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Abstract: Due to the strong representation ability and capability of learning from data measurements,
deep reinforcement learning has emerged as a powerful control method, especially for nonlinear sys-
tems, such as the aero-engine control system. In this paper, a novel application of deep reinforcement
learning (DRL) is presented for aero-engine control. In addition, transition dynamic characteristic
information of the aero-engine is extracted from the replay buffer of deep reinforcement learning to
train a neural-network dynamic prediction model for the aero-engine. In turn, the dynamic prediction
model is used to improve the learning efficiency of reinforcement learning. The practical applicability
of the proposed control system is demonstrated by the numerical simulations. Compared with the
traditional control system, this novel aero-engine control system has faster response speed, stronger
self-learning ability, and avoids the complicated manual parameter adjustment without sacrificing the
control performance. Moreover, the dynamic prediction model has satisfactory prediction accuracy,
and the model-based method can achieve higher learning efficiency than the model-free method.

Keywords: aero-engine control; reinforcement learning; neural network; nonlinear system

1. Introduction

To meet the increasing requirements of the new generation aircraft, the aero-engine is
developed to have more control variables, more complex structures, and more changeable
flight environments. The design of controllers remains one of the major challenges in the
field of the aero-engine. Facing such multivariable and strongly nonlinear plants, it is
difficult for traditional control methods to fully exploit the aero-engine performance [1].

Reinforcement learning (RL), as a typical branch of machine learning, is concerned
with the agent’s behavior in an environment so as to maximize some notion of cumulative
rewards. It is regarded as the key to the possible realization of general artificial intelli-
gence [2,3]. RL is developed from cybernetics and is suitable for solving nonlinear control
problems. When applying deep neural networks to reinforcement learning, Ref. [3] solved
the encountered problems and greatly improved the overall performance, opening the era
of deep reinforcement learning (DRL). During the past few years, a variety of excellent RL
algorithms have been proposed [4–8]. As the baseline algorithm of OpenAI, an artificial
intelligence research company whose core purpose is “to realize safe general artificial intel-
ligence”, the proximal policy optimization algorithm (PPO) is one of the most advanced
and practical algorithms in recent years [9]. Nowadays, DRL has been widely developed in
intelligent robots, automatic driving, intelligent transportation systems, game competition,
and other fields [10–16]. Due to its powerful representation ability, deep reinforcement
learning is suitable for dealing with the multivariable and strongly nonlinear controlled
plants, just like today’s aero-engines. This is the motivation for our research on aero-engine
control based on deep reinforcement learning.

Another research focus in the field of aero-engine control is the establishment of a
digital model. A control system needs to be verified by a digital simulation model before
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it is put into use. Additionally, the airborne adaptive model can provide more useful
information for the control system, including analytical redundancy for sensor diagnosis.
Machine learning methods, such as nonlinear support vector machine (NSVM), extreme
gradient boosting decision tree (XGBoost), and deep neural network (DNN), are suitable for
the strong nonlinear plants [17–19]. The deep neural network is suitable for characterizing
the strongly nonlinear dynamic transfer characteristics of aero-engines. More importantly,
we found that the samples in the replay buffer of deep reinforcement learning contain
the dynamic transfer characteristics of aero-engine, which can be directly used for the
training of the aero-engine digital model. In view of this, this paper establishes the dynamic
prediction model of an aero-engine based on a deep neural network and supported by the
replay buffer of deep reinforcement. Compared with the widely used component-level
model based on rotor dynamics, this neural network model has the advantage of avoiding
time-consuming iterative calculation and manual parameter adjustment.

One of the disadvantages of reinforcement learning is its low learning efficiency. The
essence of RL is to learn by trial and error, so effective information needs to be extracted
from a large number of training samples. With the support of the dynamic prediction
model, the model-based reinforcement learning method can be developed. The dynamic
prediction model above can improve the accuracy of value function approximation in the
process of deep reinforcement learning and finally improve the learning efficiency [20–22].
Meanwhile, with more information about the environment, the risk of exploration behavior
can be reduced in the learning process.

This paper trains the deep reinforcement learning controller and the deep network
dynamic prediction model at the same time and obtains twice the result with half the
effort. The proximal policy optimization algorithm is selected to train the controller, and
the recurrent neural network is selected as the structure of the dynamic prediction model
of the aero-engine. The replay buffer of deep reinforcement learning provides the training
samples for the dynamic prediction model. In turn, the dynamic prediction model is used
to improve the learning efficiency of deep reinforcement learning.

This paper proceeds as follows. In Section 2, the related work is discussed. In Section 3,
the aero-engine control system is designed based on deep reinforcement learning. Section 4
devotes to the algorithm of deep reinforcement learning. Section 5 establishes the dynamic
prediction model of the aero-engine, which is used to improve the learning efficiency of deep
reinforcement learning with the model-based method. To demonstrate the effectiveness
and superiority of our methods, simulation experiments are conducted in Section 6. Finally,
Section 7 concludes the paper.

