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Abstract: Organization preference knowledge is critical to enhancing the intelligence and efficiency
of the multi-platform aircraft mission system (MPAMS), particularly the collaboration tactics of
task behaviors, platform types, and mount resources. However, it is challenging to extract such
knowledge concisely, which is buried in massive historical data. Therefore, this paper proposes an
innovative data-driven approach via frequent closed itemset mining (FCIM) algorithm to discover
valuable MPAMS organizational knowledge. The proposed approach addresses the limitations of
poor effectiveness and low mining efficiency for the previously discovered knowledge. To ensure the
knowledge effectiveness, this paper designs a multi-layer knowledge discovery framework from the
system-of-systems perspective, allowing to discover more systematic knowledge than traditional
frameworks considering an isolated layer. Additionally, the MPAMS’s contextual capability reflecting
the decision motivation is integrated into the knowledge representation, making the knowledge
more intelligible to decision-makers. Further, to ensure mining efficiency, the knowledge mining
process is accelerated by designing an itemset storage structure and three pruning strategies for
FCIM. The simulation of 1100 air-to-sea assault scenarios has provided abundant knowledge with
high interpretability. The performance superiority of the proposed approach is thoroughly verified
by comparative experiments. The approach provides guidance and insights for future MPAMS
development and organization optimization.

Keywords: multi-platform aircraft mission system; organization preference knowledge; data mining;
frequent closed itemset mining; wargame

1. Introduction
1.1. Motivation

The multi-platform aircraft mission system (MPAMS) has been the promising trend
in avionics with the development of the system-of-systems (SoS) concept, which under-
takes many decision-making functions [1–3]. The key feature of the MPAMS is a shift of
organization mode from the traditional discrete resource organization within individual
avionics platforms to the mission-based collaborative multi-platform organization of tasks,
platforms, and mount resources, enhancing the comprehensive performance of different
avionics [4]. Specifically, valuable organizational knowledge (MPAMS organizational
knowledge includes the valuable collaboration modes of tasks, platforms, and mounts,
such as which platform collaboration mode is most efficient for completing a specific port-
folio of tasks; this concept is further explained in Section 2.1) in the MPAMS has sparked
widespread research attention [5] since it is critical for optimizing the MPAMS organization
efficiency. However, acquiring such knowledge is challenging due to its unintuitive nature,
high dependency on human experience, and hiddenness in massive combat data.

The methodological paradigm [6] for discovering the above-mentioned knowledge
has transferred from knowledge-based reasoning [7–10] to data-driven learning. The
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latter paradigm could automatically and adaptively acquire knowledge from massive
data [11–14], which possesses a wider application prospect than the former paradigm con-
sidering the inefficient manual knowledge modeling and deterministic behavior rules [15].

Particularly, frequent closed itemset mining (FCIM) [16] is a data-driven method,
that outperforms other data-driven methods in discovering heterogeneous and global
knowledge, benefiting from flexibly searching correlations within diverse dimensions,
which is promising for practical applications. However, how to successfully apply FCIM to
deal with complex MPAMS organizational data is a new and interesting problem, especially
what type of preference information should be extracted to reflect useful knowledge from
the knowledge effectiveness perspective and how to extract knowledge faster from the
knowledge efficiency perspective.

Our motivation lies in discovering valuable and systematic organizational knowledge
from massive MPAMS organizational data via FCIM, thus contributing to the optimization
of the MPAMS organization.

Furthermore, it is notable that the datasets of MPAMS organization are different from
general datasets, which possess more dense and complex input features and a special
output itemset format (further refer to Section 2.2). To discover knowledge efficiently, it
is necessary to design new itemset structures and corresponding pruning strategies to
accelerate the mining process.

1.2. Related Works and Gaps

First, the latest progress in MPAMS knowledge mining methods, regarding knowledge
effectiveness, is summarized. Then, the advancement of FCIM algorithms, with respect to
efficiency of knowledge mining, is introduced. The criteria to evaluate the research lie in
the knowledge type and knowledge interpretability, as shown in Table 1.

(1) MPAMS organizational knowledge mining methods-knowledge effectiveness issue.
Knowledge discovery on MPAMS has evolved from early knowledge-based reasoning

approaches, such as expert systems [7], behavior trees [8,9], and state machines [10], to
data-driven learning approaches. As data-driven ones could take advantage of massive
historical data or wargame simulation [17,18] to extract valuable organizational patterns.
Thus far, clustering [19–21], decision trees [22], deep learning [23], etc., have been explored
to obtain this knowledge. The literature on data-driven approaches primarily focuses on
platform or task behavior collaborations [24]. The research topic includes typical team task
behavior strategies [19–21], the team composition and interaction patterns [22], and the
synergistic platform recommendation [23].

The problem, however, is the dimensionality of the extracted knowledge type. Current
advancements tend to construct specific homogeneous collaboration modes toward the
targeted goal, which limits the knowledge representation for heterogeneous feature synergy,
as well as the transferability to other scenarios. In fact, the organization of tasks, platforms,
and mounts in a MPAMS is quite complex, and the knowledge to be organized may be
heterogeneous and mutually influenced.

Compared to other data-driven learning algorithms, FCIM can directly mine homoge-
neous or heterogeneous collaboration relationships in the MPAMS organization context,
which is more flexible to capture abundant types of knowledge.

For the knowledge effectiveness issue, namely what information should be selected
to effectively denote knowledge, the basic idea is to find intrinsic dependencies between
features of the MPAMS organization considering task behaviors, platform type, and mount
usage. Lin et al. [25] proposed a decision-support scheme containing FCIM to analyze
collaboration probabilities among platforms. Schwartz et al. [26] applied FCIM to discover
valuable task behavior sequences among current states, occurring events, and user actions
from wargame logs. Nevertheless, a single type of correlation between organizational
features cannot cover the strike performance of a certain preference mode, so knowledge
effectiveness cannot be guaranteed.
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Therefore, some advanced studies have aimed to extract causal correlations between
various organizational features and striking effectiveness, which renders valuable collabo-
ration modes with excellent performance, thereby contributing to MPAMS organization
optimization. Cao et al. [27] introduced FCIM to analyze typical correlations between
surprise defense efficiency and various strike modes. Li et al. [28] used a growth FCIM
to extract associative target selection rules of electronic countermeasures, rending higher
organizational rationality. Xing et al. [29] analyzed the effectiveness of various platform
and mount collaboration modes against opponents in terms of strike performance causality.

Still, the discovered knowledge remains ineffective in the MPAMS organization. The
limitations are as follows.

• Limited comprehensive level. The discovered knowledge cannot lead to a systematic
and overall understanding of the MPAMS organization. Since current research has
only focused on isolated organizational decisions at the separate task, platform, or
mount layer. It overlooks the practical correlated multi-layer collaboration modes of
the MPAMS architecture in the SoS context, which limits its applicable value.

• Poor interpretability. The discovered knowledge shows only “what to do” but over-
looks “why to do”. Such as the knowledge indicates which weapon combinations
will produce favorable results, but does not mention the situation background [30,31],
i.e., the motivation for this decision. As a result, the isolated knowledge assertion
lacks both intrinsic interpretability for the commander and rationality to migrate to
similar scenarios.

(2) Frequent closed itemset mining-knowledge efficiency issue.
Knowledge mining efficiency has been the most important aspect of evaluating FCIM

performance, as measured by the time spent and the memory occupied to produce knowl-
edge. Various improvements to the itemset storage structure and pruning strategies have
been proposed to improve efficiency [32]. Among them, intersection-based FCIM algo-
rithms [33–39] have served as an outstanding branch, that uses intersection to compute new
itemsets in an incremental manner. Ciclad [37], CloStream [38], and Moment [39] are some
typical algorithms that effectively improve mining efficiency by designing new itemset
storage structures or landmarks. Nonetheless, current efficiency advances leave gaps in
MPAMS organizational knowledge mining. The limitation lies in:

• Inadequate speed. It is challenging for FCIM to deal with large-scale MPAMS datasets,
which possess a complex and dense item distribution, leading to a knowledge con-
struction dilemma with large time consumption. Therefore, the candidate itemset scale,
that is, the redundant information in the mining process, should be further reduced
to accelerate knowledge discovery, making it capable of handling more complex and
large-scale datasets.
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Table 1. Research status and gaps of knowledge mining effectiveness and efficiency issues.

Dimension Method Type Research Topic Feature Drawback

Knowledge
effectiveness

Other data-driven methods
such as clustering [19–21],
decision tree [22], and deep
learning [23].

Task behavior strategies
[19–21], team composition
patterns [22], and
synergistic platform
recommendation [23].

Knowledge type: Based on
the target problem, mainly
heterogeneous features.
Knowledge interpretability:
Low, due to black box
mode and scarce
background information.

(1) Limited knowledge
representation flexibility for
heterogeneous features.
(2) Must design a specific
algorithm to fit the target
problems, not flexible
to transfer.

FCIM

Basic

Discover intrinsic
correlations within
platforms [25], mount
features [25], or task
behaviors [26].

Knowledge type: MPAMS
organizational features.
Knowledge interpretability:
Low, due to vague strike
effectiveness feature.

(1) Localized knowledge
composition at separate layers,
which neglects multi-layer
collaboration modes in MPAMS.
(2) Limited understanding of
the decision motivation, which
restricts the knowledge
transferability

Causality
oriented

Discover correlations
between strike effectiveness
and above-mentioned task
behaviors [27], platforms
[28,29], or mount
features [29].

Knowledge type: Strike
effectiveness + MPAMS
organizational features.
Knowledge interpretability:
Higher, by incorporating
causality correlation.

Knowledge
efficiency FCIM

Design new item storage
structures and pruning
strategies [33–39].

Reduce searching space and
accelerate mining speed.

Cannot adapt to the features of
MPAMS datasets.

