
Citation: Xu, S.; Zhao, J.; Wu, H.;

Zhang, S.; Müller, J.; Huang, H.;

Rahmati, M.; Wang, D. A Review of

Solution Stabilization Techniques for

RANS CFD Solvers. Aerospace 2023,

10, 230. https://doi.org/10.3390/

aerospace10030230

Academic Editors: Carlos Lozano

and Jorge Ponsin

Received: 6 November 2022

Revised: 18 February 2023

Accepted: 20 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Review

A Review of Solution Stabilization Techniques for RANS
CFD Solvers
Shenren Xu 1, Jiazi Zhao 1, Hangkong Wu 1, Sen Zhang 1, Jens-Dominik Müller 2, Huang Huang 1,
Mohammad Rahmati 3 , Dingxi Wang 1,*

1 Northwestern Polytechnical University, Xi’an 710072, China
2 Queen Mary University of London, London E1 4NS, UK
3 Northumbria University, Newcastle upon Tyne NE1 8ST, UK
* Correspondence: dingxi_wang@nwpu.edu.cn

Abstract: Nonlinear, time-linearized and adjoint Reynolds-averaged Navier-Stokes (RANS) com-
putational fluid dynamics (CFD) solvers are widely used to assess and improve the aerodynamic
and aeroelastic performance of aircrafts and turbomachines. While RANS CFD solver technologies
are relatively mature for applications at design conditions where the flow is benign, their use in
off-design conditions, featuring flow instabilities, such as separations and shock wave/boundary
layer interactions, still faces many challenges, with tight residual convergence being a major difficulty.
To cope with this, several solver stabilization techniques have been proposed. However, a systematic
and comparative study of these techniques has not been reported, to some extent hindering the
wide deployment of these methods for industrial applications. In this paper, we critically review
the existing methods for solver convergence stabilization, with the main purpose of explaining the
rationale behind the algorithms and providing a systematic view of the seemingly different methods.
Specifically, mathematical formulations and implementation details of these methods, example ap-
plications, and the pros and cons of the methods are discussed in detail, along with suggestions for
further improvements. This review is expected to give CFD method developers an overview of the
various solution stabilization methods and application engineers an idea how to choose a suitable
method for their respective applications.

Keywords: Reynolds-averaged Navier–Stokes; fixed-point iteration; residual convergence; recursive
projection method (RPM); selective frequency damping (SFD); Newton’s method

1. Introduction

Computational fluid dynamics (CFD) solvers based on the Reynolds-averaged Navier-
Stokes (RANS) equations are now indispensable for aircraft and turbomachinery aero-
dynamic/aeroelastic design and optimizations [1,2]. Although RANS CFD solvers are
relatively reliable at design conditions where the flow is benign, its use at off-design condi-
tions for industrial applications, featuring flow instabilities due to shock wave/boundary
layer interactions and complex secondary flows, still faces many challenges. Among them,
robust residual convergence should be the first to be addressed [3] before other aspects are
examined, such as grid independence, discretization consistency, and turbulence modeling
applicability. The challenge of robust residual convergence is not only faced by nonlinear
steady solvers but also by linearized ones, such as time-linearized solvers for aeroelasticity
study [4,5], tangent-linearized and adjoint solvers for stability analysis [6–8], and adjoint
solvers for shape optimizations [9–11].

Commercial aircraft typically cruise at transonic speeds, where shock wave/boundary
layer interactions pose a great challenge for RANS CFD-based aerodynamic and aeroe-
lasticity analyses. In addition, off-design flight conditions, such as take-off, landing, and
maneuvers, are frequently characterized by complex flows, particularly large regions of sep-
arated flows, and this is often associated with complex geometries. As for turbomachinery

Aerospace 2023, 10, 230. https://doi.org/10.3390/aerospace10030230 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10030230
https://doi.org/10.3390/aerospace10030230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-4903-5370
https://doi.org/10.3390/aerospace10030230
https://www.mdpi.com/journal/aerospace
http://www.mdpi.com/2226-4310/10/3/230?type=check_update&version=3

Aerospace 2023, 10, 230 2 of 38

components, such as compressors and turbines, they are now designed with increasingly
higher loadings, characterized by flows more prone to separations. Similar to commercial
aircraft, turbomachinery components also have stringent demands for off-design perfor-
mance, where the flow is even more complex and unstable. These challenges in aircraft
and turbomachinery designs require nonlinear and linearized RANS solvers that are robust
(here robustness refers to the ability to achieve deep residual convergence) in the presence
of complex flows and geometries. Compared with nonlinear flow analyses, which are
sometimes tolerant to not fully converged solutions, as partially or oscillatorily converged
flow solutions, can still be of use for engineering purposes, and linearized solvers are much
more delicate, as they can either fully converge or diverge, due to their linear nature. When
a linearized solver fails to converge, the linear analysis process would terminate. Even for
nonlinear flow analyses, if the ultimate goal is to perform stability analysis, then a stringent
residual convergence criterion is also highly desired.

To cope with the residual convergence difficulties of RANS solvers, several stabi-
lization methods have been proposed over the past years, namely, the recursive projec-
tion method (RPM) [12], the selective frequency damping method [13], the BoostConv
method [14], as well as Newton’s method, and other implicit methods [15–17]. Although
these stabilization methods are proposed independently in different contexts, there exist a
great deal of commonalities in their underlying principles. A thorough and critical review
of these seemingly different methods would allow readers to better understand the under-
lying stabilization mechanism and utilize these methods more effectively. However, no
systematic review of these methods has been reported in the literature, which significantly
hinders the wide deployment and further development of these methods. In this paper, a
review of existing methods for stabilizing non-converging RANS CFD solvers is performed.
Basic theories behind these methods are explained, followed by simple examples to illus-
trate their working principles. The pros and cons of the various stabilization approaches
are discussed and illustrated with practical examples reported in the literature. Finally,
suggestions for further development are made.

2. Theoretical Background

To explain the mechanism of the various convergence stabilization methods, it is
useful to first discuss the convergence instability issues and their origins. Therefore, a
brief introduction of the mathematical formulations of the nonlinear and various linearized
RANS equation systems are first presented, followed by an in-depth discussion on their
linear stability properties in relation to each other, utilizing a fixed-point iterative scheme,
which explains the root cause of the instability issues. Although the linear stability analysis
based on the fixed-point iterative scheme does not cover all failure modes when non-
convergence occurs, it is believed that it still captures the essence of the stabilization
mechanism of the methods discussed in this review, as they all tackle the linear stability of
the underlying nonlinear and linear iterative schemes.

2.1. Time-Marching Nonlinear RANS Equation Systems

A nonlinear steady RANS CFD solver essentially seeks the root of the following
nonlinear system of equations

R(U(α); α) = 0, (1)

where α is the vector of design variables that uniquely defines the geometry, which in
turn, via a deterministic meshing algorithm, determines the computational mesh, U is the
flow solution vector, and R is the residual vector, which represents a particular spatial
discretization scheme. R is a nonlinear function of U, and the discretization scheme
uniquely determines the solution U to be found for a given geometry/mesh. A time-
marching scheme via fixed-point iterations (FPI) for the discrete nonlinear flow equations
can be expressed as

M∆Un = −R(Un), (2)

Aerospace 2023, 10, 230 3 of 38

where Un and ∆Un := Un+1 − Un denote the approximate solution to the nonlinear
flow Equation (1) at the nth nonlinear iteration and the solution increment, respectively.
The matrix M represents a general time-stepping operator. Towards full convergence, the
error between Un and the fully converged solution Ū, denoted by en, evolves as

M∆en = −R(Ū + en) = −Aen, (3)

which yields
en+1 = (I −M−1 A)en, (4)

where the matrix A is the exact Jacobian of the nonlinear residual vector with respect to the
flow solution. Therefore, a necessary condition for the solution to fully converge is that the
spectral radius of the matrix operator (I−M−1 A) does not exceed unity. It should be noted
that this is not a sufficient condition for full convergence. The first difficulty in obtaining
a fully converged nonlinear flow solution is to overcome the strong initial transient and
allow the solution to evolve towards the basin of attraction of the nonlinear operator R(U),
where such a stability analysis can be performed.

2.2. Time-Marching Linearized RANS Equation Systems

A RANS-equations based aerodynamic optimization problem can be expressed as

min J(U, α) = 0, s.t. R(U(α), α) = 0, (5)

where J is the objective function of interest. U and α are related through the nonlinear
RANS Equation (1). The chain rule can be applied to obtain the gradient of the objective
function with respect to the design variables

dJ(U(α), α)

dα
=

∂J(U, α)

∂α
+

∂J(U, α)

∂U
dU
dα

. (6)

The matrix
dU
dα

, denoted by u, satisfies the tangent-linearized flow equations

Au = f := −∂R
∂α

. (7)

To obtain each column of the matrix u, a linear system of the following form needs to
be solved

Aui = fi := − ∂R
∂αi

. (8)

Further denoting
∂J(U, α)

∂U
by gT , then the tangent-linear solution based sensitivity

calculation is
dJ(U(α), α)

dα
=

∂J(U, α)

∂α
+ gTu. (9)

For a high-dimensional problem with N design variables, N large sparse linear systems
of Equations (8) need to be solved, which would render the calculation of design sensitivities
extremely computationally expensive. To circumvent this problem, the discrete adjoint
approach can be used, where one solves the adjoint equation

ATv = g, (10)

with the vector v being the adjoint solution. It can be easily verified that

vT f = gTu, (11)

Aerospace 2023, 10, 230 4 of 38

and thus the gradient of the objective function can be evaluated with the adjoint solution as

dJ(U(α), α)

dα
=

∂J(U, α)

∂α
+ vT f . (12)

Different from the tangent-linear approach, computing the gradient using the adjoint
approach only requires solving M large sparse linear system of equations with M being
the dimension of J. Various other terms required to assemble the sensitivity vector corre-

sponding to all design variables, i.e.,
∂J
∂α

and f , can be evaluated at a negligible cost. The

overall computational cost for obtaining the design sensitivity vector
dJ
dα

is therefore almost
independent of the number of design variables, making the adjoint method suitable for
high-dimensional gradient-based aerodynamic optimization problems.

In the derivations above, the residual vector R represents the particular spatial dis-
cretization method and boundary conditions used in a given flow solver, and all the
derivations are based on the already discretized system. The resulting method is thus
called discrete adjoint [9,18]. Alternatively, one can also derive a continuous adjoint sys-
tem, where one first analytically derives the partial differential equations for the adjoint
problem using Lagrangian multiplier and then discretizes them [1,18,19]. A major advan-
tage of the discrete adjoint approach is that the resulting gradient is consistent with the
nonlinear flow calculations down to the machine precision [18]. Throughout the rest of
the paper, all discussions on the stabilization of adjoint solvers are limited to the discrete
adjoint approach.

An appealing property of the discrete adjoint equation is that its system matrix is
the transpose of the primal flow Jacobian matrix A, hence having the same eigenvalue
spectrum as the nonlinear and tangent-linear equations, as transposing a matrix does not
alter its eigenvalues. This property can be exploited to analyze the convergence behavior
of an FPI scheme combined with a given spatial discretization method. Applying the same
time-stepping method to the solution of the tangent-linear and the adjoint equations leads
to the following two discrete time-stepping schemes

M∆un = f − Aun (13)

and
MT∆vn = gT − ATvn. (14)

The corresponding error equations, with eu and ev denoting the errors of the tangent-
linear and the adjoint solutions, are

en+1
u = (I −M−1 A)en

u (15)

and
en+1

v = (I −M−T AT)en
v , (16)

respectively. If the linearization and transposition are exact, the time-marching schemes of
both the tangent-linear and adjoint systems have the same spectral radius as the nonlinear
flow equations, since

ρ(I −M−1 A) = ρ(I −M−T AT), (17)

where ρ(·) denotes the spectral radius of a matrix. Therefore, as long as the nonlinear flow
solver is able to converge asymptotically, the corresponding tangent-linear and adjoint
systems are bound to converge at the same rate. This is a powerful tool for developing and
debugging a discrete adjoint and tangent-linear solver. On one hand, if the time-marching
schemes for the tangent-linear and adjoint solvers exactly follow that of the nonlinear flow
solver, convergence is guaranteed if the nonlinear flow solution converges asymptotically
for the problems considered. On the other hand, when differences exist in their respective

Aerospace 2023, 10, 230 5 of 38

convergence behaviors, it implies that algorithmic inconsistencies are introduced and
implementation details should be checked.

Besides the tangent-linear and adjoint equations, there is another type of linearized
RANS equations, namely, the time-linearized one, also called the linear harmonic equations.
The time-linearized RANS equations are of the following form

Âû = f̂ , with Â := iωI + A, (18)

where the right-hand-side term is a complex vector representing a temporally periodic
forcing term, i :=

√
−1, I is an identity matrix, and ω is the angular frequency of the

periodic forcing. The forcing term could be due to either a prescribed structural motion in
the case of flutter analysis or a periodic flow perturbation, e.g., due to the wake or potential
flow perturbation of a neighboring blade row in turbomachinery applications. Similar to
the nonlinear, tangent-linear, or adjoint equations, the time-linearized equations can also
be solved using time-marching methods

M̂∆û = −RLin := Âû− f̂ (19)

with M̂ being the preconditioning matrix that controls the time-stepping. Similar to the
preconditioning matrix M for the nonlinear and tangent-linear system, M̂ can be formed
by augmenting it with a purely imaginary part as

M̂ := iωI + M. (20)

Similarly, a necessary condition for the time-marched equation system to converge is
that the matrix operator for the error equation needs to be contractive, i.e.,

ρ(I − M̂−1 Â) < 1 (21)

However, different from the tangent-linear and adjoint systems, the spectral radius
of the matrix operator of the time-linearized system is in general not equal to that of
the nonlinear system, except in the limit that ω → 0, and, therefore, an asymptotically
converging FPI for the nonlinear flow solver does not guarantee that the time-linearized
solver following the same time marching scheme would converge.

3. Stabilization Techniques

This section will review the existing techniques for stabilizing the nonlinear and
linear flow solvers in detail. They are (i) recursive projection method (RPM), (ii) selective
frequency damping (SFD) method, (iii) BoostConv method, (iv) Newton’s method, and (v)
other implicit methods. For each method, the mathematical formulation is first discussed,
followed by example problems from the literature to demonstrate its stabilization effect.
The pros and cons of different methods are discussed to help users choose an appropriate
method accordingly.

3.1. Recursive Projection Method (RPM)

RPM was initially proposed to stabilize general unstable FPI schemes [12]. It was
originally used for bifurcation analysis, and was later applied to stabilize and accelerate the
convergence towards steady-state solutions for aerodynamic analysis [20,21]. It has also
been used to stabilize a time-linearized solver [5,22] and an adjoint solver [10].