2. Related Work

In this section, the related work that aims to study aero-engine control based on deep
reinforcement learning is discussed.

Deep Q-learning (DQN) is the first deep reinforcement learning algorithm used in aero-
engine control [23,24]. However, DQN takes the value function as the output and indirectly
takes it as the basis of action selection. It is difficult to deal with the control problem of
continuous action space and needs the assistance of a nonlinear optimization algorithm.
While the actor-critic framework combines the advantages of the value function method and
the gradient method, in which the actor directly takes the action as its output, thus a series
of algorithms based on it, such as the deep deterministic policy gradient algorithm (DDPG)
and the advantage actor-critic algorithm (A2C) are more suitable for continuous action
space problems such as the aero-engine control [25–27]. In order to alleviate the oscillation
caused by the sudden change of control variables, the phase-based reward function is
proposed [24]. In Ref. [25], the momentum term is introduced to suppress this oscillation
problem, and the error integral term is introduced to improve the steady-state performance
of the reinforcement learning controller. In Ref. [26], deep reinforcement learning is applied
to the optimization control problem of minimum fuel consumption performance of variable
cycle engines. Ref. [27] applies the long-short-term memory recurrent neural network to
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design the thrust estimator and the proximal policy optimization algorithm (PPO) to realize
the direct thrust control of the aero-engine.

The main contributions of this paper are as follows: (1) a novel application of deep
reinforcement learning (DRL) is presented for aero-engine control. (2) In order to fully tap
the potential of deep reinforcement learning, an aero-engine dynamic prediction model
with excellent performance is trained by using the samples in the replay buffer of deep
reinforcement learning. (3) Based on the above dynamic prediction model, the learning
efficiency of deep reinforcement learning is improved by adopting the model-based method.

3. DRL Control System for Aero-Engine

The cross-sectional schematic diagram of a turbofan engine (the controlled plant in
this paper) is shown in Figure 1. The number and name of each section of the aero-engine
are given in the figure. The control task of this paper is to make the corrected compressor
rotor speed Nc,cor and the engine pressure ratio EPR track the reference control instruction
while ensuring the safety of the engine by adjusting the corrected main fuel flow Wfb,cor
and the throat cross-sectional area A8. The above variables are expressed as follows:

Nc,cor = Nc/
√

T∗1
EPR = P5/P2

Wfb,cor = Wfb
√

T∗1 /P∗1

(1)

where Nc is the physical compressor rotor speed, T∗1 the total temperature of the engine
Section 1, P5 the pressure of the engine Section 5, P2 the pressure of the engine Section 2,
Wfb the main fuel flow, P∗1 the total pressure of the engine Section 1.
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Figure 1. The cross-sectional schematic diagram of a turbofan engine.

3.1. The Structure of Aero-Engine Control System

The standard reinforcement learning setting is an infinite-horizon discounted Markov
decision process (MDP), defined by a tuple (S ,A,P , r, ρ0, γ), where S is the set of states,
A the set of actions, P : S ×A× S → R the transition dynamic probability distribution,
r : S → R the reward function, ρ0 : S → R the probability distribution of the initial state
s0, and γ ∈ (0, 1] the discounted factor determining the priority of short-term rewards. In
reinforcement learning, an agent interacts with the environment and learns the reward-
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maximizing behavior, which is denoted as π. The policy π maps the states to a probability
distribution over the actions, i.e., π : S ×A → R .

The process of the agent learning in the interaction with the environment is shown
in Figure 2. After the agent performs a certain action at, the environment will switch to a
new state st+1, and the environment will generate a reward signal rt according to the new
state. Subsequently, the agent executes a new action at+1 according to a certain policy π
and environmental feedback st+1. In this paper, the agent is the aero-engine controller, and
the environment is the aero-engine that performs the acceleration process. Every time the
controller interacts with the aero-engine, a tuple (st, at, rt, st+1) is generated and stored in
the replay buffer, which will provide training sample support to optimize the policy π.
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Figure 2. Reinforcement learning.

Figure 3 shows the structure of the aero-engine control system. The agent adopts
the actor-critic framework, in which the actor is responsible for performing the action
according to a certain policy while the critic is responsible for evaluating the quality of the
action by outputting the advantage function. This process will be explained in detail in
Section 4. The input of the actor is the state st = [ot, ut−1, ot−1, . . . , ut−m+1, ot−m+1]

T, where
m is the depth of the trajectory and ot the observation of the environment at time t. If m
takes a larger value, which means that the current trajectory will have a longer influence of
on the future. In the following simulation, the trajectory depth is selected as m = 2. The
observation ot includes the states of the aero-engine xt, the control error et, and the flight
conditions H, Ma:

ot =
[

xT
t , eT

t , H, Ma
]T
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The state of the aero-engine is selected as x = [Nc,cor, EPR, Nf, Nc, Smc, Smf, T6]
T, where

Nc,cor is the corrected compressor rotor speed, EPR is the engine pressure ratio, Nf is the
physical fan rotor speed, Nc is the physical compressor rotor speed, Smc is the compressor
surge margin, Smf is the fan surge margin, and T6 is the high-pressure turbine outlet
temperature. After the aero-engine executes the control variable vector ut, the aero-engine
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state will shift from xt to xt+1, and the aero-engine will output a reward signal rt. The tuple
(st, at, rt, st+1) constitutes a training sample, stored in the replay buffer.

