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Abstract: The flow structures and surface pressure distributions on corrugated airfoils significantly
differed from those on a conventional, smooth airfoil. An unsteady, two-dimensional computational
simulation was carried out to investigate the flow behavior and associated aerodynamic performance
of a group of corrugated airfoils with different levels of waviness at angles of attack from 0◦ to 20◦ with
an interval of 2◦ at a low Reynolds number regime (Re = 1.2 × 105) and were quantitatively compared
with those of its smooth counterpart. Time-averaged aerodynamic coefficients demonstrated that the
corrugated airfoils have a lower lift and higher drag because of trapped vortices in the corrugations.
The pressure drag of the corrugated airfoils was greater than that of the smooth airfoil. In contrast,
the viscous drag of the corrugated airfoils was smaller than that of the smooth airfoil because the
recirculation generated in the corrugation could reduce the viscous drag. The averaged velocity
gradient in the boundary layer showed that the thickness of the boundary layer increased significantly
for the corrugated airfoils because of recirculating flow caused by the small-standing vortices trapped
in the valley of corrugations. The smoother the corrugated surface, the closer the aerodynamic
characteristics are to those of the smooth airfoil.

Keywords: corrugated airfoil; smooth airfoil; low Reynolds number flow; aerodynamics; flow struc-
ture

1. Introduction

With the continuous development and advancement of flexible materials, inflatable
structures have recently attracted more and more attention in several fields, such as civil,
naval, and aerospace engineering, and architecture, because of their lightweight and
foldable structural features [1–6]. For example, different inflatable airplanes have been
developed and tested in flight in the aeronautical field [3,4]. Furthermore, inflatable reentry
vehicles have been extensively investigated in the astronautical field for deceleration and
thermal protection in space explorations [5,6].

For an inflatable wing structure, the wing surface cannot be as smooth as a conven-
tional rigid wing made of metal because of the structural load-bearing characteristics of
flexible material. Thus, the surface of an inflatable wing is generally corrugated with a
certain level of waviness as illustrated in Figure 1 [7,8]. Two typical structures of existing
inflatable wings are shown in Figure 1. The first is a multi-beam wing and the second is a
multi-tube wing. For the multi-beam wing, the upper and lower skins are constrained by
the middle brace, so its integrity and load-bearing ability are strong. For the multi-tube
wing, the inner structure contains several cylindrical inflatable tubes covered by an outer
skin to main the geometric shape. Because the flexible structure comprises two layers, the
wing has good sealing performance and strong damage resistance. It should be noted that
both wings have corrugated surfaces because of the flexibility of the inflatable material.
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Figure 1. Sketch of the airfoil for an inflatable wing. (a) Multi−beam wing section. (b) Multi−tube 
wing section. 
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gated airfoils. Other institutions have also carried out experimental and computational 
works to explore the properties of non−smooth wings [9–21]. In our work in Ref [7], 
three−dimensional tandem−corrugated wings were tested computationally and experi-
mentally, and final analyses demonstrated that at the computed range of the angle of at-
tack, tandem−wing configuration could delay, or even suppress the trailing edge separa-
tion and then increase the aerodynamic efficiency significantly. Thus, it is concluded that 
the aerodynamic configuration is attractive and promising to use with UAVs or airships 
with flexible structures in the near future. Then, in our work in Ref [8], a group of wavy 
airfoils with different geometric shapes modified from NACA0030 were designed and 
then unsteady numerical simulations were carried out, in detail, to investigate the effect 
of waviness on the vortical structure in the flow field and overall aerodynamic character-
istics in the low Reynolds number (Re = 1.2 × 105) regime. The final results showed that 
compared with the smooth airfoil the separation flow for the wavy airfoil was more obvi-
ous, and the lift and its slope decreased significantly, although stalling was delayed. The 
smoother the wavy surface is, the closer the aerodynamic characteristics are to the smooth 
airfoil. Although the pressure drag of the wavy wing is greater than that of the smooth 
airfoil, the recirculation generated in the corrugation may reduce the viscous drag. How-
ever, because of the limitations of angle of attack, we have not yet investigated the aero-
dynamic results at angles of attack greater than 16°. In Ref [9–21], corrugated airfoils sim-
ilar to dragonfly wings were studied. Because of the complicacy of the flow field, no agree-
ment has been reached concerning the aerodynamic efficiency of the corrugations. 
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gation computationally. Furthermore, a detailed flow field was provided to quantify the 
evolution of the unsteady vortex and turbulent structures around the tested airfoils. In 
addition, since the corrugated airfoil and smooth−surfaced airfoil studied have precisely 
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Figure 1. Sketch of the airfoil for an inflatable wing. (a) Multi-beam wing section. (b) Multi-tube
wing section.

