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Abstract: Many probability-based uncertainty quantification (UQ) schemes require a large amount of
sampled data to build credible probability density function (PDF) models for uncertain parameters.
Unfortunately, the amounts of data collected as to compressor blades of aero-engines are mostly
limited due to the expensive and time-consuming tests. In this paper, we develop a preconditioner-
based data-driven polynomial chaos (PDDPC) method that can efficiently deal with uncertainty
propagation of limited amounts of sampled data. The calculation accuracy of a PDDPC method
is closely related to the sample size of collected data. Therefore, the influence of sample size on
this PDDPC method is investigated using a nonlinear test function. Subsequently, we consider the
real manufacturing errors in stagger angles for compressor blades. Under three different operating
conditions, the PDDPC method is applied to investigate the effect of stagger-angle error on UQ results
of multiple aerodynamic parameters of a two-dimensional compressor blade. The results show that as
the sample-size of measured data increases, UQ results regarding aerodynamic performance obtained
by the PDDPC method gradually converge. There exists a critical sample size that ensures accurate
UQ analysis of compressor blades. The probability information contained in the machining error data
is analyzed through Kullback–Leibler divergence, and the critical sample size is determined. The
research results can serve as a valuable reference for the fast and cheap UQ analysis of compressor
blades in practical engineering.

Keywords: compressor blade; manufacturing uncertainty; stagger angle; uncertainty quantification;
limited samples; polynomial chaos

1. Introduction

The increasingly demanding targets for high reliability and stable service performance
of the advanced aviation compressor require the technology to overcome various sources of
uncertainties [1,2]. Compressor blades are usually designed as three-dimensional twisted
parts with complex curved structures to meet the requirements of aerodynamic perfor-
mance. Geometric errors in compressor blades are one of the most important sources of
uncertainty, due to poor rigidity, tooling deflection, material residual stress, and other
factors [3,4]. The harsh operating environment, including, for example, a high adverse pres-
sure gradient, will magnify the influence of geometric uncertainties on the compressor’s
performance. Garzon et al. [5] found that due to the inevitable geometric uncertainties,
the average compressor efficiency can be reduced by 1%, accompanied by a dispersion of
aerodynamic performance. With the recent developments in computing power, quantita-
tive evaluation of the influence of geometric uncertainties on compressor performance has
attracted extensive attention [6–8].

Advanced uncertainty quantification (UQ) methods are essential tools in the process of
uncertainty evaluation for aviation compressors. The most commonly used UQ methods in
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the field of turbomachinery include the Monte Carlo method [9,10], surrogate-model-based
method [11], multi-fidelity methods [12,13], and polynomial chaos-based method [14–16].
These methods are probability-based UQ schemes, and their uncertainty evaluation process
can be generally divided into three steps. Firstly, it requires the building of probability
density function (PDF) models of uncertain input parameters, in which a large amount
of sampled data is collected and analyzed as the basis for the underlying modeling. The
constructed PDF model occupies the primary position, since it determines the random
input space for the whole UQ process. The second step is to combine the UQ algorithm
with a response system such as a CFD solver to obtain the input–output mapping. The third
step is post-processing and statistical analysis of the output results. The probability-based
UQ methods require the PDF model as the basis for the random input for uncertainty
analysis. Therefore, how to obtain an accurate and high-fidelity PDF model is an important
prerequisite for obtaining reliable UQ results.

A credible PDF model usually requires a large amount of sampled data as the under-
lying support. Unfortunately, it is very difficult to extract or collect sufficient and available
machining-error data for compressor blades in the field of aero-engines. The reason for
the limited amount of data can be generally attributed to three aspects of the field. First,
the profile detection of compressor blades using coordinate measuring machines or optical
measurements is very expensive and time-consuming. Therefore, sampling inspection
technology is often used to judge whether the manufactured blades are qualified as to
practical engineering. Second, it is difficult to obtain sufficient machining data of the same
types from the limited compressor rows. Third, the aero-compressor blades often involve
the problem of data information security. As a consequence, the available machining error
data for compressor blades are mostly limited and scarce. In this context, it is impossible
to obtain an accurate high-fidelity PDF model, which greatly weakens the availability of
the aforementioned probability-based UQ methods. In most practical applications, many
reports [17–19] either avoid such construction of PDF models completely or fall back to
less-accurate and lower-fidelity PDF models to conduct the UQ analysis. The credibility
of the model output will bear severe risks using an unreliable input PDF model [20,21].
Therefore, it is imperative to seek a novel UQ method suitable for limited amounts of
sampled data for compressor blades from the ground up.

