecraft enters into the Hill sphere of the
Moon and passes through the opening in such a way that it makes it possible to capture
spacecrafts in the orbit around the Moon.
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Figure 1. The projection of the optimal 5-(upper row), 20-(middle row), and 35-(lower row) revolu-
tion trajectories with an optimal junction point and with an intermediate EML1 rendezvous in the
inertial coordinate system J2000.
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Figure 2. The projection of optimal 5-(upper row), 20-(middle row), and 35-(lower row) revolution
trajectories with an optimal junction point and with an intermediate EML1 rendezvous onto the XY
plane in the rotating coordinate system.

Figure 3 presents the dependences of the optimal thrust acceleration magnitudes on
time for the trajectories with an angular distance of 5 (on the left), 20 (on the middle), and 35
(on the right) revolutions. The solution with an optimal junction of two segments makes it
possible to ensure the continuity of the optimal control program (thrust acceleration vector)
at the junction point and the smooth connection between the geocentric and selenocentric
segments of the trajectory. The trajectories with an intermediate EML1 rendezvous, on
the contrary, have fractures and discontinuities in the control program at the EML1 point
(Figures 2 and 3).
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Figure 3. The time dependence of thrust acceleration for the transfer to the Moon.

Figure 4 presents the time dependences of the adimensional values of costate variables
to the vectors r and v on the 4-revolution LP-trajectory to the Moon. For the trajectory with
an intermediate EML1 rendezvous (orange line), there is a discontinuity in all six costate
variables, since two separate optimization problems for the geocentric and selenocentric
segments of trajectory are being solved. In the case of the trajectory with an optimal junction
of two segments (blue line), the dependences of the costate variables to the components of
the velocity vector pv are continuous, but the costate variables to the components of the
position vector pr have a discontinuity λ1·r+/r+ at the junction point.
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Figure 4. Variation of the adimensional values of costate variables on the 4-revolution LP-trajectory
to the Moon.
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The magnitudes of discontinuity of the costate variables to the vector r at the junction
moment are p+rx− p−rx =−2.0424·10−5, p+ry− p−ry =−2.18182·10−5, p+rz− p−rz =−1.25671·10−5

for the 4-revolution trajectory, p+rx− p−rx = 1.18001·10−6, p+ry− p−ry = 2.16396·10−6, p+rz− p−rz =
1.22789·10−6 for the 20-revolution trajectory, and p+rx − p−rx = 6.48896·10−7, p+ry − p−ry =
1.31404·10−6, p+rz − p−rz = 7.40291·10−7 for the 35-revolution trajectory. Therefore, the
magnitude of the discontinuity in pr decreases as the number of revolutions increases.

Table 3 presents the magnitudes of position and velocity vectors of the optimal junction
point in the geocentric rotating coordinate system for transfer with a different number of
revolutions.

Table 3. The magnitudes of adimensional position and dimensional velocity vectors of the optimal
junction point in the rotating coordinate system.

∆KΣ xrotating yrotating zrotating vx rotating, m/s vy rotating, m/s vz rotating, m/s

5 0.856126 0.045084 −0.006894 237.8436 −180.8093 11.06208
10 0.850736 0.021426 −0.006398 219.0976 −152.6332 3.993939
15 0.849788 0.013438 −0.005965 213.9416 −147.4695 1.357233
20 0.849493 0.009780 −0.005628 211.8339 −145.3045 0.075297
25 0.849353 0.007504 −0.005384 210.4100 −143.3563 −0.630621
30 0.849268 0.005700 −0.005218 209.0966 −141.3347 −1.062691
35 0.849217 0.004278 −0.005094 207.7519 −139.5594 −1.392600

In the geocentric rotating coordinate system, the adimensional position vector of the
libration point EML1 is equal to (0.849073, 0, 0), and the velocity vector of the EML1 point
is equal to (32.18877, 0, 0) m/s. The nonzero value of the first component of the velocity
vector of the libration point is due to the use of the ephemeris model of motion, in which
the radial velocity of the Moon is not equal to zero. Table 3 shows that the trajectory with
the optimal junction point has large values of the velocity components in the rotating
coordinate system when passing through the junction point of two segments compared to
the trajectories with an intermediate EML1 rendezvous.

The time dependences of velocity in the rotating coordinate system on the 5-, 20-, and
30-revolution trajectories with an optimal junction point and with the intermediate EML1
rendezvous are presented in Figure 5. The deviations of the velocity magnitude ∆vrotating in
the rotating coordinate system from the velocity magnitude of the libration point EML1
at the junction point of two segments of trajectory are 266.7827 m/s for a 5-revolution
trajectory, 224.6906 m/s for a 20- revolution trajectory, and 218.0903 m/s for a 35-revolution
trajectory
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Figure 5. The time dependences of the velocity in the rotating coordinate system on the 5-(on the
left), 20-(in the middle), and 35-revolution (on the right) trajectories with an optimal junction point
and with an intermediate EML1 rendezvous.