Much like the corrugated wings manufactured for inflatable structures, some flying
insects in nature, such as dragonflies and locusts, also have corrugated wings and not
wings resembling smooth airfoil shapes [9,10]. Extensive experimental [9–11] and computa-
tional [12–18] investigations have been carried out to demonstrate that these corrugations
significantly impact these insects’ aerodynamic performance.

Enlightened by observing these corrugated wing structures both in the engineer-
ing industry and in natural flyers, our research team has conducted some wind tunnel
experiments and numerical simulations [7,8] to investigate the aerodynamic features of
corrugated airfoils. Other institutions have also carried out experimental and computa-
tional works to explore the properties of non-smooth wings [9–21]. In our work in Ref [7],
three-dimensional tandem-corrugated wings were tested computationally and experimen-
tally, and final analyses demonstrated that at the computed range of the angle of attack,
tandem-wing configuration could delay, or even suppress the trailing edge separation and
then increase the aerodynamic efficiency significantly. Thus, it is concluded that the aerody-
namic configuration is attractive and promising to use with UAVs or airships with flexible
structures in the near future. Then, in our work in Ref [8], a group of wavy airfoils with
different geometric shapes modified from NACA0030 were designed and then unsteady
numerical simulations were carried out, in detail, to investigate the effect of waviness
on the vortical structure in the flow field and overall aerodynamic characteristics in the
low Reynolds number (Re = 1.2 × 105) regime. The final results showed that compared
with the smooth airfoil the separation flow for the wavy airfoil was more obvious, and
the lift and its slope decreased significantly, although stalling was delayed. The smoother
the wavy surface is, the closer the aerodynamic characteristics are to the smooth airfoil.
Although the pressure drag of the wavy wing is greater than that of the smooth airfoil, the
recirculation generated in the corrugation may reduce the viscous drag. However, because
of the limitations of angle of attack, we have not yet investigated the aerodynamic results
at angles of attack greater than 16◦. In Ref [9–21], corrugated airfoils similar to dragonfly
wings were studied. Because of the complicacy of the flow field, no agreement has been
reached concerning the aerodynamic efficiency of the corrugations.

Although most existing literature focuses on the aerodynamic comparison between
dragonfly-like corrugated wings and smooth wings or flat plates, no studies have been
found that explore the effect of waviness, i.e., the level of corrugation, on the aerodynamic
performance of inflatable corrugated wings, especially at angles of attack greater than 16◦.
Therefore, in this study, a group of corrugated airfoils with different levels of geometric
waviness was designed based on NACA0030 to explore the aerodynamic effect of corru-
gation computationally. Furthermore, a detailed flow field was provided to quantify the
evolution of the unsteady vortex and turbulent structures around the tested airfoils. In
addition, since the corrugated airfoil and smooth-surfaced airfoil studied have precisely the
same airfoil thickness, ambiguities due to the effects of airfoil thickness on the aerodynamic
performances of the tested airfoils are eliminated, hopefully providing some technical
support for the development of future inflatable airplanes.
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2. Computational Method & Validation Case