3.2. Formulation of the Reward Signal

The reward rt is a very crucial signal, which is fed back to the critic from the aero-
engine and contains information about the task goal. The process of formulating the reward
is equivalent to the process of formulating learning goals for the agent.

The control objective is to minimize the error et = [Nc,cor,r − Nc,cor,t, EPRr − EPRt] be-
tween the controlled variables [Nc,cor,t, EPRt] and the reference instructions [Nc,cor,r, EPRr]
by adjusting the input of the aero-engine ut = [Wfb,cor,t, A8,t] under different flight con-
ditions. Due to the extreme operating environment of the aero-engines, it is necessary to
ensure that the key performance parameters do not exceed the limit, including Nc, Nf, Smc,
Smf, and T6.

Based on the control objective, the reward signal can be defined as follows:

rt = −peT
t et −∑i wi[max(ci(t)− ci,l(t), 0)]2 (3)

where p and wi are the positive gain coefficients, ci(t) is a key performance parameter, and
ci,l(t) is the limit of the corresponding key performance parameter. The first error term peT

t et
on the right side of Equation (3) can ensure the tracking performance of the controller. The
role of the second term on the right side of Equation (3) is to achieve restrictive protection.
When the key performance parameters do not exceed the limit margin ci(t) ≤ ci,l(t), this
term is equal to zero, so the control policy will not be affected when the key performance
parameters do not exceed the limit. However, when the key performance parameters
exceed the limit, the second term will give the agent a large negative benefit, which will
drive the agent to avoid making a decision that will cause the over-limit problem.

3.3. The Structure of the Agent

As mentioned in Section 3.1, the agent is composed of the actor and the critic. The
actor is a deep neural network to approximate the policy π, as shown in Figure 4. In the
learning process, the agent needs to explore all the schemes in the feasible region to find
the optimal policy without falling into the local optimum. Therefore, the policy learned by
the actor would have some randomness. In Figure 4, the actor does not directly output the
action at, but outputs the relevant parameters of the probability distribution of the action
value. The normal distribution is adopted in this paper to approximate the probability
distribution of the action, that is, the actor outputs the mean µ and variance σ of the normal
distribution at ∼ N(µ, σ).
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To prevent serious accidents such as surges and stalls caused by the randomness of the
actions, a momentum term is introduced to suppress abrupt changes in the engine input,
as shown in Figure 3 as follows:

ut = (1− ε)ut−1 + εat (4)

where ε ∈ [0, 1] is the momentum factor and ut the input of the aero-engine. In this way,
even if at changes abruptly, the input u can remain stable when ε is much less than 1.

Similar to the actor, the critic is also a deep neural network the difference is that its
output is the approximate state value function V(s|ν), where ν is the parameter vector of
the critic network. The definition and use of V(s|ν) will be explained in Section 4.

4. Parameters Update of Actor-Critic Based on Deep Reinforcement Learning

Let η(π) denote the expected discounted cumulative reward of the policy π:

η(π) = Es0,a0,...

(
∞

∑
t=0

γtr(st)

)
(5)

where s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P(st+1|st, at).
The aim of the agent is to learn the optimal policy π∗ to maximize the expected

discounted cumulative rewards η(π∗). The state value function Vπ(s) and the action value
function Qπ(s, a) are defined as follows:

Vπ(st) = Eat ,st+1,at+1,...

(
∞
∑

k=0
γkr(st+k)

)
Qπ(st, at) = Est+1,at+1,...

(
∞
∑

k=0
γkr(st+k)

) (6)

where at ∼ π(at|st) and st+1 ∼ P(st+1|st, at).
It can be inferred from the Equation (6) that the state value function is the expectation

of the action value function: Vπ(st) = Eat∼π(Qπ(st, at)). The advantage function is defined
as follows:

Aπ(st, at) = Qπ(st, at)−Vπ(st) (7)

which indicates the advantage of the action at under the state st. Ref. [21] has proved that
the gap between the two expected discounted cumulative rewards η(π) and η(π̃) can be
represented by the advantage function as follows:

η(π̃) = η(π) +Es0,a0,s1,a1,...