In the field of geosciences, Oladyshkin et al. [22,23] proposed a data-driven polynomial
chaos (DDPC) method to solve the uncertainty of carbon dioxide storage when facing scarce
permeability information. The idea of a DDPC algorithm is to use the statistical moments
of raw measured data to replace the PDF model for UQ analysis. Recently, Ahlfeld and
Montomoli [24,25] combined the DDPC method with the Smolyak technique to solve
high-dimensional UQ problems in turbomachinery. They applied this method to study
the influence of manufacturing uncertainties on diffuser efficiency and turbine blades. By
comparisons with the low-fidelity PDF model obtained from 100 elements of measured
data, it was found that the DDPC method was more accurate and reliable. Guo et al. [26]
used the DDPC method to investigate the performance impact of manufacturing errors on
a 2D compressor blade. However, their results were still based on the input PDF model
using kernel density estimation, ignoring the problem of limited amounts of sampled
data. Wang et al. [1] proposed a novel preconditioner-based DDPC (PDDPC) method,
which can alleviate the ill-conditioned problem when using high-order statistical moments.
Considering the limited amounts of sampled data (100 samples) of stochastic stagger-
angle errors, they used the PDDPC method to conduct a robust optimization design for a
compressor blade.

In practical implementations, this DDPC-based UQ method is still rare in turbomachin-
ery blades. First, there exists a poor numerical condition when using high-order statistical
moments of sampled data [27]. Second, the calculation accuracy of the DDPC method is
closely related to the sample size of collected data. To the best of the authors’ knowledge,
there is no relevant literature studying the critical sample size that can be used for accurate
UQ analysis. From the perspective of engineering, the processing cycle and detection time
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are very expensive for the compressor blades. Therefore, determining the critical sample
size has great benefits for saving costs and shortening the UQ cycle.

For a turbomachinery blade, the stagger angle is an important parameter, because
it affects the relative inlet flow direction, the variations of blade passages, and blade
aeroelasticity [1,13]. Wang et al. [28] evaluated the influence of uncertain stagger-angle
errors on the aerodynamic performance of a turbine blade, and discovered that the stagger-
angle errors can cause fluctuations of the loss coefficient of up to 40%. Phan and He [13,29]
found that the stagger-angle variations can affect the blade loading, exit flow angle, blade
aeroelasticity and aerodynamic loss for the turbine blade. Lu et al. [30] found that the
mis-staggering can be amplified by aerodynamic loading and the designed peak efficiency
cannot be achieved for a transonic fan blade. Suriyanarayanan et al. [31] studied the
influence of stagger-angle errors on NASA rotor 67. Their results showed that the sinusoidal
arrangement of stagger-angle variations throughout the annulus is optimal compared to the
linear and random types. These investigations have demonstrated that stagger-angle errors
have a significant impact on turbomachinery blades. Therefore, it is imperative to conduct
a critical sample-size analysis of uncertainty aerodynamic evaluation for compressor blades
with stagger-angle errors.

The motivation behind this article can be summarized as follows: First, we introduce
a preconditioner-based data-driven polynomial chaos (PDDPC) method to ensure the
computational robustness when using high-order statistical moments. Then, the influence
of sample size as to limited input data on the PDDPC method is studied using a nonlinear
test function. Finally, we consider the actual manufacturing error of stagger angles for
compressor blades. The influence of the sample size of stagger-angle error on UQ results of
multiple aerodynamic parameters is discussed under different operating conditions. The
research results can provide a valuable reference for UQ analysis of turbomachinery blades.

2. Research Object and Numerical Method
2.1. Compressor Blade Geometry and Manufacturing Uncertainty of the Stagger Angle

In this work, the research object is a two-dimensional compressor blade, as shown
in Figure 1. Its chord is 69.95 mm, the design stagger angle (θ) is 26.58◦, and the design
incidence a is 2.5◦. The main geometric and aerodynamic parameters are summarized
in Table 1.
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Figure 1. Compressor blade geometry.