1.3. Contributions

This study focuses on discovering valuable MPAMS organizational knowledge from
historical data and strengthening the effectiveness and efficiency of this knowledge by propos-
ing an efficient knowledge discovery method based on the FCIM. The proposed method can
enhance the organizational certainty of MPAMS for improved strike performance.

As shown in Figure 1, the main contributions of this study are as follows:
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(1) Knowledge Effectiveness: A data-driven multi-layer organization preference knowl-
edge discovery framework, which fits the MPAMS’s hierarchical architecture better, is
designed from the SoS perspective, thus discovering more systematic heterogeneous knowl-
edge than traditional homogeneous knowledge using isolated-layer frameworks of MPAMS.
That greatly enhances the global awareness of the MPAMS organizational patterns.

Moreover, the contextual capability of MPAMS is first integrated into knowledge
representation, which reveals the decision motivation, thus making the knowledge more
interpretable and credible to the commander, and elevating the knowledge’s practical value
to apply and transfer to different scenarios (Section 2.3).

(2) Knowledge Efficiency: An innovative cross-linked itemset storage structure and
three pruning strategies that adapt to the data distribution of MPAMS are developed, which
can further reduce the itemset search space and speed up the knowledge mining process.
Therefore, the proposed method is promising to analyze large-scale MPAMS datasets for
complex knowledge (Sections 3.1 and 3.3).

(3) Valuable MPAMS organizational preference knowledge embedded with contextual
capability factors is acquired from massive data on air-to-sea assault scenarios, which
reflects multi-layer collaborative tactics of tasks, platforms, and mounts. The knowledge
could advance the understanding of MPAMS organization, and contribute to the MPAMS
organization optimization for better strike performance (Section 4.3).

1.4. Organization of the Paper

The paper is organized as follows: Section 2 provides relative concepts and then out-
lines the knowledge mining framework. Section 3 introduces the proposed FCIM algorithm
called CrossFCI for knowledge mining, where an innovative cross-linked itemset storage
structure together with three pruning strategies is depicted. Section 4 presents experiments
on both public datasets and MPAMS datasets to verify CrossFCI’s performance superi-
ority and extract valuable and systematic MPAMS organizational knowledge. Section 5
concludes the paper.

2. Proposed MPAMS Organizational Knowledge Mining Method
2.1. Preliminaries

This subsection introduces the concepts of MPAMS, MPAMS organizational knowl-
edge, and FCIM. As MPAMS organizational knowledge is tightly embedded in MPAMS’s
organization modes, and FCIM serves as a reliable tool to extract this knowledge.

(1) MPAMS
An aircraft mission system is the future trend of avionics in the military field. The

concept was first proposed for F-35, highlighting the decision-making support function
of avionics [2]. Then the concept of the multi-platform aircraft mission system has been
further proposed from the avionics architecture perspective to meet the requirements for
flexible mission organization of systematic warfare.

The core feature of a MPAMS is to distribute the capabilities that are traditionally de-
ployed within a single flight platform, such as reconnaissance, electronic attack, and strike,
to several distributed and easily upgradable flight platforms. The MPAMS organization
structure is presented in Figure 2, where it can be seen that it is dominated by combat
missions and operational environments. Then, multiple operational tasks are accomplished
by integrating capabilities scattered on different platforms and mount resources to enhance
the joint capability.
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(2) MPAMS organizational knowledge
The organizational knowledge of a MPAMS represents the collaboration pattern

consisting of tasks, platforms, and mounts in the MPAMS architecture. As combat platforms
include various operational objectives in an increasingly complex battlefield, the ability to
organize and collaborate tasks, aircraft platforms, and mounts in the MPAMS architecture
has become the main technology of modern warfare. These collaborations reflect valuable
and practical tactics for optimizing MPAMS performance.

In the SoS concept, the aforementioned knowledge is no longer limited to the inner
correlations of an independent layer discovered by the existing methods, for instance, the
collaboration of air early warning and fighters has a good strike effect; but more attention is
mainly devoted to the multi-layer collaboration, as shown by Equation (1). As the MPAMS
organization represents an SoS engineering problem, where elements of different layers
are crosslinked, decisions must be made from the global view perspective to improve the
comprehensive performance of the MPAMS architecture.

The MPAMS organizational knowledge can be expressed as follows:

Knowledge < task, plat f orm, mount >⇔ {task↔ task, task↔ plat f orm,
plat f orm↔ plat f orm, plat f orm↔ mount,
mount↔ mount, task↔ plat f orm↔ mount}

(1)

The above expression demonstrates which task organization mode is preferred, how
to organize platforms to execute certain task collaborations most efficiently, and which
mount resources perform best with platforms to complete tasks.

(3) FCIM
FCIM is one of the major techniques of data mining, which scans the data collection

for frequent and closed itemsets. Let I = {i1, i1, · · · , in} represents a set of items, X ⊆ I
denotes a subset X within I. D denotes all the transactions in the database. Each transaction
is stored via (tid, itemset), which is uniquely identified by a tid. The left part of Table 2 gives
an example of a transaction database.

Table 2. Examples of the transaction sets and the derived frequent closed itemsets.

Transaction Sets D in the Database Frequent Closed Itemset Family for D

(1, abcdefgh)
(2, abef )
(3, bcfgh)
(4, befgh)
(5, acdg)

(6, abdefh)
(7, abcd)
(8, bc)
(9, d)
(10, gh)

1-abcd:2
2-abd:3
3-ab:4
4-acdg:2
5-acd:3
6-adfh:2
7-ad:4
8-aef :3

9-a:5
10-bcfgh:2
11-bc:4
12-befh:3
13-bef :4
14-bfh:4
15-bf :5
16-b:7

17-cg:3
18-c:5
19-d:5
20-gh:4
21-g:5
22-h:5
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Assuming D comprises a tidset Y, ιD(Y) = ∩ {Z|(j, Z) ∈ D, j ∈ Y} represents itemset
intersections Z within different transactions in Y. For short, ι(j) = Z iff (j, Z) ∈ D, omitting
subscript D. Moreover, the transaction tidsets that cover itemset X could be formulated via
τD(X) = {j|(j, Z) ∈ D, X ⊆ Z}. For example, τD(ab) = {1, 2, 6, 7} and ιD({1, 6, 7}) = abd.

The itemset significance is evaluated by the frequent itemset and closed itemset, which
exhibit universality and representativeness of the itemset, respectively.

Definition 1. Frequent itemset (FI): an itemset whose support is greater than ς.

The support value of the itemset X is σ(X) =|τ(X)|, and the minimal support thresh-
old is denoted as ς, defining the binary criterion of FI.

Definition 2. Closed itemset (CI): an itemset whose σ(·) differs from that of all superset itemsets.

The CI means an itemset has enough important correlations, and the content is different
from other superset CIs, which could be measured by support value, corresponding to the
anti-monotony principle of support value. For instance, {abcd} is a CI in D while {abc} is not.
As {abcd} is a superset of {abc}, and τ(abcd) = τ(abc) = {1, 7}. Moreover, XD denotes the
CI of X. The CIs in D are illustrated by C(D). Then, following the idea of formal concept
analysis [40], a closure operator κ is introduced to describe C(D) via the composition of
the operator.

Property 1. Assuming X ⊆ I, κ(X) = ι(τ(X)).

For example, κ(abc) = abcd, as ι(τ(abc)) = ι({1, 7}) = abcd and abcd = max(abcD).
Moreover, X = κ(X) iff X is closed. All the FCIs of D are outlined in the right part of
Table 2, with the support threshold set as 1. Each FCI is appended with a support value. For
instance, {bc} is a member of the FCI family with a support value of four as bc = ∩{1, 3, 7, 8}.

2.2. Problem Description

This subsection begins with the introduction of MPAMS datasets in the form of
transactions, and conceptual MPAMS organizational knowledge representation in the form
of FCI. Then the problem of knowledge mining by FCIM is described through an example.
Furthermore, the special features of MPAMS datasets are depicted in Figure 3.
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The MPAMS organizational knowledge represents an efficient collaboration mode
with a good striking effect, which also implies the inherent thinking styles and intelligence
of a commander. The knowledge is reflected in the correlations of multi-layer organizational
paths of tasks, platforms, and mounts in the MPAMS architecture. The purpose of applying
the FCIM to a MPAMS is to extract valuable collaboration modes by identifying strongly
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correlated organizational features from massive historical data of various scenarios. This
knowledge mining problem is represented as follows:

f (∑
i

τi(ι1, ι2, · · · , ιk))⇔ FCI{ι1, ι2, ι3}, FCI{ι2, ι3, ι4}, · · · (2)

where transaction τi indicates a MPAMS organization scenario in the confrontation, which
includes multiple items; ιk reflects the item element to be correlated, which involves two
main categories: the MPAMS organization element category and the firepower effectiveness
category. The former refers to the heterogeneous task-, platform-, and mount-related
features. For instance, the mount-related features can represent different types of missiles
and electronic warfare weapons. The latter could include the integrity of an enemy’s target,
friendly aircraft loss, and friendly mount consumption. Then, FCIM is used to discover
the correlations of various items, deriving a set of FCIs. A FCI denotes a valuable MPAMS
collaboration pattern, which consists of the above-mentioned correlated items. Notably,
the collaboration pattern must be typical, which is higher than the support threshold (FI)
and contains enough important information (CI). For instance, FCI{feint task, UAV, fighter,
close-range air-to-sea missile, good effect, low cost} denotes a collaboration mode, namely an
unmanned aerial vehicle (UAV) and a fighter equipped with close-range air-to-sea missiles
to conduct the feint task, is effective in the MPAMS organization, which could ensure a
good strike effect at a low cost.

Moreover, as shown in Figure 3, the transactions for the MPAMS knowledge mining
issue are different from traditional transactions, with more dense and complex input
features and a special output itemset format. These features aggravate the difficulty of
knowledge discovery. Therefore, the item storage structure and pruning strategies should
be further designed for FCIM to accelerate knowledge discovery speed.