3.1.1. Theory and Examples

We are concerned with the general FPI Formula (2), which represents an arbitrary time-
marching based nonlinear or linear flow solver. It can be any time-marching scheme ranging
from an explicit, implicit, to fully-implicit Newton’s method, denoted by M, combined
with additional acceleration techniques, such as multigrid. Rearranging Equation (2) and

Aerospace 2023, 10, 230 6 of 38

linearizing the residual R(Un) about the exact solution Ū, which satisfies R(Ū) = 0, yields
the following error equation

en+1 = Fen, (22)

with
F := I −M−1 A. (23)

Whether the FPI converges to the exact solution Ū depends on the eigenvalues of the
iteration matrix F [11,23,24]. A necessary condition for the FPI to asymptotically converge
is that all eigenvalues should have a modulus no larger than unity. In other words, the
matrix F should be contractive. The core idea of RPM is that a Newton step is applied to
the error modes in the linear subspace spanned by the unstable eigenvectors, denoted by
P, and the original FPI is applied only to error modes in its orthogonal complementary
subspace, denoted by Q.

Suppose that m eigenvalues lie outside the unit circle in the complex plane, that is,

|λ1| ≥ |λ2| ≥ · · · ≥ |λm| > 1, (24)

the linear subspace P is therefore spanned by the corresponding m eigenvectors {vi}m
1 .

Define the orthogonal projectors P and Q onto the two subspaces P and Q as

P = VVT , Q = I − P, (25)

where V ∈ RN×m is an orthonormal basis of P, which can be computed by applying
the Gram-Schmidt orthogonalization on the unstable eigenvectors {vi}m

1 . By definition,
VTV = I holds. Any x ∈ RN can be uniquely decomposed as

x = xp + xq, (26)

where
xp = Px, xq = Qx ≡ x− Px (27)

are the projection of x in the subspaces P and Q. For a preconditioned linear problem

M−1 Ax = M−1b, (28)

decomposing the operator as M−1 A = I − F yields

x = Fx + M−1b, (29)

which can be used to construct an FPI as

xn+1 = Fxn + M−1b. (30)

Define the projection of both sides of the equation to subspaces P and Q as

xp = P(F(xp + xq) + M−1b) (31)

and
xq = Q(F(xp + xq) + M−1b). (32)

As mentioned above, the original FPI is applied to time march xq

xn+1
q = Q(F(xn

p + xn
q) + M−1b). (33)

Aerospace 2023, 10, 230 7 of 38

It can be proved that for a fixed xn
p, the iteration for xq can stably converge. However,

for xp, due to the outlier eigenvalues, applying the same FPI will lead to divergence. Instead,
a Newton iteration is constructed by linearizing both sides of Equation (31) as follows

(I − PF)(xn+1
p − xn

p) = P(F(xn
p + xn

q) + M−1b− xn
p). (34)

The resulting Newton iterative scheme for xp then becomes

xn+1
p = xn

p + (I − PF)−1P(F(xn
p + xn

q) + M−1b− xn
p). (35)

It can be verified that

(I − PF)−1P = V(I −VT FV)−1VT , (36)

since

(I − PF)V(I −VT FV)−1VT = V(I −VT FV)(I −VT FV)−1VT = VVT = P, (37)

and the Newton update scheme for xp therefore becomes

xn+1
p = xn

p + V(I − H)−1VT(F(xn
p + xn

q) + M−1b− xn
p), (38)

where the m×m low-dimensional matrix H is defined as

H := VT FV. (39)

To compute the matrix H, F(xn
p + xn

q) + M−1b − xn
p is first computed via residual

evaluations, and the m unstable eigenmodes are identified and orthonormalized to obtain
V. The linear operator F is then applied to each column vector of V to obtain FV, whose
m vectors are left multiplied with VT , at the cost of m×m vector-vector multiplications,
to obtain H. For nonlinear problems, if explicitly forming the linearized operator A is
inconvenient, e.g., when only the outcome of one application of R(U) is exposed to the
user and the source code for evaluating R(U) is hidden, then the matrix-vector product
FVi, where Vi denotes the i-th vector of V, can be approximated using differencing, i.e.,
FVi ≈ Vi −M−1(R(U + εVi)− R(U))/ε, for i = 1, . . . , m.

In the derivation above, a key step is to identify the unstable eigenvectors, which
are used to form V. This is done by storing the last two solution incremental vectors,
i.e., D := {∆xn, ∆xn−1}, when the iteration starts diverging. The two vectors are used to
compute the Gram-Schmidt factorization

D = D̂T2×2. (40)

If T1,1 >> T2,2, the dominant eigenmode is real and only the first column of D̂ is
appended to V. Otherwise, the instability is caused by a complex conjugate pair, and
both columns of D̂ are included in V. In contrast to this divide-and-conquer approach,
alternatively, one could store more than two solution incremental vectors, and identify
more unstable modes at a time by scrutinizing the T matrix. The latter results in a higher
memory overhead, but usually with a stronger stabilization and acceleration effect.

To illustrate the RPM stabilization technique better, it is demonstrated on a simple
linear problem test case. Suppose the linear problem to be solved is of the form

Ax = b, (41)

Aerospace 2023, 10, 230 8 of 38

with the matrix A and the right-hand-side term b being

A =

 0.9172 0.7537 0.0759
0.2858 0.3804 0.0540
0.7572 0.5678 0.5308

, b =

 0.9649
0.1576
0.9706

. (42)

The linear problem is preconditioned with a Jacobi matrix M defined as

M =

 0.9172 0 0
0 0.3804 0
0 0 0.5308

, (43)

which imitates the effect of a local time-stepping approach commonly used in explicit
flow solvers to accelerate the convergence. A FPI in the following form can therefore be
constructed to iterate the equation Ax = b to its solution

xn+1 = Fxn + M−1b ≡ (I −M−1 A)xn + M−1b (44)

with the system matrix F = I −M−1 A being

F =

 0 −0.8217 −0.0828
−0.7513 0 −0.1420
−1.4265 −1.0697 0

. (45)

The eigenvalues of the matrix F are λ1 = −1.0529, λ2 = 0.7629 and λ3 = 0.2900,
respectively. Therefore, the FPI is unstable and is expected to diverge at the asymptotic
rate of log(1.0529). This is confirmed via a numerical experiment as shown in Figure 1,
with an initial value of x = [0.1890, 0.6868, 0.1835]T . The choice of the initial solution does
not alter the stability of the FPI, and the particular values are chosen only to produce a
first-converge-then-diverge convergence history. Taking the only unstable eigenvector of
λ1 as V, and activating RPM stabilization from the 31st iteration, the originally unstable FPI
is stabilized, and the residual converges at the asymptotic rate of log(0.7629), also shown in
Figure 1.

Figure 1. Convergence history (left) and eigenvalues ((right)) of the linear test case with the standard
FPI and the one stabilized with RPM.

3.1.2. Rpm Stabilized Time-Linearized Analysis

RPM was used to stabilize a time-linearized solver in [5], where a time-linearized (also
called linear-frequency-domain or linear-harmonic) solver is used to compute the frequency-
domain unsteady flow around a two-dimensional turbine section. The calculations of
the steady base flow at both the subsonic and transonic conditions converged without
difficulties to machine precision. The Mach number contours of the converged transonic
base flow solution are shown in Figure 2, where a separation bubble on the suction side

Aerospace 2023, 10, 230 9 of 38

near the leading edge can be seen. For the transonic condition, the time-linearized analysis
diverged exponentially with the standard linear code that uses the same time-stepping
scheme as the nonlinear solver, and the convergence history (with the legend ’standard’) is
shown in Figure 3. As discussed, the spectral radius of the time-marched time-linearized
system is different from that of the nonlinear system, due to an additional purely imaginary
diagonal term, and thus the asymptotic convergence of the nonlinear solver does not
guarantee that of the time-linearized one. The convergence of the time-linearized solver is
stabilized by applying RPM to the original FPI. In RPM, applying the Arnoldi procedure
to the diverging iterative process allows the user to identify and extract the unstable
eigenvalues and associated eigenvectors that are responsible for the divergence of the
linear analysis. Additionally, shown in Figure 3 is the convergence history stabilized with
generalized minimal residual (GMRES) preconditioned by multigrid. Further details on
using GMRES for stabilization are discussed in Section 3.4. The least stable part of the full
eigenspectrum is shown in Figure 4, where two pairs of conjugate complex eigenvalues
that lie outside the unit circle are identified and believed to have caused the exponential
divergence of the linear solver. First, the modulus of the eigenvalues farthest away from
the origin is found to agree well with the rate of divergence, indicating the correctness of
the eigenvalue analysis. Second, the two unstable eigenmodes are visualized and found to
correlate to the separation bubble shown in Figure 2.

Figure 2. Mach number contours for the two-dimensional turbine cascade at a transonic condition
(Figure from [5]).

Figure 3. The convergence histories using the standard, RPM, and GMRES iteration (Figure from [5]).

Aerospace 2023, 10, 230 10 of 38

Figure 4. The first 150 dominant eigenvalues of the linear operator (Figure from [5]).

The convergence history of the RPM stabilized FPI is shown in Figure 3, where
discontinuities in the slope of the convergence history using the RPM solver labeled
with 1, 2, and 3 mark the iterations at which the complex conjugate eigenpairs 1, 2, and 3
are appended to the subspace P of the RPM procedure. It can be seen that as soon as the
two unstable eigenpairs are included (from the point labeled with 2 in Figure 3), divergence
is avoided immediately. Adding the third least stable mode (corresponding the point
labeled 3 in Figure 3) to the subspace has the effect of accelerating the convergence, as
expected from the theory.

3.1.3. Rpm Stabilized Adjoint Analysis

RPM was used to stabilize an adjoint solver based on the compressible RANS equations
in [10] on two cases, namely, (i) the RAE2822 aerofoil case 10 (Reynolds number 6.2× 106,
Mach number 0.754, angle of attack 2.57◦), and (ii) the DLR-F6 wing-body configuration
(Reynolds number 3× 106, far-field Mach number 0.75, angle of attack for a lift coefficient
of 0.5).

For the RAE2822 aerofoil case at the condition under investigation, there is a large
region with shock-induced separation near the trailing edge, as indicated by the skin
friction coefficient plotted along the chord on the left in Figure 5 (case 10). For this case,
the nonlinear solver using lower upper symmetric Gauss Seidel (LU-SGS) as the smoother
and accelerated using multigrid, failed to fully converge, and converged into a limit
cycle instead. The adjoint solver following the same FPI scheme exponentially diverged,
as shown on the right in Figure 5. Using RPM, the adjoint iteration is stabilized. The
least stable eigenvalues can be identified in RPM and are shown in Figure 6. It can be
seen that two conjugate complex eigenpairs exist, and the eigenvector corresponding to
the most unstable ones, marked b, is visualized on the right in Figure 6. It can be seen
that the unstable eigenvector strongly correlates with the shock-induced boundary–layer
separation phenomenon.

Aerospace 2023, 10, 230 11 of 38

Figure 5. (Left): surface skin friction coefficient distribution for RAE2822; (right): residual conver-
gence history of nonlinear and adjoint problems (Figures from [10]).

Figure 6. (Left): approximate dominant eigenvalues of the underlying FPI operator; (right): the
eigenvector corresponding to the eigenvalue marked b (Figures from [10]).

For the DLR-F6 wing-body configuration, the nonlinear calculation is believed to have
converged sufficiently to meet the engineering accuracy requirement. Although no details
were given in [10], it is suspected that asymptotic convergence was not achieved with the
nonlinear flow solver. The adjoint problem solved with LU-SGS or Runge-Kutta smoothed
multigrid was found to be unconditionally unstable. Without discussing in detail whether
this was due to the lack of asymptotic convergence of the nonlinear flow calculation, or
the discrepancy in the spatial discretization between the nonlinear flow and the adjoint
problem (as a frozen-eddy-viscosity approach was adopted for the adjoint solver for this
case), RPM was used to stabilize the diverging adjoint solver in [10]. Phenomenologically,
the divergence of the adjoint problem was believed to be related to the wing-body junction
separation, as shown on the left in Figure 7. A numerical investigation of the dominant
eigenvalues more rigorously identified the reason for the linear instability of the FPI for
the adjoint problem. Four conjugate complex eigenpairs can be found in the approximate
eigenspectrum, as shown on the right in Figure 7, which are believed to have caused the
exponential divergence of the FPI without RPM. With RPM, once the eigenvalue outliers
are included in the subspace P, full convergence was recovered for the adjoint solver, as
shown in the middle in Figure 7.

3.1.4. Rpm Accelerated RANS Nonlinear and Linear Calculations

Since RPM gradually removes the least unstable eigenvalues from the eigenspectrum
of the FPI, which essentially reduces its spectral radius, it does not only stabilize the
unstable FPI for linear problems, but can also accelerate the already-stable FPIs. This
was successfully demonstrated in [10] for RAE2822 aerofoil at a condition where both

Aerospace 2023, 10, 230 12 of 38

the nonlinear and adjoint analyses were already stable using the baseline FPI. Using
RPM, a typical speedup of 1.5 to 4 times in terms of CPU time was achieved, depending
on the case and the required convergence criteria. When applied to the flutter analysis
using a time-linearized solver for a two-dimensional turbine cascade case at a subsonic
case, the convergence speedup in terms of CPU time by a factor of 2 to 3 was achieved.
Further applications of the RPM to the acceleration of nonlinear flow solvers are discussed
thoroughly in [20].

Figure 7. (Left): wing-body junction separation in the flow solution; (middle): convergence of the
adjoint problem with and without RPM; (right): dominant eigenvalues for the FPI operator (Figures
from [10]).

3.1.5. Summary of Current Status and Direction for Further Development

RPM has been successfully used for either convergence acceleration or stabilization of
nonlinear and linear solvers for both external and internal flow problems. Its advantage
is that it can be implemented in a non-intrusive way, only requiring the solution incre-
ment of each FPI step to be available to extract the unstable eigenvectors and build the
subspace P. One downside of the RPM technique is that it requires additional computation
to build the Arnoldi subspace so that unstable modes can be identified and extracted.
Building an Arnoldi subspace sufficiently large so that unstable modes can be identified
accurately incurs additional computational and memory overhead, which can be signif-
icantly high if the number of unstable modes is large and/or the eigenvalue outliers are
closely spaced.

To circumvent the weakness, an alternative criterion to select the unstable eigenmodes
is proposed in [25]. The proposed criterion, based on an approximate eigenvalue problem
(AEP), uses both the residual norm of the eigenpair and the modulus of the eigenvalues to
identify the unstable subspace. It is able to select more eigenmodes per RPM iteration at
lower memory and CPU time costs compared to the original criterion. It was shown for a
transonic flow in a two-dimensional duct with a bump that the proposed AEP criterion
achieves 14% to 67% speedup in terms of CPU time compared to the original Krylov
criterion. A similar approach was proposed in [26], where the eigenvalues are identified
approximately using the proper orthogonal decomposition (POD) approach. It was applied
to the stabilization of a nonlinear solver for a two-dimensional turbine cascade in a viscous
flow and a cascade of aerofoils in a transonic flow that resembles a modern fan-blade
tip-section. For both cases, the original FPI scheme converged into a limit cycle. However,
no comparison of the proposed POD-stabilized method against the original RPM or the
improved version using AEP as the mode-selection criterion was conducted in [26].