Due to inevitable torsional deformation, the actual stagger angles of manufactured
blades always exhibit deviations from the initial design. The actual stagger angle consists
of two parts: the initial design angle θ and the machining error ∆θ; see Equation (1).

θreal = θ + ∆θ (1)
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Table 1. Main geometric parameters of the compressor cascade.

Parameters Values

Chord length c (mm) 69.9
Camber angle (◦) 39.61

Geometric inlet angle (◦) 45.83
Maximum thickness/mm 3.51

Design incidence (◦) 2.5
Stagger angle θ (◦) 26.58

In this work, the stagger angles originate from mid-height sections of 100 compressor
blades based on coordinate measuring machine (CMM) measurements. CMM–based
measurement techniques can provide the manufacturing error data of stagger angles
between nominal and manufactured blades. Figure 2 presents the detailed measured
results and the actual compressor blade profiles with torsional errors. As depicted in
Figure 2, the machining errors of stagger angle have obvious uncertain and stochastic
characteristics. In practical engineering, we cannot obtain more machining error data
on blade stagger angle due to various constraints. From the perspective of probability
theory [32], 100 elements of sampled data cannot establish a high-fidelity PDF model.
Therefore, we utilize the data-driven polynomial chaos method to propagate uncertainty
where the statistical moments of measured data are used as the random inputs.
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stagger-angle error.

2.2. Numerical Method and Validation

Reynolds-averaged Navier–Stokes (RANS) equations are used to analyze the aero-
dynamic performance of compressor blades, using the commercial software NUMECA
11.2. The Spalart–Allmaras (SA) turbulence model [33] is adopted to enclose the governing
equations. The second-order central difference scheme and four-step Runge–Kutta scheme
are used for spatial discretization and time discretization, respectively.
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Figure 3 shows the computational domain of compressor blade geometry. The inlet
boundary conditions include total pressure, total temperature (300.0 K), and airflow angle.
The static pressure (101,300 Pa) is imposed at the outlet boundary. The inlet Mach number
is obtained by changing the inlet total pressure under various flow angles. Note that we
use a 2D compressor blade case, so periodic boundary conditions are given along the
pitch-wise direction. The Autogrid5 module is used to generate the O4H-type grid in the
blade passage domain. The total grid number is approximately 9.83× 104. The first layer
grid-scale from the wall is set as 10−6 m to guarantee that the dimensional distance y+ will
be less than 3, meeting the requirements of the SA turbulence model.
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Figure 3. Computational mesh and domain of compressor blade passage.

The boundary conditions, number and structure of computational grids, turbulence
model, and other calculation settings in this paper are consistent with our previous work [1].
To validate the reliability of the numerical simulation method, the predicted results of
aerodynamic performance are compared with the experimental results in terms of the
isentropic Mach number and exit loss coefficient. As can be seen from Figure 4, the
predicted results agree well with the measured values, indicating the reliability of the
chosen numerical method for predicting the aerodynamic performance.
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2.3. Key Aerodynamic Quantities of Interest

The interested aerodynamic parameters for a 2D compressor blade include the total
pressure loss coefficient ω, static pressure ratio π, isentropic Mach number Mais, and Mach
number. In this paper, our goals lie in quantifying the performance variations associated
with the uncertain stagger-angle errors. These aerodynamic parameters are defined as

ω = (Pin − Pout)/(Pin − P1) (2)
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π = P2/P1 (3)

Mais =

√√√√ 2
γ− 1

((
Pin

P

)(γ−1)/γ

− 1

)
(4)

where Pin and Pout are the inlet total pressure and outlet pressure; P1, P2 and P are the
inlet static pressure, outlet static pressure, and the local static pressure at a location on the
blade’s surface.