As mentioned in Section 1, the critical problems for applying FCIM to the MPAMS
organizational knowledge discovery task are how to organize the information into mean-
ingful itemsets to effectively reflect the character of MPAMS organization, and how to
efficiently extract valuable collaboration knowledge, namely FCIs, from the original item-
sets. The solution to the first problem is described in Section 2.3, and the solution to the
second problem about efficiency is introduced in Section 3.

2.3. MPAMS Organizational Knowledge Discovery Framework

The proposed multi-layer knowledge discovery scheme is presented in Figure 4, where
it can be seen that it includes five main phases. First, the configuration of a platform and
mount features is extracted from a wargame replay database. Then, the attacking and
defending sides’ capabilities are encoded based on the above-structured features, and
the strengths and weaknesses of both sides are evaluated further. Further, confrontation-
related tasks are organized and serialized according to the combat platform actions. In
addition, the firepower effectiveness is determined based on the platform’s health status.
The aforementioned causal features are combined into mineable confrontation feature
itemsets. Finally, the FCIM algorithm is adopted to acquire correlations between diverse
organizational features, rendering comprehensive organization preference knowledge
considering task, platform, and mount collaboration.

Step 1: Construct aircraft platform and mount features
Aircraft platform and mount features are fundamental to represent the MPAMS archi-

tecture configuration, which are captured from raw wargame data. Particularly, aircraft
platform features not only include basic information on the type and affiliated side, but also
the information on task-related configurations of mobility, sensors, electronic countermea-
sures, defense, and data transfer. In addition, mount features include the striking range, hit
probability, and damage point of a certain mount type. Then, the above-mentioned features
are structurally encapsulated for mapping with the MPAMS capability in the following.
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Step 2: Construct capability features
Capability features denote inherent features of one side to defeat the opponent, which is

essential for MPAMS’s striking strategy development. The MPAMS capabilities can be roughly
categorized into six meta-groups based on practical decision-making processes [41–43]. In
Table 3, each capability is encoded via the above-mentioned platform and mount features.

Table 3. Capability feature description.

Category Symbol Feature Calculation Formula Integration

Perception Cprcp f (Range, P) detection range × detection probability Max
Attacking Cattk f (Range, DamagePoint, P, num) (damage point × range) × hit probability × number Sum
Electronic attack Celec f (Range, DamagePoint, P, num) (damage point × range) × hit probability × number Sum
Defense Cdefs f (DamagePoint, EscapeTime−1) damage point/escape time Sum
Maneuverability CMnur f (Velocity, Range) speed × flight range under that speed Avg

Concealment Ccncl f (D−1
visual , D−1

In f rared, S−1)
(visible discovery distance × infrared discovery
distance × radar reflective area)−1 Min

The first column of Table 3 presents the capability domain. In particular, perception
capability is the availability of access to target information and intelligence. Attacking ca-
pability is the comprehensive damage level of weapon systems. Electronic attack capability
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is the degree to which an object can utilize the electromagnetic spectrum for the attack.
Defense capability represents how well a set of objects can defend against firepower attacks.
Maneuverability is the degree of the object’s flexibility considering speed and mobility.
Concealment capability measures the extent to which an object may be detected or tracked
by others [41]. The third and fourth columns of Table 3 depict the supporting features used
to calculate the capability. In turn, the capabilities of the whole MPAMS are constructed by
integrating every platform through the mechanisms in column 5. Then the comparative
strengths and weaknesses of both sides are derived, including the labelled code of each
capability: W is for weak, B is for balanced, and S is for strong.

Step 3: Construct task features
The task feature module is responsible for extracting task features from a set of combat

platform actions in the replay data in a bottom-up manner. In particular, the strike action
takes the dominant role among various actions. This action constitutes the attacking
platform, attacked target, weapon used by the attacker, fire timestamp, and attacked target
location. As shown in Figure 5, task features cluster collaborative actions according to
their similarities in time and location. For instance, two actions Action1 and Action2, which
satisfy the constraints given by Equation (3), will be integrated into the same task, which is
highlighted by a rectangular box. Task features comprise the time span, assigned platforms,
and target platforms. Then, task sequences are delivered in an encoded form, considering
task types [43] and collaboration relationships.{

|| f ire_timestamp1 − f ire_timestamp2||≤ T∆
||location1 − location2||≤ D∆

(3)

Aerospace 2023, 9, x FOR PEER REVIEW 10 of 30 
 

 

capability is the degree to which an object can utilize the electromagnetic spectrum for the 

attack. Defense capability represents how well a set of objects can defend against fire-

power attacks. Maneuverability is the degree of the object’s flexibility considering speed 

and mobility. Concealment capability measures the extent to which an object may be de-

tected or tracked by others [41]. The third and fourth columns of Table 3 depict the sup-

porting features used to calculate the capability. In turn, the capabilities of the whole 

MPAMS are constructed by integrating every platform through the mechanisms in col-

umn 5. Then the comparative strengths and weaknesses of both sides are derived, includ-

ing the labelled code of each capability: W is for weak, B is for balanced, and S is for strong. 

Step 3: Construct task features 

The task feature module is responsible for extracting task features from a set of com-

bat platform actions in the replay data in a bottom-up manner. In particular, the strike 

action takes the dominant role among various actions. This action constitutes the attacking 

platform, attacked target, weapon used by the attacker, fire timestamp, and attacked tar-

get location. As shown in Figure 5, task features cluster collaborative actions according to 

their similarities in time and location. For instance, two actions Action1 and Action2, which 

satisfy the constraints given by Equation (3), will be integrated into the same task, which 

is highlighted by a rectangular box. Task features comprise the time span, assigned plat-

forms, and target platforms. Then, task sequences are delivered in an encoded form, con-

sidering task types [43] and collaboration relationships. 

1 2

1 2

|| _ _ ||

|| ||

fire timestamp fire timestamp T

location location D





− 


− 
 (3) 

attacker defender

fire timestamp
weapon

Platform action

attack

attack

platform1

platform2

target1

target2

location

task1

task1

collaboration

Task feature

time span
assigned platform

target platform

 

Figure 5. Task feature construction process based on platform actions. 

Step 4: Construct firepower effectiveness features 

The firepower effectiveness measures whether an operation achieves the expected 

objective at the end of a wargame scenario. Effectiveness is reflected by the integrity status 

of enemy’s targets, including undamaged, partially failed, or damaged. In addition, the 

platform and mount consumption of a MPAMS is another way to measure effectiveness. 

Step 5: Knowledge mining for MPAMS organization 

The organization preference knowledge of MPAMS is acquired by applying the 

FCIM to confrontation itemsets. Particularly, the theoretical problem of organization pref-

erence knowledge mining can be interpreted as a correlation extraction assignment of dif-

ferent organizational features that often appear together under different circumstances, 

which matches a FCIM problem, as explained in Section 2.2. In particular, each wargame 

simulation is set as a transaction, and all organizational features are coded as items within 

the transaction. Then, the MPAMS organization preference knowledge, namely the fre-

quent (typical) closed (significant) itemsets composed of highly correlated organizational 

features, can be derived from massive simulation transaction records, which are described 

in detail from the algorithmic perspective in Section 3. 

  

Figure 5. Task feature construction process based on platform actions.

Step 4: Construct firepower effectiveness features
The firepower effectiveness measures whether an operation achieves the expected

objective at the end of a wargame scenario. Effectiveness is reflected by the integrity status
of enemy’s targets, including undamaged, partially failed, or damaged. In addition, the
platform and mount consumption of a MPAMS is another way to measure effectiveness.

Step 5: Knowledge mining for MPAMS organization
The organization preference knowledge of MPAMS is acquired by applying the FCIM

to confrontation itemsets. Particularly, the theoretical problem of organization preference
knowledge mining can be interpreted as a correlation extraction assignment of different
organizational features that often appear together under different circumstances, which
matches a FCIM problem, as explained in Section 2.2. In particular, each wargame simula-
tion is set as a transaction, and all organizational features are coded as items within the
transaction. Then, the MPAMS organization preference knowledge, namely the frequent
(typical) closed (significant) itemsets composed of highly correlated organizational features,
can be derived from massive simulation transaction records, which are described in detail
from the algorithmic perspective in Section 3.

3. Proposed MPAMS Organizational Knowledge Mining Algorithm-CrossFCI

To realize MPAMS organizational knowledge mining, the FCIM algorithm should be
designed to adapt to the MPAMS dataset’s special feature of dense itemset distribution,
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which exacerbates the analysis difficulty. Therefore, the algorithm should emphasize
efficiency optimization to solve that problem.

The latest intersection-based FCIM algorithms such as Ciclad [37] store itemsets in
a vertical structure and incrementally traverses each transaction to update the structure
with better analysis performance. Nonetheless, Ciclad uses the anti-monotonicity principle
of CI to prune the uncritical candidate itemnodes in the structure, while overlooking the
redundant itemnodes from the FI perspective, which leaves room for further analysis scale
reduction. Thus, this paper proposes CrossFCI, an innovative algorithm that includes a
cross-linked itemset storage structure instead of the traditional vertical one, which could
traverse each item for more efficiently structure updating. Moreover, benefiting from three
proposed pruning strategies, the proposed method could more effectively prune redundant
itemnodes in storage space based on both the minimum support constraint of FI and the
anti-monotonicity principle of CI. Therefore, it could further reduce mining time and better
fit the analysis requirements.

