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Abstract: Advanced rotational variable-swept missile wings require the ability to rapidly deploy,
retract and reach the designated position. Therefore, the establishment of an effective time-varying
aeroelastic model of a rotating missile wing is the prerequisite for performing transient response
analysis during the rapid morphing process. In this paper, the finite element model of the wing
at the fixed configuration is combined with the floating frame method to describe the small elastic
deformations and large rigid-body displacements of the wing, respectively. Combining the structural
dynamic model with the supersonic piston theory, a nonlinear and time-varying aeroelastic model
of a missile wing undergoing the rapid morphing process is established. A method for the real-
time determination of the time-varying lifting surface during morphing is discussed. Based on
the proposed aeroelastic equations of motion, the flutter characteristics of the wing at different
sweep angles are obtained. The influences of the actuator spring constant, the damping ratio during
the morphing and the post-lock stages, as well as the velocity quadratic term in the aeroelastic
equations, on the transient responses of the system are studied. The simulation results show that the
flutter characteristics of the wing are greatly influenced by the sweep angle. Moreover, the jumping
phenomenon in flutter speed due to the switching of flutter modes is found with the increase of the
sweep angle. The morphing simulations demonstrate that the transient aeroelastic responses mainly
occur in the post-lock stage, so much more attention needs to be focused on the post-lock vibrations.
In addition, under the given simulation parameters, the nonlinear quadratic velocity term has little
effect on the transient responses of the system. This study provides an efficient method for predicting
the transient aeroelastic responses of a rotational variable swept wing.

Keywords: variable-swept wing; floating frame of the reference formulation; rapidly morphing;
time-varying aeroelastic system

1. Introduction

Cruise missiles take off from the ground or carrier platforms, fly in the atmosphere
and attack various targets. Their flight conditions (altitude, flight Mach number, etc.) will
change dramatically. It is difficult for the flight vehicle with a fixed configuration to adapt
to such a wide range of changes in flight parameters. Therefore, it is impossible to always
maintain an excellent flight performance within the whole flight envelope. One solution
is to design aircraft wings that can change shapes in flight such that a single aircraft can
optimally perform multiple missions [1]. In summary, the main objective of the morphing
design is to resolve the conflicts that arise between high-speed and low-speed flight or to
control the flight in different speed regimes [2].

Up to now, various morphing configurations have been proposed, which can be
categorized according to the geometric changes to the parameters such as the sweep angle,
camber, twist, span and dihedral [3]. For instance, inspired by flying birds, the variable
swept aircraft became an earlier batch of flying machines that had been put into production
for military use. The earlier morphing aircrafts included the Pterodactyl IV demonstrator,
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F-14 fighter, Tornado fighter, Tu-160 bomber, etc. All of these aircrafts achieved an improved
flight performance by actively changing the sweep angle. However, after the 1970s, almost
all the variable swept aircraft projects were cancelled due to the increased aircraft weight
and the structural complexity. In 2003, the U.S. Defense Advanced Research Projects Agency
(DAPRA) launched the Morphing Aircraft Structures (MAS) program. Three contractors
of this program, Lockheed Martin, NextGen Aeronautics, and Raytheon Missile Systems,
proposed the concepts of a folding wing, a flexible skin morphing wing, and a telescoping
wing, respectively [4]. After that, the morphing aircraft has regained attention within the
aerospace community. At present, the research of morphing aircraft mainly focuses on
materials or shape morphing mechanisms and aerodynamic design [5–8].

Li et al. [9] designed different aerodynamic shapes of the variable swept wing and
completed the aerodynamic characteristics analysis. They proved the super adaptive ability
of the morphing technology. Xia [10] designed the optimal sweep angle of a variable swept
Firebee drone for variable cruise missions. Chen et al. [11] proposed an efficient offline
trajectory planning method for the morphing aircraft referring to the AGM-158 airfield
missile. Furthermore, Dai et al. [12,13] constructed a dynamic model for the variable swept
wing, the aerodynamic performance and the impact of the additional forces and moment
resulting from morphing motions were studied, but they focused on the flight performance
rather than the aeroelastic characteristics. In addition to the variable swept wing, there are
some other popular morphing types, such as the folding wing, variable-camber wing and
variable-span wing. Zhao and Hu [14] developed a set of differential-algebraic equations
to predict the transient responses of the wing during the folding process, which can be
applied to both the slow- and fast-varying processes of the folding wing. Zhao [15] studied
an adaptive variable-camber wing experimentally and numerically, and they found that
the flight efficiency increased by 14.1% compared to the traditional fixed-wing.

It is noted that the aeroelastic effects have significant influence on the design and flight
performance of the morphing aircraft. In general, the aircraft will experience great changes
in the structure and aerodynamic forces during the morphing process, which will lead to
a remarkable change in the aeroelastic characteristics of the system [16]. The aeroelastic
problems of the morphing wings have been studied over the past decade. A variety of
modeling and analysis methods were developed to investigate the aeroelastic behaviors of
the morphing wing. Li [17] analyzed the stability of a variable span wing, whose simulation
results indicate that the proposed morphing law could accomplish the flutter suppression.

The aeroelastic model of the morphing wing varies with the variation of the morphing
parameters (folding angle, sweep angle, span, etc.). Obviously, the parameter-varying
modeling method is the key to the aeroelastic analysis of the morphing wing. In fact,
many morphing systems exhibit dynamics that can be reasonably described by Linear
Parameter-Varying (LPV)[18] models. The LPV models can be used to represent the dy-
namic characteristics of a linear parameterized system online and to characterize nonlinear
systems from a series of local linear models. Generally, there exist two approaches for
LPV modeling: the global approaches [19–21] and the local approaches [22,23]. The global
approaches can used to predict responses produced by global parameters (scheduling
parameter). However, it is based on the assumption that it is possible to perform a global
identification experiment by exciting the system while the scheduling parameters are per-
sistently changing the system dynamics. This assumption, obviously, is invalid for most of
the flight vehicles [24]. The local approaches use the time-frozen assumption to generate a
set of local Linear Time-Invariant (LTI) models at different fixed parameters. Additionally,
then the overall LPV system can be obtained by interpolating these LTI models. Since the
state-space representation is not unique, these local LTI models are in general not given
in a consistent form. They must be represented in a consistent state-space form before
interpolating [25–27]. It is an inherent limitation of the local approaches that only the static
parameter-dependent part can be modeled [28], since time variation of the scheduling
parameter is not considered in the modeling. Hence, strictly speaking, the local approaches
are only applicable to the system with slowly varying parameters.
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For a rapid morphing process, the local approaches are not suitable for understanding
system dynamic behaviors due to the time-varying nature of the system. It is necessary
to develop the time-varying modeling methods to account for the effects produced by the
rapid morphing process. Selitrennik [29] developed a new approach for the computational
fluid dynamics-based aeroelastic simulation of rapid morphing flight vehicles, in which the
fictitious-mass substructure synthesis method was used to obtain the structural equations
of motion, and the centrifugal forces were applied on the mass elements to account for
the stiffening effect caused by the rotating motion. However, the high-fidelity morphing
simulation is very time consuming.