(
∞

∑
t=0

γt Aπ(st, at)

)
(8)

where s0 ∼ ρ0(s0), at ∼ π̃(at|st), st+1 ∼ P(st+1|st, at).
The second term on the right side of the Equation (8) can be expanded to the following:

η(π̃) = η(π) +
∞

∑
t=0

γt∑
s

Pπ̃(st = s)∑
a

π̃(at = a|st)Aπ(st, at = a) (9)

where Pπ̃(st = s) means the probability the state is st at time t when the actions are chosen
according to policy π̃.

Define ρπ(s) =
∞
∑

t=0
γtPπ(st = s). Equation (9) can be simplified to the following:

η(π̃) = η(π) + ∑
s

ρπ̃(s)∑
a

π̃(a|s)Aπ(s, a) (10)



Aerospace 2023, 10, 209 7 of 17

Equation (9) implies a policy optimization method by maximizing the second term
∑
s

ρπ̃(s)∑
a

π̃(a|s)Aπ(s, a). If the policy parameterized, i.e.,πθ(a|s) is a differentiable function

of the parameter vector θ, the parameter update law can be constructed as follows:

θi+1 = θi + α∇θ

(
∑

s
ρπ̃(s)∑

a
π̃(a|s)Aπ(s, a)

)
(11)

where α is the update step size.
However, due to the complex dependency of ρπ̃(s) on π̃, it is impractical to optimize

the policy with Equation (11) directly. A simple way to avoid this problem is to introduce a
local approximation is as follows:

Lπ(π̃) = η(π) + ∑
s

ρπ(s)∑
a

π̃(a|s)Aπ(s, a) (12)

where ρπ̃(s) is replaced by ρπ(s). Lπ matches η(π) to first order. It means that for any θ0,
there is the following:

Lπθ0

(
πθ0

)
= η

(
πθ0

)
∇θ Lπθ0

(πθ)
∣∣∣θ=θ0 = ∇θη(πθ)

∣∣∣
θ=θ0

(13)

Equation (13) implies that a sufficiently small step that updates the policy πθ0 → π̃
and increases Lπθ0

will also lead to an increase in η. However, there is no guidance on how
small the step size is to meet the requirements.

Ref. [22] has proved the following:

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃) (14)

where C = 2γmaxsmaxa |Aπ(s,a)|
(1−γ)2 , Dmax

KL (π, π̃) = max
s

DKL[π(·|s)||π̃(·|s)], and DKL(π(·|s)||π̃(·|s))
is the Kullback-Leibler Divergence. Let

Mπ(π̃) = Lπ(π̃)− CDmax
KL (π, π̃) (15)

According to Equations (14) and (15), η can be maximized by maximizing Mπ , thus
improving the policy.

The objective function needs to be transformed into an expectation representation so
that it can be approximated using sampling-based methods, such as Monte Carlo simulation.
Replace the sum over the actions with an importance sampling estimator the contribution
of a single state s to the objective function can be expressed as follows:

∑
a

πθ(a|s)Aπθ0
(s, a) = Ea∼q

[
πθ(a|s)
q(a|s) Aπθ0

(s, a)
]

(16)

where q(s, a) denotes the sampling distribution. In this paper, the training data are sampled
according to the old policy πθ0 , so that q(a|s) = πθ0(a|s). Further replace ∑

s
ρπθ0

(s)[. . .]

with the expectation Es∼ρπθ0
[. . .], the second term on the right side of Equation (12) is

exactly equivalent to Equation (16), written in terms of expectations as follows:

∑
s

ρπθ0
(s)∑

a
πθ(a|s)Aπθ0

(s, a) = Es∼ρπθ0
,a∼πθ0

[
πθ(a|s)
πθ0(a|s) Aπθ0

(s, a)
]

(17)
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The second term on the right side of Equation (15) CDmax
KL (π, π̃) is difficult to calculate.

Actually, it can be regarded as a penalty item to reduce the update step size of the policy. In
PPO, the objective is simplified to a form that is easier to implement the following:

J(θ) = Es∼ρπθ0
,a∼πθ0

[
πθ(a|s)
πθ0(a|s) Aπθ0

(s, a)− βDKL
[
πθ0(·|s)

∣∣∣∣πθ(·|s)
]]

(18)

where β is an adaptive penalty coefficient, which will change with the average KL diver-

gence D
ρπθ0
KL = Es∼ρπθ0

[
DKL

[
πθ0(·|s)

∣∣∣∣πθ(·|s)
]]

:

β←


β/2 , D

ρπθ0
KL < Dtarg/τ

β , Dtarg/τ ≤ D
ρπθ0
KL < Dtarg × τ

β× 2 , D
ρπθ0
KL > Dtarg × τ

where τ > 1 is a coefficient set heuristically, and Dtarg the target value of the KL divergence.