3.1. Proposed Itemset Storage Structure

CrossFCI is made up of two structures for itemset storage:
(1) Item-mediated linked list
The item-mediated linked list G converts horizontally stored transactions in the

database into vertically stored items, which are presented in Figure 6a by a series of
graphnodes. Each graphnode g contains a primary itemnode as well as a collection of trans-
actions in which it appears. Given transactions 1–10 in Table 2, itemnodes {a,b,c,d,e,f,g,h}
are sequentially encoded to graphnodes. For example, itemnode d is added to G attached
by the transaction {1,5,6,7,9}. Afterward, the graphnodes will be traversed sequentially to
update the FCIs in the cross-linked structure. Notably, transactions are only reserved once
in G and will not appear in the cross-linked structure, thus reducing the memory usage for
the subsequent FCI mining process.
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(2) Cross-linked structure
Figure 6b visualizes the cross-linked structure C which stores the FCI in a tree-like

structure, given by
C = (H, V) (4)

where H denotes a horizontal linked list, V stands for a vertical linked list. Particularly, H
reserves the entire structure of each FCI as a chain, which is composed of

H = (∆, Ψ)
∀δ ∈ ∆, δ.ι = itemnode; ∀ϕ ∈ Ψ, ϕ.ι = itemnode; ∃Ψ ∈ δ s.t. δ.ι = Ψ(0).ι ≡ ϕ.ι

(5)
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where ∆ means a headnode linked list to locate the starting position of certain FCI branches
by itemnode name. Each headnode δ in ∆ is attached to several Ψ, namely FCI branches,
which have the same primary itemnode name. Moreover, Ψ indicates a horizontal FCI
linked list, to direct each frequent closed itemnode ϕ in a FCI branch.

Specifically, the tail frequent closed itemnode of each FCI chain is highlighted in
orange and directed by a FCI flag pointer ϕ, containing tags for the support value and
transaction collections of this FCI. Moreover, this FCI chain’s intermediate itemnodes can
also be marked as the tail frequent closed itemnode of other FCIs. E.g., the frequent closed
itemnode {a} and {b} in Figure 7 represent for FCI {a} and {a-b} with an attached transactions
of {1, 2, 5, 6, 7} and {1, 2, 6, 7}, respectively.
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The vertical linked list V locates and links identical itemnodes in various horizontal
linked lists, which constitutes

V = (Γ, Θ)
∀γ ∈ Γ, γ.ι = itemnode; ∀θ ∈ Θ, θ.ι = itemnode; ∃Θ ∈ γ s.t. γ.ι = Θ(0).ι ≡ θ.ι

(6)

where Γ implies an index linked list to target the specific itemnode by name. Each node
γ ∈ Γ is appended by an item-based vertical FCI linked list Θ, which connects the same
itemnode belonging to different horizontally stored FCIs, enabling further superset itemset
comparison of that itemnode.

3.2. Knowledge Mining Procedure

The cross-linked structure updating procedures in the MPAMS organizational knowl-
edge mining process are depicted in Figure 7. First, the database is scanned to construct
an item-mediated linked list G. Subsequently, the cross-linked structure C grows along
with the iteration over graphnodes of G. When a new graphnode is added, the cross-linked
structure is updated in five steps:

Step 1: Analyze all the attached branches Ψ of each headnode g. In the case of a-head,
branches {a-b-c} and {a-c} should be covered, and the longest chain {a-b-c} will be analyzed first.
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Step 2: Recursively assess the sub-branches under each branch that satisfy the CI
definition and minimal support requirements of FI, such as subbranch {a-b} under branch
{a-b-c}, and subbranch {a} under branch {a-c}.

Step 3: Intersect the transactions between the incoming graphnode and existing
frequent closed itemnodes. E.g., intersect the transactions of {d} with branch {a-c}, {a}, and
{a-b} in turn, attaining new frequent closed itemnodes to be updated.

Step 4: Update the cross-linked structure, including the FCI flag pointer, the support
value tag, and the corresponding transactions.

Step 5: Evaluate the subsequent branches of b-head, c-head, and d-head in ∆ after
analyzing all the branches of a-head. Once all the headnodes of the cross-linked structure
have been assessed horizontally, the FCI nodes are rejudged and pruned according to
the inverse monotonicity principle of the vertical linked list Θ, which further removes
redundant candidate itemnodes from the cross-linked structure.

Ultimately, the updated cross-linked structure is attained, which includes each frequent
closed itemnode along with the corresponding transactions and a support value. This
structure enables extracting and pruning CIs and FIs simultaneously.

3.3. Proposed Pruning Strategies

Additionally, the structure updating process covers three pruning strategies, which
facilitate fast intersection computation among FCIs while maintaining low storage space.

Theorem 1. For every ϕ in Ψ, the support value ϕ.sup should be no less than ς.

Proof of Theorem 1. ϕ ∈ Ψ iff ϕ.sup ≥ ς. If {∃ϕ.sup < ς|ϕ ∈ Ψ} then the updated
ϕ+ , τ(ϕ) ∩ τ(ιnew) by intersecting ϕ with the incoming node ιnew, with ϕ+.sup =
min{ϕ.sup, ιnew.sup} < ς, conflicting with the definition of Ψ.�

Pruning rule 1. Remove itemnode ϕ and ιnew from Ψ if neither ϕ.sup nor ιnew.sup is less than ς.

Theorem 2. Ψ only contains ϕ whose transactions is different from those of previous itemnodes
ϕ.pre.

Proof of Theorem 2. ϕ ∈ Ψ iff κ(ϕ) = ϕ. If {∃τ(ϕ.pre) = τ(ϕ)|ϕ, ϕ.pre ∈ Ψ}, then the up-
dated ϕ+ , {τ(ϕ.pre) ∩ τ(ιnew)} ∪ {τ(ϕ) ∩ τ(ιnew)} =ϕ or ιnew . Hence, the information
of ϕ.pre is redundant.�

Pruning rule 2. Remove ϕ.pre from Ψ for any τ(ϕ.pre) = τ(ϕ).

Theorem 3. If there is a Θ for ιnew in Γ, then every itemnode in Θ possesses a different support value.

Proof of Theorem 3. θ ∈ Θ iff κ(θ) = θ. If ∃{Θ ∈ γ, s.t. γ.ι = ιnew|γ ∈ Γ}, then for any θ1
and its superset θ2, if ∃{( θ1.sup =θ2 .sup) && (τ(θ1) ⊆ τ(θ2 )) | θ1, θ2 ∈ Θ}, which implies
κ(θ1) = κ(θ2) = θ2 6= θ1, conflicting with the definition of Θ. �

Pruning rule 3. Remove θ from Θ if any superset of θ possesses the same support value.

3.4. Algorithm Implementation

The algorithm implementation consists of four functions. Function 1 is the initial step
for transferring the original database to the item-mediated linked list. Function 2 updates
the cross-linked structure from a macro perspective based on the derived graphnode of
function 1. Function 3 is the recursively invoked micro updating mechanism for a specific
headnode branch, which is embedded in function 2. Function 4 integrates the analyzed
result into the existing cross-linked structure to be updated after function 2 is completed.

Function 1: Construct the item-mediated linked list to store each item’s transactions.



Aerospace 2023, 10, 166 14 of 29

The transaction database is iterated to create a graphnode for each item in the item-
mediated linked list, each attached with a set of matching transactions represented by
transnodes (lines 2–6). The new graphnode will be connected to the old graphnode if the
one with the same name already exists (line 7). Finally, graphnodes that violate the support
threshold are deleted (line 8). For an item-mediated linked list including {a,b,c,d} in Figure 7,
four items are stored as independent circular graphnodes, and the attached square nodes
denote the transaction index.

Function Conwg()

Input: original transaction database
Output: item-mediated linked list G with each graphnode attached with a set of transnodes
1: While(!transaction database)
2: { foreach itemnode ι in a certain transaction
3: if FindSameItem(ι, g) = ∅ then
4: create graphnode gnew s.t. gnew.ι = ι
5: Transnode* translist = SearchMatch(database, gnew)//read matched transactions in sequence
6: gnew.τ ← translist , G(tail).next← gnew
7: else link ι to the matched g ∈ G }
8: Delete g ∈ G s.t. g.sup < ς
End function

Function 2: Update the cross-linked structure according to each incoming graphnode.

Each incoming graphnode of function 1 is merged with the existing cross-linked struc-
ture that stores all the FCIs to formulate updated FCIs. In particular, existing subordinate
branches Ψ of all the headnodes δ ∈ ∆ in the structure are iterated. For each headnode,
the longest chain within the branches is first analyzed to facilitate the following intersec-
tions. Subsequently, the MiningItem function is called to figure out novel FCI candidates
by integrating the incoming graphnode with the other frequent closed itemnodes in the
branches (lines 1–6). Moreover, a new headnode branch is created for the graphnode after
analyzing all the headnodes (line 7). After that, if there is no itemnode γ ∈ Γ matches this
graphnode, it will be directly attached to the existing linked list (line 9). Alternatively, if
there is no superset with the same support in the vertical FCI linked list Θ of this node, i.e.,
the pruning strategy 3 is satisfied, the graphnode will be linked to the structure tail as a
new FCI node (lines 11–12).

As shown in Figure 7, when graphnode {d} is added to the structure, all the headnodes
ranging from {a} to {c} are analyzed. The headnode branches are successively evaluated by
function 3 in the following orders: {a-b-c, a-c}, {b-c}, and {c}. Then branches {b-c-d}, {b-d}, and
{c-d}, whose supersets are {a-b-c-d}, {a-b-d}, and {a-b-c-d}, respectively, are dropped out via
the pruning strategy 3.