To improve the flight performance, the variable-swept wings can be integrated into
the cruise missiles, such as the AGM158 cruise missile series and BGM-109 cruise missiles
in service. It is predictable that this kind of variable-swept morphing capability can also be
integrated into the supersonic vehicles to perform particular tasks. In such morphing wing
applications, it is required that the missile wings have the ability to deploy, retract, or reach
the designated position rapidly. In this case, the slowly time-varying hypothesis does not
hold true. The goal of this paper is to develop a set of nonlinear, time-varying aeroelastic
equations to predict the transient aeroelastic responses of a variable-swept wing during
the rapid morphing process. The proposed modeling method is computationally efficient,
and can be applied to both slow and fast time-varying processes of the variable-swept
wing during the morphing process. The effectiveness of the proposed method was verified
through numerical simulations.

2. Aeroelastic Modeling of the Rotating Variable Swept Wing
2.1. Description of the Motion of the Wing

Figure 1 illustrates the motion of a variable swept wing in three-dimensional space.
The wing can be rotated about the original point o to change the sweep angle. The transient
responses of the wing during morphing can be regarded as the small elastic vibrations
superimposed on a large-scale overall rigid body motion. Therefore, the floating frame
method [30] may be the best choice for solving the present problem. In this method, the
configuration of the deformable wing is identified by using reference and floating frames.
The reference frame oxyz in Figure 1a defines the location and orientation of the wing.
The floating frame oxwywzw is used to describe the small deformations of the wing with
respect to the reference frame. Assume that the axes of these two coordinate systems are
initially parallel. The wing can rotate around the zw axis with an angle θ (the clockwise
direction is positive rotation) until it reaches the maximum sweep angle θmax, as shown in
Figure 1b. The symbol U∞ in the figure represents the incoming flow speed. It should be
emphasized that the angular velocity of the rotating wing is not necessarily constant, but
can be time-varying during the morphing process.

Figure 1. Schematic of a variable swept wing and the coordinate frames. (a) Stereogram description.
(b) Planform description.
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2.2. Structural Dynamic Modeling of a Variable Swept Wing

The main problem to be solved in the structural dynamic modeling is to integrate
the finite element model (FEM) established by commercial software (e.g., MSC.Nastran)
into the floating frame method. Note that the construction of the time-varying aeroelastic
equations requires the mass, stiffness and modal matrices of the wing. Therefore, the
FEM of the wing should be constructed firstly in the floating frame at the equilibrium
configuration. Moreover, in order to facilitate the use of the FEM in the floating frame
method, the lumped mass matrix must be specified during the FEM modeling process of
the wing.

It is assumed that the FEM of the wing in the floating frame has been established.
During the rotation of the wing, as shown in Figure 1a, the instantaneous global position
rp(t) of an arbitrary finite element node p can be written as

rp(θ, t) = A(θ)(uwp + Swpqw(t)) (1)

where

uwp =


xwp
ywp
zwp

 (2)

Swp =

φwx,1
(
xwp, ywp, zwp

)
φwx,2

(
xwp, ywp, zwp

)
φwx,n

(
xwp, ywp, zwp

)
φwy,1

(
xwp, ywp, zwp

)
φwy,2

(
xwp, ywp, zwp

)
φwy,n

(
xwp, ywp, zwp

)
φwz,1

(
xwp, ywp, zwp

)
φwz,2

(
xwp, ywp, zwp

)
φwz,n

(
xwp, ywp, zwp

)


3×n

(3)

uwp(t) =


uwx(t)
uwy(t)
uwz(t)

 = Swpq(t), qw(t) =


qw1(t)
qw2(t)

...
qwn(t)

 (4)

uwp is the position vector of the node p in the floating frame oxwywzw. Swp is the
matrix related to the modal shapes at the node p. φwx,i, φwy,i and φwz,i, i = 1, 2, · · · , n, are
the values of the i-th mode at the node p in xw, yw and zw directions, respectively, which
can be obtained by the normal mode analysis of the FEM. qw(t) is the modal coordinate
vector describing the elastic deformation of the wing, and n is the number of the retained
modes. A represents the transformation matrix between the floating frame oxwywzw and
the global frame oxyz, given by

A(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (5)

The velocity vector at the finite element node p can be obtained by differentiating the
position vector with respect to the time, given by

.
rp = [Aθ(θ)(uwp + Swpqw(t)) A(θ)Swp]

{ .
θ
.
qw

}
(6)

where

Aθ(θ) =

− sin θ cos θ 0
− cos θ − sin θ 0

0 0 0

 (7)
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Thus, the kinetic energy Tw of the rotating wing can be written as

Tw =
1
2

nw

∑
p=1

mp(
.
rp)

T .
rp =

1
2

.
qTMw(q)

.
q =

1
2

{ .
θ
.
qw

}T[
mθθ mθq
mqθ mqq

]{ .
θ
.
qw

}
(8)

where

mθθ(q) =
nw

∑
p=1

mp(uwp)
TIauwp + 2Ioqw + (qw)

Tm f f qw (9a)

mθq(q) = (mqθ(q))
T =

nw

∑
p=1

mp(uwp)
TIbSwp + (qw)

TS̃ (9b)

mqq =
nw

∑
p=1

mp(Swp)
TSwp (9c)



Io =
nw
∑

p=1
mp(uwp)

TIaSwp

m f f =
nw
∑

p=1
mp(Swp)

TIaSwp

S̃ =
nw
∑

p=1
mp(Swp)

TIbSwp

(9d)



Ia = (Aθ)
TAθ =

 1 0 0
0 1 0
0 0 0


Ib = (Aθ)

TA =

 0 −1 0
1 0 0
0 0 0


(9e)

q =

{
θ

qw

}
(9f)

The symbol mp stands for the lumped mass at the node p, and nw is the number of the
active nodes in the FEM. It is noted that Mw(q) is a time-varying mass matrix since it is
dependent on the time-varying general coordinate vector q.

Assume that the rotation angle of the wing is θ = 0 deg at the beginning of the
morphing process. The rotational motion of the wing is driven by a preloaded actuator
spring whose nominal stiffness coefficient is denoted as Kact. As shown in Figure 1b, when
reaching θmax for the first time, a spring with a very large stiffness coefficient αactKact is
used to simulate the locking mechanism. The coefficient αact is a constant greater than 1.
Let t0 be the locking time when the rotation angle reaches θmax, then the variation of the
torsional spring constant Ks with the time t can be depicted by Figure 2.
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Figure 2. Variation of the spring constant with time during the morphing process.