Two-dimensional numerical studies have been carried out [22–24], and have found
no intrinsic three-dimensional effects at low Reynolds numbers 105, further suggesting
the suitability of two-dimensional studies. Only internal spars and the flexible outer skin
of an aircraft with inflatable wing structures help maintain its aerodynamic shape and
structural integrity after inflating. The stiffness and strength of inflatable structures mainly
depend on the profile of the wing cross-section and the pressure difference between the
internal air and the outer atmosphere. Therefore, a thick airfoil is an obvious design choice
that provides structural integrity as well as loading space. However, compared with thin
airfoils, the aerodynamic performance of a thick airfoil is less efficient for thick profiles.
Therefore, earlier investigations [4,8] show that thicker airfoils are preferred for inflatable
structures at a low Reynolds flow to compromise between aerodynamic performance
and the benefits of an inflatable structure. Thus, the NACA0030 airfoil was selected as
a baseline. To clarify the effect of these corrugations on aerodynamic characteristics, a
group of corrugated airfoils with different levels of corrugation were constructed based on
NACA0030 to quantitatively explore the flow features caused by these corrugations. As
depicted in Figure 2, three corrugated airfoils, named Corrugated 14, Corrugated 21, and
Corrugated 34, were designed. The number in each name indicates the inscribed circles
for the profile, respectively. For example, for the Corrugated 14 airfoil, there are an entire
14 arcs that are tangential to the profile of baseline NACA0030 with their centers located
on the chord to form the upper surface, and the lower surface was designed in the same
way. Thus, the greater the number of arcs, the smoother the airfoil surface; it is also closer
to the contour of the baseline NACA0030 airfoil. It can be seen in the subfigure that the
Corrugated 34 airfoil nearly coincides with the baseline.
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Figure 2. Comparison of the corrugated airfoil.

In this study, the numerical tool was determined to be accurate enough to capture
the flow structures in the valley of corrugations or at the trailing edge at high angles
of attack. Thus, ANSYS Fluent 19.5 was selected to solve the flow field, considering its
accuracy and robustness. All the computational work was carried out in the Gekko Cluster
in the High-Performance Computing Centre at Nanyang Technological University. First,
two-dimensional, unsteady numerical simulations based on the Spalart–Allmaras (SA)
one-equation turbulence model were conducted at angles of attack ranging from 0◦ to 20◦

with an interval of 2◦ for the baseline airfoil and three other levels of corrugated airfoils.
For all the computations, results were assumed to converge when all the residuals appeared
as less than 10−5.

Figure 3 shows the computational flow domain and boundary layer around these four
airfoils. The chord length of each airfoil was C = 0.1 m and the far field was a circle with a
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diameter of 50C where the airfoils were situated right in the middle of the domain. The chord
coincided with the X-axis, and the leading edge was the origin of the geometric coordinate
system. The flow domain meshed with the hybrid grid, including the quadrilateral elements
in the boundary layer and triangular elements generated by the advancing front method in
other regions. In earlier computational work, we use hybrid grid to make a compromise
between computational efficiency and accuracy [25,26]. As can be seen in Figure 3b,c, an
inflation layer was used to generate a denser grid to capture the flow features in the vicinity
close to the airfoil. The first layer height off the wall was 1.0 × 10−5 to achieve a y+ value
of 1.0, and the inflation had a growth rate of 1.08 with a total of 41 layers. The airfoil
surfaces were nonslip, and adiabatic walls and the outer circles were pressure far-field
conditions. For all the models, the free stream condition was the same as in our wind tunnel
experiments carried out previously, so all the numerical simulations were conducted at
a free stream velocity V∞ = 20 m/s. In contrast, the pressure and temperature of the free
stream were 95.19 KPa and 300.65 K, respectively, and the chord-based Reynolds number
was Re = 1.2 × 105. Because the reference time scale was τ = C/V∞ = 0.005 s, the unsteady
time step was taken as 0.0001 s, and the number of internal iterations was 40 with 2000
time steps.
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Figure 3. Computational grid distribution at different positions: (a) Far-field, (b) Boundary layer of
NACA0030, and (c) Boundary layer of a corrugated airfoil (Corrugated 14).