Figure 6 presents the positions of the optimal junction points of the geocentric and
selenocentric segments onto the XY and XZ planes in the rotating coordinate system for
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the considered trajectories with an angular distance of 5 to 35 revolutions. On the graphs,
the libration point is indicated by the red dot, and the optimal junction points of the two
segments are indicated by the blue squares. The optimal junction point approaches the
libration point EML1 as the total number of revolutions increases (dashed trend lines in
Figure 6).
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Figure 6. The positions of the optimal junction points in the rotating coordinate system onto the XY
(on the left) and XZ (on the right) planes.

Figure 7 presents the dependencies of the distance djunction point between the optimal
junction point and the libration point EML1 on the total number of revolutions of trajectories
in the inertial coordinate system. In this Figure, the obtained values of distance between two
points are indicated by the black squares. The graph shows the dependence of djunction point
on the total increment value of the angular variable K with extrapolation to the region of
large values of the angular distance (dashed line).
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Figure 7. The dependence of distance between the optimal junction point and the libration point
EML1 on the total value of angular variable K in the inertial coordinate system.

With an increase in the total number of revolutions of the trajectories to the Moon in
the considered range of 5 to 35 revolutions, the distance between the optimal junction point
and the libration point rapidly decreases from 17,760.037 km to 2560.7455 km (thin solid
line) and then asymptotically approaches the zero value, i.e., the EML1 point. According
to the prediction of our study, this distance will decrease to 893 km on a 100-revolution
trajectory and to 449 km on a 200-revolution trajectory.

To demonstrate the capabilities of the developed method, as an additional example,
we present the trajectory from a GTO having the perigee altitude hp of 300 km and the
apogee altitude ha of 35,793 km to an elliptical lunar orbit having the perilune altitude hp of
1000 km and an apolune altitude ha of 10,000 km. The full set of elements of the initial and
final orbits used in this example is presented in Table 4.
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Table 4. Parameters of the initial GTO and final elliptical lunar orbit.

Boundary Orbit hp, km ha, km i, Degrees Ω, Degrees ω, Degrees

Initial Earth orbit 300 35793 25 4 248
Final lunar orbit 1000 10000 30 4 248

To ensure the close level of thrust acceleration of EPS in the geo- and selenocentric
segments, the ratio of the number of revolutions in two segments of the trajectory is set
to 8:1 in this example. Figure 8 shows the optimal trajectories with 16 revolutions in the
geocentric segment and 2 revolutions in the selenocentric segment. As before, the orange
line corresponds to the trajectory with an intermediate EML1 rendezvous, and the blue line
corresponds to the trajectory with an optimal junction point. The main parameters of these
trajectories are presented in Table 5.
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Figure 8. The projection of optimal 18-revolution trajectories from GTO with low perigee altitude of
300 km to elliptical lunar orbit onto the XY plane in the rotating coordinate system.

Table 5. The results of the optimal 18-revolution trajectories from GTO with perigee altitude of
300 km to elliptical lunar orbit.

Type of Junction ∆t, Days ∆vch, m/s JLP, m2/s3 ~
agc, mm/s2 ~

asc, mm/s2

Optimal junction 32.9135 2935.234 2.347619 2.631531 2.368071
Intermediate EML1

rendezvous 39.45431 3327.815 2.533057 2.550099 2.366935

6. Conclusions

The article proposed an approach to solve the problem of the end-to-end optimization
of power-limited trajectories to the Moon, based on the use of the maximum principle,
the continuation method, and the canonical transformation at the junction point of the
geocentric and selenocentric segments of trajectory.

The problem of optimizing trajectories to the Moon with a fixed angular distance and
free time of fight was considered. An ephemeris model of the motion of celestial bodies was
used to calculate the perturbing accelerations, and the equations of motion of the spacecraft
were presented in modified equinoctial orbital elements with the angular independent
variable (auxiliary longitude) as the independent variable. The necessary optimality con-
ditions for the junction point of the geocentric and selenocentric segments of trajectory
were obtained, and a boundary value problem, which follows from the application of
the maximum principle to the considered problem of the end-to-end optimization of the
transfer between the orbits around the Moon and around the Earth, was formulated.

As an initial guess for the trajectory with the optimal junction point of the geocentric
and selenocentric segments, the optimal trajectory with the junction of these segments at
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the libration point EML1 of the Earth–Moon system was used. The numerical results of the
end-to-end optimization of power-limited trajectories to the Moon were presented. The
comparison was made between the obtained trajectories with the optimal junction point
and with the intermediate EML1 rendezvous.

As a result of the calculations, it was shown that optimization of a junction point of
the geocentric and selenocentric segments of trajectory leads not only to a decrease in the
cost function (in the considered example, by 7.7–9.8% with a total angular distance of 5–35
revolutions) but also to a decrease in the characteristic velocity of transfer (by 8.6–9.7%)
and the optimal transfer duration (by 11.0–23.6%). So, we consider that optimal junction
will be important for future space missions.