Obviously, the potential energy includes two parts: the elastic potential energy Uact
relating to the torsional spring and the strain energy Us resulting from the elastic defor-
mation of the wing. From Figure 2, we can see that the elastic potential energy Uact is
time-dependent and can be written as

Uact =


1
2 Kact(θpreload − θ)2, t < t0

1
2 αactKact(θ − θmax)

2, t ≥ t0

(10)

where θpreload is the preloaded spring angle.
The strain energy Us can be written as

Us =
1
2
(qw)

TKqqqw (11)

where Kqq is the modal stiffness matrix in the floating frame.
Now, the total potential energy of the system can be written as

Uw = Uact + Us =


1
2 Kact(θpreload − θ)2 + 1

2 (qw)
TKqqqw, t < t0

1
2 αactKact(θ − θmax)

2 + 1
2 (qw)

TKqqqw, t ≥ t0

(12)

The dissipation function of the system can be expressed as

Dw = Dact + Ds =


1
2 Cact

.
θ

2
+ 1

2 (
.
qw)

TCqq
.
qw, t < t0

1
2 Clock

.
θ

2
+ 1

2 (
.
qw)

TCqq
.
qw, t ≥ t0

(13)

where Cact and Clock are the damping coefficients of the rotational degrees of freedom of
the wing in the rotation and the locking phases, respectively. Cqq is the modal damping
matrix corresponding to the elastic vibration of the wing.

The Lagrange’s equation takes the form

d
dt

(
∂Tw

∂
.
q

)
− ∂Tw

∂q
+

∂Dw

∂
.
q

+
∂Uw

∂q
= Fgen (14)

Substituting Equations (8), (12) and (13) into Equation (14), the nonlinear and time-
varying equations of the motion for the rotating wing can be written as

Mw(q)
..
q(t) + Dw

.
q(t) + Kwq(t) = Fconst + Fsv(q,

.
q) + Fa (15)
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where 

Mw(q) =
[

mθθ mθq
mqθ mqq

]

Dw =

[
Cas 0
0 Cqq

]

Kw =

[
Kas 0
0 Kqq

]
(16)


Cas =

{
Cact, t < t0

Clock, t ≥ t0

Kas =

{
Kact, t < t0

αactKact, t ≥ t0

(17)

The vector Fconst in Equation (15) refers to the constant moment related to the preloaded
and the locking springs, given by

Fconst =

{
Mconst

0

}

Mconst =

{
Kactθpreload, t < t0

αactKactθmax, t ≥ t0

(18)

The vector Fsv(q,
.
q) in Equation (15) can be written as

Fsv(q,
.
q) = −

.
Mw(q)

.
q +

∂

∂q

(
1
2

.
qTMw(q)

.
q
)

(19)

where Fsv(q,
.
q) is a quadratic velocity vector resulting from the differentiation of the kinetic

energy with respect to the time and with respect to the body coordinates. This quadratic
velocity vector contains the gyroscopic and Coriolis force components. In the present planar
analysis, the components of the vector Fsv(q,

.
q) can be written as

Fsv(q,
.
q) =

 (Fsv)θ

(Fsv)qw

 =


−2

.
θ(

.
qw)

T
((Io)

T
+ m f f qw)

.
θ

2
((Io)

T
+ m f f qw) + 2

.
θS̃

.
qw

 (20)

During the derivation of Equation (20), the relation (
.
qw)

TS̃
.
qw = 0 is used, because S̃ is

a skew symmetric matrix. Note that the quadratic velocity vector that includes the effect of
the Coriolis and centrifugal forces is a nonlinear function of the generalized coordinates
and velocities. Fa in Equation (15) is the vector of the generalized unsteady aerodynamic
forces (GAF) that will be discussed in detail in the next section.

2.3. Generalized Unsteady Aerodynamic Forces

In the global frame oxyz, the aerodynamic vector equivalent to the node p is repre-
sented by a 3× 1 vector fap. From Equation (1), the virtual displacement of the node p can
be written as

δrp = [Aθ(θ)(uwp + Swpqw(t)) A(θ)Swp]

{
δθ

δqw

}
(21)
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The total virtual work performed by the aerodynamic forces acting on the finite
element nodes can be expressed as

δW =
ns
∑

p=1
(fap)

Tδrp

=
ns
∑

p=1
(fap)

T[Aθ(θ)(uwp + Swpqw(t)) A(θ)Swp]

{
δθ

δqw

}

=

[
(Qa)θ

(Qa)qw

]T{
δθ

δqw

}
= Fa

T
{

δθ
δqw

}
(22)

where

Fa =

[
(Qa)θ

(Qa)qw

]
(23)

(Qa)θ =
ns

∑
p=1

(fap)
TAθ(θ)(uwp + Swpqw(t)) (24)

(Qa)qw
=

(
ns

∑
p=1

(fap)
TA(θ)Swp

)T

=
ns

∑
p=1

(Swp)
TAT(θ)(fap) (25)

The symbol ns in the summation represents the number of the user-selected finite
element nodes on which the equivalent aerodynamic forces are calculated.

Note that the position vector uwp of the finite element nodes, the vibration mode data
Swp, and the transformation matrices A and Aθ can be obtained in advance. It can be seen
from Equations (24) and (25) that once the aerodynamic force fap and the generalized force
(Qa)θ are obtained, (Qa)qw

can then be calculated.
The complexity of the aeroelastic problem lies in that the aerodynamic force vector

fap is dependent on the motion of the structure. Hence, the interpolation between the
aerodynamic force and the structural motion is required.

In this paper, the local piston theory is used to calculate the unsteady aerodynamic
forces of a variable swept wing [31]. At a high Mach number, the piston theory assumes
that the disturbance of an airfoil and flow field is similar to the piston motion. Due to the
high Mach number effect, the spatial characteristic of the flow shows a strong local effect,
so that the pressure on the airfoil and the downwash boundary conditions at the point
forms a one-to-one mapping. Furthermore, the temporal characteristic of the flow shows a
weak memory effect. These features make the expressions of the piston theory very simple
and concise.

As shown in Figure 3, in the global frame oxyz, the nodal force vector fap can be
written as

fap =


fdp cos α

0

flp + fdp sin α

 = flp


0

0

1

+ fdp


cos α

0

sin α

 (26)

where flp and fdp are the lift and drag acting on the node p, respectively. It can be seen that
Equation (26) is divided into two parts: one is related to the normal force of the node and
the other is related to the drag.
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Figure 3. Aerodynamic forces equivalent to the node p.

To calculate (Qa)θ given by Equation (24), substitute Equation (26) into Equation (24),
and we obtain

(Qa)θ =

nsl
∑

p=1
flp

 0
0
1

T − sin θ cos θ 0
− cos θ − sin θ 0

0 0 0

(uwp + Swpqw(t))

+
nsd
∑

p=1
fdp

 cos α
0

sin α

T − sin θ cos θ 0
− cos θ − sin θ 0

0 0 0

(uwp + Swpqw(t))

(27)

where nsl represents the number of the finite element nodes used for the equivalence of
the aerodynamic forces. nsd represents the number of the finite element nodes used for the
equivalence of the aerodynamic drag.