3. Uncertainty Quantification Method
3.1. Preconditioner-Based Data-Driven Polynomial Chaos Method

This part provides the necessary mathematical basis for the uncertainty propagation
of limited measured data. We consider a random process in the probability space (Ω,Φ, Γ)
with space of events Ω, σ-algebra, and probability measure Γ. For the physical model Y( ξ)
with n-dimensional inputs ξ ∈ Ω, if the ξ is random variable, the model output Y is also
stochastic. According to the polynomial chaos theory [34], the model output Y can expand
a series of orthogonal polynomials with order p:

Y =
Q

∑
i=0

uiΨ(ξ), Q =
(n + p)!
(n!p!)

− 1 (5)

where ui is the polynomial chaos coefficient, Q denotes the truncated expansion term,
and Ψ(ξ) denotes the polynomial basis that is orthogonal with respect to the probability
measure Γ.

The orthogonal basis Ψ(ξ) is the core of mapping the relationship between random
input and model output. For the traditional probability-based UQ methods, if we already
know the PDF model of random input variable, the corresponding orthogonal basis can
be easily obtained according to the Wiener–Askey scheme [35]. For example, the Hermite
orthogonal polynomials can be used for modeling the effect of random variables described
by continuous Gaussian probability distribution. Unfortunately, the amount of available
sampled data is not enough to build an accurate and high-fidelity input PDF model in
practical applications, and the correct orthogonal basis function also cannot be obtained.

In practical engineering, the measured data collected for manufactured compressor
blades are mostly limited (ξ1, ξ2, · · · , ξN). Here, ξ i is available sampled data and N is the
sample size. The key part of the data-driven polynomial chaos (DDPC) method is to use
the statistical moments of sampled data to construct orthogonal basis Ψ(ξ). The definition
of kth statistical moment µk can be represented as:

µk =
∫

ξkdΓ(ξ) ≈ 1
N

N

∑
i=1

ξk
i . (6)

Next, we use the orthogonality of the basis function Ψ(ξ). The orthogonal base Ψk(ξ)
of degree k can be written as:

Ψ(k)(ξ) =
k

∑
i=0

h(k)i ξi (7)
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where hk
(i) is the constant term. The relationships between orthogonal base Ψk(ξ) and lower

degree Ψl(ξ) (l 6 k) can be represented as:

∫
ξ∈Ω

h(0)0

[
k
∑

i=0
h(k)i ξi

]
dΓ(ξ) = 0;

...∫
ξ∈Ω

[
k−1
∑

i=0
h(k−1)

i ξi
][

k
∑

i=0
h(k)i ξi

]
dΓ(ξ) = 0;

∫
ξ∈Ω

[
k
∑

i=0
h(k)i ξi

][
k
∑

i=0
h(k)i ξi

]
dΓ(ξ) = 1.

(8)

Here, we assume that the orthogonal functions are the standard form, so their inner
product is 1 when the degree is the same. Alternatively, Equation (8) can be further
simplified as: ∫

ξ∈Ω

k
∑

i=0
h(k)i ξidΓ(ξ) = 0;

...∫
ξ∈Ω

k
∑

i=0
h(k)i ξi+k−1dΓ(ξ) = 0;

∫
ξ∈Ω

k
∑

i=0
h(k)i ξi+kdΓ(ξ) = 1.

(9)

Now we use the definition of statistical moment; Equation (9) can be rewritten as:

µh = c

µ =


µ0 µ1 · · · µk
µ1 µ2 · · · µk+1
...

...
. . .

...
µk µk+1 · · · µ2k

; h =


h(k)0

h(k)1
...

h(k)k

; c =


0
...
0
1

 (10)

where µ represents the statistical moment matrix and h is the unknown constant term. This
makes it obvious that one can determine the orthogonal base Ψ(ξ) by solving Equation (10).
The statistical moment matrix µ is known as the Hankel matrix. A recent work in the open
literature [36] has provided abundant evidence that Hankle matrix is often ill-conditioned
and has a poor numerical condition. Therefore, the solution system of Equation (10) is very
unstable, which severely limits the flexibility and effectiveness of the DDPC method.