Despite the various algorithmic improvements to enhance its computational efficiency
and convergence robustness, the application of RPM to a practical three-dimensional cases
with complex geometries and at challenging flow conditions still incurs a computational
cost and memory overhead. The difficulty in finding unstable modes is further increased
when RPM is applied to nonlinear flow solver stabilization, since the underlying flow
Jacobian is varying over the iterations. Although RPM has been shown to be useful for
stabilizing a nonlinear solver [26], it is believed by the authors that the success can largely
be attributed to the fact the unsteadiness is sufficiently small, and thus the Jacobians nearly

Aerospace 2023, 10, 230 13 of 38

remain constant, since in the presence of the limit cycle nonlinear solver convergence, and,
therefore, the unstable modes can be identified with a small number of solution snapshots.
The main criteria to assess the effectiveness of RPM stabilization is the minimal number
of solution snapshots required for the stabilization to take effect. When this number is
large, RPM essentially approaches a direct solver, and its advantage of being a lightweight
stabilization algorithm diminishes. In that case, it is probably more beneficial to use an
implicit or even Newton’s method for stabilization.

3.2. Selective Frequency Damping (SFD) Method

The selective frequency damping (SFD) method was originally developed to obtain a
steady base flow for the Navier–Stokes equations for globally unstable flows in the context
of instability studies and flow control [13]. For such globally unstable flows, time-marching
methods have difficulties in fully converging to steady solutions and instead often converge
to limit cycles. Although a majority of existing work on SFD focused on the stabilization
of nonlinear flow solvers, same as RPM, it is equally applicable to linear analyses, such as
adjoint and time-linearized problems. In this subsection, the theory and the mathematical
rationale behind the SFD method are first explained, followed by a review of a few typical
application examples of the method in stabilizing nonlinear steady-state flow solutions.
Finally, the pros and cons of the method are discussed, and suggestions for future work
are proposed.

3.2.1. Theory and Examples

Similar to RPM, the SFD method is motivated by the observation that when the time-
marched steady nonlinear flow calculation fails to converge asymptotically, it is often found
to converge to a limit cycle, indicative of unstable modes in the underlying eigenvalue
spectra. Different from RPM, which identifies the unstable modes and stabilizes their
iterative update scheme by applying the Newton’s method, SFD tackles the oscillatory
convergence that exhibits a marked characteristic temporal scale from a signal-filtering
perspective. Assuming a fully-converged steady-state solution exists, denoted by Ū, then
it is possible to add a forcing term based on the deviation of the time-dependent solution
from some time-averaged solution to the time-marching formula as feedback to the original
unstable dynamic system. The modified dynamic system is

dU
dt

= −R(U)− χ(U − Ū). (46)

where χ represents a scaling factor prescribed by the user. Since the steady solution Ū is
not known a priori. In the SFD method, the reference solution Ū in the forcing term is
therefore based on a low-pass time-filtered solution. For a continuous function U(t), the
low-pass time-filtered signal is

Ū(t) =
∫ t

−∞
T(τ − t; ∆)U(τ)dτ, (47)

where T is the filter kernel function and ∆ is the filter width. The exponential kernel
defined as

T(τ − t; ∆) =
e

τ−t
∆

∆
(48)

is used. Using the integral form of the low-pass filter in expression (47) would require
the entire flow solution history to be available and incur a high memory overhead and
computational cost. Therefore, the integral form is differentiated with respect to time, and
the following equivalent differential form is used in practice

dŪ(t)
dt

=
U(t)− Ū(t)

∆
. (49)

Aerospace 2023, 10, 230 14 of 38

In practice, the two systems (46) and (49) are time marched simultaneously. It can
be shown that, although the operator of the original system is unstable, the operator of
the augmented system could have a contractive Jacobian if the two parameters, χ and
∆, are chosen appropriately. In addition, it is straightforward to show that if the aug-
mented dynamic system (Formulae (46) and (49)) evolves to a steady state, the converged
solution Ū satisfies R(Ū) = 0. This means that adding the forcing term does not alter the
steady state solution.

The SFD stabilization method is demonstrated on the time marching solution of a van
der Pol oscillator dynamic system. The governing equation of the dynamic system is

d2x
dt2 − ε(1− x2)

dx
dt

+ x = 0, (50)

where ε is the coefficient of nonlinear damping. It can be converted to the following
two-degree-of-freedom first-order nonlinear system of equations

dx1

dt
= x2

dx2

dt
= ε(1− x2

1)x2 − x1.
(51)

For illustrative purposes, for ε = 0.1 and an initial value of [x1, x2] = [1, 1], the time-
dependent solution is time-marched using the first-order forward Euler scheme with a time
step size of ∆t = 0.1, and a limit-cycle solution is obtained. The evolution of the solution
and its phase plot are shown in Figure 8 (with the legend ’standard’). It can be seen that,
although the dynamic system has a zero solution, it is an unstable one. This behavior
is representative of a typical non-converging RANS solver when the underlying steady
solution is numerically or physically unstable. In order to numerically obtain the unstable
zero solution of the van der Pol oscillator, SFD is used to stabilize the time-marching scheme.
The evolution of the solution and its phase plot are also shown in Figure 8 for comparison
(with the legend ’SFD’). It can be found that SFD is able to stabilize the oscillatory solution
and allow convergence to the unstable equilibrium solution [x1, x2] = [0, 0]. In this simple
test case, the two parameters are set as ∆ = 6 and χ = 1/6, and no further investigation
is conducted to optimize the parameters for faster convergence to the equilibrium point.
More discussions on selecting the parameter values appropriately are presented in the
following paragraphs.

Figure 8. Solution history (left) and phase plot ((right)) of the dynamic system time-marched with
the standard FPI and the one stabilized with SFD.

Aerospace 2023, 10, 230 15 of 38

3.2.2. Sfd Stabilized Nonlinear Steady Flow Calculations

The SFD method was initially proposed and applied to the stabilization of the steady-
state solutions of the Navier-Stokes equations in [13]. The two cases considered are the
steady state calculations of (i) a two-dimensional flow over a long cavity, and (ii) the
separation bubble induced by an external pressure distribution. The stabilized cavity flow
solution is shown in Figure 9. The flow is computed for Re = 350, which is chosen by
gradually increasing it until the flow becomes globally unstable. In one simulation (dash-
dotted line in Figure 9), SFD is turned on from the beginning, and the flow calculation
converges to a steady state. In another (solid line in Figure 9), SFD is not turned on from
the beginning, and the flow solution time marched using a semi-implicit second-order
backward Euler/Adams-Bashforth scheme exhibits an oscillatory convergence behavior.
Only when SFD was turned on at t = 3000, the oscillation was suppressed, and full
convergence was achieved. As expected from the theory, the steady state solutions obtained
in the two simulations were identical. However, the choice of values for χ and ∆ was not
discussed in detail in [13].

Figure 9. (Left): contour lines of the steady state stream function for the cavity case; (right): time
history of streamwise velocity measured just above the cavity (dash-dotted line: SFD switched on
from the beginning, straight line: SFD turned on at t = 3000) (Figures from [13]).

The SFD method was used to improve the convergence and robustness of the steady
state solution algorithm in [27] for the turbulent flow solutions around an aerofoil at a high
Reynolds number (Re ≈ 106) and for angles of attack near stall. In [27], the elsA code [28]
was used to time march the flow to the steady state using a local time-stepping method. For
an angle of attack of 12◦, a fully converged solution can be obtained. However, for higher
angles of attack (15◦ and 18◦), the convergence of the nonlinear flow solver stagnates and
oscillates around a high residual level. With SFD, the limit-cycle oscillation convergence
is avoided and full convergence of both the residual and the lift coefficient is achieved, as
shown in Figures 10 and 11. Although convergence at both conditions are successfully
stabilized with SFD, it can be seen that the convergence of the flow for 18◦ is much slower
than that for 15◦.

Aerospace 2023, 10, 230 16 of 38

Figure 10. (Left): convergence history of the residual and the lift coefficient with and without SFD;
(right): Mach contour plots of the flow solutions obtained with and without SFD, at an angle of attack
of 15◦ (Figures from [27]).

Figure 11. (Left): convergence history of the residual and the lift coefficient with and without SFD;
(right): Mach contour plots of the flow solutions obtained with and without SFD, at an angle of attack
of 18◦ (Figures from [27]).

The SFD method is used for stabilizing the unstable Navier-Stokes flow calcula-
tions performed with the Nektar++ spectral-element framework [29,30]. Although the
method is reported to be convenient to implement and effective in stabilizing the flows
considered, i.e., flows in a channel with a 90◦ bent at Re = 700 and Re = 1200, it was also
claimed that the computational cost was overwhelmingly large, despite using automatically-
optimized parameters.

The only three-dimensional case for which SFD was applied to the authors’ best
knowledge is reported in [31]. In order to perform global stability analysis for a jet in
crossflow, SFD was first used to find the steady state Navier-Stokes solution. As the focus
of that work is on the global stability analysis, no detailed description of the parameter
choices and the computational cost were provided in [31].

3.2.3. Sfd Accelerated Nonlinear Flow Solvers

Similar to RPM, SFD can also be used to accelerate the calculation of nonlinear flow
solutions. It was used in [32] to speed up the convergence of the Euler and RANS flow
solutions over airfoils. Instead of using a global ∆ value, it is proposed in [32] to use
a cell-wise varying ∆ value based on the local spectral radius. Depending on the cases,
convergence acceleration of up to a factor of two in terms of CPU time is achieved. The

Aerospace 2023, 10, 230 17 of 38

results presented in [32] demonstrated that SFD is a promising method for accelerating
the convergence to steady state for Euler and RANS solvers. However, it was also shown
that the acceleration effect strongly depends on the parameter values, and although the
proposed ad hoc criteria to set the value seemed to work for the test cases considered in the
paper, more tests on three-dimensional RANS flow cases should be performed to evaluate
the proposed criteria more comprehensively.

In [33], SFD was used to accelerate the convergence of an incompressible flow solver
based on the immersed boundary method. An optimization method of the parameter pair χ
and ∆ is developed to accelerate the convergence to the steady state, trying to minimize the
spectral radius of the Jacobian matrix in the parameter space of (χ, ∆). A faster convergence
rate and higher efficiency were demonstrated on the flow calculations past a cylinder
and two side-by-side cylinders at Re = 100, compared to the results using the original
methods [13].

SFD was used for the stabilization and acceleration of steady state RANS flow calcula-
tions [34]. A novel modification to the SFD method is proposed to improve the convergence
rate of the solver. The modification to the algorithm consists in the addition of a periodic
reset of the low-pass time-filtered flow to the value of the base solver flow. This adds
an additional parameter to the method, that is, the number of iterations between each
reset. The goal is to remove the influence of previous poorly converged solver iterations.
The novel modification is tested for the test cases of vortex shedding over a cylinder and
transonic buffet over a supercritical airfoil. The results show an improved convergence rate
with a successful stabilization of the flow solution.

3.2.4. Summary of Current Status and Suggestions for Further Development

The SFD method has been demonstrated to be an effective lightweight approach
to obtain steady-state solutions for two- and three-dimensional flow calculations when
unstable modes that hinder the full convergence of the nonlinear flow solver exist. Its
formula is simple and elegant, requiring only minor modifications to the original algorithm,
and does not alter the equilibrium point of the original system. However, finding a suitable
choice of the two parameters in the augmented system, χ and ∆, remains a challenge
for generic problems. It was suggested in [13] that the cutoff frequency of the low-pass
filter, 1/∆, should be chosen according to the frequency characteristic of the unstable modes,
i.e., the imaginary parts of the eigenvalues of the destabilizing modes. The imaginary part
reflects the frequency of the mode and it can be relatively easily inferred from the limit-cycle
oscillations of the non-converging flow solver. χ, on the other hand, should be set according
to the growth rate of the unstable modes, i.e., the real part of the unstable eigenvalues.
However, due to the nonlinear stability, the growth rate of the linearly unstable mode
unfortunately does not reveal itself in the limit-cycle residual convergence history and is
thus difficult to be estimated without extra work. Therefore, a somewhat ad hoc approach,
simply setting χ = 1/∆, is proposed in [13]. The parameters are set according to this ad hoc
rule for the simple van der Pol oscillator example shown in Figure 8. Algorithms to allow a
better choice of the two parameters were discussed in [35] using an optimization approach.
Specifically, the unstable eigenvalues are estimated using the dynamic mode decomposition
method based on the flow solution snapshots produced during the time-marching process.
This, however, inevitably incurs an extra computational cost.

Another feature of the SFD method can also be implemented into an existing nonlinear
flow solver in a non-intrusive way, since the original formula of the SFD method introduced
in [13] would require a modification of the solution update scheme for U(t), coupled with
an additional update procedure for Ū(t). In [36], the original time–continuous coupled
system is discretized using a sequential operator-splitting method and divided into two
small subsystems that are solved separately using different numerical schemes. Specifically,
the flow solution is first updated by one iteration using the existing solution-update scheme
in the flow solver as

Un+1 = Φ(Un) (52)

Aerospace 2023, 10, 230 18 of 38

where the operator Φ represents any arbitrary iterative solution algorithm of the original
flow solver. The updated flow solution is then used as an input for the low-pass time
filtering step

dU
dt

= −χ(U − Ū)

dŪ
dt

=
U − Ū

∆
,

(53)

and this linear system of ordinary differential equations can be solved exactly. Due to its
modified form compared to the original formula, further discussion on how to best choose
the values for χ and ∆ is given in [36].

A downside of the SFD method is that the optimal values for the two parameters χ
and ∆ are highly case dependent and one would need to have some knowledge of the
characteristic frequency information to determine the optimal cut-off frequency in order to
determine the value of χ. Although various techniques for providing a good estimation
for the values of the two parameters exit, they all to some extent require the unstable
eigenvalues of the system to be estimated and incur extra CPU time and memory overhead.
The effectiveness of the SFD method for stabilizing the nonlinear solver on large-scale
applications needs to be further evaluated with more tests.

3.3. Boostconv Method

Similar to SFD, the BoostConv method introduced in [14] can also be used to accelerate
convergence of stable iterative solvers and stabilize non-converging steady-state iterative
solvers. The method is quite recent and, therefore, has only been reported in a few papers.
It is used in [37] to find the three-dimensional steady-state base flow for investigating the
bifurcations formed on inserting a hemispherical roughness element in a laminar Blasius
boundary layer. It is integrated as a “black-box” with a multigrid solver to accelerate
convergence in solving a elliptical Poisson-like equation without additional computational
cost in [38]. More recently, the BoostConv method is extended to turbulent steady flow
calculations [39].