Note that the first summation term in Equation (27) is zero, and Equation (27) can be
rewritten as

(Qa)θ =
nsd

∑
p=1

fdp


− sin θ cos α

cos θ cos α

0


T

(uwp + Swpqw(t)) (28)

In general, the distribution of drag can be written as

dD
dr

=
1
2

ρ∞U2
∞cd fcr(θ) (29)

where dr is the infinitesimal length in the span, and dD is the drag forces acting on the
strip with the infinitesimal length dr. fcr(θ) is the correction factor, which is the function of
the sweep angle θ. cd is the drag coefficient, given by

cd = cd0 + cd2α2 + cd4α4 (30)

in which cd0, cd2 and cd4 are constants.
To calculate (Qa)qw

given by Equation (25), substitute Equation (26) into Equation (25)
to obtain
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(Qa)qw
=

(
ns
∑

p=1

(
fap

)T
A(θ)Swp

)T

=
ns
∑

p=1

(
Swp

)TAT(θ)
(

fap

)

=
nsl
∑

p=1
flp
(
Swp

)TAT(θ)

0
0
1

+
nsd
∑

p=1
fdp
(
Swp

)TAT(θ)

cos α
0

sin α


=

nsl
∑

p=1

(
Swp

)T

 0
0
flp

+
nsd
∑

p=1
fdp
(
Swp

)T

cos θ cos α
sin θ cos α

sin α


= Qal + Qad

(31)

Note that the second summation term Qad in Equation (31) is easy to calculate, so the
following discussion will focus on the calculation of the first summation term Qal , which
represents the modal aerodynamic forces in the z direction.

The unsteady aerodynamic forces are calculated based on the Van Dyke second-order
piston theory. In the global frame oxyz, the local differential pressure coefficient ∆cp(x, y, t)
of the lifting surface can be written as [25]

∆cp(x, y, t) = − 4
M∞

Aa(x, y)
(
−α +

∂Z(x, y, t)
∂x

+
1

U∞

∂Z(x, y, t)
∂t

)
(32)

where

Aa(x, y) = c1 + 2c2M∞
∂H(x, y)

∂x
(33)


c1 = M∞

β

c2 = M4
∞(γ+1)−4β2

4β4

β =
√

M2
∞ − 1 .

(34)

The function H(x, y) represents the airfoil thickness, M∞ is the Mach number, Z(x, y, t)
is the displacement of a node in the surface of the wing in the zw direction, and α is the
static angle of the attack.

In order to account for the influence of the time-varying sweep angle, the coefficients
c1 and c2 in Equation (33) can take the following form [26]:

c1 = M∞√
M2

∞−sec2 Λ
,

c2 = [M4
∞(γ+1)−4 sec2 Λ·(M2

∞−sec2 Λ)]

[4(M2
∞−sec2 Λ)

2
]

.
(35)

where Λ is the leading edge sweep angle.
It is noted that the calculation of the downstream slope ∂Z(x, y, t)/∂x in Equation (32)

requires the mode shape data of the wing under an arbitrary rotation angle θ, which is
very inconvenient for the numerical simulation. To improve the computational efficiency,
the principle of relative motion can be used. As shown in Figure 4, the aerodynamic force
acting on the rotating wing can be calculated by continuously changing the deflection angle
θ of the air flow according to the structural and aerodynamic models in the local rotating
coordinate system. In this way, the normal unsteady aerodynamic forces of the rotating
wing can be calculated in the oxwywzw frame. Meanwhile, the FEM of the wing structure
needs to be established only once in the frame. The natural vibration characteristics of the
wing can be obtained from the FEM in the local floating frame. Assuming that the first n
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order natural modes of the structure are retained, the displacement of the wing in the zw
direction can be expressed as

Z(xw, yw, t) =
n

∑
j=1

f j(xw, yw)qwj(t) (36)

where f j(xw, yw) is the j-th mode shape of the wing in the zw direction, and qwj(t) is the
modal coordinate.

Figure 4. Rotation of the air flow.

In the presence of the deflection angle of the air flow, the local pressure difference at a
point (xw, yw) of the wing is

∆p(θ, xw, yw, t) = − 4qd
M∞

n

∑
j=1

[Aa(θ, xw, yw)(−α+
∂ f j(xw, yw)

∂ξ
qwj(t) +

1
U∞

f j(xw, yw)
.
qwj(t))] (37)

where

Aa(θ, xw, yw) = c1 + 2c2M∞
∂H(xw, yw)

∂ξ
(38)

c1 and c2 are given by Equation (35), in which Λ = θ.
According to Figure 5, there exists the following transformations between the coor-

dinate system oξη that indicate the direction of air flow and the local coordinate system
oxwyw:

xw = ξ cos θ − η sin θ, yw = η cos θ + ξ sin θ (39)

We have
∂ f j(xw ,yw)

∂ξ =
∂ f j(xw ,yw)

∂xw
∂xw
∂ξ +

∂ f j(xw ,yw)

∂yw

∂yw
∂ξ

=
∂ f j(xw ,yw)

∂xw
cos θ +

∂ f j(xw ,yw)

∂yw
sin θ

(40)

Substitute Equation (40) into Equation (37), the local pressure difference at a point
(xw, yw) of the wing under the air flow deflection angle θ can be written as

∆p(θ, xw, yw, t)

= − 4qd
M∞

n
∑

j=1
[(−α + (

∂ f j(xw ,yw)

∂xw
cos θ+

∂ f j(xw ,yw)

∂yw
sin θ)qwj(t) + 1

U∞
f j(xw, yw)

.
qwj(t))]

(41)
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where

Aa(θ, xw, yw) = c1 + 2c2M∞

(
∂H(xw, yw)

∂xw
cos θ +

∂H(xw, yw)

∂yw
sin θ

)
(42)

Therefore, the i-th modal aerodynamic force Qai can be written as

Qai =
x

∆p(θ, xw, yw, t) fi(xw, yw)dxwdyw = − 4qd
M∞

n

∑
j=1

[
Aij(θ)qwj(t) +

1
U∞

Bij(θ)
.
qwj(t)

]
(43)

where
Aij(θ) =

x
Aa(θ, xw, yw)(−α + gj(θ, xw, yw)) fi(xw, yw)dxwdyw (44a)

Bij(θ) =
x

Aa(θ, xw, yw) f j(xw, yw) fi(xw, yw)dxwdyw (44b)

gj(θ, xw, yw) =
∂ f j(xw, yw)

∂xw
+

∂ f j(xw, yw)

∂yw
(44c)

It can be seen from Equation (44a–c) that Aij and Bij depend on the mode shape, the
thickness function of the lifting surface and the rotation angle θ.

Figure 5. Definition of the deflection angle θ of the air flow.

Now, the modal aerodynamic force vector Qal in Equation (31) can be written in the
following form:

Qal =



Qa1
Qa2

...
Qai

...
Qan


= qd

(
A(θ)qw(t) +

1
U∞

B(θ)
.
qw(t)

)
(45)

where the elements in matrices A(θ) and B(θ) are

Aij = −
4

M∞
Aij(θ), Bij = −

4
M∞

Bij(θ) (46)
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2.4. Nonlinear and Time-Varying Aeroelastic Equations of the Variable Swept Wing

Note that the unsteady aerodynamic vector Fa can be written as the following form:

Fa =

[
(Qa)θ

(Qa)qw

]
=

[
0

Qal

]
+

[
(Qa)θ

Qad

]
= Fal(q,

.
q) + Fad(q)

(47)

where

Fal(q,
.
q) =

[
0

Qal

]
, Fad(q) =

[
(Qa)θ

Qad

]
(48)

According to Equation (45), Fal(q,
.
q) can be written as

Fal(q,
.
q) =

[
0

Qal

]
=

1
2

ρ∞U2
∞A(θ)q(t) +

1
2

ρ∞U∞B(θ)
.
q(t) (49)

where

A(θ) =

[
0 0
0 A(θ)