Function Mining()

Input: each graphnode g in the item-mediated linked list G
Output: updated cross-linked structure
1: Initial()
2: foreach g ∈ G
3: { foreach δ ∈ ∆
4: { mining the longest chain of the branches firstly
5: mining the itemnode ϕ ∈ Ψ s.t. Ψ ∈ δ by MiningItem(ϕ, ϕ.next, g, 0)
6: δ← δ.next }
7: Link(null,Γ, ∆, null, g, 0, 3)//create independent headnode branch for g
8: //search index itemnode γ ∈ Γ which matches g
9: if ∀γ ∈ Γ s.t. γ.ι 6= g then Link(null, Γ, ∆, null, g, 0, 2)//create a new headnode branch for g
10: else//conduct pruning strategy 3
11: if ∀θ ∈ γ.Θ s.t. (θ.τ ⊇ g.τ)&&(θ.sup 6= g.sup) then Link(null,Γ, ∆, γ, Θ,g, 0,4)
12: g← g.next }
End function

Function 3: Generate new FCI candidates for each headnode branch.
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The MiningItem function is the atomic procedure of FCI analysis. The FCI chain’s tail
node is first processed. The graphnode is linked to the branch tail if no superset has the
same support value (lines 1–4). After that, the incoming graphnode and each intermediate
frequent closed itemnode in the chain is intersected in response to the pruning strategy 2.
The frequent closed itemnode flag is transmitted to the graphnode if the transaction inter-
section is the same (lines 5–8). Otherwise, sub-branches under the intermediate node are
assessed recursively which satisfied the pruning strategy 1. The recursion would not end
until there are no more sub-branches (lines 9–11).

For branches {a-b-c, a-c} under a-head in Figure 7, {a-b-c} is first evaluated with {d}
appended to the end of the chain. Then the intermediate frequent closed itemnodes {a} and
{b} in {a-b-c} are assessed in order. The analytical order for {a} is {a-c} + {d} and {a} + {d}. In
terms of {b}, the pair of {a-b} + {d} is examined.

Function MiningItem(ϕ0,ϕ1, g, k)

Input: ϕ0 and ϕ1: adjacent itemnodes in Ψ, g: graphnode, k: the sub-branch index of Ψ
Output: updated FCI branches in the FCI linked list
1: if (ϕ1 = null) then//imply the tail itemnode of the certain FCI chain
2: if ∀γ ∈ Γ s.t. γ.ι 6= g then Link(Ψ, Γ, ∆, null, g, k, 2)//targetγ.ι that matches g
3: else//conduct pruning strategy 3
4: if ∀θ ∈ γ.Θ s.t. (θ.τ ⊇ g.τ)&&(θ.sup 6= g.sup) then Link(Ψ, Γ, ∆, γ, Θ, g, k, 4)
5: else//imply intermediate itemnode of the certain FCI chain
6: foreach ϕ1 ∈ Ψ s.t. ϕ1.cls f lag = true&& ϕ1.next[0] 6= null//conduct pruning strategy 2
7: { if (τ(ϕ1) ∩ τ(g)) = τ(ϕ1) then
8: ϕ1.cls f lag← false , g.cls f lag← true
9: else//conduct pruning strategy 1
10: foreach sub-branch sub of ϕ1.next[] s.t. (ϕ1.next[sub.index].sup > ς)
11: MiningItem(ϕ1, sub, g, sub.index)
End function

Function 4: Update the cross-linked structure.

The Link function presents the detailed updating mechanism of the cross-linked
structure, which is divided into four cases according to the relationship between the
incoming graphnode and the current structure: Initialization of the entire structure by
creating a new headnode δ and vertical node γ(case 1), connecting the incoming graphn-
ode to the end of Γ (case 2), creating a new headnode branch for this graphnode in ∆
(case 3), and updating the intermediate FCI nodes in the horizontal Ψ and vertical Θ of the
structure (case 4).

Function Link(Ψ, Γ, ∆, Θ, g, k, mode)

Input: Ψ: horizontal FCI linked list, Γ: vertical index linked list, ∆: headnode linked list, Θ:vertical FCI linked
list, g: graphnode, k: the sub-branch index of Ψ, mode: the structure updating mechanism mode
Output: updated Ψ, Γ, ∆, Θ attached with new itemnode
1: Create new ϕ, ϕ.ι← g, ϕ.cls f lag← true
2: Switch(mode)
3: Case 1://neither headnode nor indexnode exists, applicable to the initial itemnode of the structure
4: Create new γ, γ.ι← g , create δ, δ.ι← g, ∆(tail).next← δ, Γ(tail).next← γ
5: Case 2://no indexnode exists, applicable to updating the longest branch of δ
6: Create new γ, γ.ι← g, Γ(tail).next← γ, Ψ(tail).next[k]← ϕ
7: Case 3://no headnode exists, construct an independent headnode branch for g
8: Create new δ, δ.ι← g, ∆(tail).next← δ, Θ(tail).next← ϕ
9: Case 4://both headnode and indexnode exist, applicable to analysis intermediate branches of Ψ
10: Ψ(tail).next[k]← ϕ, Θ(tail).next← ϕ
End function

4. Results

This section discusses experiments implemented on both public datasets and replay
wargame simulation datasets to verify the efficiency of CrossFCI in the MPAMS organiza-
tional knowledge mining task. The objective lies in:
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• How effectively could CrossFCI mine FCIs from the public quantitative datasets?
• How well does CrossFCI’s performance benefit from the proposed three pruning strategies?
• What valuable organization preference knowledge in MPAMS organization has been

discovered by CrossFCI?
• How efficiently could CrossFCI adapt to huge MPAMS datasets of different sizes?

4.1. Introduction to Datasets and Algorithms
4.1.1. Public Datasets

As indicated in Table 4, four public datasets with different transaction sizes and
densities were used. Mushroom is a well-known dense dataset that depicts mushroom
information with identically sized transactions. Retail is a popular sparse dataset of market
basket information. Synth and Synth2 are constructed via the SPMF platform, including
synthetic transaction datasets on a medium and small scale.

Table 4. Description of public datasets.

Dataset Transaction Avg (t) Item Density

Mushroom 1 8124 23 119 19.3%
Retail 1 88,163 10.4 16,470 0.06%
Synth 2 100,000 25.4 10,000 0.25%

Synth2 2 10,000 25.5 1000 2.5%
1: http://fimi.ua.ac.be/data/, 2: http://www.philippe-fournier-viger.com/spmf/ (accessed on 19 November 2022).

4.1.2. Compared Algorithms and Experiment Settings

CrossFCI was compared to Ciclad [37], CloStream [38], and Moment [39], which are all
intersection-based itemset extraction algorithms. Ciclad is one of the latest FCIMs with
two folds, which can access the itemset structure quickly. The structure grows through
the item-wise intersection and drops out those uncritical items, thereby accelerating the
analysis efficiency. CloStream boosts efficiency by introducing landmarks. In particular,
an inverted list is proposed to create intersections and filter itemsets. Moment uses a CE
tree to adapt to the itemset enumeration. The itemsets are refreshed by interacting the
sibling nodes with some infrequent itemnodes and promising closed itemnodes, deriving
the support value of each itemset.

All the algorithms were programmed in C and set in identical conditions. The experi-
ments were conducted on a personal computer with Windows 10, 16 GB of RAM, and Intel
i7-8700 CPU. The CPU time consumption throughout the mining process was measured,
with a maximum limit of 10,000 s.

4.2. Results on Public Datasets

This subsection evaluates CrossFCI’s performance using three tests: a performance test
considering mining time, a scalability test regarding adaption to varied-size datasets, and a
pruning strategy efficiency test to confirm the function of three pruning strategies.

4.2.1. Efficiency Comparison

Figure 8a,b depict the mining results for dense datasets of Mushroom and Synth2. It is
observed that the mining time of each method rises with the decreased support threshold.
Figure 8a shows that CrossFCI performs best on Mushroom, which takes less than 10 s
when the support threshold is 0.01, outperforming Ciclad and Moment by an order of
magnitude and CloStream by two orders of magnitude. As for Synth2, Figure 8b describes
that CrossFCI’s time consumption ranges from 8 to 12 s, which also yields numerical
superiority to Ciclad and CloStream. Moreover, Ciclad shows a slight time advantage over
CloStream of around 10 s. In addition, the analysis time of Moment increments sharply
as the support threshold declines. The peak time consumption is more than 150 s when
the support threshold is 0.02. The efficiency advantage of CrossFCI for dense datasets

http://fimi.ua.ac.be/data/
http://www.philippe-fournier-viger.com/spmf/
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stems from the well-designed itemset storage structure, which reduces the workload of
processing redundant or unessential itemsets.
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For sparse datasets, which comprise Retail and Synth, the FCIs can be effectively mined
under relatively sparse conditions. As seen from Figure 8c, for Retail, CrossFCI’s time
consumption fluctuates gently at 3 s, and the growth rate is smooth when the support
threshold decreases, which is slightly less than Moment and Ciclad. CloStream lags with
more than 100 s on Retail dataset. However, for the very sparse dataset Synth, the mining
time in Figure 8d indicates CrossFCI efficiency dips under a low support threshold. For
instance, there is a clear rising trend in the threshold span [0.001, 0.002], which performs
worse than Ciclad and CloStream, yet holds a small gap to Moment. The underlying reason is
CrossFCI’s item-based structure for FCI updating. The sparse dataset possesses numerous
item categories, while the item density of each transaction is small. Thus, each transaction
cannot provide adequate valuable item information for structure updating, resulting in
slow structure iteration speed and high search cost when an itemnode arrives. As a result,
CrossFCI did not achieve the expected efficiency on very sparse itemsets.
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4.2.2. Scalability Assessment

In addition, Mushroom dataset of different sizes, including 10 k, 100 k, 200 k, and
500 k, were analyzed to verify the scalability of CrossFCI. As illustrated in Figure 9a, each
algorithm completes the assignment in 1 s under the premise of a small dataset. When the
data scale grows, CrossFCI can still acquire results in less than 10 s, whereas the time cost
of other algorithms apparently ascends. For instance, the time cost of CloStream gradually
approaches the highest point of 1000 s on the dataset of 500 k (see Figure 9a).
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Figure 9. Scalability comparison of different FCIM algorithms. (a) Runtime comparison of different
FCIM algorithms. (b) Itemset number of different FCI lengths.

Figure 9b reveals the reason for the varied time cost from the FCI length perspective,
which gives the itemset length distribution of the results on different-sized datasets. It
is noteworthy that the percentage of complex FCIs, including the interval 5–9 in green
and 10–14 in dark blue, grows rapidly for large datasets of 200 k and 500 k, implying the
analysis assignment tends to become harder and leads to high computation time. While
CrossFCI can obtain the results quickly, benefiting from less time spent on scanning the
itemset storage structure, which organizes FCIs in a compressed form.