To address this problem, we propose a novel preconditioner-based data-driven poly-
nomial chaos (PDDPC) method to enhance the computational robustness and instability.
The proposed preconditioner M should have the following properties: (1) the form of M
is easy to derive; (2) M can alleviate the ill-conditioned problem. It can be found that
the initial statistical moment matrix µ is positive definite and symmetric, and its inverse
matrix can be easily derived. Therefore, the diagonal inverse matrix of µ is proposed as the
preconditioner M:

M = diag(µ)−1 = diag(µ0, µ2, · · · , µ2k)
−1. (11)

Combined with the preconditioner M, Equation (10) can be rewritten as:


1 µ−1

0 µ1 · · · µ−1
0 µk

µ−1
2 µ1 1 · · · µ−1

2 µk+1
...

...
. . .

...
µ−1

2k µk µ−1
2k µk+1 · · · 1




h(k)0

h(k)1
...

h(k)k

 =


0
...
0

µ−1
2k

 (12)
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The constructed preconditioner M can improve the ill-conditioned conditions, so the
orthogonal base Ψ(ξ) can be calculated smoothly. The polynomial chaos coefficient ui can
be solved using the Galerkin projection method (see e.g., [37]).

Finally, the statistical results (i.e., mean value µ(Y) and the standard deviation σ(Y)) of
the model output Y can be computed by Equations (13) and (14). Figure 5 gives a schematic
diagram of the uncertainty propagation process of the PDDPC method.

µ(Y) = u0 (13)

σ2(Y) =
Q

∑
i=1

u2
i 〈Ψ(ξ), Ψ(ξ)〉. (14)
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3.2. Validation on PDDPC

Based on the self-developed PDDPC method, this part will analyze the influence of
sample size on the model outputs through a nonlinear test function. According to our
previously published work in the literature [1], the computational robustness and accuracy
of PDDPC have been validated by a series of tests using only 100 elements of sampled
data. The results show that when using the p = 3 order method, PDDPC has reached a high
calculation accuracy and good convergence behavior. Therefore, we still use the third-order
PDDPC to study the impact of the sample size in this paper. The nonlinear test function is
described as follows:

Y = 7cos2(X) + X2 + 10X, X ∼ Beta(4, 4) (15)

where random variable X is assumed to follow Beta (4, 4) distribution.
According to Equation (6), it can be found that the sample size N will affect the

statistical moments and the output results. In order to obtain the sensitivity of the PDDPC
method to the sample size N, we randomly generate 11 sets of sample data (N = 20, 30, 40,
50, 60, 80, 100, 150, 200, 300, and 1000). The analytical values of µ(Y) and σ(Y) of the test
function are calculated using 106 Monte Carlo simulations as the benchmark. The relative
error of calculation result is defined as:

Err =
∣∣∣YMC −YPDDPC

∣∣∣/∣∣∣YMC
∣∣∣ (16)

Figure 6 shows the convergence rate in terms of µ(Y) and σ(Y) estimated using
PDDPC method under each sample size N. The relative errors of µ(Y) and σ(Y) are given
in Table 2. It can be observed that when N is less than 40, there is a large fluctuation
in the calculation results of the model outputs. When the sample size N exceeds 40, the
prediction results of the mean and standard deviation of the test case gradually converge.
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But it can also be observed that as the sample size N increases, the results do not converge
monotonously. This can be attributed to the randomness of sampling. Fortunately, the
results calculated by the PDDPC method still maintain a high level of accuracy.
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Table 2. Relative errors for test functions.

N (Sample Size) Err-µ(Y) % Err-σ(Y) %

20 1.53 1.13
30 1.59 0.68
40 0.25 0.16
50 0.09 0.18
60 0.46 0.28
80 0.15 0.60

100 0.38 0.21
150 0.91 0.69
200 0.16 0.91
300 0.35 0.37

1000 0.12 0.03

Although the PDDPC method is a UQ scheme suitable for scarce amounts of sampled
data, it still has a certain dependence on the sample size N. As the sample size N increases,
the dependence of PDDPC gradually decreases. When the sample size N is greater than 40,
PDDPC has a high calculation accuracy in predicting the statistical results in terms of the
test function. Based on the results of the test function, we can infer that N = 40 is the critical
sample size, which can then be used for the correct propagation of uncertainty.