]
, B(θ) =

[
0 0
0 B(θ)

]
(50)

Based on Equations (15), (18), (19) and (47), the nonlinear and time-varying aeroelastic
equations of the variable-swept wing can be obtained as

Mw(q)
..
q(t) + (Dw − 1

2 ρ∞U∞B(θ))
.
q(t) + (Kw − 1

2 ρ∞U2
∞A(θ))q(t)

= Fconst + Fsv(q,
.
q) + Fad(q)

(51)

or in the state space form

.
X̃(t) = Ã(q)X̃(t) + F̃sv(q,

.
q) + F̃ad(q) + F̃const(q) (52)

where

Â(q) =

 0

−M−1
w (q)

(
Kw − 1

2 ρ∞U2
∞A(θ)

) I

−M−1
w (q)

(
Dw − 1

2 ρ∞U∞B(θ)
)
 (53)

X̃(t) =
[

q(t)
.
q(t)

]
(54)



F̃sv =

[
0

M−1
w (q)Fsv(q,

.
q)

]

F̃ad(q) =
[

0
M−1

w (q)Fad(q)

]

F̃const =

[
0

M−1
w (q)Fconst

]
(55)
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2.5. Several Issues on Numerical Simulations
2.5.1. Double Numerical Integrations

Note that when calculating matrices A(θ) and B(θ) in Equation (45), it is necessary to
calculate the double integrals given by Equation (44a,b), in which the analytical modal shape
f j(xw, yw) and the downstream slope should be known in advance. In actual simulations,
numerical integration is used for Equation (44a,b). Hence, f j(xw, yw) should be replaced by
the discrete modal data obtained by the FEM. In order to deal with the double numerical
integrations, the lifting surface of the wing is divided into a number of quadrilateral
elements. Based on the isoparametric transformation, the integration problem in the non-
rectangular region is transformed into the one in the square region. Afterwards, the Gauss
quadrature formula is used to calculate the element integral Ik. Finally, the double integral
over the entire lifting surface can be expressed as

I =
m

∑
k=1

Ik (56)

where m is the number of the elements on the lifting surface. It can be seen that the
computation of the double integrals only requires values of the integrand at the Gaussian
integration points.

Due to the inconsistency between the structure and the aerodynamic grid, it is neces-
sary to transfer the vibration displacement and aerodynamic data between the structure
and the aerodynamic grid. To this end, let the spline matrix Gas be the transformation
matrix from the global FEM displacement vector u to the displacement vector ha at the
interpolation points, so we have the following relationship:

ha = Gasu (57)

It can be seen from Equation (57) that the functional values at the Gaussian integral
points can be obtained by the spline interpolation of the mode shape values at the pre-
selected structural finite element nodes.

Similarly, the slope vector hα at the interpolation points can be written as

hα = Gαsu (58)

where Gαs is the spline matrix.
Obviously, the key to obtain the displacement and slope vectors at the interpolation

points is to find the spline matrices Gas and Gαs, which can be formed by the infinite plate
spline (IPS) interpolation method [32].

2.5.2. Time-Varying Lifting Surface

As shown in Figure 6, the region that overlaps with the fuselage does not produce
lift. Therefore, the wing outside the fuselage is the effective lifting surface that generates
the aerodynamic forces. Moreover, the area of the effective lifting surface is time-varying
during the morphing process. In Figure 6, for example, when θ = 0 deg, the effective lifting
surface is enclosed by A0CDB0. At an arbitrary rotation angle θ, the effective lifting surface
is enclosed by AθCDBθ .
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Therefore, during the rotation of the wing, it is necessary to determine the positions
of the left boundary points Aθ and Bθ of the effective lifting surface in the floating frame
oxwyw in real time. The yw coordinate values of the boundary points Aθ and Bθ can be
calculated by ywAθ

= lb−ha sin θ
cos θ

ywBθ
= lb+hb sin θ

cos θ

(59)

Figure 6. The time-varying effective lifting surface.

To demonstrate the concept of the time-varying effective lifting surface of a variable
swept wing during the morphing process, consider a rotating rectangle wing with half-span
ls = 1000 mm and chord length cs = 200 mm. Assume that the rotation axis of the wing
is located at la = 30 mm, lb = 40 mm, ha = 30 mm and hb = 170 mm. The calculated left
boundary points (red circles) of the effective lifting surface are shown in Figure 7. The
effective lifting surface (the red region) corresponding to each sweep angle is shown in
Figure 8. Obviously, the area of the effective lifting surface is time-varying during the
morphing process of the wing.

Figure 7. The calculated left boundary points (red circles) of the effective lifting surface.
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Figure 8. The time-varying effective lifting surface. (a) Sweep angle is 0 deg. (b) Sweep angle is
20 deg. (c) Sweep angle is 40 deg. (d) Sweep angle is 60 deg.

3. Numerical Simulations

This study focuses on the time-varying aeroelastic response behaviors of the missile
wing during the rapid rotation at a high flight speed. The considered missile model is
shown in Figure 9, in which the wings can be deployed after launching and change the
sweep angle according to different flight conditions. The FEM and the aerodynamic models
are shown in Figure 9b. The chord length of the wing is 120 mm, the half-span of the wing
is 720 mm when it is fully deployed (the configuration at θ = 0 deg), the area of the wing is
0.5957 m2, and the weight is 2.49 kg. The leading edge sweep angle θ of the wing can vary
from 0 deg to a maximum 65 deg.
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Figure 9. The rotating wing models used for simulations. (a) The geometric model of the considered
missile. (b) The FEM and aerodynamic models.

In this study, the FEM of the wing was constructed by MSC.Patran. The node coor-
dinates were obtained from the generated BDF file. The mass, stiffness and mode shape
matrices were obtained from the normal mode analysis in MSC.Nastran. These data will
be used to construct the developed time-varying aeroelastic model of the rotating wing.
Table 1 gives the first ten natural frequencies of the wing. Notably, the fuselage and root of
the wing are fixed in the FEM.

Table 1. The first ten natural modes (θ = 0 deg).