4.2.3. Pruning Strategy Efficiency Verification

To verify the effectiveness of different pruning strategies in CrossFCI, Figure 10 pro-
vides the comparison of both efficiency and FCI number for five algorithm configurations:
the one with completed pruning strategies, the one without any pruning strategy, and the
ones those only adopt the pruning strategy 1, 2, or 3.

The results in Figure 10a denote that pruning strategy 1 can reduce the analysis
time from the initial phase of structure construction by the support threshold constraint.
However, the itemset comparison in Figure 10b indicates that strategy 1′s effect is limited
compared to other strategies. Pruning strategy 2 focuses on the itemnodes in the horizontal
linked list Ψ, as shown in Figure 10b, effectively reducing the candidate itemnodes to be
analyzed, thus cutting the intersection analysis scope. For pruning strategy 3, the redundant
itemnodes of the vertical linked list Θ are pruned by the superset support judgment, which
further reduces the analysis scale and yields the shortest running time among the three
strategies (see Figure 10a). The comparison of the pruning strategies 2 and 3 reveals that
the former toward Ψ is more adept at dropping out storage of itemnodes in the mining
process, while the latter toward Θ contributes more to the mining efficiency by shrinking
the redundant FCI results.

In conclusion, the performance test illustrates that CrossFCI outperforms all the other
examined algorithms in terms of time consumption. The scalability test demonstrates that
CrossFCI is applicable to both dense and relatively sparse datasets even under a harsh
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support threshold. The pruning strategy efficiency test verifies the effectiveness of the three
pruning strategies in the algorithm.
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4.3. Results on Wargame Simulation Datasets

This subsection first describes the wargame case to clarify the force composition of both
sides, and then states how the experimental data is processed into the FCIs, followed by
the knowledge analysis from the perspective of tasks, platforms, and mounts. Finally, the
performance of the proposed algorithm is assessed on MPAMS datasets of different sizes.

4.3.1. Case Description

An air-to-sea assault operation was used for the feasibility verification of CrossFCI.
The attacking side constituted of a flight formation consisting of 17 aircraft deployed in
two airports, which are highlighted in blue in Figure 11. The flight formation intended to
break through the air defense force and launched a surprise assault against the defender’s
ship. The defending side included a large destroyer that sailed in the nearby sea, which is
highlighted in red in Figure 11, and a formation of six fighters that performed air patrols to
prevent the attacking side from striking the ship.

There were two phases in this operation: air combat and sea assault. The task un-
der test included strike, feint, escort, electronic jamming, intelligence, surveillance, and
reconnaissance (ISR). The aircraft platform contained fighters, bombers, fighter-bombers,
UAVs, electronic warfare aircraft, and air early warning (AEW). The mount comprised ultra-
long-range air-to-sea missiles (ASM, whose range is approximately 300 nm), long-range
air-to-sea missiles (approximately 150 nm), close-range air-to-sea missiles (approximately
20 nm), air-to-air missiles (AAM), bombs, and electronic warfare weapons. Notably, the
total amount of aircraft in the MPAMS architecture was fixed, while the assigned task type,
aircraft type, and mount type of the MPAMS could be flexibly changed and paired.
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4.3.2. Data Processing

The experimental data were collected using a wargame software named Origin, devel-
oped by Shareetech. The simulations were conducted on 1100 scenarios with 10 MPAMS
configurations with different tasks, aircraft platforms, and mount combinations, as ex-
plained in detail in Appendix A. In the attacker’s view, there were 573 winning samples
and 527 losing samples. The criterion of winning was whether the defender’s ship was
damaged or failed at the end of the sea assault phase, otherwise the operation was lose
with the ship remained undamaged or normal. The result was automatically estimated by
the game engine, indicating the data’s credibility. Then, the feature data were processed as
explained in Section 2.3. Subsequently, the MPAMS organization preference knowledge
in winning and losing scenarios was analyzed separately by CrossFCI under a support
threshold of 0.06. The value of the support threshold is determined by the scale of valuable
FCIs. Finally, the discovered FCIs, which contained the itemnode of contextual capability
code, organization modes, and strike effectiveness at the same time, were filtered to derive
meaningful organizational knowledge.

4.3.3. Results Analysis

The discovered knowledge was demonstrated by a set of FCIs, where each FCI repre-
sented a mode of itemnode correlation; for instance, itemnodes a, b, and c were correlated
in a FCI {a, b, c}. The itemnode included the MPAMS organization features, as presented in
Section 2.3. Then, each FCI, namely each MPAMS organizational knowledge, was further
processed into the format of {A1, A2 ⇒ B}, as shown in rows in Table 5.
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Table 5. Discovered organization preference knowledge of MPAMS.

Contextual
Capability(A1)

Organization Element (A2) Index Firepower Effectiveness (B) Count

Sprcp,Wattk,Selec,
Sdefs,Smnur,Bcnc

1
ISR(AEW)→Feint(UAV)→Elec(F(AR))→Escort(F[A] + FB[A])
→Strike(B[UL] +F[L] + FB[L]) 2

1 Saircra f t
F , Saircra f t

FB , Lmount
ASM , Fenemy

ship 3 12

Bprcp,Battk,Selec,
Bdefs,Smnur,Wcncl

ISR(AEW)→Escort(F[A] + FB[A])
→Strike(UAV + B[UL] + FB[L] + F(L))

2 Saircra f t
FB , Mmount

ASM , Lmount
AAM , Denemy

ship 13

3 Laircra f t
F , Laircra f t

FB , Mmount
ASM , Fenemy

ship 10

4 Laircra f t
B , Nenemy

ship 1

Bprcp,Battk,Selec,
Bdefs,Bmnur,Wcncl

ISR(AEW)→Feint(UAV)→Strike(B[UL] + FB[L] + F[L]) 5 Saircra f t
F , Laircra f t

FB , Lmount
ASM , Denemy

ship 11

6 Saircra f t
F , Laircra f t

FB , Lmount
ASM , Fenemy

ship 8

Bprcp,Sattk,Selec,
Wdefs,Wmnur,Scncl

ISR(AEW)→Feint(UAV)→Escort(F[A])→Strike(B[UL]) 7 Laircra f t
B , Lmount

ASM , Mmount
AAM , Nenemy

ship 18

Bprcp,Sattk,Selec,
Wdefs,Wmnur,Wcncl

ISR(AEW)→Feint(UAV)→ Escort(F[A])→Strike(B[Bomb]) 8 Laircra f t
B , Nenemy

ship 6

Bprcp,Battk,Selec,
Bdefs,Bmnur,Scncl

ISR(AEW)→Feint(UAV)→Escort(F[A])→Strike(B[UL] + F[C])
9 Laircra f t

F , Mmount
ASM , Denemy

ship 4

10 Laircra f t
F , Lmount

ASM , Fenemy
ship 10

11 Mmount
ASM , Mmount

AAM , Nenemy
ship 10

Bprcp,Battk,Selec,
Bdefs,Wmnur,Scncl

ISR(AEW)→Feint(UAV)→Escort(F[A] + FB[A])
→Strike(B[UL] + FB[C])

12 Mmount
ASM , Mmount

AAM , Nenemy
ship 1

Bprcp,Sattk,Selec,
Sdefs,Bmnur,Wcncl

ISR(AEW)→Feint(UAV)→Escort(F[A] + FB[A])
→Strike(B[UL] + F[L] + FB[C])

13 Laircra f t
F , Laircra f t

FB , Mmount
ASM , Lmount

AAM , Denemy
ship 14

Bprcp,Wattk,Selec,
Sdefs,Bmnur,Scncl

ISR(AEW)→Feint(UAV)→Escort(F[A] + FB[A])
→Strike(B[UL] + F[L] + FB[L])

14 Laircra f t
F , Saircra f t

FB , Lmount
ASM , Mmount

AAM , Fenemy
ship 4

15 Saircra f t
F , Saircra f t

FB , Lmount
ASM , Mmount

AAM , Nenemy
ship 12

Bprcp,Battk,Selec,
Sdefs,Bmnur,Bcncl

ISR(AEW)→Feint(UAV)→Escort(F[A] + FB[A])
→Strike(B[UL] + F[L] + FB[C + L])

16 Saircra f t
FB , Mmount

ASM , Denemy
ship 14

1 S: strong, B: balanced, W: weak. The subscript for characters is in accordance with those in Table 2. 2 F: fighter, FB:
fighter-bomber, B: bomber, AEW: air early warning, AR: anti-radiation missile, A: air-to-air missile, C: close-range
ASM, L: long-range ASM, UL: ultra-long-range ASM. 3 AAM: air-to-air missile, ASM: air-to-sea missile, L: large
consumption, M: medium consumption, S: small consumption, D: target ship got damaged, F: target ship got
failed, N: target ship remained normal.

• The first column (A1) denoted the contextual capability configuration code, accompa-
nied by the organization modes, which indicated the advantage and disadvantage of a
MPAMS against an enemy. The labelled code of each capability is as follows: W is for
weak, B is for balanced, and S is for strong.

• The second column (A2) included typical MPAMS organization modes extracted from
data. For instance, F1(X1[Y1], X2[Y2])→F2(X3[Y3]) denoted a pattern that task F1 was
first conducted via platform X1 and X2, and X1 was equipped with mount Y1 while X2
was equipped with mount Y2. Afterward, task F2 was conducted via platform X3 with
mount Y3. The typical features of each mode are marked with bold and underlined fonts.