To validate the accuracy and reliability of the numerical tool employed in this study,
a comparison of the SD7003 airfoil lift and drag coefficients at an angle of attack of 4◦

was performed between ANSYS Fluent and the method in Ref. [27], as shown in Table 1.
It can be seen that computational results based on the fully SA turbulence model were in
better agreement with the experimental results when the lift and drag were considered
simultaneously. Considering the slight difference between these two methods, ANSYS
Fluent was concluded to be reliable for simulating flow fields in low Reynolds numbers.
From Figure 4, there was no visible difference between the results of y+ = 1.0, 0.2 and
0.02. Thus, it is concluded that y+ = 1.0 is accurate enough to capture a low Reynolds
flow structure.

Table 1. Comparison of lift and drag coefficients by different computational methods.

Method CL (Relative Error) CD (Relative Error)

Ref. [27] 0.561 0.021
inviscid 0.6541 (16.60%) 0.0025 (−88.10%)

S–A 0.5561 (−0.87%) 0.0219 (4.29%)
γ–Reθ transition 0.5654 (0.78%) 0.0223 (6.19%)
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3. Results and Discussion

In this section, the aerodynamic effects of corrugated airfoils compared with the
smooth NACA0030 airfoil are presented quantitatively in terms of aerodynamic coefficients,
boundary layer development, flow streamlines, and surface pressure distribution at angles
of attack from 0◦ to 20◦ at a chord-based Reynolds number of 1.2 × 105.

3.1. Comparisons of Overall Aerodynamic Characteristics

Figure 5 generally compares time-averaged aerodynamic coefficients with increasing
angle of attack. The four sub-figures correspond to the lift coefficient CL, drag coefficient
CD, drag components (pressure drag CDP and viscous drag CDf), and the ratio of lift to
drag K, respectively. It should be noted that the reference area in calculating lift and
drag coefficients was 0.1 m2. For the lift coefficient, it could be found that the higher the
smoothness of the corrugated airfoil, the higher the lift was. Moreover, these four airfoils
showed similar tendencies at low angles of attack. They all increased linearly when the
angle of attack was lower than 10◦, and then the increasing rate began to slow down. After
that, the lift of the NACA0030 began to decrease after achieving its maximum value at
14◦. Because the Corrugated 34 airfoil is closest to the baseline airfoil, its lift is close to the
NACA0030, only slightly smaller. However, for the two corrugated airfoils, Corrugated 14
and Corrugated 21, although the lift coefficients are much smaller than the baseline, their
values continued to increase until 20◦.

In terms of the total drag coefficient, for the baseline airfoil, the coefficient increased
slowly at the lower angle of attack, and after that, the coefficient increased rapidly. For the
three corrugated airfoils, the drag was reduced as the smoothness of the airfoil improved.
Therefore, the Corrugated 34 airfoil appears close to the baseline, the Corrugated 21 is
greater, and the Corrugated 14 is most significantly different compared with the baseline.

In terms of viscous drag, with the increase of angle of attack, the values for all four
airfoils decreased slowly, and the higher the smoothness of the airfoil, the higher the
viscous drag was. For example, the viscous drag for Corrugated 14 airfoil was 60% of the
smooth airfoil, and for Corrugated 21 and Corrugated 34, the percentage was 70% and 90%,
respectively. Furthermore, the reason is that the trapped vortex of the corrugations and
separated flow at higher angles of attack reverse the local flow direction so that friction
decreases compared with the flow field without any vortex. This is displayed later in
following sections. The pressure drag for all four airfoils increased slowly at lower angles
of attack and rapidly after 8◦. The most corrugated airfoil (Corrugated 14) had the biggest
pressure drag. Because the pressure drag is about one order of magnitude larger than the
viscous drag, the changing tendency of total drag was similar to pressure drag.
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Figure 5. Time-averaged aerodynamic coefficients for corrugated airfoils and smooth airfoils: (a) Lift
coefficient CL, (b) Drag coefficient CD, (c) Coefficients of pressure drag CDP and viscous drag CDf,
(d) Lift-to-drag ratio K.