3.3.1. Theory

Consider a linear system of equation

Ax = b (54)

solved with a certain iterative method as

xn+1 = xn + Brn (55)

where rn := b− Axn stands for the residual at the nth iteration, and B represents the effect
of applying a certain iterative solution scheme to the residual vector. Multiplying both
sides with A yields

rn+1 = rn − ABrn. (56)

The idea behind constructing the BoostConv method is to find a way to modify rn

as ξn, leading to a modified solution update scheme as

xn+1 = xn + Bξn, (57)

so that the resulting residual rn+1 could be minimized. The modified solution update
scheme can be transformed to the follow form by left-multiplying both side with A

rn+1 = rn − ABξn, (58)

which implies that the best choice for ξn is (AB)−1rn. Computing the optimal ξn requires
solving ABξn = rn, which is obviously not practical, since otherwise the problem would

Aerospace 2023, 10, 230 19 of 38

have been solved. Therefore, it is proposed in [14] that one could form a reduced-order
model of AB by recording the solution and residual vector snapshots from the previous
iterations and invert the approximate AB at a much lower cost. Although the analysis so
far is based on a linear system, it can be extended to nonlinear iterative scheme provided
that the solution variation is already sufficiently small.

3.3.2. Summary of Current Status and Suggestions for Further Development

One of the main advantage of the BoostConv method is that it can be implemented
in a completely non-intrusive way. With an existing iterative linear or nonlinear solver,
one only needs to provide the solution and residual vectors over the preceding iterations,
and the BoostConv module can then return a modified residual to be used for solution
update. Although meant to be used with a small number of solution and residual vector
snapshots, it is shown for a two-dimensional RANS flow calculation over an airfoil that
for a basis size of 80, equal amounts of time is being spent on the modified BoostConv
method and on solving the flow [14]. Beyond a basis size of 80, the contribution of the
modified BoostConv method dominates the total computational time. It is, therefore, a
quite computationally expensive method when a large number of basis vectors are required,
which is very similar to RPM. Although the computational cost is not a major concern when
the goal is to compute a steady solution for stability analysis, the computational efficiency
needs to be carefully considered when applying the method in scenarios where a large
number of flow analyses in batch mode are required.

As the BoostConv method is relatively new in comparison to other stabilization
methods discussed in this paper, more applications of the method in a wider range of
flow calculations on more realistic geometries are needed to give a fairer account of the
performance of this stabilization method.

3.4. Newton’S Method

As discussed above, both RPM and SFD methods have a limit as to what extent the non-
linear solver convergence can be stabilized, especially for the complex three-dimensional
flows inevitably countered in aircraft and turbomachinery aerodynamic analysis. For edge-
of-the-envelope applications, a stronger tendency for flow instability is usually associated
with a large number of unstable modes and oscillations of multiple frequencies of different
scales, rendering the RPM and SFD, which essentially take a divide-and-conquer approach,
less effective than when applied to simpler cases. Compared with RPM and SFD, Newton’s
method is a heavy-weight approach for convergence stabilization, as it in general is quite
memory expensive and resolving the resulting large sparse linear system is computationally
very costly. However, due to its fast convergence rate when the solution is close to the
equilibrium point, it is receiving increasingly more interest, especially when deep residual
convergence is desired for challenging cases. In this subsection, the Newton’s method and
its applications to achieve robust and efficient convergence of both nonlinear and linear
flow solvers are reviewed.

3.4.1. Theory and Mathematical Formulation

Newton’s method is an ancient root-finding algorithm for nonlinear functions. For a
generic nonlinear problem of the following form

R(U) = 0, (59)

the Newton’s root-finding algorithm is simply

A∆Un = −R(Un). (60)

Despite its simplicity in form, applying it to the solution of large-scale three-dimensional
RANS steady-state flow calculations remains a challenge. The first one is to obtain the
Jacobian matrix A. To balance accuracy and robustness, the spatial discretization of a

Aerospace 2023, 10, 230 20 of 38

production-level RANS solver is usually quite complex. Therefore, differentiating the
residual vector with respect to the solution vector to obtain the exact Jacobian matrix is
quite tedious, if not impossible, and the memory required for storing the Jacobian is high,
in comparison to the memory requirement of an explicit time-marching solver. The first
and most straightforward approach to obtain the Jacobian matrix is to perturb one flow
variable for each control volume at a time, and use the perturbed residual vector to obtain
one column of the entire Jacobian matrix. Although the perturbation with a finite step
is easy to implement and most non-intrusive, the accuracy of the resulting derivatives
would depend on the chosen step size. Alternatively, one could apply the automatic
differentiation technique to the residual evaluation subroutine, as for example in [40], to
avoid the dependence on step size. However, this would still cost 6N residual evaluations
for a RANS solution with a one-equation turbulence model on a mesh with N control
volumes. The cost can be reduced to less than 400 residual evaluations on structured
grids [40] and 100–3000 for general unstructured grids [41] if a graph-coloring technique
is used [42]. The coloring-accelerated approach is used in [40,41,43]. An even more
efficient approach is to apply the automatic differentiation technique at the components
level, instead of to the entire residual evaluation subroutine. This is the so-called hybrid
approach, where one first computes the edge-based flux derivatives with respect to the left
and right states, using the differentiated flux calculation subroutine, and then manually
assembles the entire exact Jacobian matrix. This approach is used in [9,44]. One could
also differentiate the flux subroutine by hand, which improves code efficiency compared
to automatic differentiation [45]. The downside of the differentiation-by-hand approach
is its low maintainability, as an adjustment of the underlying discretization algorithm
might trigger the rewriting of the differentiated code, or adding a new turbulence model
would require further tedious differentiation by hand. All approaches for obtaining the
exact second-order accurate Jacobian matrix require storing the matrix, or at least its key
ingredients on flux faces, which incurs large memory overhead for large three-dimensional
cases. Jacobian-free approaches can be used to alleviate such difficulties to some extent and
their various aspects have been thoroughly discussed in an excellent review paper [16]. The
key idea of the Jacobian-free approaches is to obtain the matrix-vector product Ax without
explicitly forming and storing the large Jacobian matrix A. This can be done as long as
the differentiated (either manual or automatic) code of residual evaluation is available. By
seeding the differentiated residual subroutine Rd(u, ud) with ud = x, one can easily obtain
∂R
∂u

x. When differentiating the residual code is not possible, one then can again resort

to finite differencing and obtain the matrix-vector product via
∂R
∂u

x ≈ R(u + εx)− R(u)
ε

,
as, e.g., in [46]. It should be noted that the Jacobian-free approach is not matrix-free. In
order to perform an effective preconditioning when solving the large sparse linear system
of equations A∆Un = −R(Un), some approximate form of the exact Jacobian matrix still
needs to be formed, based on which a preconditioner can be conveniently calculated [17,46].

Once the Jacobian matrix is computed, the resulting large sparse linear system of equa-
tions needs to be solved efficiently, which accounts for the majority of the computational
cost of the Newton algorithm when solving large three-dimensional RANS flow problems.
The techniques for solving a large sparse linear system of equations have been thoroughly
discussed in [23], among which the Krylov subspace methods have become the method of
choice for high-dimensional flow problems due to its robustness and efficiency. Therefore
most, if not all, RANS solvers based on the Newton’s method are called Newton-Krylov
solver. Among Krylov subspace solvers, GMRES solver is probably the most used one.
GMRES solver finds the approximate solution to a large sparse linear system of equations

Ax = b (61)

by approximating it with a linear combination of {v1, v2, v3, . . . , vm}, which is a set of
orthonormal vectors that spans the Krylov subspace Km = span{b, Ab, A2, b, . . . , Am−1b}.

Aerospace 2023, 10, 230 21 of 38

One first builds the m-dimensional Krylov subspace via the Arnoldi process with the
modified Gram-Schmidt orthogonalization algorithm (Algorithm 1).

Algorithm 1: Arnoldi process

1 H1,1 = |b|2;

2 v1 =
b

H1,1
;

3 for i = 2, 3, . . . , m + 1 do
4 vi ← Avi−1;
5 for j = 1, 2, . . . , i− 1 do
6 Hi,j ← vT

j vi;

7 vi ← vi − Hi,jvj;
8 end
9 end

The basis vectors {v1, v1, v2, . . . , vm+1} and the Hessenberg matrix Hm ∈ Rm+1,m

satisfy the following Arnoldi relationship

AVm = Vm+1Hm (62)

with Vm and Vm+1 defined as

Vm := [v1, v2, v3, . . . , vm] and Vm+1 := [v1, v2, v3, . . . , vm+1]. (63)

Assuming the solution to the linear system of equation x is of the following form

x = Vmy (64)

where y = [y1, y2, y3, . . . , ym]T is the coefficient vector for the linear combination. Then the
error of the approximate solution is

b− Ax =: E = b− AVmy = b−Vm+1Hmy. (65)

Left-multiplying both sides with VT
m yields

VT
m E = ||b||2e1 − H[1 : m, 1 : m]y (66)

It can be seen now that the minimization problem has be reduced from a high-
dimensional problem to a low-dimensional one. It is also straightforward to verify that the
solution to H[1 : m, 1 : m]y = |b|2e1 minimizes |E|2. Instead of solving the low-dimensional
linear system of equation directly, given rotations can be used to transform the Hessenberg
matrix into an upper triangular form incrementally after each Arnoldi step, which then
allows the approximate solution x to be determined via y as each step.

From the GMRES algorithm, it can be seen that the memory overhead excluding that,
for storing the Jacobian matrix and the right-hand-side and solution vectors, linearly scales
with the number of retained vectors, m. Each step of the Arnoldi process consists of one
matrix-vector multiplication and many vector-vector multiplications against previously
computed Krylov vectors. When m Krylov vectors are used, the number of matrix-vector
multiplications is m and the number of vector-vector multiplications is m × (m + 1)/2,
which scales quadratically with the Krylov vector numbers, and eventually becomes the
bottleneck of computational cost when m is large. Restart can be used to reduce the memory
and computational cost as long as m is above a case-dependent threshold.

By construction (also suggested by its name), GMRES solver does not allow its resid-
ual to increase. However, when m is not sufficiently large, residual convergence of the
GMRES solver would stagnate, and the threshold value of m is unfortunately case depen-

Aerospace 2023, 10, 230 22 of 38

dent, and not possible to be determined a priori. Therefore, in practice, m is by default
set to a relatively large value as long as the storage of the computational environment
permits. The reason restarting does not overcome the convergence stagnation problem
is that all m Krylov vectors formed are discarded before the following cycle is executed.
Algorithms to selectively recycle a small number of Krylov vectors or equivalently a sub-
space of dimension much smaller than m have been proposed to lower the minimal Krylov
subspace dimension, and thus the Krylov vector numbers [47,48]. Some of these recycling
techniques have been applied to large scale nonlinear and linearized RANS flow problems
recently [4,49,50].

The system matrix for a large sparse linear system of equations arising from the
linearization of the nonlinear residual for a practical flow problem is usually numerically
very stiff, and even with a state-of-the-art Krylov subspace solver, convergence is rarely
achieved if not used in combination with an effective preconditioner. Suppose matrix P is a
good approximation of the Jacobian matrix A and easy to form and invert at the same time,
then one can solve the following left and right preconditioned linear system of equations

Left precondition: P−1 Ax = P−1b (67)

or
Right precondition: AP−1y = b with y := Px (68)

to obtain x. Note that although the left and right-preconditioned systems once fully
converged are identical, they are not the same when solved inexactly, which is the standard
practice in Newton’s method. The subtlety of the difference between using the right or
left-preconditioned has been discussed in [51]. Based on the assumption that P is a good
approximation of A, it is likely that the system matrix of the preconditioned linear system
of equations, P−1 A, is much bettered conditioned than A itself, and thus the resulting linear
system of equations is much easier to be solved, e.g., using Krylov subspace methods. Two
main choices of preconditioners are incomplete LU (ILU) and multigrid. A general ILU
factorization process computes a sparse lower triangular matrix L and an upper triangular
matrix U so that the residual matrix A− LU satisfies some constraint. Among various
variants of ILU, the most popular version is probably incomplete LU factorization technique
with no fill-in, denoted by ILU(0), taking the zero pattern of the factorization matrices
to be precisely that of A. When the accuracy of the ILU(0) incomplete factorization may
be insufficient to yield an adequate rate of convergence for some cases, ILU(p) can be
used, with a higher level of fill in the resulting L and U matrices. However, since a higher
level of fills naturally increases the memory overhead and also adds to the number of
floating-point operations during the application of the preconditioner, the improvement
of the preconditioning effect, reflected as the reduced iteration to convergence for the
preconditioned Krylov solver, the increased memory and computational cost of forming
and applying the preconditioner need to be considered in order to find an optimal level of
fills in practice.

The ordering of the unknowns can significantly affect the performance of ILU pre-
conditioning, as was discussed thoroughly in [52] and further elaborated in [52]. It was
suggested that reverse Cuthill–McKee (RCM) ordering [53] to be the most effective for the
multi-block structured solvers considered in their work. However, in contrast, it was found
in [54] for an LU-SGS solver that reordering only marginally affects the computational
efficiency in the unstructured solver considered. However, as this solely affects the com-
putational efficiency and theoretically has no effect on the solver stability, the issue of not
further discussed here.

A final remark on the ILU preconditioners is that, although it is most straightforward to
calculate the ILU factorization matrices based on the system Jacobian matrix A, in practice,
it has been observed independently by different researchers that it is more effective to
base the preconditioner on the Jacobian using a lower-order discretization. For example,
for various independently developed second-order accurate RANS solvers, it has been

Aerospace 2023, 10, 230 23 of 38

reported that, although A is exactly based on the second-order spatial discretization,
the preconditioner is computed using the approximate Jacobian based on the first-order
spatial discretization [4,41,43]. Basing the ILU preconditioner on a lower-order residual
discretization has also been shown to be useful for higher-order RANS solvers [55]. A
rigorous proof for this is not available in the open literature. A plausible explanation is that
the loss in accuracy due to the lower-order approximate Jacobian is compensated by a much
more accurate resulting ILU factorization due to the reduced bandwidth and improved
condition number.