4. Results and Discussion

In this section, the influence of sample size of stagger-angle error on uncertain aero-
dynamic evaluation of compressor blades is investigated under the condition of an inlet
Mach number of 0.7. Figure 7 shows the uncertainty propagation process of stagger-angle
errors where the PDDPC method is coupled with the CFD solver. In order to fully evaluate
the effect of sample size, we consider three incidence operating conditions, i.e., blocking
incidence condition (i = −0.5◦), design incidence (i = 2.5◦), and high-positive-incidence
condition (i = 7◦) (near stall).

4.1. Measured Data Processing

The measured data of stagger-angle errors in Section 2 are used as the input in the UQ
analysis process. In Section 3.2, the test function shows that when sample size N is greater
than 40, the third-order PDDPC method can achieve a high calculation accuracy. In this
section, we also use the third-order PDDPC method to study the influence of sample size
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on aerodynamic performance of compressor blade. Six groups (N = 20, 30, 40, 50, 60, and
80) of varying sample sizes are generated from the initial sample set (N = 100), respectively.
Figure 8 shows the histograms for each sample size. These sampled data will be used
as random inputs for the PDDPC method. It can be observed that as the sample size N
decreases, the probability information contained in the sampled data is further reduced.
When the sample size N is 20 or 30, many measured error data have been lost compared
with the initial sample set.
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4.2. Aerodynamic UQ Results: Loss Coefficient ω and Static Pressure Ratio π

Under the blocking condition of incidence i = −0.5◦, Figure 9 shows the mean value
µ(ω) and standard deviation σ(ω) of the total pressure loss coefficient ω. It is worth
noting that the previous open literature [1,25] has shown that 100 samples can be used
for uncertainty propagation using the data-driven polynomial chaos method. Therefore,
here we use the UQ results of 100 samples as the convergence reference values. It can be
concluded from Figure 9a that the values of µ(ω) gradually convergence with the increase
of the stagger-angle error samples. When the sample size N is 20 or 30, the values of µ(ω)
fluctuates greatly. When the sample size N is higher than 40, the values of µ(ω) basically
reach the convergence state. Figure 9b gives the convergence plot of σ(ω) with increasing
data size N. It can be revealed that when the sample size is higher than 50, the results of
σ(ω) can achieve a good convergence behavior.

For the static pressure ratio π of the compressor blade, it can be found from Figure 10
that the when sample size exceeds 40, the values of µ(π) and σ(π) estimated by the PDDPC
method can achieve convergence of aerodynamic results. Under the operating condition
of incidence i = −0.5◦, the UQ results of the loss coefficient and static pressure ratio show
that the PDDPC method has satisfactory performance to address the problem of limited
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measured data. For the uncertainty evaluation of compressor blades, using fewer measured
data can not only reduce the detection cost but also greatly speed up the uncertainty
analysis cycle.
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Figure 8. Histograms of each sample size used in UQ analysis.

Figure 11 displays the convergence plots of µ(ω) and σ(ω) under the design incidence
i = 2.5◦ condition. It can be found that when sample size N exceeds 40, the values of µ(ω)
have good aerodynamic convergence behavior. Although the values of σ(ω) have obvious
fluctuations with increasing sample size, these fluctuations are very small. It is worth men-
tioning that the loss coefficient ω of the compressor blade is less affected by the uncertain
stagger-angle errors at the design incidence condition. Figure 12 shows the UQ results (µ(π)
and σ(π)) of static pressure ratio. When the sample size N exceeds 40 and 50 respectively,
the calculation results of µ(π) and σ(π) can achieve a good convergence rate.
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Figures 13 and 14 present the UQ results of ω and π obtained by the PDDPC method
under the operating conditions of incidence i = 7◦. As can be seen from the convergence
plots, when the sample size reaches 40, the UQ results of ω and π both exhibit a good con-
vergence state. Table 3 gives the critical sample sizes for different aerodynamic parameters
under various operating conditions. It can be found that, for the PDDPC method, 40 or 50
can be regarded as the critical sample size for the aerodynamic parameters of loss coefficient
and static pressure ratio. Generally speaking, the aerodynamic performance of compressor
blades is more sensitive to the stagger-angle error at the high-positive-incidence condition.
The convergent UQ results of aerodynamic parameters can provide more solid confidence
for uncertainty analysis using fewer samples.
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4.3. Aerodynamic UQ Results: Isentropic Mach Number Mais