When D
ρπθ0
KL takes a small value, the adaptive coefficient β will reduce the impact of the

penalty term. Vice versa.
A critic neural network is built to estimate the state-value function Vπ(s|ν), where ν is

the parameter vector. Aπθ0
(s, a) can be calculated through Equation (7), where Qπθ0

(s, a)
can be approximated by r(s, a) + γVπθ0

(s′|ν), s′ ∼ P(s′|s, a). Thus, Equation (18) can be
updated to the following:

J(θ) = Es∼ρπθ0
,a∼πθ0

[
πθ(a|s)
πθ0(a|s) Aπθ0

(s, a|ν)− βDKL
[
πθ0(·|s)

∣∣∣∣πθ(·|s)
]]

(19)

where Aπθ0
(s, a|ν) = r(s, a) + γVπθ0

(s′|ν)−Vπθ0
(s|ν).

The aim of the critic neural network is to estimate the action-value function Q accu-
rately. With the insight of the Bellman function, its loss function can be designed as follows:

L(ν) = Es∼ρπθ0
,a∼πθ0

,s′∼P(s′ |s,a)

[
r(s, a) + γVπθ0

(
s′
∣∣ν)−Vπθ0

(s|ν)
]2

(20)

The expectation in Equations (19) and (20), Es∼ρπθ0
,a∼πθ0

and Es∼ρπθ0
,a∼πθ0

,s′∼P(s′ |s,a),

can be approximated by sampling from the replay buffer E(s,a,s′)∼R, whereR represents the
replay buffer. According to J(θ), the parameter vector θ of the actor can be updated with
the following gradient ascending method: θ ← θ + α∇θ J(θ) , while the parameter vector ν
can be updated with the gradient descent method according to L(ν): ν← ν− α∇νL(ν) ,
where α is the learning rate.

5. Deep Neural Network Dynamic Prediction Model and Model-Based
Reinforcement Learning
5.1. Deep Neural Network Dynamic Prediction Model

The tuple (s, a, r, s′) in the replay buffer contains the state transition information of
the aero-engine, which can be used to train and identify the dynamic characteristics of the
aero-engine. Therefore, a dynamic prediction model of the aero-engine based on a deep
neural network is established in this section.

As shown in Figure 5, the recurrent neural network is selected as the network structure
of the dynamic prediction model. The characteristic of the recurrent neural network is that
the intermediate vector obtained by the operation of neurons at the last time can continue
to be used as the input of neurons at the next time, which makes the relationship of input
data in the time dimension reflect. The recurrent neural network can better mine a large
amount of context information between training data and analyze the complex correlation
between data in the time dimension. Moreover, the mechanism of recurrent neural network
sharing parameter vectors for each time data can reduce the complexity of the model and
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the difficulty of training. As shown in Figure 5, the input layer transfers the network
input, the state, and action vector pairs [s, a], to the recurrent hidden layer. Through the
loop connection on the recurrent hidden layer, the influence of times series samples in
the future is retained, and the recurrent hidden layer vector h is generated. Finally, the
nonlinear ability is improved by the fully connected hidden layer, and the state prediction
in the future ŝ′ is realized by the output layer. The forward propagation equation can be
expressed as follows:

ht = σ
(

U[st, at]
T + Wht−1 + b1

)
ŝt+1 = ffull(Vht + b2)

(21)

where U is the weight matrix from the input layer to the recurrent hidden layer, W is the
weight matrix of the recurrent hidden layer connected in time dimension, V is the weight
matrix of the recurrent hidden layer to the fully connected hidden layer, while b1 and b2 are
offset vectors, σ is the activation function of the recurrent hidden layer, ffull is simplified
to represent the whole fully connected hidden layer. ŝt+1 predicted at time t can be used
as the network input at time t + 1. According to the policy at+1 ∼ π(·|ŝt+1), ŝt+2 can be
continuously predicted, and multi-step prediction can be realized by this cycle.
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Figure 5. The network structure of the dynamic prediction model.

The tuples in the replay buffer are stored according to time to form a state-decision
series chain (s0, a0, s1, a1, . . . , sT , aT), which is used as the training sample. The loss function
related to the samples at time t is the two norms of error vector between the real state st+1
and the predicted state ŝt+1 at time t + 1:

Lt = ‖st+1 − ŝt+1‖2
2 (22)

While the overall loss function can be expressed as follows:

Ll:T =
T

∑
t=l
Lt (23)

where l is defined as the prediction lag degree.
Finally, the gradient descent method is applied to train the network parameter vector

according to the following overall loss function:

v ← v− α∇vL0:T (24)

For convenience, all the trainable parameters of the recurrent neural network are
represented by parameter vector v, including V, W, U, and the trainable parameters
in ffull.
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5.2. Model-Based Method for Improving Training Efficiency

The algorithm mentioned in Section 4 is model-free, in which the transition dynamic
probability distribution P is unnecessary. In Section 4, it is mentioned that the advantage
function is calculated by the following:

Aπθ0
(st, at|ν) = Qπθ0

(st, at)−Vπθ0
(st|ν)

≈ r(st, at) + γVπθ0
(s′|ν)−Vπθ0

(s|ν)

where the action-value function Qπθ0
(s, a) is estimated by the following:

Qπθ0
(s, a) ≈ r(s, a) + γVπθ0

(
s′
∣∣ν) (25)

The first term r(s, a) is the real value, while the second term γVπθ0
(s′|ν) itself is

an estimate, which will aggravate the estimation error of Qπθ0
(s, a). However, with the

dynamic prediction model, the influence of γVπθ0
(s′|ν) on the estimation error of Qπθ0

(s, a)
can be weakened. Under the current state st and action at, the prediction state-action
pairs, ŝt+1, ât+1, ŝt+2, ât+2, . . . , ŝt+H , ât+H , can be obtained by multi-step prediction using
the dynamic prediction model and policy, where H is the prediction depth. According to
the prediction state, the prediction reward function can be calculated: r̂ = r(ŝ, â).

The Equation (25) can thereby be replaced by the following:

Qπθ0
(st, at) ≈ QH

πθ0
(st, at|ν) = r(st, at) +

H

∑
k=1

γkr(ŝt+k, ât+k) + γH+1Vπθ0
(ŝt+H+1|ν) (26)

Because the discount factor γ < 1, γH+1 becomes the key to reducing the influence
of Vπθ0

(ŝt+H+1|ν). Although the prediction error r− r̂ in H steps is introduced in, it also
provides more information. From the empirical point of view, the convergence rate of
the supervised learning of the dynamic prediction model is much faster than that of the
reinforcement learning. Hence at the initial stage of the learning process, the addition of
a dynamic prediction model can provide a more accurate estimation of the action value
function Qπθ0

, thus improving training efficiency of reinforcement learning.
Both Equations (19) and (20) can be improved to (27) and (28) with QH

πθ0
:

J(θ) = Es∼ρπθ0
,a∼πθ0

[
πθ(a|s)
πθ0 (a|s) Aπθ0

(s, a|ν)− βDKL
[
πθ0(·|s)

∣∣∣∣πθ(·|s)
]]

Aπθ0
(s, a|ν) = QH

πθ0
(s, a|ν)−Vπθ0

(s|ν)
(27)

L(ν) = Es∼ρπθ0
,a∼πθ0

,s′∼P(s′ |s,a)

[
QH

πθ0
(s, a|ν)−Vπθ0

(s|ν)
]2

(28)

This model-based reinforcement learning is summarized in Algorithm 1.

Algorithm 1

Initialize critic with ν, actor with θ, model network with v, and replay bufferR.
for episode = 1, 2, . . . , R do

Receive initial observation state s0 ∼ ρ0
for t = 0, 1, . . . , T do

at ∼ πθ0 (·|st)
ut = εat + (1− ε)ut−1
Execute ut and observe reward rt, and new states st+1.
Store transition (st, at, rt, st+1) in replay buffer

end for
Update v by minimizing the loss function with k1 epochs
Update ν by minimizing the loss function with k2 epochs
Update θ by maximizing the objective function with k3 epochs
Initialize replay buffer
θ0 ← θ

end for
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6. Simulations and Analyses

In this paper, the digital simulation experiments are carried out based on the aero-
engine component-level model. The control performance is verified by the acceleration
task from the idle state to the intermediate state.

6.1. Hyperparameter Setting

There are some hyperparameters that need to be selected as follows to complete the
simulation. The simulation step size is 0.02 s. The definitions and the values of some
partial hyperparameters are listed in Table 1. The hyperparameters γ, Dtarg, τ are selected
according to Ref. [22]. The momentum factor ε is introduced to prevent major accidents and
model collapse in simulation, but too large a momentum factor will lead to too conservative
a control algorithm. In the experiment, it is concluded that when ε is around 0.015, the
model can run stably, and the influence on the control performance can be minimized. The
key to the selection of hyperparameters p and wi is that wi is much larger than p to ensure
the effect of limiting protection. In the experiment, the control policy of agent learning
basically converges to the optimal policy within 2000 episodes, while the key parameters of
the engine can be stable within 500 steps.

Table 1. Definitions and values of partial crucial hyperparameters.

Definition Symbol Value

Discounted factor γ 0.99
Momentum factor ε 0.015

Gain coefficients of rewards p, wi 100, 1000
Target value of the KL divergence Dtarg 0.01

Threshold coefficient of target KL divergence τ 1.5
Maximum number of episodes R 2000

Maximum number of simulation steps T 500

The actor network has 3 fully connected hidden layers with 256, 256, and 256 units,
respectively, while the critic network has 2 fully connected hidden layers with 256 and
256 units, respectively. The dynamic prediction model has a recurrent hidden layer and
2 fully connected hidden layers with 128 and 128 units, respectively. These three neural
networks both use the rectified linear unit (ReLU) as the activation function for hidden
layers, except that the output layer of the mean µ of the actor network is a tanh layer, the
output layer of the variance σ of the actor network is a sigmoid layer, and the recurrent
layer of the dynamic prediction model is a tanh layer.