Order Frequency (Hz) Mode Shape

Mode 1 14.34 1st vertical bending
Mode 2 81.89 1st in-plane bending
Mode 3 117.43 2nd vertical bending
Mode 4 204.65 1st torsion
Mode 5 363.33 3rd vertical bending
Mode 6 544.56 2nd torsion
Mode 7 682.44 4th vertical bending
Mode 8 909.84 3rd torsion
Mode 9 1049.79 5th vertical bending

Mode 10 1245.86 4th torsion

3.1. Flutter Analysis

Predicting the flutter stability of the system is the premise of the time-varying aeroe-
lastic simulations. To this end, the flutter velocity and the flutter mode at different sweep
angles for a fixed Mach number (M∞ = 3.0) were calculated by using the p-k method. It can
be seen from Figure 10a that the flutter characteristics of the system are strongly dependent
on the sweep angle, which can be attributed to the changes of the effective lift surface and
its downstream slope under different sweep angles. With the increase of the sweep angle,
the flutter speed of the wing first decreases slightly and then gradually increases until the
sweep angle reaches 58 deg, after which the flutter speed decreases rapidly. Additionally, a
small jump of the flutter speed occurs between 57 deg and 58 deg. It can be found from the
computational results by the software, and the approach used in the paper is also confirmed
by comparison in some way. In order to study the effect of the rotational speed on the
variable-swept wing, this paper studies the contribution of rotational speeds for the flutter
speed. The rotational rate could strength the stiffness of the structure and improve the
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flutter speed at high rotational speeds, as you see in Figure 10b. However, it is hard for
a variable-swept wing to reach a very high speed (16 rad/s is a reference to a rotational
speed of the blade on a normal helicopter). The highest rotational speed in this paper is
less than 8 rad/s, the effect of which is less than 1% on the wing (the highest speed occurs
near 41 deg). In short, the flutter speed of the system undergoes a large change in the range
of the given sweep angle, so special attention should be paid to the aeroelastic stability in
the design of the variable-swept wings.

Figure 10. Variations of the flutter speed with the sweep angle. (a) This paper vs. software at fixed
angle. (b) The flutter speed varies with different rotational speeds.

In order to analyze the flutter character, Figures 11 and 12 provide structural damping
varying with the incoming flow speeds for the first six modes (1st, 2nd, 3rd, 4th and 6th).
When the sweep angle is less than 57 deg, the fifth-order mode becomes unstable. In this
range, the flutter is characterized by the hump shape, as shown in Figure 11, in which the
unstable mode crosses the zero point (g = 0) twice. Figure 12 shows the flutter curves
at the sweep angle of 57 deg. It can be seen that, with the increase of the flow speed, the
fifth-order modal branch reaches the zero point, and then drops rapidly, which indicates
that a switch of the unstable mode is coming. When the sweep angle increases to 58 deg,
the third-order modal branch first crosses the zero point and becomes an unstable mode.
Therefore, the essential reason for the jumping phenomenon of flutter speed is the switching
of the unstable modal branches.

Figure 11. Flutter characteristics at different sweep angles. (a) Sweep angle is 20 deg. (b) Sweep
angle is 50 deg.
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Note that under the high sweep angle, the unstable modal branch has a steep slope
at the zero point, as shown in Figure 12. This type of flutter is more dangerous compared
with the hump flutter, and can be referred to as the explosive flutter.

Figure 12. Change of the unstable mode under different sweep angles. (a) Sweep angle is 57 deg. (b) Sweep
angle is 58 deg.

3.2. Time-Varying Aeroelastic Responses

Numerical simulations for time-varying aeroelastic responses of the variable-swept
wing during the rapid morphing process are carried out at a flight speed lower than the
flutter point of the system.

Unless specifically stated, the parameters used in this study are as follows. The
flow conditions are sea level altitude and a free stream Mach number of M∞ = 3.0
(U∞ = 1020 m/s). All the simulations are performed at the trim status of the system
in which the sweep angle of the wing is θ = 0.0 deg. The relative rotation between the
wing and the body (fuselage) about the z axis is implemented by an actuator spring with
a pre-torsion angle θpreload = 40 deg. The rotating motion starts with a sweep angle of
0.0 deg and ends at the locked position θmax = 60 deg. The stiffness of the preloaded spring
is denoted as Kact. When reaching the maximum rotation angle θmax, the actuator spring is
replaced by a locking spring with a very large stiffness coefficient αactKact. The damping
ratio of the rotation motion can be varied with different operational phases of the wing,
given by 

ζact =
Cact

2
√

Iw ·Kact

ζlock = Clock
2
√

Iw ·αact·Kact

(60)

where ζact and ζlock are the damping ratios during the rotating and the locking phases,
respectively. Iw is the moment of inertia of the wing about the z-axis. In simulations, we
set ζact = 0.05, and ζlock = 0.05 ∼ 0.2. The first ten clamped natural modes are used to
account for the elastic vibrations of the wing during the morphing process. The rotating
motion of the wing starts at t = 0.05 s.
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Figure 13 shows the time histories of the sweep angle and the angular acceleration
under different actuator stiffness Kact and the same locking spring stiffness. The damping
ratio in the licking phase is taken as ζlock = 0.05. As can be seen, under the driving of the
pre-torsional spring, the wing reaches the locking position in a very short time, and then
oscillates near this position under the action of the locking spring. The greater the actuator
stiffness, the shorter the time to reach the locking position. Additionally, we can see that at
the initial stage of wing rotation, there is a fluctuation in the angular acceleration due to
the action of the actuator spring, and then it disappears quickly until the wing enters the
post-lock state. The angular acceleration gradually decreases in the rotating stage due to
the decreasing moment produced by the actuator spring. Figure 14 shows the effect of the
damping ratio in the rotational degree of freedom at the post-lock phase on the transient
responses of the wing. In simulations, the actuator stiffness is Kact = 20 N ·m/deg, and
the proportional constant is αact = 100. We can see that the oscillations decay exponentially
due to the damping effect in the post-lock state. The greater the damping ratio is, the faster
the vibration attenuations. Hence, the post-lock vibrations can be suppressed through the
proper design of the damping level in the rotational degree of freedom.

Figure 13. Time histories of the overall rotation motion of the wing. (a) Wing rotation angle vs. time.
(b) Angular acceleration vs. time.

Figure 14. Time histories of the rotation motion of the wing. (a) Wing rotation angle vs. time. (b) Angular
acceleration vs. time.



Aerospace 2023, 10, 197 21 of 29

In order to explore the effect of the rotational spring constant mounted at the wing
root on the transient responses of the wing, three actuator spring constants, 20 N ·m/deg,
10 N ·m/deg and 5 N ·m/deg, are used for the contrastive analysis. Meanwhile, the
stiffness of the locking spring remains fixed, that is αactKact = 2000 N ·m/deg. The
damping ratios are taken as ζact = 0.05, and ζlock = 0.05. All the displacements in the
figures are expressed in floating frame oxwywzw. It can be seen from Figures 15 and 16
that, in addition to a small fluctuation in the initial variation stage, the chord-wise and
z-direction displacements at the wing-tip (see point a in Figure 9a) mainly occur in the
post-lock stage, because the wing suffers a large impact in this stage. In addition, because
the wing rotates around the z-axis, the chord-wise displacement is much larger than the
out-of-plane z-direction displacement in the post-lock stage. The wing-tip torsional angle
responses calculated from points a and b in Figure 9a are shown in Figure 17. As can be seen,
the torsional vibrations mainly occur in the post-lock stage, at which the wing is subjected
to a large rotational moment from the locking spring, as shown in Figure 18. Similarly,
compared with the responses at the initial stage of the wing rotation, the incremental
internal loads at the wing root, dominated by inertial force and aerodynamic force, are
much larger in the post-lock stage, as shown in Figures 19 and 20.

Figure 15. Transient responses of the chord-wise displacement at the wing tip. (a) Displacement vs.
time. (b) Displacement vs. sweep angle.

Figure 16. Transient responses of the displacement in z direction at the wing tip. (a) Displacement vs.
time. (b) Displacement vs. sweep angle.
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Figure 17. Transient responses of the wing-tip torsional angle. (a) Torsional angle vs. time. (b) Torsional
angle vs. sweep angle.