A significant difference between the shapes of the trajectories with an optimal junction
point and with a junction at the libration point EML1 was shown. The optimal junction
point can be quite far from the libration point EML1 (by 2560–17,760 km in the considered
numerical examples) and the velocity of the spacecraft at this point can differ significantly
from the velocity of the libration point (by 218–267 m/s). It was shown that with an increase
in the total number of revolutions, the optimal junction point approaches EML1, and the
velocity of the spacecraft at the optimal junction point relative to the velocity of EML1
asymptotically tends to zero with increasing angular distance of transfer.

The stability of the solution of end-to-end optimization problem has been demon-
strated by varying the number of revolutions in the range of 5–35 revolutions. The depen-
dence between the stability of the capture orbit and the total number of revolutions has not
been specifically studied. As the total number of revolutions increases, the convergence
and numerical stability of the proposed method deteriorate. This can be explained by the
following reasons: (1) in the process of optimization, a change in the initial values of costate
variables in the geocentric segment strongly affects not only the intermediate boundary
conditions in the junction zone but also the parameters of the final lunar orbit. These effects
increase as the number of revolutions increases; (2) as the number of revolutions increases,
the difference between the perturbed trajectory and the trajectory of the initial guess that
does not consider the perturbating acceleration during calculation increases. Because
the transfer duration increases as the number of revolutions increases, this increases the
integral influence of the perturbating acceleration. In the future, we plan to incorporate the
multiple shooting method into our approach to improve convergence with a large number
of revolutions.

The developed approach to solve the problem of the end-to-end optimization of a
transfer between a given Earth orbit and a lunar orbit can be used to solve more complex
and realistic problems, for example, the problem of minimizing thrust or minimizing fuel
consumption using the engine model with a limited thrust and a constant specific impulse.
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Appendix A

The Cartesian coordinates xcc can be expressed in terms of the modified equinoctial
elements xmee with the following expressions (here, true longitude can be represented as
L = LK + K):

xcc(K) =



r
s2

(
cos L + α2 cos L + 2ixiy sin L

)
r
s2

(
sin L− α2 sin L + 2ixiy cos L

)
2r
s2

(
ix sin L− iy cos L

)
− 1

s2

√
µ
p ·
[(

1 + α2) · (sin L + ey
)
− 2ixiy · (cos L + ex)

]
− 1

s2

√
µ
p ·
[(
−1 + α2) · (cos L + ex) + 2ixiy ·

(
sin L + ey

)]
2
s2

√
µ
p ·
[
ix cos L + iy sin L + exix + eyiy

]


= Q(xmee(K)),

where r = p/(1 + excosL + eysinL), α2 = ix2 − iy2.
The modified equinoctial elements xmee can be expressed in terms of the Cartesian

coordinates xcc with the following expressions:

xmee(K) =



p(r, v)
ex(r, v)
ey(r, v)
ix(r, v)
iy(r, v)
L(r, v)

 = G(xcc(K)),

where

p(r, v) = σ2/µ, σ = r×V =
[
ryVz − rzVy, rzVx − rxVz, rxVy − ryVx

]T
σ = |σ| =

√
σ2

x + σ2
y + σ2

z

ex(r,v) =
[

1 + σ2
x

(σz+σ)2 +
σ2

y

(σz+σ)2

]−1
·
[
−
(

rx
r +

σyVz−σzVy
µ

)(
1 +

σ2
y

(σz+σ)2 −
σ2

x
(σz+σ)2

)
+

+
2σx

(
rz
r +

σxVy−σyVx
µ

)
σz+σ +

2σxσy

( ry
r + σzVx−σxVz

µ

)
(σz+σ)2

]
,

ey(r,v) =
[

1 + σ2
x

(σz+σ)2 +
σ2

y

(σz+σ)2

]−1
·
[
−
(

ry
r + σzVx−σxVz

µ

)(
1− σ2

y

(σz+σ)2 +
σ2

x
(σz+σ)2

)
+

+
2σy

(
rz
r +

σxVy−σyVx
µ

)
σz+σ +

2σxσy

(
rx
r +

σyVz−σzVy
µ

)
(σz+σ)2

]
,

ix(r,v) = −σy/(σz + σ),iy(r,v) = σx/(σz + σ),

cos(L(r,v)) =
[

r
(

1 + σ2
x

(σz+σ)2 +
σ2

y

(σz+σ)2

)]−1
·

·
[

rx

(
1 +

σ2
y

(σz+σ)2 −
σ2

x
(σz+σ)2

)
− 2σxrz

σz+σ −
2σxσyry

(σz+σ)2

]
,

sin(L(r,v)) =
[

r
(

1 + σ2
x

(σz+σ)2 +
σ2

y

(σz+σ)2

)]−1
·

·
[

ry

(
1− σ2

y

(σz+σ)2 +
σ2

x
(σz+σ)2

)
− 2σyrz

σz+σ −
2σxσyrx
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]
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