A second major class of preconditioners is multigrid [56]. Multigrid has been tradition-
ally proposed for elliptic partial differential equations. The central idea is to accelerate the
convergence to solution by off-loading the slow-converging low-frequency error modes on
the fine grid to coarser ones, where the low-frequency error modes become fast-converging
high-frequency ones. The most appealing feature is that multigrid theoretically produces
mesh-independent convergence rate, that is, the iteration to convergence does not depend
on the mesh size. However, such mesh-independent convergence rate has rarely, if ever,
been observed for practical three-dimensional turbulent flow problems, although signif-
icant convergence acceleration indeed could be achieved [57]. Furthermore, applying it
to unstructured meshes introduces other practical issues such as efficient and robust un-
structured mesh coarsening algorithms [58]. Multigrid methods are traditionally geometric
ones where one first needs to produce a sequence of gradually coarsened grids. It has then
been generalized as algebraic multigrid (AMG) [59,60], which does not require the coarse
grids to be available at the first place, but instead, extends in a purely algebraic manner the
fundamental principles just described to general sparse linear systems. AMG has also been
used in some of the production-level RANS solvers with some success [61,62]. However,
systematic comparison of the ILU versus the multigrid preconditioner has rarely been
reported, possibly because perfecting the implementation of each algorithm in a state-of-
the-art is already a rather extensive effort. Another possible reason is that the performance
of multigrid preconditioner, especially geometric multigrid, is highly dependent on the un-
derlying residual discretization scheme, meshing strategy, coarsening algorithm, etc., and
therefore it is difficult to present a comparison that can be generalized to a different solver.
Nevertheless, due to the essential role of the preconditioner on the overall computational
efficiency of the underlying CFD solver, more research into the preconditioning technique
is urgently needed.

With the Jacobian matrix computed, and an effective preconditioner constructed, the
final difficulty of achieving a fast, quadratic residual convergence promised by the theory,
is the globalization, or solver steering techniques. It is well known that the Newton’s
root-finding method relies on a good initial guess to stably converge, and for practical
applications, converging the flow towards the basin of attraction, not only stably but also
efficiently, is a challenge. The key to the solution steering technique is to find a suitable
relaxation factor β when updating the flow solution after an approximate linear solution is
found in Equation (60) as follows

Un+1 ← Un + β∆Un. (69)

Some of the earliest attempts to globalize Newton’s method include [63,64], in which
the nonlinear system of equations due to the discretization of flow equations are iteratively
solved using the Newton’s method, and the inner linear system of equations are solved
using GMRES, thus the so-called Newton-GMRES algorithm, which is nothing but the more
commonly used terminology of Newton-Krylov with GMRES being the Krylov subspace
methods. It was in these work that the backtracking technique was used to stabilize
the Newton nonlinear iteration. Backtracking essentially means applying an appropriate
relaxation factor β to optimize the nonlinear residual drop |R(Wn + β∆Wn)|2 − |R(Wn)|2
each time a linear solution ∆Un is computed. It was also in these early work that the
term inexact Newton method was coined, where ’inexact’ means the linear system was
only solved approximately, as fully solving it, would in turn results in an overall slower

Aerospace 2023, 10, 230 24 of 38

nonlinear solver convergence, in terms of the CPU time. Furthermore, it was also found
that sometimes oversolving the linear system to obtain a more accurate ∆Un would even
cause the nonlinear residual convergence to stall, due to a failure of the backtracking [65,66].
This is explained differently, and probably more insightfully in [67], as the backtracking
technique based on the linear search methods stagnates due to encountering local minima
of |R(W)|2 during the solution evolution. Pseudo-transient continuation (PTC), among
many other continuation methods [16], is an effective way of avoiding being trapped in
local minima of |R(W)|2. This is inspired by the fact that the underlying physical system,
which in our case is the flow field, would never stagnate as observed in Newton’s method.
This intrinsic physical property is retained in the numerical method by including the time
derivative in the governing equation, even when a steady-state solution is sought. With
this in mind, instead of solving R(W) = 0, one solves the following nonlinear system of
equations using Newton’s method

∂U
∂t

+ R(U) = 0. (70)

As only steady-state solutions are concerned, time accuracy is not necessary. Therefore,
a simplistic first-order backward Euler scheme can be used to discretize the time derivative,
and the resulting discretized nonlinear governing equations are

(diag(
1

∆ti
) +

∂R
∂U

)∆Un = −R(Un). (71)

Note that the time step ∆t can also vary on each control volume, again as time accuracy
is not necessary. In practice, the time step for each control volume is the maximal time step
estimated from the spectral radius of the local flux Jacobian matrices multiplied by a global
Courant number σ, as

∆ti = σδti. (72)

The Courant number can be viewed as the continuation parameter, which evolves from
an initially very small number for solver robustness during the initial stage of computation
to a large value towards full residual convergence, when the standard Newton scheme can
be recovered and quadratic convergence can be achieved. The key to the success of such
PTC technique is then to design an appropriate rule for the Courant number to evolve as
fast as possible but still not destabilize the nonlinear iteration.

One early practical application of the PTC technique was [68], in which the successive
evolution–relaxation (SER) strategy for evolving the Courant number automatically was
proposed. The SER strategy allows the time step to grow in inverse proportion to residual
norm progress:

σn+1 = σn |R(Un−1)|2
|R(Un)|2

. (73)

Although the SER strategy has been used in many early work on Newton-Krylov
solvers, our experience with the method on practical three-dimensional flow calculations
has been that it is not sufficiently robust, especially for cases with strong initial flow tran-
sient where flow reversal appears, or turbulent flow cases where the turbulence variable
field rapidly grows in the initial convergence stage. In those scenarios, the nonlinear resid-
ual can grow up to three orders of magnitude during the first few nonlinear iterations, and
once the Courant number reaches a much lower value, it in turn renders the flow evolution
very slow, causing the overall nonlinear iteration to nearly stagnate. This difficulty of
course can be alleviated substantially if a more suitable scheme, for example, the explicit
Runge-Kutta scheme, is used during the initial convergence stage and one only switches
to Newton’s method with PTC based on SER when the residual starts to monotonically
drop. However, such switch is usually a result of trial and error, and thus the moment
to perform such a switch is most likely not optimal. Examples of such predetermined
switching between solution phases are shown in [55] where the Courant number over

Aerospace 2023, 10, 230 25 of 38

the first few iterations are prescribed. Although effect for the cases discussed in [55], it is
likely that for a different set of cases, the predefined Courant number evolution schemes
are sub-optimal. Secondly, having to perform such a switch makes the algorithm less
automatic and elegant, thus causing additional burden on the application engineers who
naturally prefer to turn as few knobs as possible in practice. The authors are thus not
in favor of the SER strategy. An alternative is to adapt the value of σ based on the line
search/backtracking result. If the line search returns a favorable step near unity, then it
implies the Newton iteration is progressing well, and therefore it is safe to ramp up the
Courant number by a factor; on the contrary, if the line search returns a step that is deemed
too small, then it implies the nonlinear residual is encountering a local minimum and it is
better to reduce the Courant number by a factor in the subsequent step to avoid residual
convergence stagnation. Although the particular values of the growth and reduction factors
are different among different researchers that adopt this strategy, they all in principle follow
this approach [3,69,70].

Even with all the tricks introduced above, it is still possible that the PTC Newton
algorithm might break down due to a diminishing Courant number. A further algorithmic
improvement was proposed in [70], which combines the robustness of explicit local time
stepping with lower per-iteration cost at the initial convergence phase and the fast conver-
gence of Newton steps towards full convergence. Based on the experiences that explicit and
point-implicit solvers are surprisingly stable with a Courant number σ ≈ 1, while when
the PTC Newton scheme encounters convergence stagnation, it is essentially evolving the
solution with a Courant number σ ≤ 1. It is speculated that the convergence stagnation
constantly encountered is due to the non-smooth residual distribution of the explicit or
point-implicit iteration when the Courant number is small, and thus the nonlinear solver is
difficult to recover from it. To circumvent this problem, it was proposed in [70] that the
following time-marching scheme(

M
σδt

+
∂R
∂U

)
∆Un = −R(Un)− M

σδt
D−1R(Un) (74)

which for σ << 1 reduces to
∆Un = −D−1R(Un), (75)

and for σ >> 1 reduces to the standard Newton scheme. The advantage of this is that when
σ << 1, instead of resulting in a stagnating residual convergence due to a diminishing
Courant number, the nonlinear iteration scheme would still effectively damp the residual
as in conventional nonlinear time-marching solvers, for example, using a block-Jacobi
scheme or even an explicit forward-Euler scheme with σ = 1. Furthermore, adding the
multistage Runge-Kutta flavor into the operator D helps smoothing the residual field
which in turns facilitates the PTC Newton iteration to progress more successfully. The
resulting PTC Newton scheme incorporating the residual smoothing strategy was shown
to be significantly more robust than the one without it for three-dimensional turbulent
transonic flow calculations [70].

A similar strategy was proposed in [71], which focuses on the robustness of a Newton-
Krylov RANS solver at the startup phase. Instead of using the exact Jacobian matrix
augmented with a pseudo time stepping to augment the diagonal blocks, as done in most
PTC Newton solvers, it is proposed that an approximate Jacobian should be used at the
startup phase (thus an approximate Newton-Krylov (ANK) scheme), and one only switches
to NK, which features an exact Jacobian matrix and a pseudo time step of infinity once the
nonlinear residual has dropped by five orders of magnitude. This is rationalized by three
reasons. First, when the pseudo time step size is small at the startup phase with a PTC NK
approach, the advantage of using an exact Jacobian is not fully used, and the overall effect
of the compromised accuracy due to replacing the exact Jacobian with an approximate one
is marginal. Second, using the approximate Jacobian offers a large degree of freedom to
apply various levels of approximation, for which the residual calculation stencil can be

Aerospace 2023, 10, 230 26 of 38

reduced significantly, resulting in a much more efficient Jacobian calculation. Finally, even
with the exact Jacobian, as mentioned above, the preconditioner is usually still based on an
approximate Jacobian, which in the proposed ANK startup strategy in [71] is computed
and stored anyway and can be made use of directly. The numerical experiment results
in [71] on large-scale RANS CFD calculations show that the proposed ANK startup strategy
offers some advantage over the standard PTC NK algorithm. However, some tests with
the aggressively approximated Jacobian are not convergent (e.g., ‘R2-coupled’ in Figure 3
in [71]), which hints that an overly crude approximation might instead compromise the
solver stability, and therefore one should be cautious to what extent such approximation
should be performed. From this perspective, it could be postulated that using ANK for
the startup phase, despite its advantage in computational efficiency, could potentially
deteriorate solver robustness.

With all the implementation aspects considered above, it is not surprising that, only
until recently, Newton’s method has been used to solve three-dimensional RANS equations
on cases with industrial relevance [70,72,73], although it has been used to solve three-
dimensional flow problems three decades ago [15,68]. A majority of the literature on
using the Newton’s method to solve RANS flow problems focused on aircraft applications,
presumably because the flow is relatively benign and mostly attached for such applications
(except those focusing on edge-of-the-envelope conditions such as shock-buffet and high-
lift configurations). It was recently extended to the turbomachinery applications for both
nonlinear flow and linear adjoint analyses [40]. Although Newton-Krylov algorithms
are mainly used for convergence acceleration or stabilization of the nonlinear steady flow
problems, they are to a large extent also driven by the need to find a fully converged solution
on which linear analyses, such as stability or adjoint analyses, can be performed [43,73].

3.4.2. Stabilization and Acceleration of Nonlinear and Linear Solutions

In [43], the NK method is realized for an adjoint solver for turbomachinery aero-
dynamic optimization. The speedline for a compressor at a constant rotational speed is
computed using the NK method. Due to the robustness of the globalized Newton iteration,
the speedline can be computed in a fully automated fashion. Compared with a typical
implicit scheme Jacobian-trained Krylov implicit Runge-Kutta (JTKIRK) [11], which has
already been shown to be quite stable, the NK algorithm can further extend the numerically
stable operating regime of the compressor, as shown in Figure 12. In Figure 12, D1 is an
operating condition for which both solvers can fully converge. D2 is the last condition the
JTKIRK solver can converge, while D3 is the last point the NK solver can converge. The
evolution of the flow solution (marked as a trajectory of circles) computed using JTKIRK
starting from the converged solution at condition D2 is also shown, which eventually
evolved to a non-physical state, which caused the solver to diverge. The residual conver-
gence history of the flow solver, using both algorithms for conditions D1, D2, and D3, are
shown in Figure 13.

Aerospace 2023, 10, 230 27 of 38

Figure 12. A speedline calculated using both the NK and JTKIRK schemes (Figures from [43]).

Figure 13. The residual convergence history for the flow calculation at conditions D1, D2 and D3
using both the NK and JTKIRK schemes (Figures from [43]).

Regarding finding linear solutions, for either time-linearized, tangent-linear, or adjoint
problems, instead of using time-marching methods, during which one risks experiencing a
non-converging FPI, one can directly solve the large sparse linear system of equations once
using a strong linear solver. When the linear solver used is a Krylov subspace solver, the
resulting solution scheme is essentially the NK approach applied to linearized problems.
In [74], GMRES is used to stabilize an unstable FPI-based time-linearized analysis problem,
which has previously been stabilized using RPM in [5]. A pitfall of directly solving the
linearized problem using Krylov methods is that the strong linear solver will converge, as
long as a sufficient number of Krylov vectors are used, regardless of the convergence of the
nonlinear flow problem. Computing the linear solution for a not fully converged base flow,
one risks introducing an error in the resulting linear solution. This issue was discussed
thoroughly in [75] regarding the adjoint sensitivity computed using either a limit-cycle
or fully converged base flow. Although the error that can be potentially introduced is
highly case-dependent, one should be aware of such risk. This, in turn, demonstrates the
importance of obtaining a fully-converged nonlinear flow solution using a strong implicit
scheme, such as NK.

3.4.3. Summary of Current Status and Suggestions for Future Development

Despite its various advantages, the Newton-Krylov method remains a heavy-weight
approach with a significant memory overhead, even with the Jacobian-free approach. It
is not always advantageous over competing methods based on time-marching in terms
of CPU time efficiency and memory overhead when only the nonlinear flow solutions
are concerned. That to some extent explains why certain users still use time-marching
implicit scheme for nonlinear flow calculation, as well as Newton-Krylov (with only one

Aerospace 2023, 10, 230 28 of 38

Newton step) for linearized analysis. In addition, developing an Newton-Krylov solver
imposes some extra constraints on the spatial discretization, as the nonlinear residual
function ideally should be differentiable, which otherwise is not required. Obtaining the
exact Jacobian matrix is tedious and requires nearly perfect attention to the details of the
underlying spatial discretization. However, this can be alleviated by using a Jacobian-
free approach. Finally, although the NK approach promises fast asymptotic convergence,
evolving the intermediate solution to near the final equilibrium point still heavily relies
on a very robust solution-steering technique and consensus does not seem to have been
reached as for which strategy is optimal. However, if the main driver of obtaining a deeply
converged nonlinear flow solution is to perform linear analyses, then the large memory
overhead, high CPU time cost, and the difficulties of developing an NK solver sometimes
could be justified. Probably, this is due to this reason that the Newton-Krylov method is
more often discussed in the RANS CFD-based global stability analysis or adjoint shape
optimization community than elsewhere.