• The fourth column (B) represented the firepower effectiveness elements in the pattern,
which included the integrity of a defender’s key target and the attrition of the at-
tacker. According to the operation objective, the integrity of the defender’s key target
comprised three integrity levels of the defender’s ship: damaged, failed, and normal,
which were abbreviated as D, F, and N, respectively. The patterns with different
integrity levels are highlighted by separate colors in Table 5. Additionally, the attrition
of the attacker, namely the aircraft or mount consumption, was divided into three
levels by percentage, large, medium, and small levels, represented by symbols L, M,
and S, respectively. The superscript indicates the type of aircraft or mount.

• The last column of Table 5 depicts how frequently a FCI occurs, and “6” means a FCI
appears six times in all FCIs. The larger the number is, the more typical the FCI is.

As seen from Table 5, the knowledge includes 16 valuable FCIs. According to MPAMS’s
multi-layer collaboration modes of tasks, platforms, and mounts, the valuable organiza-
tional knowledge will be interpreted in a top-down manner, ranging from tasks to mounts.

(1) Task combinations
Since the MPAMS organization is mission-driven, the knowledge of task-oriented

collaboration was derived first. Generally, the integration of pioneering or supporting tasks
such as escort, feint, or electronic jamming, apart from the backbone striking task, could
enhance operational effectiveness.
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As for the escort task, patterns 5 and 6 without the escort task showed good strike
effectiveness of a damaged or failed ship; but these patterns were accompanied by large
consumptions of fighter-bomber and ASM, which could be traced to the MPAMS’s weak
defense capability bias compared to the task arrangement with an escort (see patterns
14 and 15). Without an escort, fighters were more focused on attacking the target rather
than protecting the bomber, which boosted the firepower advantage against the sea, while
posing other aircraft with weaker maneuverability and defense to the enemy in air combat.
Therefore, the escort task is recommended to be arranged to maintain MPAMS’s overall
defense level.

In terms of the feint task, patterns 2–4 without the feint task, which was opposed
to patterns 14 and 15 with the feint by UAVs, showed fluctuating strike results. On the
one hand, the victory was accompanied by massive fighter (Laircra f t

F ) and fighter-bomber

(Laircra f t
FB ) consumptions. On the other hand, this radical strategy might occasionally lead

to unintended results (depicted by pattern 4) when a host of bombers were destroyed.
In the absence of the feint task, UAVs moved out collectively with the main formation
with a stronger attacking capability. However, it was hard to consume enemy missiles
with low-cost UAVs, leaving the main force vulnerable to the defender’s firepower with
reduced defense and concealment capability (BdefsWcncl). Thus, the feint task is important
for MPAMS task organization.

As for the electronic jamming task, when compared to patterns 14 and 15, task arrange-
ment of pattern 1 with the electronic jamming task showed comparable strike performance
against the target ship but caused less fighter to be consumed (Saircra f t

F ). The electronic
jamming could pose interference with the defender’s perception and reinforce the relative
maneuverability of MPAMS expressed by code SprcpSmnur. Notably, while this task could
slightly increase the relative striking effectiveness, it could not completely destroy the
defender’s ship. So, this task can be set as a complementary task for a MPAMS, but its
effectiveness should not be overestimated.

(2) Platform collaboration
The aircraft type that performs the task was critical to ensure the striking effectiveness

of a MPAMS. Different MPAMS capability gains in different aircraft collaboration modes
made platform pairing knowledge valuable to learn. This type of knowledge was bomber-
centric, as bombers took the dominant attacking role in air-to-sea assault operations, which
conducted the strike task.

First, all-bomber was not the desired organization preference to conduct the strike
task. An all-bomber formation equipped with high-lethality weapons, such as ultra-long-
range missiles or bombs, could theoretically increase striking effectiveness. Nonetheless, a
large correlation to the undesired striking results (see patterns 7 and 8) and heavy losses of
bombers and mounts implied that this strategy was not as effective as expected. The reason
lies in the limited defensive and maneuverability capabilities of the MPAMS in the two
configurations, represented by codes WdefsWmnur, which hinder the release of the MPAMS’s
attacking capability.

In addition, pairing bombers with high-performance aircraft, such as fighters or fighter-
bombers, to perform escort and strike tasks, as shown by patterns 9 and 10, 13–16, was a
feasible platform organization strategy of MPAMS, which increased the strike success rate
while reducing the attrition of high-value bombers. Namely, this strategy could balance the
attacking capability with the defense and maneuverability capabilities of the MPAMS, such
as the updated capability code Battk,Bdefs,Bmnur of patterns 9 and 10.

For the modes of pairing the bomber with a pure type of fighter or fighter-bomber,
the bomber + fighter pattern provided a better effectiveness ratio (patterns 9–11) than
the bomber + fighter-bomber pattern (pattern 12). As the maneuverability of the fighter
was higher than that of the fighter-bomber, it was more appropriate to match the weakly
maneuverable bomber, as depicted in the comparison of the updated capability codes of
Bmnur and Wmnur. However, pattern 11 indicated that this strategy could have negative
results, which was attributed to insufficient bomber protection by fighters.
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On this basis, a further platform-level collaboration of the bomber and several types of
fighter and fighter-bomber to conduct the escort and strike tasks together, as evidenced by
patterns 13–16, could take advantage of the capabilities of individual platforms to achieve a
stronger joint strength. However, these patterns had different effectiveness values under
the same platform collaboration configuration. This could be due to the influence of the
mount feature on the MPAMS organization, which is explained in the following.

(3) Mount mix
Based on task and platform collaboration, overlaying mount features could further

balance the MPAMS capabilities to support task and platform collaboration. The mount
organizational knowledge was evaluated considering two factors: range (from close to
ultra-long range) and type (such as bombs, missiles, and soft weapons).

Concerning the range factor, patterns 13–16 with different ASMs for fighter-bombers
denoted representative cases for the mount pairing knowledge. In general, the close-range
missiles achieved the best firepower effect but confronted with a weak defense capability.
The long-range missiles highlighted survivability but failed to defeat the enemy in certain
cases. In contrast, the mount combination of long- and close-range balanced the winning
probability with troop consumption, which is recommended for the MPAMS organization.

In particular, pattern 13 with close-range ASM achieved excellent strike performance
with dense connections to the ship damage result. Because the highly offensive feature of the
close-range missiles was superimposed on the carrier aircraft’s inherent maneuverability
by code SattkSdefsBmnur. However, the close-range strike needed a deep burst into the
defender’s territory, which affected the operation concealment and results under severe
losses of fighter-bombers, fighters, and mounts. In summary, this strategy can be one of the
best options for a striking effect, but it is expensive for the MPAMS organization in terms
of troop attrition.

The key feature of patterns 14 and 15 with long-range ASM was strong concealment
capability (Scncl), which reduced the fighter-bomber consumption (pattern 14). However,
this strategy caused poor capability coordination of aircraft and missiles in a MPAMS.
Because the dependence on the inherent capability of long-range missiles was too severe
to penetrate the defender’s defenses, it caused moderate strike effects of the ship to fail
(Fenemy

ship ). Moreover, in certain cases, this organization mode even had poor results (pattern
15) despite low consumption of the attacker’s fighter and fighter-bomber (as the aircraft
could return to camp after launching long-range firepower). Thus, this insurance strategy
is not effective enough for the MPAMS organization.

For pattern 16 equipped with both close- and long-range ASMs, the capability configu-
ration indicated that the synergy of close- and long-range missiles coordinated attacking
capability with concealment of the MPAMS, as given by code BattkBcncl. After effectively
depleting the enemy’s air defense using long-range missiles in the first wave, other aircraft
carrying the close-range missiles could exploit the opportunity window to destroy the
defender’s ship (Denemy

ship ) successfully. In addition, the overall aircraft attrition was less than
that of pattern 13 when considering fighters and fighter-bombers. Therefore, it is a feasible
approach to achieving striking effectiveness for MPAMS.

In terms of the mount type factor, the collaboration of different mount types could
boost firepower effectiveness, which was further intertwined with aircraft capabilities. For
example, when compared to the pure powerful mount of ultra-long-range missiles or bombs
depicted in patterns 7 and 8, pairing ultra-long-range missiles and close-range missiles could
compensate for each other’s capabilities for improving performance, as illustrated by
patterns 9 and 10. In addition, the FCI of pattern 1 indicated that the multi-domain pairing
of electronic weapons and long-range missiles served as a valuable organization preference
to achieve a good effect at a low cost, which could release the unique strengths in different
domains for the MPAMS to achieve comprehensive striking gains.
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4.3.4. Efficiency Performance Evaluation

To test CrossFCI’s effectiveness on different MPAMS datasets, the context factors
were extended to increase the simulation data scale, covering more than 20 factors that
affected striking effectiveness, such as detailed types of platform and mount. Then, the
four methods above were applied to 500, 1000, 2000, 3000, and 5000 records.

The discovered knowledge, namely the FCIs, of each algorithm was identical, which
confirmed the correctness of CrossFCI. The comparison results of different algorithms
regarding the efficiency performance are presented in Figure 12. Figure 12 indicates that
the time-cost of CrossFCI is not distinguishable when the dataset is small. As the dataset
scale increases, the time consumption of CrossFCI remains stable and outperformed the
other algorithms’ time consumption values. In addition, the time cost of Ciclad and Moment
increase smoothly, while CloStream has a larger growth rate. For instance, there is a
significant difference between Moment and CrossFCI on the dataset of 50 k, which take more
than 100 s and less than 10 s, respectively. The results prove the feasibility of CrossFCI for
large-scale MPAMS datasets, which shows a certain prospect of extracting more complex
strategy knowledge from enormous wargame replay data.
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4.3.5. Discussion

The influence of the MPAMS capability factor on the MPAMS organizational perfor-
mance has been primarily illustrated in Section 4.3.4. Particularly, there exists a strong
correlation between the capability strengths or weaknesses and the collaboration strategy
selection. Namely, well-designed decisions based on the capability configuration could
increase striking effectiveness while prohibiting unnecessary attrition. In the following,
commonalities of the above-mentioned organizational knowledge of tasks, platforms, and
mounts are further extracted via capabilities, revealing intrinsic logic that bridges the
decision-making process and decision effectiveness.