Figure 18. Transient responses of the wing root rotational moment. (a) Rotational moment vs. time.
(b) Rotational moment vs. sweep angle.

Figure 19. Transient responses of the wing root shear force. (a) Shear force vs. time. (b) Shear force
vs. sweep angle.
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Figure 20. Transient responses of the wing root bending moment. (a) Bending moment vs. time.
(b) Bending moment vs. sweep angle.

Figures 21–24 show the time histories of the rotation moment, wing-root shear force,
wing-root bending moment, and wing-tip torsional angle, respectively. Obviously, the
large stiffness of the post-lock spring produces large torsional moment. The amplitudes
of the responses of the wing-root shear force, bending moment and the wing-tip torsional
angle increase with the increase of the stiffness of the locking spring. Therefore, from the
perspective of the structural strength design, it is necessary to reasonably determine the
stiffness of the locking spring.

Finally, the influence of the quadratic velocity term Fsv(q,
.
q) on the transient dis-

placement responses of the wing during the rapid morphing is investigated. Two sets
of the actuator spring constant, Kact = 20 N ·m/deg and Kact = 60 N ·m/deg, are used
for comparisons. The simulation results are given by Figures 25 and 26, respectively. In
fact, the quadratic velocity vector in Equation (20) reflects the comprehensive influence
including the Coriolis force and centrifugal force. For the present model, the influence
of the Coriolis force can be neglected. It can be seen from Figures 25 and 26 that, at the
initial stage of wing rotation, there is a small out-of-plane displacement at the wing tip.
Due to the effect of centrifugal force, the quadratic velocity term decreases the deviation of
out-of-plane displacement form that produced at the initial stage of wing rotation. How-
ever, overall, the influence of the quadratic velocity term on the out-of-plane bending
deformation is very small in the present simulations. In the post-lock stage, this effect can
be completely neglected.
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Figure 21. Transient responses of the rotational moment. (a) Rotational moment vs. time. (b) Rotational
moment vs. sweep angle.

Figure 22. Transient responses of the wing-root shear force. (a) Shear force vs. time. (b) Shear force
vs. sweep angle.

Figure 23. Transient responses of the wing-root bending moment. (a) Bending moment vs. time. (b) Bending
moment vs. sweep angle.
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Figure 24. Transient responses of the wing-tip torsional angle. (a) Torsional angle vs. time. (b) Torsional
angle vs. sweep angle.

Figure 25. Effect of the quadratic velocity term on the displacement responses, Kact = 20 N ·m/deg.
(a) Z-displacement vs. time. (b) Z-displacement vs. angular velocity. (c) Angular velocity vs. time.
(d) Angular velocity vs. sweep angle.
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Figure 26. Effect of the quadratic velocity term on the displacement responses, Kact = 60 N ·m/deg.
(a) Z-displacement vs. time. (b) Z-displacement vs. angular velocity. (c) Angular velocity vs. time.
(d) Angular velocity vs. sweep angle.

4. Conclusions

In order to predict the transient aeroelastic responses of a variable swept missile wing
during the rapid morphing process, in this paper, a computationally efficient time-varying
aeroelastic modeling method was developed. The finite element model generated by the
commercial software platform was combined with the floating frame method to describe
the rigid–flexible coupling dynamic characteristics of the rotating wing. By integrating the
structural dynamics model with the piston-based aerodynamic model, a set of time-varying
aeroelastic equations was established. It is pointed out that the transient aeroelastic analysis
of the rotating wing requires the real-time calculation of the time-varying lifting surface.
The flutter analysis under different sweepback angles shows that the flutter characteristics
of the wing are greatly affected by the sweep angle. With the increase of the sweep angle,
there exists a jumping phenomenon in the flutter speed due to the flutter mode switching,
which requires special attention in the aeroelastic design.

Transient aeroelastic responses were predicted under various parameters, such as the
actuator and locking spring constants, and the damping ratio in the rotational degree of
freedom. It is demonstrated that the responses at the initial stage of the wing rotation are
small, and the relatively large responses mainly occur in the post-lock stage. Therefore, it is
necessary to suppress vibrations by reasonably designing the stiffness and damping in the
post-lock stage.
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Nomenclature

A the transformation matrix
Cact the damping coefficients in the rotation
Clock the damping coefficients in the locking phase
Cqq modal damping matrix
cd the drag coefficient
Fconst the constant moment
Fsv(q,

.
q) the quadratic velocity vector

Fa the generalized unsteady aerodynamic forces (GAF)
fap the aerodynamic force vector
flp the lift force
fdp the drag force
fcr(θ) the correction factor
Gas,Gαs the spline matrix
H(x, y) the airfoil thickness
ha the displacement vector at the interpolation points
hα the slope vector at the interpolation points
Ks the torsional spring constant
Kqq the modal stiffness matrix
Kact the nominal stiffness coefficient
mp the lumped mass
Mw(q) the time-varying mass matrix
M∞ the Mach number
nsl the number of the finite element nodes
nsd the number of the finite element nodes
qw(t) the modal coordinate vector
Qal the modal aerodynamic force
Swp the modal shapes
S̃ the skew symmetric matrix
Swp the vibration mode
Tw the kinetic energy
uwp the position vector of the node
Uact the elastic potential energy
Us the strain energy
u the global FEM displacement vector
θpreload the preloaded spring angle
θmax the max rotation angle
θ the sweep angle
α the static angle of attack
Λ the leading edge sweep angle



Aerospace 2023, 10, 197 28 of 29

References
1. Cui, E. Research statutes development trends and key technical problems of near space flying vehicles. Adv. Mech. 2009, 39, 658.
2. Weisshaar, T.A. Morphing Aircraft Systems: Historical Perspectives and Future Challenges. J. Aircr. 2013, 50, 337–353. [CrossRef]
3. Ajaj, R.M.; Beaverstock, C.S.; Friswell, M.I. Morphing aircraft: The need for a new design philosophy. Aerosp. Sci. Technol. 2016,

49, 154–166. [CrossRef]
4. Andersen, G.; Cowan, D.; Piatak, D. Aeroelastic Modeling, Analysis and Testing of a Morphing Wing Structure. In Proceedings

of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA,
23–26 April 2007.

5. Kuder, I.K.; Arrieta, A.F.; Raither, W.E.; Ermanni, P. Variable stiffness material and structural concepts for morphing applications.
Prog. Aerosp. Sci. 2013, 63, 33–55. [CrossRef]

6. Dayyani, I.; Shaw, A.D.; Flores, E.S.; Friswell, M.I. The mechanics of composite corrugated structures: A review with applications
in morphing aircraft. Compos. Struct. 2015, 133, 358–380. [CrossRef]

7. Chu, L.; Li, Q.; Gu, F.; DU, X.; He, Y.; Deng, Y. Design, modeling, and control of morphing aircraft: A review. Chin. J. Aeronaut.
2022, 35, 220–246. [CrossRef]

8. Dai, P.; Yan, B.; Huang, W.; Zhen, Y.; Wang, M.; Liu, S. Design and aerodynamic performance analysis of a variable-sweep-wing
morphing waverider. Aerosp. Sci. Technol. 2020, 98, 105703. [CrossRef]

9. Li, Y.; Yi, L.; Ao, Y.; Ma, L.; Wang, Y. Simulation analysis the aerodynamic characteristics of variable sweep wing missile. J. Phys.
2020, 1570, 012073. [CrossRef]

10. Xia, W.; Wang, W.; Zhang, W. The Optimal Sweep Angle Design of a Morphing Firebee Drone in a Cruise Mission. In Proceedings
of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021.