As can be seen from the lift-to-drag ratio, the aerodynamic efficiency of a corrugated
airfoil is less than that of a smooth airfoil because of smaller lift and greater drag. However,
it should be noted that for the first corrugated airfoil, the decreasing rate of aerodynamic
efficiency was significantly lower than that of the smooth NACA0030 airfoil.

3.2. Comparisons of Boundary Layer Development

Figure 6 displays the stream-wise velocity distributions in the boundary layers for
these four airfoils at the upper surface at a 30% chord-wise position at four different selected
angles of attack. It should be noted here that for the NACA0030 airfoil, the maximum
thickness was located at a 30% chord. As depicted in Figure 2, the position of the upper
surface of the Corrugated 14 airfoil was at a valley of corrugations while the other two were
nearly at the peak of corrugations. Thus, it can be determined that the stream-wise velocity
was negative for the Corrugated 14 airfoil even at small angles of attack because of the
recirculating flow caused by the trapped vortex in the valley. At 0◦, Corrugated 14 had the
greatest velocity gradient variation and thickness for the boundary layer, while the other
three airfoils behaved nearly in the same way. At 8◦, the boundary flow for Corrugated
21 and Corrugated 34 increased its velocity gradient and boundary thickness. At 16◦, the
velocity gradient variations of Corrugated 21 and Corrugated 34 were slightly bigger than
the baseline NACA0030 airfoil and had a tendency to behave in a laminar way. However,
the boundary layer for Corrugated 14 behaved more turbulently and with a much greater
velocity gradient and boundary thickness. At 20◦, because of the effect of large, separated
flow at the trailing edge, all the flow directions closest to the wall were negative. Therefore,
the Corrugated 14 airfoil showed the boundary layer’s most apparent velocity gradient
and thickness. In general, the boundary layer of a corrugated airfoil was characterized by
turbulent flow while that of the baseline airfoil was laminar.
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3.3. Comparisons of Streamlines and Pressure Distributions

Because pressure differentials between the upper and lower surfaces directly deter-
mine the aerodynamic coefficients, the detailed surface pressure distributions, flow stream-
lines, and flow field structures at selected angles of attack from 0◦ to 20◦ are presented in
Figures 7 and 8, respectively, to elucidate the underlying physics of the aerodynamic effects
of airfoils with different levels of corrugation at low Reynolds numbers.

At 0◦, pressure distributions and streamlines at the upper and lower surfaces of all
four airfoils were coincident because of geometric symmetry. Moreover, for the corrugated
airfoils, the pressure distribution oscillated because of the corrugated surface. Besides, there
was no visible, separated vortex (only a long bubble) at the trailing edge of the baseline
airfoil. However, for the corrugated airfoils, the vortex in the corrugations close to the
trailing edge merged into a separate vortex. In addition, for Corrugated 14 and Corrugated
21, the flow trapped in the corrugation at maximum thickness showed a clear vortex
structure. In contrast, for Corrugated 34, the flow at this position was laminar, so the
former two corrugated airfoils had a smaller viscous drag because of these reversed flows
in corrugations, as illustrated in Figure 5c.
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As the angle of attack increased to 8◦, there was an evident separation flow on the
upper surface at the trailing edge for the baseline airfoil, so the pressure on the upper surface
was higher than the lower surface at these vortex zones. However, because of the increased
angle of attack, the upper pressure at maximum thickness had a significant decrement,
and the lower surface had a noticeable increment, so the lift at 8◦ showed a prominent
increment compared with the lift at 0◦. Similarly, the lift increased for the corrugated
airfoils because of a greater vortex merged with trapped vortices in corrugations at the
trailing edge’s upper surfaces. The pressure distribution here was smoothly distributed,
while at other positions, it was still oscillating. As a result, the vortex size at the trailing
edge was greater than 0◦, the separated vortex for Corrugated 14 was more significant, the
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separation point for Corrugated 14 was closer to the leading edge compared with other
airfoils, and the aerodynamic characteristics of Corrugated 34 were almost the same as the
baseline airfoil.