Figure 15 shows the mean value of the isentropic Mach number µ(Mais) and the
enlarged part at the incidence i = −0.5◦ condition. It can be clearly observed that the values
of µ(Mais) calculated by different sample sizes are essentially the same. When the sample
size is 20 or 30, there are some differences on the acceleration section of the blade suction
side. The results of σ(Mais) are shown in Figure 16. For σ(Mais) on the blade pressure
side, the series of zones sensitive to uncertain stagger-angle errors that was obtained by
the lower sample size (N = 20 and 30) differs from those obtained with other sample sizes.
The predicted deviations occur mainly in the leading-edge region and the back part of the
blade. For σ(Mais) on blade suction side, the predicted deviations are mainly concentrated
on the first 40% of normalized chord length when the sample size N is 20 or 30.
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Table 3. Critical sample sizes for aerodynamic parameters.

Aerodynamic
Parameters

Critical Sample Size

i = −0.5◦ i = 2.5◦ i = 7◦

µ(ω) 40 40 40
σ(ω) 50 40 40
µ(π) 40 40 40
σ(π) 40 50 40
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At the design incidence condition, the influence of the sample size on the µ(Mais) is
similar to that for incidence i = −0.5◦, as shown in Figure 17. Figure 18 shows the results
of σ(Mais). It can be determined from the illustration in Figure 18a that the influence
of stagger-angle error on the pressure side (PS) is mainly concentrated in the first 30%
of the normalized chord length. When the sample size is lower than 40, there is an
underestimation or overestimation of fluctuations of blade isentropic Mach number. A
similar situation exists for the results of σ(Mais) on the suction side (SS).
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Under the operation condition of incidence i = 7◦, Figures 19 and 20 show the conver-
gence plots of µ(Mais) and σ(Mais). As expected, the values of µ(Mais) are less sensitive
to the sample sizes of stagger-angle errors. It can be seen from Figure 20 that although the
trend of convergence plots for fewer samples (N = 20 or 30) is similar to those for the other
sample sizes, there is a large prediction error. For compressor blade designers, the incorrect
estimates of sensitive zones can cause a significant risk for robust blade design. Therefore,
it is important to obtain a critical sample size that can be used for accurate UQ analysis.
Table 4 gives the critical sample size for Mais under various operating conditions. We could
observe that the µ(Mais) is less sensitive to sample size of stagger-angle error. Sample size
N = 40 can be considered as the critical size.

4.4. Aerodynamic UQ Results: Mach Contour

In this section, we consider the influence of sample sizes of stagger-angle errors on
Mach contour at different incidence conditions. At the incidence i = −0.5◦ condition, the
contour of µ(Mach) is shown in Figure 21. We could observe that the trends of µ(Mach)
calculated by the PDDPC method are broadly consistent when the sample size N is greater
than 20. For the contour of σ(Mach), it can be clearly found from Figure 22 that the flow
fields calculated by the sample sizes of 20 and 30 are quite different from the convergent
flow field. Figures 23 and 24 display the contour of µ(Mach) and σ(Mach) at the design
incidence condition. As shown in Figure 23, it can be seen that the contours of µ(Mach)
calculated by the sample sizes of 20 and 30 differ from the convergent results (see the
acceleration area dotted by the rectangular dotted line). As can be seen from Figure 24,
the contour of σ(Mach) basically reaches the convergence state as the sample size exceeds
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40. Figures 25 and 26 display the contour of µ(Mach) and σ(Mach) at the incidence i = 7◦

condition. The contour of µ(Mach) is less sensitive to sample size of stagger-angle errors.
From Figure 26, it can be revealed that when sample size reaches 40, the contour of σ(Mach)
has been consistent with those of larger sample sizes. Table 5 gives the critical sample sizes
of Mach at various incidence conditions. Based on these results, the blade designers can
make reasonable choices about the sample sizes of manufactured blades in the uncertainty
analysis stage, thus accelerating the UQ cycle and reducing costs.
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Table 4. Critical sample sizes of Mais.