11. Chen, X.; Li, C.; Gong, C.; Gu, L.; Da Ronch, A. A study of morphing aircraft on morphing rules along trajectory. Chin. J. Aeronaut.
2020, 34, 232–243. [CrossRef]

12. Dai, P.; Yan, B.; Liu, S.; Liu, R.; Wang, M. Longitudinal Tracking Control for a Morphing Waverider Using Adaptive Super
Twisting Control. IEEE Access 2021, 9, 59692–59702. [CrossRef]

13. Dai, P.; Yan, B.; Liu, R.; Liu, S.; Wang, M. Modeling and Nonlinear Model Predictive Control of a Variable-Sweep-Wing Morphing
Waverider. IEEE Access 2021, 9, 63510–63520. [CrossRef]

14. Zhao, Y.; Hu, H. Prediction of transient responses of a folding wing during the morphing process. Aerosp. Sci. Technol. 2013, 24,
89–94. [CrossRef]

15. Zhao, A.; Zou, H.; Jin, H.; Wen, D. Structural design and verification of an innovative whole adaptive variable camber wing.
Aerosp. Sci. Technol. 2019, 89, 11–18. [CrossRef]

16. Ajaj, R.M.; Parancheerivilakkathil, M.S.; Amoozgar, M.; Friswell, M.I.; Cantwell, W.J. Recent developments in the aeroelasticity of
morphing aircraft. Prog. Aerosp. Sci. 2021, 120, 100682. [CrossRef]

17. Li, W.; Jin, D. Flutter suppression and stability analysis for a variable-span wing via morphing technology. J. Sound Vib. 2017, 412,
410–423. [CrossRef]

18. Lovera, M.; Novara, C.; dos Santos, P.L.; Rivera, D. Guest Editorial Special Issue on Applied LPV Modeling and Identification.
IEEE Trans. Control. Syst. Technol. 2011, 19, 1–4. [CrossRef]

19. Lee, L.H.; Poolla, L. Identification of linear parameter-varying systems using nonlinear programming. J. Dyn. Syst. Meas. Control
1999, 121, 71–78. [CrossRef]

20. Mocsányi, R.D.; Takarics, B.; Vanek, B. Grid and Polytopic LPV Modeling of Aeroelastic Aircraft for Co-design. IFAC-PapersOnLine
2020, 53, 5725–5730. [CrossRef]

21. Wang, D.; Zhu, W. Advances in modeling and control of linear parameter varying systems. Acta Automat. Sin. 2021, 47, 780.
22. Boef, P.D.; Tóth, R.; Schoukens, M. On Behavioral Interpolation in Local LPV System Identification. IFAC-PapersOnLine 2019, 52,

20–25. [CrossRef]
23. Lovera, M.; Bergamasco, M.; Casella, F. LPV Modelling and Identification: An Overview; Springer: Heidelberg, Germany, 2013.
24. Balas, G.J. Linear, parameter-varying control and its application to a turbofan engine. Int. J. Robust Nonlinear Control 2002, 12,

763–796. [CrossRef]
25. Zhang, L.; Yue, C.; Zhao, Y. Parameter-varying aeroelastic modeling and analysis for a variable-sweep wing. Chin. J. Theor. Appl.

Mech. 2021, 53, 3134.
26. Poussot-Vassal, C.; Roos, C. Generation of a reduced-order LPV/LFT model from a set of large-scale MIMO LTI flexible aircraft

models. Control Eng. Pract. 2012, 20, 919–930. [CrossRef]
27. Amsallem, D.; Farhat, C. An Online Method for Interpolating Linear Parametric Reduced-Order Models. SIAM J. Sci. Comput.

2011, 33, 2169–2198. [CrossRef]
28. Caigny, J.D.; Pintelon, R. Interpolated modeling of LPV systems. IEEE. Trans. Contr. Syst. Technol. 2014, 22, 2232. [CrossRef]
29. Selitrennik, E.; Moti, K.; Levy, Y. Computational aeroelastic simulation of rapidly morphing air vehicles. J. Aircr. 2012, 49, 1675.

[CrossRef]
30. Shabana, A.A. Dynamics of Multibody Systems; Cambridge University Press: New York, NY, USA, 1998.

http://doi.org/10.2514/1.C031456
http://doi.org/10.1016/j.ast.2015.11.039
http://doi.org/10.1016/j.paerosci.2013.07.001
http://doi.org/10.1016/j.compstruct.2015.07.099
http://doi.org/10.1016/j.cja.2021.09.013
http://doi.org/10.1016/j.ast.2020.105703
http://doi.org/10.1088/1742-6596/1570/1/012073
http://doi.org/10.1016/j.cja.2020.04.032
http://doi.org/10.1109/ACCESS.2021.3073401
http://doi.org/10.1109/ACCESS.2021.3074912
http://doi.org/10.1016/j.ast.2011.09.001
http://doi.org/10.1016/j.ast.2019.02.032
http://doi.org/10.1016/j.paerosci.2020.100682
http://doi.org/10.1016/j.jsv.2017.10.009
http://doi.org/10.1109/TCST.2010.2090416
http://doi.org/10.1115/1.2802444
http://doi.org/10.1016/j.ifacol.2020.12.1600
http://doi.org/10.1016/j.ifacol.2019.12.341
http://doi.org/10.1002/rnc.704
http://doi.org/10.1016/j.conengprac.2012.06.001
http://doi.org/10.1137/100813051
http://doi.org/10.1109/TCST.2014.2300510
http://doi.org/10.2514/1.C031041


Aerospace 2023, 10, 197 29 of 29

31. Liu, D.D.; Yao, Z.X.; Sarhaddi, D.; Chavez, F. From Piston Theory to a Unified Hypersonic-Supersonic Lifting Surface Method.
J. Aircr. 1997, 34, 304–312. [CrossRef]

32. Harder, R.L.; Desmarais, R.N. Interpolation using surface splines. J. Aircr. 1972, 9, 189–191. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2514/2.2199
http://doi.org/10.2514/3.44330

	Introduction 
	Aeroelastic Modeling of the Rotating Variable Swept Wing 
	Description of the Motion of the Wing 
	Structural Dynamic Modeling of a Variable Swept Wing 
	Generalized Unsteady Aerodynamic Forces 
	Nonlinear and Time-Varying Aeroelastic Equations of the Variable Swept Wing 
	Several Issues on Numerical Simulations 
	Double Numerical Integrations 
	Time-Varying Lifting Surface 


	Numerical Simulations 
	Flutter Analysis 
	Time-Varying Aeroelastic Responses 

	Conclusions 
	References