When the angle of attack increased to 16◦, the separated vortex flow continued to grow
and move forward. Moreover, for the baseline airfoil, at the separated zone, the upper and
lower surface pressure distributions were nearly the same. However, because the separated
zone increased, the lower surface zone before the separated flow on the upper surface
slightly reduced, so the lift was reduced compared with 8◦. For the corrugated airfoil, the
corrugations produced consistently lower pressure at upper surfaces greater than 8◦, so their
lifts were still increasing. It should be noted that there was still no vortex in the corrugation
at the maximum thickness of the Corrugated 34 airfoil, so the aerodynamic characteristics
of Corrugated 34 were almost the same as the baseline airfoil.

When the angle of attack increased to 20◦, the separated vortex flow continued to grow
and move forward. Furthermore, for the baseline airfoil, at the separated zone, pressure
distributions of the upper surface were lower than those of the lower surface. However,
because the separated zone increased, the lower surface zones before the separated flow
on the upper surface was reduced, so the lift was reduced compared with 16◦. For the
corrugated airfoil, the corrugations produce consistently lower pressure at upper surfaces
greater than 16◦, so their lifts were still increasing. Finally, it should be noted that a visible
vortex existed in the corrugation at the maximum thickness for the Corrugated 34 airfoil.

In conclusion, the corrugation peaks acted as vortex generators to promote the transi-
tion of the boundary layer from laminar to turbulent while keeping attached to the surface
because of the high-speed outer flow. In addition, the valleys of the corrugations trapped
unsteady vortex structures and helped the boundary layer become more energetic and stay
attached by pulling high-speed flow into near-wall lower-pressure regions. By these two
processes, the corrugated airfoil can provide sufficient kinetic energy within the boundary
layer flow to overcome the adverse pressure gradient, thus suppressing large-scale flow
separation and delaying airfoil stalling at a higher angle of attack.

4. Conclusions

To improve our understanding of the underlying physics of corrugation features
found in insect wings or inflatable wings at low Reynolds number flight, and to explore
the potential applications of non-traditional, bio-inspired corrugated airfoils for inflatable
wing applications, a detailed computational study was carried out by ANSYS Fluent
to investigate the aerodynamic characteristics and flow field features around a group
of corrugated airfoils compared with a traditional smooth-surfaced NACA0030 airfoil
at chord-based Reynolds number 1.2 × 105. As far as we know, this work is the first
computational study comparing the aerodynamic effect of corrugated airfoils with different
levels of corrugation. After a thorough analysis of these computational results, the following
conclusions could be obtained:

(1) For corrugated airfoil used for inflatable wing structures, the aerodynamic efficiency
was reduced compared with smooth baseline airfoils with the same thickness because
of lower lift and higher pressure drag. However, the viscous drag decreased because
of small recirculating vortices generated in the valley of corrugations—the more
corrugated the airfoil, the worse the aerodynamic efficiency.

(2) For corrugated airfoil, the stall characteristics could be improved because of the corruga-
tions. Furthermore, at a higher angle of attack, the increase in the lift is because of the
negative pressure produced at the valleys of the corrugated airfoil.

(3) For corrugated airfoils, the flow field and development of boundary layers around
the airfoils behaved in a more complicated and unsteady way than for the smooth
airfoil because of trapped vortices in corrugations. These vortices move outwardly
at an increasing angle of attack and eventually merge into the separated flow at the
trailing edge at a higher angle of attack.
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Our work investigated the aerodynamic characteristics of several corrugated airfoils
in a low Reynolds number regime. However, the gust response and stability must be
validated before corrugated wings can be applied extensively in inflatable flight vehicles.
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