Aerodynamic
Parameters

Critical Sample Size

i = −0.5◦ i = 2.5◦ i = 7◦

µ(Mais) --- --- ---
σ(Mais) on PS 40 40 40
σ(Mais) on SS 40 40 40
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Table 5. Critical sample sizes for Mach.

Aerodynamic
Parameters

Critical Sample Size

i = −0.5◦ i = 2.5◦ i = 7◦

µ(Mach) 30 40 ---
σ(Mach) 40 40 40

4.5. Kullback–Leibler Divergence Analysis

As the sample size of the measured data decreases beyond the critical size, the PDDPC
method is unable to accurately propagate the uncertainty, even with high order accuracy. In
fact, different sample sizes contain different propensities of probability information. Here
we use the Kullback–Leibler (KL) divergence [38] to quantify the difference in probability
information between 100 elements of sampled data (initial dataset) and other sample sizes
(N = 20, 30, 40, 50, 60, and 80) of stagger-angle error data. These measured data have been
shown in Section 4.1.

Given two sets of sampled data: X =
{

ξ(i)
}Nh1

i=1
and Y =

{
ξ(j)
}Nh2

j=1
, the sampled data

is divided into H groups. The probability that the sampled data fall within each group is
p = p(X) and q = q(Y), respectively. The KL divergence can be computed by:

KL(p||q) =
H

∑
i=1

p(X) · (log p(X)− log q(Y)) (17)

As can be seen in Figure 27, when the two sets of measured data are the same, the KL
result is 0, indicating that there is no difference in probability information. As the sample
size decreases, the probability information loss increases. When the sample size is lower
than 40, the probability information loss increases sharply. Although the KL results for
sample sizes 40 and 50 are close, combined with our analysis of the convergence behavior
of aerodynamic parameters at different operating conditions, a better convergence state
can be achieved when the sample size reaches 50. Therefore, from a more conservative
point of view, we choose 50 as the critical sample size in this work, considering uncertain
stagger-angle errors.
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5. Conclusions

(1) A UQ scheme dedicated to dealing with limited samples is proposed based on a
preconditioner-based data-driven polynomial chaos (PDDPC) method. The influence
of sample size on the calculation accuracy of PDDPC is investigated using a nonlinear
test function. The results show that the calculation accuracy of the PDDPC method is
dependent on the sample size of the input data. When the sample size N is greater
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than 40, the results of µ(Y) and σ(Y) of the test function gradually converge to the
benchmark values calculated by the Monte Carlo method.

(2) The measured data of stagger-angle errors are collected from a total of 100 middle sec-
tions of manufactured compressor blades. Taking the uncertain stagger-angle errors
into consideration, we develop a framework for UQ analysis of compressor blades
based on PDDPC combined with CFD solver. To demonstrate the functionality and ef-
fectiveness of the PDDPC method, the effects of the sample size of measured error data
on multiple aerodynamic parameters, such as the total pressure loss coefficient, static
pressure ratio, and isentropic Mach number, is explored under three operating conditions
(blocking condition, design incidence condition and high incidence condition).

(3) When the sample size of measured data for the stagger-angle error is greater than
50, the values of µ(ω), σ(ω), µ(π), and σ(π) can reach a good convergence state
regardless of operating conditions. The sample size has little effect on µ(Mais) and
µ(Mach). Its main effect is centered on σ(Mais) and σ(Mach). When the sample
size is 20 or 30, the zones sensitive to stagger-angle errors, as calculated by PDDPC,
have large prediction errors. The incorrect estimates of sensitive zones can cause a
significant risk for robust blade design. With a sample size exceeding 40, the estimated
results of σ(Mais) and σ(Mach) are generally consistent. The UQ results of multiple
aerodynamic parameters show that the PDDPC method has performance satisfactory
to address the problem of limited measured data; there exists a critical sample size
that can be used for rapid UQ analysis of compressor blades.

(4) The KL divergence is used to analyze the probability information loss between the
initial sample size (N = 100) and other sample sizes (N = 20, 30, 40, 50, 60, and 80) of
stagger-angle error data. The results show that when the sample size of error data
is lower than 40, the probability information loss increases sharply. Combined with
the aerodynamic UQ convergence results, a sample size of 50 can be regarded as the
critical size for accurately propagating the uncertainty of stagger-angle errors.
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