6.2. Performance of the DRL Controller

Since the essence of the DRL controller is a deep neural network estimator, estima-
tion errors are inevitable. Such estimation errors have a great impact on the asymptotic
performance of acceleration control. The steady-state error cannot be guaranteed to be
zero, but it can be reduced to an acceptable range. The impact of the flight conditions on
aero-engine performance is also a problem. The optimal policy learned by the agent should
ensure satisfactory asymptotic performance under various flight conditions in the whole
experimental flight envelope. Thousands of accelerated experiments are conducted, and
training samples are collected to ensure that the trained agent learns the average optimal
policy within the experimental flight envelope. Considering that the aero-engine accelera-
tion process usually occurs at low altitudes and low Mach number, the flight conditions are
set as H ∈ [0km, 4km], Ma ∈ [0, 0.5]. The asymptotic performance in this paper is reflected
by the steady-state error ess =

∣∣∣Nc,cor,r−Nc_cor(∞)
Nc,cor,r−Nc_cor(t0)

∣∣∣+ ∣∣∣ EPRr−EPR(∞)
EPRr−EPR(t0)

∣∣∣.
The steady-state errors in the flight envelope are shown in Figure 6. As can be seen

from the results, the maximum steady-state error is 0.003542, and the average steady-state
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error is 0.001144, which is small enough to be negligible and will not affect aero-engine
performance in practical applications.
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Figure 6. The steady-state error within the flight envelope.

This paper shows our controller’s dynamic performance of the complete acceleration
task compared with the traditional PID controller with the min-max limit protection.
The simulation results are shown in Figure 7, where the red solid lines represent the
control curve of the DRL controller, the black solid lines represent the control curve of the
traditional PID controller, the brown dot lines indicate the control reference instructions,
and the yellow dash-dot lines indicate the limit boundary of key performance parameters.
All variables in the Figure are normalized according to the design point parameters, so they
are dimensionless.

As shown in Figure 7, the adjustment times of Nc,cor in the DRL controller and the
PID controller are 3.62 s and 4.98 s, respectively, and the adjustment times of EPR are
3.75 s and 4.98 s, respectively. The overshoots of Nc,cor and EPR of the DRL controllers are
0.48% and 0.33%, respectively, while the overshoots of the PID controller are 0.5% and 0.5%,
respectively. It can be seen from the figure that the acceleration process is mainly restricted
by the surge margin of the compressor Smc. The Smc of the DRL controller reaches the limit
boundary at the first time and keeps close to it. Therefore, the dynamic process of the DRL
controller’s acceleration task has reached the optimal performance under the condition of
meeting the limit requirements, while the traditional PID controller is more conservative.

6.3. Performance of the Deep Neural Network Dynamic Prediction Model

This subsection will show the prediction accuracy of the dynamic prediction model
from various aspects.

This subsection first focuses on the influence of the prediction lag degree on the
prediction accuracy. As mentioned in Section 5.1, the training samples are multiple state-
decision series chains (s0, a0, s1, a1, . . . , sT , aT) from time 0 to T. The prediction starting time
of the model is time l. Therefore, taking time t as the prediction start time to predict ŝt+1,
at least (st−l , at−l , st−l+1, at−l+1, . . . , st, at) is needed. The relationship between the model
prediction accuracy and the prediction lag degree is shown in Figure 8. The average value of
the norm 1 of the state prediction error is applied to measure the model prediction accuracy

as follows: es,1 =
N
∑

i=1

‖si−ŝi‖1
n , where N is the number of samples and n the dimension of

the state s. When the prediction lag degree l = 1, es,1 = 0.0228 is the highest, while when
l = 10, es,1 = 0.0045 is the lowest. The figure shows that es,1 decreases roughly with the
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increase in the prediction lag degree l. However, in the case of a high prediction degree,
the increase in l has less and less influence on the model prediction accuracy. Because of
the randomness, there may even be cases where the prediction lag is increased, but the
prediction accuracy is reduced. In addition, the higher prediction lag degree means more
computation in practical application. Therefore, it is necessary to make a balanced choice
between the accuracy and the cost of computation. When the prediction lag degree is 4 or 5,
the satisfactory prediction accuracy can be guaranteed with a low amount of computation.
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Figure 7. The acceleration process from the idle state to the intermediate state: (a) variation curve
of the main fuel flow; (b) variation curve of the throat cross-sectional area; (c) response curve of
the physical compressor rotor speed; (d) response curve of the corrected compressor rotor speed;
(e) response curve of the engine pressure ratio; (f) response curve of the physical fan rotor speed;
(g) response curve of the compressor surge margin; (h) response curve of the fan surge margin;
(i) response curve of the high-pressure turbine outlet temperature.
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Figure 8. The relationship between the model prediction accuracy and the prediction lag degree.