Knowledge 1: Balance capabilities of tasks, platforms, and mounts
Balancing the overall MPAMS capabilities is critical to the organizational strategy

development, which could be reflected in the capability configuration code of a MPAMS.
In addition to the attacking capability mainly represented by mounts, the maneuverability
and defense capabilities of aircraft platforms to which the mount belongs, as well as task
arrangements, could complement the shortcomings of the mount’s inherent capability and
strengthen the MPAMS’s overall capability, thus increasing the victory probability.

For instance, a MPAMS mounted with pure but powerful mounts, such as bombs or
ultra-long-range missiles, cannot achieve the desired performance in most circumstances be-
cause the mount’s poor maneuverability fails to release the deserved level of the MPAMS’s
attacking capability. From the aircraft perspective, the weakness of the MPAMS’s maneu-
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verability can be complemented by the aircraft’s capabilities. As a result, bombers carrying
bombs or long-range missiles can achieve better outcomes when combined with fighters
and fighter-bombers under high maneuverability. In addition, from the task perspective,
the original pure-bomb configuration supplemented by an escort task can improve the
formation’s defense, thus compensating for the MPAMS’s weakness regarding the air-to-air
attacking capability. Then, the balanced capability distribution between the air and sea can
reduce attrition.

Moreover, the cross-platform mix of high-capability mounts with low-capability air-
craft in a MPAMS is preferable to achieve a differential advantage for the MPAMS organi-
zation. For instance, low-cost UAVs with limited maneuverability and attacking capability
could disperse the defending air force and cover other friendly aircraft, which improves the
relative defense and concealment capabilities of the aircraft carrying high-quality mounts,
thus providing more strike opportunities for the attacking side.

Knowledge 2: Maintain mount type diversity
The mount layout implies a MPAMS’s capability distribution. For instance, pairings

of close- and long-range missiles can balance a MPAMS’s attack and defense, while the
ultra-long-range missile emphasizes defense priority.

In general, a MPAMS with multiple platforms carrying a mix of missiles and bombs
poses a greater threat to the defender than that carrying a single mount type. Namely,
different mount combinations provide more flexible and efficient attacking modes to boost
task and platform collaboration. For instance, a diverse missile layout combining close-
and long-range missiles can achieve a better striking effect than those carrying a single
type of close-range or long-range missile. The first strike phase, which is dominated by
the long-range missile, could ensure both concealment and attacking capability. Then the
leading striking character is transferred to the close-range missile, which further releases
the attacking capability of a MPAMS, improving the comprehensive performance from
both attack and defense perspectives.

Despite the mount diversity when considering multiple platforms, a single platform
could also benefit from the diversity of mounts when considering its unique capabilities.
For instance, a fighter-bomber is an excellent platform for long-range missiles due to
its high attacking capability. In contrast, close- and long-range mounts are suggested
to be configured together for fighter-bombers when considering the aircraft’s inherent
maneuverability. Thus, the trade-off between attacking and defense capabilities could
improve the firepower effectiveness, indicating its prospect in real-world applications.

Knowledge 3: Create capability asymmetric advantages
Asymmetric capability advantages against the opponent could be created mainly by

task arrangements. The motivation is to exacerbate differences in the fragile part of the
defender’s capabilities. For instance, a MPAMS strikes with a feint task can distract the
defender’s attacking capability, while an escort task can enhance the MPAMS’s air defense
capability against the defender, and electronic jamming or suppression can reduce the de-
fender’s perception capability. The above task arrangements compensate for the drawbacks
in the MPAMS capability configuration (e.g., its lack of outstanding attacking advantage)
and magnify the advantage in another dimension, thus increasing the probability of victory.

5. Conclusions

Aiming to the challenge that the existing methods for discovering the organization
preference knowledge of MPAMS have a gap in practical application due to weak effective-
ness and efficiency, this paper proposes an innovative organizational knowledge mining
method based on the FCIM to guide the MPAMS organization optimization.

To ensure knowledge effectiveness, higher systematic and interpretable knowledge
is derived, benefiting from designing a hierarchical knowledge discovery framework
as well as integrating the contextual capability reflecting decision-making motivation
into the knowledge representation, making the knowledge more credible to the MPAMS
organization. Further, to ensure knowledge efficiency, the time cost of the knowledge
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mining process is optimized by designing an itemset storage structure along with three
pruning strategies.

In the tests, superior tactical multi-layer MPAMS collaboration knowledge about tasks,
platforms, and mounts is extracted under typical air-to-sea assault scenarios at a faster
speed. As for tasks, assigning precursor tasks, such as feints, before striking could boost
striking advantages. In terms of platforms, collaborating highly attackable platforms with
highly maneuverable platforms could better support tasks. Regarding mounts, pairing
diverse-range and cross-domain weapons based on platform capabilities can achieve better
strike effects.

On this basis, the deep decision logic of balancing capabilities of different layers,
maintaining mount type diversity, and creating capability asymmetric advantages is ob-
tained based on capability, which is more generic and understandable to decision-makers.
In addition, the proposed algorithm’s efficiency superiority over the existing methods is
verified regarding time-cost, scalability, and pruning strategy efficiency.

The discovered knowledge is conducive to revealing effective and valuable MPAMS
collaboration mechanisms, thus enhancing a MPAMS’s comprehensive organization capa-
bility to improve striking performance. Moreover, this study provides meaningful guidance
and prospects for further MPAMS development. However, the capability comparison of
the attacking and defending sides is expressed qualitatively in this study.

In short-term future work, more context features could be explored and concluded in
a quantitative description to reinforce knowledge integrity and transferability. For the mid-
term plan, the acquired knowledge will be encoded to construct the knowledge database.
Moreover, for the long-term plan, this domain knowledge will be integrated with other
data-driven methods, such as deep learning and reinforcement learning, to build better
autonomous organizing and decision-making capacities in MPAMS.
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IRS Intelligence, surveillance, and reconnaissance
MPAMS Multi-platform aircraft mission system
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Appendix A

Table A1 records the MPAMS configurations in verification scenarios with varying
tasks, platforms, and mounts. Specifically, the capability comparison against the defender
is encoded based on Section 2.3, including strong (S), balanced (B), and weak (W). Subscript
Xprcp, Xattk, Xelec, Xdefs, Xmnur, and Xcncl represent perception, attacking, electronic,
defense, maneuverability, and concealment, respectively.

Configuration Lng-range is assumed as the basic organization mode of MPAMS. Con-
figuration Cls-range and Cls&Lng-range vary from Lng-range in terms of the mount type
for fighter-bombers. Configurations No-escort and No-feint drop the escort task and feint
task from task combinations of configuration Lng-range, respectively. Configuration Elec is
supplemented with the electronic jamming task. Configurations Ultrlng-range and Bomb
are dominated by bombers, which carry pure ultra-long-range air-to-sea missiles or bombs
for attacking. Configurations Bomb&F_cls-range and Bomb&Fb_cls-range differ with configu-
ration Ultrlng-range in aircraft and mount types.

Table A1. MPAMS configuration description.

Configuration Task Platform Mount Capability Code

Lng-range Surveillance + feint +
escort + attack

BM × 4 + FB × 4 + FS × 4 + FA ×
2 + UAV × 2 + AEW × 1 * Long-range ASM Bprcp,Wattk,Selec,

Sdefs,Bmnur,Scncl

Cls-range surveillance + feint +
escort + attack

BM × 4 + FB × 4 + FS × 4 + FA ×
2 + UAV × 2 + AEW × 1 Close-range ASM Bprcp,Sattk,Selec,

Sdefs,Bmnur,Wcncl

Cls&Lng-range Surveillance + feint +
escort + attack

BM × 4 + FB × 4 + FS × 4 + FA ×
2 + UAV × 2 + AEW × 1

Close-range ASM
+long-range ASM

Bprcp,Battk,Selec,
Sdefs,Bmnur,Bcncl

No-escort Surveillance + feint + attack BM × 4 + FB × 4 + FS × 6 + UAV
× 2 + AEW × 1 Long-range ASM Bprcp,Battk,Selec,

Bdefs,Bmnur,Wcncl

No-feint Surveillance + escort + attack BM × 4 + FB × 4 + FS × 4 + FA ×
2 + UAV × 2 + AEW × 1 Long-range ASM Bprcp,Battk,Selec,

Bdefs,Smnur,Wcncl

Elec Surveillance + feint + escort +
electronic jamming + attack

BM × 4 + FB × 4 + FS × 3 + FA ×
2 + UAV × 2 + EF × 1 + AEW × 1

Long-range ASM +
electronic warfare weapons

Sprcp,Wattk,Selec,
Sdefs,Smnur,Bcnc

Ultrlng-range Surveillance + escort + attack BM × 12 + FA × 2 + UAV × 2 +
AEW × 1 Ultra-long-range ASM Bprcp,Sattk,Selec,

Wdefs,Wmnur,Scncl

Bomb Surveillance + escort + attack BM × 12 + FA × 2 + UAV × 2 +
AEW × 1 Bomb Bprcp,Sattk,Selec,

Wdefs,Wmnur,Wcncl

Bomb&F_cls-range Surveillance + escort + attack BM × 8 + FS × 4 +FA × 2 + UAV
× 2 + AEW × 1

Ultra-long-range ASM +
close-range ASM

Bprcp,Battk,Selec,
Bdefs,Bmnur,Scncl

Bomb&Fb_cls-range Surveillance + escort + attack BM × 8 + FB × 4 + FA × 2 + UAV
× 2 + AEW × 1

Ultra-long-range ASM +
close-range ASM

Bprcp,Battk,Selec,
Bdefs,Wmnur,Scncl

* AEW: Air early warning, ASM: Air-to-sea missile, BM: bomber, EF: Electronic fighter, FA: Fighter for air strike,
FB: Fighter-bomber, FS: Fighter for sea strike, UAV: Unmanned aerial vehicle.
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