For further development, a robust startup strategy probably is worth the most atten-
tion, and indeed it is a heated topic among recent papers on Newton’s method [70,71].
Besides, the large sparse linear solver used in most work from the RANS CFD community
has almost unanimously been ILU preconditioned GMRES since the day Newton’s method
is introduced. Over the past few decades, significant progress has been made in the field of
computational methods regarding the Krylov subspace methods and preconditioning tech-
niques. For example, directing adopting an advanced Krylov solver leads to a significant
speedup of linear analyses [4,50]. Among the improved Krylov methods, the ones using
deflation techniques [48,76] are particular worth-noting, as they can directly substitute
GMRES with a net performance gain. Krylov methods inevitably scale poorly on massively
parallel machines due to the frequent global communications in the Arnoldi progress, and
this has been recently addressed with pipelining [77]. Regarding preconditioning, since in
most work, ILU is used for each parallel partition in an additive Schwarz fashion, which is
intrinsically not scalable in terms of nonlinear iteration counts due to the decoupling at
partition boundaries using a global ILU on the other hand would incur large parallel com-
munication cost. To circumvent this problem, a communication-avoiding ILU algorithm
has recently been proposed [78], and its effectiveness in accelerating the preconditioned
Krylov solvers is worth investigating.

3.5. Implicit Methods

Although the Newton-Krylov method is superior in terms of its robustness and fast
convergence towards the equilibrium point, its high memory overhead, the requirement of
a reliable solver steering strategy and the programming complexity still pose a challenge
for its wide deployment. A good trade-off between the NK method and the potentially
unstable explicit or weakly implicit time-marching method is to use an implicit time-
marching scheme that is just strong enough. Note that, although the Newton-Krylov
algorithm can be reviewed as one of the implicit methods, in this section, the terminology
‘implicit methods’ specifically refers to those excluding the Newton-Krylov ones. Similar to
Newton-Krylov, there exists an even larger body of the literature on the topic of implicit
schemes for RANS solvers, and it is not the intent of this review paper to exhaust them. In
this section, we only outline some of the main algorithmic aspects of implicit methods.

Implicit schemes for compressible RANS equations in general can be expressed as

P∆Un = −R(Un) (76)

where the left-hand-right matrix P is some approximation to the exact Jacobian. Depending
on the specific approximation method, the resulting approximation matrix can either be a
large sparse block matrix or a block diagonal matrix by neglecting the contribution of the
residual contribution from neighbouring control volumes. For the former, a large sparse
linear system of equations have to be solved. Traditionally, this has been solved using
approximate factorization (AF), and more recently it is also common to be solved using

Aerospace 2023, 10, 230 29 of 38

Krylov methods. For the latter, one could directly invert each block of the system matrix at
a rather low cost.

One of the most widely used approximate factorization method is lower-upper sym-
metric Gauss Seidel (LU-SGS) [79]. The sparse matrix P is formally decomposed as

P = L + D + U (77)

where L, D, and U are lower triangular, diagonal, and upper triangular matrices, respec-
tively. The symmetric Gauss-Seidel algorithm approximately solve the linear system of
equation Px = b, assuming an initial value of x = x0 via the following two-step process

x∗ = (D + L)−1(−Ux0 + b), (78)

x = (D + U)−1(−Lx∗ + b). (79)

Combining the two steps yields

x = (D + U)−1(−L(D + L)−1(−Ux0 + b) + b) (80)

= (D + U)−1D(D + L)−1b + (D + U)−1L(D + L)−1Ux0 (81)

Assuming that x is initialized with zero, the application of LU-SGS yields

x = (D + U)−1D(D + L)−1b (82)

As LU-SGS essentially factorizes P as (D + L)D−1(D + U), albeit approximately, it
can also be viewed as an AF method. To quantify the error of such an approximation, note
that the exact solution to the linear system satisfies

(D + L)D−1(D + U)x = b− LD−1Ux. (83)

Therefore the introduced error equals −LD−1Ux, which when the matrix P exhibits
diagonal dominance, would be relatively small. Note, also, that LU-SGS is mathematically
identical to applying symmetric Gauss-Seidel (SGS) one time with a zero initial value for x.
The advantage of the LU-SGS method is that it can be implemented in a matrix-free
manner, as the entries of D, L, and U can be computed on the fly when performing forward
and backward substitutions. Additionally, unlike NK or ANK methods, no excessive
iterations are needed, and nor is the memory and computational cost incurred by using
a preconditioner. The cost of performing one LU-SGS iteration is close to performing
one sparse matrix-vector multiplication. Therefore, the LU-SGS method has been used
extensively for RANS CFD calculations. Although LU-SGS can be used as in isolation to
inexactly solve the sparse linear system of equation in the ANK framework, it is more
frequently used as a smoother for multigrid in full approximation scheme (FAS), such as
in [79]. A simpler approach is to use a single Jacobi sweep rather than Gauss-Seidel, which
is reported to be effective as a smoother for a multigrid solution of the RANS equations on
stretched grids [80]. Either the LU-SGS or Jacobi iterative smoother has been shown to be
a memory-efficient approach, which can directly replace the more classical Runge–Kutta
smoother in a multigrid algorithm.

Although LU-SGS is in general very robust and permits a large Courant number
and thus fast convergence, it is analytically shown for an Euler case that neither the
exact nor the approximate Jacobian due to a linearization of the nonlinear residual is
diagonally dominant. Therefore, a modification to the Jacobian matrix is proposed in [54] to
guarantee diagonal dominance and enhance iteration robustness. However, the augmented
robustness is accompanied by a slower convergence, which presumably can be attributed
to the amplified inconsistency between the left- and right-hand-side terms of the sparse
linear system of equations solved. Alternatively, one could augment the diagonal with a

Aerospace 2023, 10, 230 30 of 38

pseudo time derivative, without altering the approximate Jacobian itself. In this case, a
globalization strategy is then required to vary the pseudo time step to balance robustness
and efficiency.

In addition to the investigation of convergence acceleration effect of LU-SGS, various
aspects of making the iterative scheme stable are also studied in detail in [54]. It is em-
phasized that, in order to stabilize the convergence, it is critical that all fluxes, including
both the convective and the viscous fluxes, as well as the source terms, especially those
associated with the turbulence model, need to be taken into consideration. Inclusion of
these key ingredients significantly enhances the solver robustness, even when the Jacobian
is an approximate one.

The approximate Newton method has also been investigated as another way to formu-
late the implicit schemes, with some early work dating back to nearly three decades ago [15].
The approximate Jacobian is analytically computed in these early work, while nowadays
it is often computed with the aid of automatic differentiation or finite differencing. The
change in trend is largely due to the increase in the complexity of CFD codes nowadays,
which makes the analytic or manual differentiation less attractive. The implicit scheme
proposed in [15], with ILU or SGS as a preconditioner for the Krylov solver, marks probably
the earliest attempt of the later-called ANK algorithm. An interesting comparison can be
made between the ANK in [15,71], where one could clearly see the increase in the com-
plexity of the cases studied and consequently the increased sophistication of the numerical
schemes, although the key ingredients remain unchanged over the past thirty years.

Another worth-mentioning development is the combination of ANK and multigrid. As
first discussed in [15], the ILU preconditioned Krylov solver is used as a linear solver at each
nonlinear iteration without multigrid. This is not without a reason. Although much weaker
iterative schemes such as Runge-Kutta converges much slower than Krylov methods,
they in general exhibit a very good high-frequency damping property, compared with,
e.g., forward Euler scheme, and this feature renders RK good and smoother for multigrid.
In-depth analysis of the damping property of the implicit RK scheme with SGS as the
smoother has been performed in [81–83], motivated by the desire to understand its use in
combination with multigrid. Inspired by this, methods to incorporating Krylov methods
into a multigrid solver was explored in [11]. By wrapping the GMRES iteration inside
each step of an m-step RK scheme, one achieves both drastic low-frequency damping of a
forward-Euler method, and the high-frequency damping property of RK. The modified RK
is thus the so-called implicit RK (IRK), which is then used as a smoother for multigrid. The
resulting implicit scheme, called Jacobian–trained Krylov–implicit–Runge–Kutta (JT-KIRK)
was compared with SGS, and shows some improvement in CPU time. A similar algorithm
was proposed in [24], but with the agglomeration multigrid. Instead of using GMRES to
solve the inner linear system of equations, a line-implicit SGS method is used [24], where
one needs to detect ’linelet’ from the surface nodes into the interior domain and orders the
nodes such that SGS first sweeps over the nodes along the linelets to capture the strong
coupling effect of the shear flow in the boundary layer. However, the line implicit method
significantly increases the burden of the preprocessing step, and therefore not surprisingly
is only adopted by very few research groups.

3.5.1. Stabilization of Nonlinear Steady and Adjoint Solvers

An example of demonstrating the stabilization effect of a strong implicit scheme on
both the nonlinear and adjoint flow calculations is discussed in [11]. The strong implicit
scheme uses an approximate Jacobian based on the first-order spatial discretization to
control the time stepping, and the approximate Newton scheme is further wrapped inside a
Runge-Kutta time stepper. The resulting implicit Runge-Kutta scheme is used as a smoother
for the geometric multigrid to accelerate and stabilize the residual convergence of a nonlin-
ear flow solver. As for the discrete adjoint equation systems, the approximate Jacobian is
transposed to precondition the adjoint system, whose system matrix is a transpose of that
of the nonlinear flow system. By doing this, the overall operators for time-marching both

Aerospace 2023, 10, 230 31 of 38

the nonlinear flow and the adjoint solutions have the same spectral radius and the adjoint
solver faithfully inherits the linear stability of the nonlinear flow solver. By replacing
the block-Jacobi smoother in an existing production-level flow/adjoint solver with the
proposed first-order Jacobian, both the flow and adjoint calculations were stabilized. In
Figure 14, the residual convergence history of the nonlinear flow and linear adjoint solvers
on a high-pressure turbine stage is shown. For this case, small oscillations exist in the tip
leakage flow of the turbine rotor, which prevent the original nonlinear flow solver from
fully converging, and instead, it converges into a limit cycle. As a result, the adjoint analysis
with the semi-converged flow solution diverges exponentially. Using the proposed implicit
scheme based on the first-order approximate Jacobian allows both the nonlinear and adjoint
solvers to fully converge. Using a strong implicit solution scheme, therefore, is shown to
significantly enhance the robustness of adjoint analyses for cases with industrial relevance
at a cost that is substantially lower than a Newton solver.

Figure 14. From left to right: residual convergence of (i) flow solver using the block-Jacobi scheme,
(ii) adjoint solver using the block-Jacobi scheme, (iii) flow and adjoint solvers using a stronger implicit
scheme (Figures from [11]).

3.5.2. Stabilization and Acceleration of Frequency Domain Solvers

A nonlinear frequency domain solution using the time domain harmonic balance
method is much more difficult to be obtained in an implicit way than its steady counterpart.
This is attributed to the coupling of solutions at different time instants, making the size
of a solution problem grow proportionally with the number of time instants. To reduce
programming complexity and make use of existing implicit steady solvers, the implicit time
integration of the time spectral source term of a time domain harmonic balance equation
system is often decoupled from that of the remaining terms.

In [84], the implicit time integration is achieved by using the LU-SGS method for the
spatial terms and the block Jacobian iteration for the time spectral source term. Compared
with the usual implicit residual smoother (IRS) with an explicit Runge-Kutta scheme,
the LU-SGS smoother greatly enhances the stability of the solution process. Figure 15
shows the stabilization effect of the proposed LU-SGS residual smoother compared to the
original IRS approach that was non-converging, for a turbomachinery blade flutter analysis.
In [85], an approximate factorization is used to decouple the implicit time integration of
the time spectral source terms from the remaining terms. The advantage of this treatment
is that different pseudo-time steps can be used for the time spectral source terms and the
remaining terms, resulting in enhanced solution stability.

Aerospace 2023, 10, 230 32 of 38

Figure 15. Comparison of the energy equation residual convergence between the implicit residual
smoothing (IRS) and LU-SGS (Figures from [84]).

Implicit time-marching methods have also been used to accelerate time-spectral solvers.
In [86], a block-implicit algorithm is proposed to accelerate the residual convergence. A
much stronger implicit algorithm using GMRES is proposed in [87] to solve time-spectral
aerodynamic and aeroelastic problems on unstructured meshes. The use of GMRES as the
linear solver is reported to make time-spectral methods more robust, thus allowing them to
be applied to problems with a broad range of harmonic content, and vastly improves the
efficiency of time-spectral methods.

4. Conclusions

In this paper, five stabilization techniques, namely, (i) recursive projection method
(RPM), (ii) selective frequency damping (SFD) method, (iii) BoostConv method, (iv) New-
ton’s method, and (v) implicit methods, are reviewed. The underlying causes for the
lacking of convergence of nonlinear and linear solvers, including time-linearized and ad-
joint solvers, are first analyzed and attributed to the existence of unstable modes in the
underlying Jacobian or preconditioned Jacobian due to unstable fixed-point iterative (FPI)
schemes. The various stabilization methods are discussed in depth, respectively, including
their mathematical formulations and algorithms, examples of applications, and limitations
and aspects for further improvement.

The RPM method selects modes corresponding to unstable eigenvalues of the underly-
ing FPIs and applies the Newton’s method to update the small number of unstable modes.
It can be implemented in a non-intrusive manner and has been shown to be able to stabilize
time-linearized and adjoint solvers for aeronautical applications. For stable cases, it can
also be used to accelerate convergence. Although it can theoretically stabilize any unstable
FPIs, the cost associated with storing sufficient solution snapshots to resolve the unstable
modes as well as inverting the low-dimensional Jacobian matrix can be substantial for large
scale cases with greater flow and geometry complexity.

Similar to RPM, the SFD method damps the unstable modes that exhibit characteristic
frequencies above the cut-off threshold via low-pass temporal-filtering technique. SFD
does not explicitly resolve the unstable modes as RPM, and instead it uses an additional
simple differential equation to realize the low-pass time-filtering effect. The resulting
algorithm requires minimal modification to existing iterative schemes and can even be
made non-intrusively. Different from RPM, SFD has been used to stabilize and accelerate
nonlinear flow solvers, but, theoretically, it is also applicable to linear solvers as long as
the diverging modes exhibit some frequency characteristics, e.g., when the eigenvalue
outliers exist in complex conjugate pairs. The main inconvenience when applying SFD

Aerospace 2023, 10, 230 33 of 38

is that two parameters, namely, χ and ∆, need to be specified. Although some guiding
principles and optimization-based approaches can help determine their appropriate values,
choosing an appropriate value still requires some computational efforts. Furthermore,
since the low-pass temporal filtering alters the error damping property of the FPI, SFD-
stabilized iterations are in general reported to lead to slower convergence, albeit stable.
Since SFD has traditionally been used to obtain fully-converged steady state solutions for
global stability analysis and the top priority is to find the unstable steady state, the slow
convergence has not been a major issue. However, if SFD were to be used to stabilize and
accelerate nonlinear RANS solvers in general, e.g., for aerodynamic design, the substantial
computational cost would have to be carefully considered.