The precondition of Equation (26) is to use the model to predict the future H-step
state. Therefore, it is necessary to consider the error accumulation of multi-step rolling
prediction. Figure 9 shows the relationship between the model prediction accuracy es,1 and
the prediction depth H. When the prediction depth H = 1, es,1 = 0.0006 is the lowest. With
the increase in H, the prediction errors accumulated, but they all remained in the same
order of magnitude, and all of them do not exceed 0.005. Therefore, the error accumulation
of multi-step rolling prediction has negligible influence on the prediction accuracy.

Aerospace 2023, 10, x FOR PEER REVIEW 16 of 19 
 

 

accumulation of multi-step rolling prediction has negligible influence on the prediction 

accuracy. 

 

Figure 9. The relationship between the model prediction accuracy and the prediction depth. 

Figure 10 compares the dynamic process simulation curves of the component-level 

model and the trained dynamic prediction model performing the same control task under 

the same control policy. Except for the same initial state, there is no data and information 

transmission between the component-level model, and the dynamic prediction model in 

the subsequent process. With the 2500 simulation steps, the prediction accuracy of the 

dynamic prediction model is not affected by error accumulation, and the whole simula-

tion process has high prediction accuracy. Compared with the steady state process, the 

prediction accuracy of the transition state process is higher. The reason, we guess, is that 

the samples in the replay buffer are mostly transitional process data, which leads to more 

adequate training in fitting the transitional process. In Figure 10, the simulation curves of 

EPR , mfS , 6T  are partially enlarged. It can be clearly seen that the dynamic prediction 

model has a strong dynamic fitting ability, and even the slight vibration of the component-

level model can be well reflected. 
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Figure 10 compares the dynamic process simulation curves of the component-level
model and the trained dynamic prediction model performing the same control task under
the same control policy. Except for the same initial state, there is no data and information
transmission between the component-level model, and the dynamic prediction model in the
subsequent process. With the 2500 simulation steps, the prediction accuracy of the dynamic
prediction model is not affected by error accumulation, and the whole simulation process
has high prediction accuracy. Compared with the steady state process, the prediction
accuracy of the transition state process is higher. The reason, we guess, is that the samples
in the replay buffer are mostly transitional process data, which leads to more adequate
training in fitting the transitional process. In Figure 10, the simulation curves of EPR, Smf,
T6 are partially enlarged. It can be clearly seen that the dynamic prediction model has a
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strong dynamic fitting ability, and even the slight vibration of the component-level model
can be well reflected.
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Figure 10. The comparison between the multi-step predictive control curve of the dynamic predictive
model and the control curve of the component-level model: (a) simulation curve of the physical fan
rotor speed; (b) simulation curve of the physical compressor rotor speed; (c) simulation curve of
the engine pressure ratio; (d) simulation curve of the fan surge margin; (e) simulation curve of the
compressor surge margin; (f) simulation curve of the high-pressure turbine outlet temperature.

6.4. Simulation Analysis of Model-Based Reinforcement Learning Method

The cumulative rewards of each episode in the learning process of the model-free and
model-based methods are shown in Figure 11. The higher the reward, the better the control
performance of the policy. Several simulation experiments are carried out to eliminate
the influence of the randomness of the RL learning process. In Figure 11, the solid lines
represent the average cumulative rewards in multiple experiments. The borders of the
shadow region represent the maximum and minimum cumulative rewards in multiple
experiments respectively. The blue part and the orange part represent the simulation results
obtained from the model-based method and the model-free method, respectively. In the
simulation episodes, the cumulative rewards of the two methods have an upward trend as
a whole, which means that both methods can realize the optimization of the policy. The
cumulative rewards of the model-free method and the model-based methods exceed −200
for the first time in the 250th episode and the 135th episode, respectively. At the beginning of
the training process, the cumulative rewards have a downward trend, which is because the
estimation of the value function is inaccurate, and the agent explores cluelessly. The agent
in this period may output some dangerous actions. The model-based method can reduce
the downward trend of the cumulative rewards in the early learning process. Consequently,
compared with the model-free method, the model-based reinforcement learning method
improved by using the dynamic prediction model can improve the learning efficiency,
reduce the instability in the initial stage of learning, and realize the equivalent optimal
policy faster.
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7. Conclusions

This paper trains both the reinforcement learning controller and dynamic prediction
model for the aero-engine. The proximal policy optimization algorithm is applied to train
the controller, and the recurrent neural network is used as the structure of the dynamic
prediction model.

The samples in the replay buffer of the reinforcement learning are used to train the
dynamic prediction model, which in turn is used to improve the learning efficiency of
reinforcement learning. Therefore, the combination of the two can obtain twice the result
with half the effort.

The simulation results show that the deep reinforcement learning controller in this
paper has satisfactory steady-state performance, and has a faster response speed than the
traditional controller in the acceleration task from the idle state to the intermediate state.
The dynamic prediction model itself has high prediction accuracy, and it can obviously
improve the learning efficiency of reinforcement learning.
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