While both RPM and SFD directly modify the unstable iterative scheme, the BoostConv
method work in a prediction-correction manner. By recording the snapshots of solution
and residual vectors over the previous, presumably non-convergence, iterations, a meta-
model of the overall operator is reconstructed and used to modify the original residual
vector, such that the resulting solution update scheme converges. Same as RPM and SFD, it
can be implemented non-intrusively. As with SFD, it has also been mainly demonstrated
on stabilization and acceleration of nonlinear flow solvers. However, since solution and
residual vector snapshots need to be stored, it can incur significant memory overhead for
large scale cases.

Different from RPM, SFD, and BoostConv, stabilizing the nonlinear and linear flow
solvers using Newton’s method and other implicit schemes follows another line of thinking.
From the eigenvalue spectrum point of view, the effect of a strong implicit scheme is to
cluster all eigenvalues towards the origin, and therefore stabilize all modes simultaneously,
naturally incurring a higher cost. The reason Newton’s method, as a special case of implicit
method, is discussed on its own, is that the Newton iteration has a solid theoretical ground
regarding its convergence property, that is, in the basin of attraction, the Newton’s method
is bound to converge superlinearly. All other implicit methods, which can be viewed as
approximate Newton’s methods, do not have this theoretical guarantee. They are thus
to some extent ad hoc and numerical experiments are usually required to determine a
suitable Courant number. Therefore, Newton’s method is theoretically the most stable
method, according to the authors opinion. Nevertheless, developing a robust and efficient
Newton solver requires substantial development efforts, with many algorithmic aspects
to be carefully considered, including obtaining the exact Jacobian (or the effect of it via a
Jacobian-free approach), forming a preconditioner, solving the resulting large sparse linear
system of equations, and designing a robust and efficient globalization to stabilize the
convergence during the initial transient. Before all these aspects are tackled, it is critical
the underlying spatial discretization should first be carefully scrutinized to be smooth and
differentiable, although unfortunately work at this level is rarely discussed in the literature
as ad hoc tweaks and tricks in code implementations (sometimes more arts than sciences)
are generally not deemed appropriate for scientific publications.

As Newton’s method usually replies on Krylov subspace solvers, such as GMRES, for
solving the large sparse linear system of equations, the resulting algorithm is often called
Newton-Krylov (NK) or occasionally Newton-GMRES. Correspondingly, implicit method
using Krylov solvers are called approximate Newton-Krylov (ANK). Implicit methods
using lower-upper symmetric Gauss-Seidel are simply referred to as LU-SGS. The various
algorithmic aspects of NK, ANK, and LU-SGS are reviewed in detail in this paper, along
with their recent development and application examples in stabilizing both nonlinear and
linear CFD solvers. The most delicate part of the NK algorithm is during the startup phase,
which requires sophisticated globalization strategies, with pseudo transient continuation
as the most widely used one. Recent development of the globalization techniques seem to
evolve towards a blending of ANK and NK, with the former efficiently overcoming the
convergence difficulty at initial stage and the latter rapidly converging the flow towards
the final solution quadratically. It is worth noting that the NK or implicit approaches
although more naturally can be used to stabilize nonlinear flow solvers, they also have the

Aerospace 2023, 10, 230 34 of 38

side benefit of stabilizing linear analyses with the same iterative scheme, which inherit the
stability of the iterative scheme of the nonlinear flow solver. Examples on this have also
been discussed for an state-of-the-art adjoint solver.

Despite the success of the existing stabilization methods, room for improvement exists,
and therefore further work is suggested to improve these methods

• RPM: methods for efficiently resolving the unstable modes are worthy of further
investigations and more comprehensive evaluations of the method for large scale
cases with challenging flows on complex geometries are needed;

• SFD: methods for adaptively setting the optimal values of χ and ∆ are worthy of
further development, as some reported overwhelming slow convergence when SFD is
switched on;

• BoostConv: more applications of the method on realistic three-dimensional cases are
desired in order to better evaluate the performance of this method, as it is relatively
new compared with all other methods, and application examples are limited;

• Newton’s method

– more work on startup strategy is needed. The work in [70] probably is the only
algorithm that achieves a completely parameter-free smooth transition between
weak implicit and NK algorithms, while the work in [71] is also quite elegant but
a hardwired threshold of the residual level below which NK is activated needs to
be manually specified. The logic behind both approaches is to smoothly blend a
robust implicit algorithm with a moderate Courant number and a fully implicit
NK algorithm towards the end;

– recent progress made in scalable and efficient Krylov subspace solvers and pre-
conditioning techniques need to be consolidated into the CFD community, and
there currently seems to be a gap in the knowledge between the mathematical
and engineering research communities.

• implicit methods: unlike NK, which can strictly follow a set of development guidelines
backed up by rigorous theories, implicit methods instead require more tricks and
experiences to fine tune the algorithm, especially regarding how the Jacobian matrix
is approximated. An approximation too crude leads to either non-convergence or a
diminishing Courant number (thus slow or stalled convergence), while an approximate
too accurate leads to a drastically increased memory overhead and development
difficulty. From this perspective, the exact Jacobian can be used as a reference to guide
the fine tuning of the approximate Jacobian and increase the robustness of implicit
methods, either with LU-SGS or ANK.

Above is a systematic and comparative summary of the various stabilization tech-
niques. Regarding the choice of methods in practice from the users’ point of view, the
following guidelines are suggested. To stabilize linear solvers, either time-linearized and
adjoint, RPM as a lightweight tool should be considered first. To stabilize nonlinear solvers,
SFD and BoostConv can be considered first. Due to their non-intrusive nature, RPM, SFD,
and BoostConv can be even used in scenarios where the source code is not fully accessi-
ble, and their application requires only minimal modification of the existing tools. When
these lightweight tools are not effective, the users would then have to resort to Newton’s
method or implicit methods for stabilization. The downside is that it requires substantial
development efforts, and thus they are only suitable for users with in-depth knowledge of
and have full access to the source code of the solver.

Author Contributions: Conceptualization, S.X.; formal analysis, S.X. and J.Z.; investigation, S.X., J.Z.
and D.W.; resources, S.X. and D.W.; data curation, S.X.; writing—original draft preparation, S.X. and
J.Z.; writing—review and editing, S.X., J.Z., D.W., J.-D.M., H.W., S.Z., H.H. and M.R.; supervision, S.X.
and D.W.; project administration, S.X. and D.W.; funding acquisition, S.X. and D.W. All authors have
read and agreed to the published version of the manuscript.

Aerospace 2023, 10, 230 35 of 38

Funding: The research was funded by the National Natural Science Foundation of China (Grant No.
52006177 and 51976172) and the National Science and Technology Major Project (Grant No. 2017-II-
0009-0023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jameson, A. Aerodynamic Design via Control Theory. J. Sci. Comput. 1988, 3, 233–260. [CrossRef]
2. Pinto, R.; Afzal, A.; D’Souza, L.; Ansari, Z.; Samee, M. Computational fluid dynamics in turbomachinery: A review of state of the

art. Arch. Comput. Methods Eng. 2017, 24, 467–479. [CrossRef]
3. Johnson, F.T.; Kamenetskiy, D.S.; Melvin, R.G.; Venkatakrishnan, V.; Wigton, L.B.; Young, D.P.; Allmaras, S.R.; Bussoletti, J.E.;

Hilmes, C.L. Observations Regarding Algorithms Required for Robust CFD Codes. Math. Model Nat. Phenom. 2011, 6, 2–27.
[CrossRef]

4. Xu, S.; Timme, S.; Badcock, K.J. Enabling off-design linearised aerodynamics analysis using Krylov subspace recycling technique.
Comput. Fluids 2016, 140, 385–396. [CrossRef]

5. Campobasso, S.; Giles, M. Stabilization of Linear Flow Solver for Turbomachinery Aeroelasticity Using Recursive Projection
Method. AIAA J. 2004, 42, 1765–1774. [CrossRef]

6. Sartor, F.; Mettot, C.; Sipp, D. Stability, Receptivity, and Sensitivity Analyses of Buffeting Transonic Flow over a Profile. AIAA J.
2015, 53, 1980–1993. [CrossRef]

7. Crouch, J.D.; Garbaruk, A.; Strelets, M. Global instability in the onset of transonic-wing buffet. J. Fluid Mech. 2019, 881, 3–22.
[CrossRef]

8. Timme, S. Global instability of wing shock-buffet onset. J. Fluid Mech. 2020, 885, A37. [CrossRef]
9. Giles, M.; Duta, M.; Müller, J.D.; Pierce, N. Algorithm developments for discrete adjoint methods. AIAA J. 2003, 41, 198–205.

[CrossRef]
10. Dwight, R.; Brezillon, J. Efficient and Robust Algorithms for Solution of the Adjoint Compressible Navier–Stokes Equations with

Applications. Int. J. Numer. Methods Fluids 2009, 60, 365–389. [CrossRef]
11. Xu, S.; Radford, D.; Meyer, M.; Mueller, J.D. Stabilisation of discrete steady adjoint solvers. J. Comput. Phys. 2015, 299, 175–195.

[CrossRef]
12. Shroff, G.M.; Keller, H. Stabilization of unstable procedures: The recursive projection method. SIAM J. Math. Anal. 1993,

30, 1099–1120. [CrossRef]
13. Åkervik, E.; Brandt, L.; Henningson, D.; Hoepffner, J.; Marxen, O.; Schlatter, P. Steady solutions of the Navier-Stokes equations by

selective frequency damping. Phys. Fluids 2006, 18, 068102. [CrossRef]
14. Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F. Efficient stabilization and acceleration of numerical simulation of fluid flows by

residual recombination. J. Comput. Phys. 2017, 344, 234–246. [CrossRef]
15. Venkatakrishnan, V.; Mavriplis, D.J. Implicit solvers for unstructured meshes. J. Comput. Phys. 1993, 105, 83–91. [CrossRef]
16. Knoll, D.A.; Keyes, D.E. Jacobian-free Newton–Krylov methods: A survey of approaches and applications. J. Comput. Phys. 2004,

193, 357–397. [CrossRef]
17. Chisholm, T.T.; Zingg, D.W. A Jacobian-free Newton–Krylov algorithm for compressible turbulent fluid flows. J. Comput. Phys.

2009, 228, 3490–3507. [CrossRef]
18. Nadarajah, S.; Jameson, A. Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape

optimization. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June
2001; p. 2530. [CrossRef]

19. Anderson, W.K.; Venkatakrishnan, V. Aerodynamic design optimization on unstructured grids with a continuous adjoint
formulation. Comput. Fluids 1997, 28, 443–480. [CrossRef]

20. Möller, J. Aspects of The Recursive Projection Method Applied to Flow Calculations. Ph.D. Thesis, KTH Royal Institute of
Technology in Stockholm, Stockholm, Sweden, 2005.

21. Görtz, S.; Möller, J. Evaluation of the recursive projection method for efficient unsteady turbulent CFD simulation. In Proceedings
of the 24th International Congress of the Aeronautical Sciences, Yokohama, Japan, 29 August–3 September 2004; pp. 1–13.

22. Sergio Campobasso, M.; Giles, M.B. Stabilization of a linearized Navier-Stokes solver for turbomachinery aeroelasticity. In
Computational Fluid Dynamics 2002; Springer: Berlin/Heidelberg, Germany, 2003; pp. 343–348. [CrossRef]

23. Saad, Y. Iterative Methods for Sparse Linear Systems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003.
[CrossRef]

24. Langer, S. Agglomeration multigrid methods with implicit Runge–Kutta smoothers applied to aerodynamic simulations on
unstructured grids. J. Comput. Phys. 2014, 277, 72–100. [CrossRef]

http://doi.org/10.1007/BF01061285
http://dx.doi.org/10.1007/s11831-016-9175-2
http://dx.doi.org/10.1051/mmnp/20116301
http://dx.doi.org/10.1016/j.compfluid.2016.10.018
http://dx.doi.org/10.2514/1.1225
http://dx.doi.org/10.2514/1.J053588
http://dx.doi.org/10.1017/jfm.2019.748
http://dx.doi.org/10.1017/jfm.2019.1001
http://dx.doi.org/10.2514/2.1961
http://dx.doi.org/10.1002/fld.1894
http://dx.doi.org/10.1016/j.jcp.2015.06.036
http://dx.doi.org/10.1137/0730057
http://dx.doi.org/10.1063/1.2211705
http://dx.doi.org/10.1016/j.jcp.2017.04.081
http://dx.doi.org/10.1006/jcph.1993.1055
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1016/j.jcp.2009.02.004
http://dx.doi.org/10.2514/6.2001-2530
http://dx.doi.org/10.1016/S0045-7930(98)00041-3
http://dx.doi.org/10.1007/978-3-642-59334-5_50
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1016/j.jcp.2014.07.050

Aerospace 2023, 10, 230 36 of 38

25. Renac, F. Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate
eigenvalue problem. J. Comput. Phys. 2011, 230, 5739–5752. [CrossRef]

26. Ekici, K.; Hall, K.C.; Huang, H.; Thomas, J.P. Stabilization of Explicit Flow Solvers Using a Proper-Orthogonal-Decomposition
Technique. AIAA J. 2013, 51, 1095–1104. [CrossRef]

27. Richez, F.; Leguille, M.; Marquet, O. Selective frequency damping method for steady RANS solutions of turbulent separated
flows around an airfoil at stall. Comput. Fluids 2016, 132, 51–61. [CrossRef]

28. Cambier, L.; Heib, S.; Plot, S. The Onera elsA CFD software: Input from research and feedback from industry. Mech. Ind. 2013,
14, 159–174. [CrossRef]

29. Cantwell, C.D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.E.; Ekelschot,
D.; et al. Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 2015, 192, 205–219. [CrossRef]

30. Proskurin, A.V. Mathematical modelling of unstable bent flow using the selective frequency damping method. J. Phys. Conf. Ser.
2021, 1809, 012012. [CrossRef]

31. Bagheri, S.; Schlatter, P.; Schmid, P.J.; Henningson, D.S. Global stability of a jet in crossflow. J. Fluid Mech. 2009, 624, 33–44.
[CrossRef]

32. Plante, F.; Laurendeau, É. Acceleration of Euler and RANS solvers via Selective Frequency Damping. Comput. Fluids 2018,
166, 46–56. [CrossRef]

33. Li, F.; Ji, C.; Xu, D. A novel optimization algorithm for the selective frequency damping parameters. Phys. Fluids 2022, 34, 124112.
[CrossRef]

34. Liguori, V.; Plante, F.; Laurendeau, E. Implementation of an efficient Selective Frequency Damping method in a RANS solver.
AIAA Scitech 2021, 2021, 0359. [CrossRef]

35. Cunha, G.; Passaggia, P.Y.; Lazareff, M. Optimization of the selective frequency damping parameters using model reduction.
Phys. Fluids 2015, 27, 094103. [CrossRef]

36. Jordi, B.E.; Cotter, C.J.; Sherwin, S.J. Encapsulated formulation of the Selective Frequency Damping method. Phys. Fluids 2014,
26, 034101. [CrossRef]

37. Citro, V.; Giannetti, F.; Luchini, P.; Auteri, F. Global stability and sensitivity analysis of boundary-layer flows past a hemispherical
roughness element. Phys. Fluids 2015, 27, 084110. [CrossRef]

38. Citro, V. Simple and efficient acceleration of existing multigrid algorithms. AIAA J. 2019, 57, 2244–2247. [CrossRef]
39. Dicholkar, A.; Zahle, F.; Sørensen, N.N. Convergence enhancement of SIMPLE-like steady-state RANS solvers applied to airfoil

and cylinder flows. J. Wind. Eng. Ind. Aerodyn. 2022, 220, 104863. [CrossRef]
40. Xu, S.; Mohanamuraly, P.; Wang, D.; Müller, J.D. Newton–Krylov Solver for Robust Turbomachinery Aerodynamic Analysis.

AIAA J. 2020, 58, 1320–1336. [CrossRef]
41. He, P.; Mader, C.A.; Martins, J.R.; Maki, K.J. DAFOAM: An open-source adjoint framework for multidisciplinary design

optimization with openfoam. AIAA J. 2020, 58, 1304–1319. [CrossRef]
42. Gebremedhin, A.H.; Manne, F.; Pothen, A. What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev.

2005, 47, 629–705. [CrossRef]
43. Xu, S.; Li, Y.; Huang, X.; Wang, D. Robust Newton–Krylov Adjoint Solver for the Sensitivity Analysis of Turbomachinery

Aerodynamics. AIAA J. 2021, 59, 4014–4030. [CrossRef]
44. Mader, C.A.; Martins, J.R.; Alonso, J.J.; Van Der Weide, E. ADjoint: An approach for the rapid development of discrete adjoint

solvers. AIAA J. 2008, 46, 863–873. [CrossRef]
45. Dwight, R.P.; Brezillon, J. Effect of approximations of the discrete adjoint on gradient-based optimization. AIAA J. 2006,

44, 3022–3031. [CrossRef]
46. Nemec, M.; Zingg, D.W. Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations. AIAA J. 2002,

40, 1146–1154. [CrossRef]
47. Morgan, R.B. GMRES with deflated restarting. SIAM J. Sci. Comput. 2002, 24, 20–37. [CrossRef]
48. Parks, M.L.; De Sturler, E.; Mackey, G.; Johnson, D.D.; Maiti, S. Recycling Krylov subspaces for sequences of linear systems.

SIAM J. Sci. Comput. 2006, 28, 1651–1674. [CrossRef]
49. Mohamed, K.; Nadarajah, S.; Paraschivoiu, M. Krylov recycling techniques for unsteady simulation of turbulent aerodynamic

flows. In Proceedings of the 26th International Congress of the Aeronautical Sciences, Anchorage, Alaska, 14–19 September 2008;
International Council of The Aeronautical Sciences: Stockholm, Sweden, 2008; Volume 2, pp. 3338–3348.

50. Xu, S.; Timme, S. Robust and efficient adjoint solver for complex flow conditions. Comput. Fluids 2017, 148, 26–38. [CrossRef]
51. Gomes, P.; Palacios, R. Pitfalls of discrete adjoint fixed-points based on algorithmic differentiation. AIAA J. 2022, 60, 1251–1256.

[CrossRef]
52. Pueyo, A.; Zingg, D.W. Efficient Newton-Krylov solver for aerodynamic computations. AIAA J. 1998, 36, 1991–1997. [CrossRef]
53. Liu, W.H.; Sherman, A.H. Comparative analysis of the Cuthill–McKee and the reverse Cuthill–McKee ordering algorithms for

sparse matrices. SIAM J. Math. Anal. 1976, 13, 198–213. [CrossRef]
54. Dwight, R.P. Efficiency Improvements of RANS-Based Analysis and Optimization Using Implicit and Adjoint Methods on Unstructured

Grids; The University of Manchester: Manchester, UK, 2006.
55. Nejat, A.; Ollivier-Gooch, C. Effect of discretization order on preconditioning and convergence of a high-order unstructured

Newton-GMRES solver for the Euler equations. J. Comput. Phys. 2008, 227, 2366–2386. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2011.03.057
http://dx.doi.org/10.2514/1.J051945
http://dx.doi.org/10.1016/j.compfluid.2016.03.027
http://dx.doi.org/10.1051/meca/2013056
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1088/1742-6596/1809/1/012012
http://dx.doi.org/10.1017/S0022112009006053
http://dx.doi.org/10.1016/j.compfluid.2018.01.027
http://dx.doi.org/10.1063/5.0124535
http://dx.doi.org/10.2514/6.2021-0359
http://dx.doi.org/10.1063/1.4930925
http://dx.doi.org/10.1063/1.4867482
http://dx.doi.org/10.1063/1.4928533
http://dx.doi.org/10.2514/1.J058248
http://dx.doi.org/10.1016/j.jweia.2021.104863
http://dx.doi.org/10.2514/1.J058523
http://dx.doi.org/10.2514/1.J058853
http://dx.doi.org/10.1137/S0036144504444711
http://dx.doi.org/10.2514/1.J060094
http://dx.doi.org/10.2514/1.29123
http://dx.doi.org/10.2514/1.21744
http://dx.doi.org/10.2514/2.1764
http://dx.doi.org/10.1137/S1064827599364659
http://dx.doi.org/10.1137/040607277
http://dx.doi.org/10.1016/j.compfluid.2017.02.012
http://dx.doi.org/10.2514/1.J060735
http://dx.doi.org/10.2514/2.326
http://dx.doi.org/10.1137/0713020
http://dx.doi.org/10.1016/j.jcp.2007.10.024

Aerospace 2023, 10, 230 37 of 38

56. Trottenberg, U.; Oosterlee, C.W.; Schuller, A. Multigrid; Elsevier: Amsterdam, The Netherlands, 2000.
57. Moinier, P.; Muller, J.D.; Giles, M.B. Edge-based multigrid and preconditioning for hybrid grids. AIAA J. 2002, 40, 1954–1960.

[CrossRef]
58. Müller, J.D. Anisotropic adaptation and multigrid for hybrid grids. Int. J. Numer. Methods Fluids 2002, 40, 445–455. [CrossRef]
59. Ruge, J.W.; Stüben, K. Algebraic multigrid. In Multigrid Methods; SIAM: Philadelphia, PA, USA, 1987; pp. 73–130.
60. Stüben, K. A review of algebraic multigrid. In Numerical Analysis: Historical Developments in the 20th Century; Elsevier: Amsterdam,

The Netherlands, 2001; pp. 331–359.
61. Naumovich, A.; Förster, M.; Dwight, R. Algebraic multigrid within defect correction for the linearized Euler equations. Numer.

Linear Algebra Appl. 2010, 17, 307–324. [CrossRef]
62. Förster, M.; Pal, A. A linear solver based on algebraic multigrid and defect correction for the solution of adjoint RANS equations.

Int. J. Numer. Methods Fluids 2014, 74, 846–855. [CrossRef]
63. Walker, H.F. A GMRES-backtracking Newton iterative method. In Proceedings of the Copper Mountain Conference on Iterative

Methods, Copper Mountain, CO, USA, 9–14 April 1992.
64. Eisenstat, S.C.; Walker, H.F. Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 1996, 17, 16–32.

[CrossRef]
65. Shadid, J.N.; Tuminaro, R.S.; Walker, H.F. An inexact Newton method for fully coupled solution of the Navier–Stokes equations

with heat and mass transport. J. Comput. Phys. 1997, 137, 155–185. [CrossRef]
66. Tuminaro, R.S.; Walker, H.F.; Shadid, J.N. On backtracking failure in Newton–GMRES methods with a demonstration for the

Navier–Stokes equations. J. Comput. Phys. 2002, 180, 549–558. [CrossRef]
67. Kelley, C.T.; Keyes, D.E. Convergence analysis of pseudo-transient continuation. SIAM J. Math. Anal. 1998, 35, 508–523. [CrossRef]
68. Mulder, W.A.; Van Leer, B. Experiments with implicit upwind methods for the Euler equations. J. Comput. Phys. 1985, 59, 232–246.

[CrossRef]
69. Kamenetskiy, D.S.; Bussoletti, J.E.; Hilmes, C.L.; Venkatakrishnan, V.; Wigton, L.B.; Johnson, F.T. Numerical evidence of multiple

solutions for the Reynolds-averaged Navier–Stokes equations. AIAA J. 2014, 52, 1686–1698. [CrossRef]
70. Mavriplis, D.J. A residual smoothing strategy for accelerating Newton method continuation. Comput. Fluids 2021, 220, 104859.

[CrossRef]
71. Yildirim, A.; Kenway, G.K.; Mader, C.A.; Martins, J.R. A Jacobian-free approximate Newton–Krylov startup strategy for RANS

simulations. J. Comput. Phys. 2019, 397, 108741. [CrossRef]
72. Langer, S. Preconditioned Newton Methods to Approximate Solutions of the Reynolds- Averaged Navier–Stokes Equations.

Ph.D. Thesis, Deutschen Zentrum für Luft-und Raumfahrt, Köln, Germany, 2018.
73. Kenway, G.; Martins, J. Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization. AIAA J. 2017, 55, 1–18.

[CrossRef]
74. Campobasso, M.S.; Giles, M.B. Effects of Flow Instabilities on the Linear Analysis of Turbomachinery Aeroelasticity. J. Propuls.

Power 2003, 19, 250–259. [CrossRef]
75. Krakos, J.A.; Darmofal, D.L. Effect of Small-Scale Output Unsteadiness on Adjoint-Based Sensitivity. AIAA J. 2015, 48, 2611–2623.

[CrossRef]
76. Gaul, A.; Gutknecht, M.H.; Liesen, J.; Nabben, R. A framework for deflated and augmented Krylov subspace methods. SIAM J.

Matrix Anal. Appl. 2012, 34, 495–518. [CrossRef]
77. Ghysels, P.; Ashby, T.J.; Meerbergen, K.; Vanroose, W. Hiding Global Communication Latency in the GMRES Algorithm on

Massively Parallel Machines. SIAM J. Sci. Comput. 2013, 35, C48–C71. [CrossRef]
78. Grigori, L.; Moufawad, S. Communication Avoiding ILU0 Preconditioner. SIAM J. Sci. Comput. 2015. [CrossRef]
79. Yoon, S.; Jameson, A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 1988,

26, 1025. [CrossRef]
80. Pierce, N.A.; Giles, M.B. Preconditioned multigrid methods for compressible flow calculations on stretched meshes. J. Comput.

Phys. 1997, 136, 425–445. [CrossRef]
81. Swanson, R.C.; Turkel, E.; Rossow, C.C. Convergence acceleration of Runge–Kutta schemes for solving the Navier–Stokes

equations. J. Comput. Phys. 2007, 224, 365–388. [CrossRef]
82. Rossow, C.C. Efficient computation of compressible and incompressible flows. J. Comput. Phys. 2007, 220, 879–899. [CrossRef]
83. Swanson, R.C.; Rossow, C.C. An efficient solver for the RANS equations and a one-equation turbulence model. Comput. Fluids

2011, 42, 13–25. [CrossRef]
84. Wang, D.; Huang, X. Solution Stabilization and Convergence Acceleration for the Harmonic Balance Equation System. J. Eng.

Gas Turbine Power 2017, 139, 092503. [CrossRef]
85. Huang, X.; Wu, H.; Wang, D. Implicit solution of harmonic balance equation system using the LU-SGS method and one-step

Jacobi/Gauss-Seidel iteration. Int. J. Comput. Fluid D. 2018, 32, 218–232. [CrossRef]

http://dx.doi.org/10.2514/2.1556
http://dx.doi.org/10.1002/fld.313
http://dx.doi.org/10.1002/nla.687
http://dx.doi.org/10.1002/fld.3878
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.1006/jcph.1997.5798
http://dx.doi.org/10.1006/jcph.2002.7102
http://dx.doi.org/10.1137/S0036142996304796
http://dx.doi.org/10.1016/0021-9991(85)90144-5
http://dx.doi.org/10.2514/1.J052676
http://dx.doi.org/10.1016/j.compfluid.2021.104859
http://dx.doi.org/10.1016/j.jcp.2019.06.018
http://dx.doi.org/10.2514/1.J055172
http://dx.doi.org/10.2514/2.6106
http://dx.doi.org/10.2514/1.J050412
http://dx.doi.org/10.1137/110820713
http://dx.doi.org/10.1137/12086563X
http://dx.doi.org/10.1137/130930376
http://dx.doi.org/10.2514/3.10007
http://dx.doi.org/10.1006/jcph.1997.5772
http://dx.doi.org/10.1016/j.jcp.2007.02.028
http://dx.doi.org/10.1016/j.jcp.2006.05.034
http://dx.doi.org/10.1016/j.compfluid.2010.10.010
http://dx.doi.org/10.1115/1.4035912
http://dx.doi.org/10.1080/10618562.2018.1508658

Aerospace 2023, 10, 230 38 of 38

86. Sicot, F.; Puigt, G.; Montagnac, M. Block-Jacobi implicit algorithms for the time spectral method. AIAA J. 2008, 46, 3080–3089.
[CrossRef]

87. Mundis, N.; Mavriplis, D. Toward an optimal solver for time-spectral fluid-dynamic and aeroelastic solutions on unstructured
meshes. J. Comput. Phys. 2017, 345, 132–161. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.36792
http://dx.doi.org/10.1016/j.jcp.2017.04.067

	Introduction
	Theoretical Background
	Time-Marching Nonlinear RANS Equation Systems
	Time-Marching Linearized RANS Equation Systems

	Stabilization Techniques
	Recursive Projection Method (RPM)
	Theory and Examples
	Rpm Stabilized Time-Linearized Analysis
	Rpm Stabilized Adjoint Analysis
	Rpm Accelerated RANS Nonlinear and Linear Calculations
	Summary of Current Status and Direction for Further Development

	Selective Frequency Damping (SFD) Method
	Theory and Examples
	Sfd Stabilized Nonlinear Steady Flow Calculations
	Sfd Accelerated Nonlinear Flow Solvers
	Summary of Current Status and Suggestions for Further Development

	Boostconv Method
	Theory
	Summary of Current Status and Suggestions for Further Development

	Newton'S Method
	Theory and Mathematical Formulation
	Stabilization and Acceleration of Nonlinear and Linear Solutions
	Summary of Current Status and Suggestions for Future Development

	Implicit Methods
	Stabilization of Nonlinear Steady and Adjoint Solvers
	Stabilization and Acceleration of Frequency Domain Solvers

	Conclusions
	References

