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Abstract: Cybersecurity plays a relevant role in the new digital age within the aerospace industry.
Predictive algorithms are necessary to interconnect complex systems within the cyberspace. In this
context, where security protocols do not apply, challenges to maintain data privacy and security
arise for the organizations. Thus, the need for cybersecurity is required. The four main categories to
classify threats are interruption, fabrication, modification, and interception. They all share a common
thing, which is to soften the three pillars that cybersecurity needs to guarantee. These pillars are
confidentiality, availability, and integrity of data (CIA). Data injection can contribute to this event by
the creation of false indicators, which can lead to error creation during the manufacturing engineering
processes. In this paper, the impact of data injection on the existing dataset used in manufacturing
processes is described. The design model synchronizes the following mechanisms developed within
machine learning techniques, which are the risk matrix indicator to assess the probability of producing
an error, the dendrogram to cluster the dataset in groups with similarities, the logistic regression to
predict the potential outcomes, and the confusion matrix to analyze the performance of the algorithm.
The results presented in this study, which were carried out using a real dataset related to the electrical
harnesses installed in a C295 military aircraft, estimate that injection of false data indicators increases
the probability of creating an error by 24.22% based on the predicted outcomes required for the
generation of the manufacturing processes. Overall, implementing cybersecurity measures and
advanced methodologies to detect and prevent cyberattacks is necessary.

Keywords: predictive algorithms; cybersecurity; machine learning; advanced persistent threats

1. Introduction

The latest reports in 2022 from the European Union Agency for Cybersecurity (ENISA)
show 586 reported cybersecurity incidents compared to 77 in 2012. Cyberattacks are
increasing not only in frequency, but also in complexity, and are affecting organizations
worldwide. Safety is an important pillar to protect the overall assets. Risk assessment
procedures are likely to define the level of impact, the vulnerabilities, and the affected assets
in order to minimize the risk and reach the highest level of safety [1]. This level of safety
cannot be achieved in the new digital age since the security protocols are more vulnerable
and data privacy can be easily exposed. On the other hand, predictive algorithms, which
are developed to perform processes automatically and to reduce costs in organizations, are
sensitive to threats such as, for example, data modifications [2]. Thus, data protection is
essential in this context. Cybersecurity is needed to ensure the confidentiality, availability,
and integrity of data resulting from access to untrusted sources. The aim of this study is to
analyze the impact of data modification in order to observe the time increase in electrical
harnesses manufacturing and error rate as hazard outcomes of the aerospace predictive
algorithm after the dataset has been compromised. The predictive algorithm performance
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is also shown before and after the event has occurred. Thus, countermeasures to protect
the dataset in the cybersecurity context are considered and applied for this purpose.

Algorithms development aims to perform tasks faster, which are designed to enhance
safety. Most of them are modeled to replace manual tasks by automation. In aerospace,
there are different types of errors which can lead to accidents. Human errors can contribute
up to 80% of the total errors [3]. Safety investigations about electrical wiring harness, con-
ducted by authorities, conclude that some aircraft accidents were caused by failures within
the electrical installation, resulting from improper design, maintenance, or a combination
of them. These errors were mainly created from manual operations generated by humans
during different stages of the engineering processes. Traditional methods, related to risk
assessment, focus on the identification, analysis, and management of risks. However, they
remain obsolete in the new digital world [4,5]. Thus, the use of predictive algorithms
applied within the aerospace industry, which aims to prevent failures and decrease errors,
is fundamental to maintain aerospace safety at the highest level [6–8]. Technologies, such
as machine learning developed within the artificial intelligence, are key to enhance such
algorithms [9,10]. Indeed, the new digital age requires more digital sources in order to
interconnect processes to overcome the system complexity in the cyber–physical space
environment. On the other hand, multiple users not only have access to the digital applica-
tion, where algorithms are executed and outcomes are displayed, but also they are frequent
users on a daily basis. Consequently, data can be compromised. Therefore, it is necessary
to protect data using techniques within the framework of the cybersecurity.

The four main categories to classify threat types are interruption, fabrication, modifi-
cation, and interception in the cybersecurity context. They all aim to develop malicious
content in a system. Complex techniques developed by attackers and malware are out of
the scope of this paper [11,12].

The new digital environment requires a holistic approach that integrates more automa-
tion and system interconnection towards a better analysis of the error creation [13]. The
development of predictive algorithms using machine learning techniques aims to connect
the cyberspace environment, enable system automation, and prevent error creation during
the manufacturing processes in order to maintain aerospace safety at the highest level [14].
Moreover, this environment presents vulnerabilities that affect data privacy. Thus, the need
for cybersecurity is essential in this digital domain.

Moreover, in the defense sector, the simulation for data injection could represent a
significant risk to the digital assets. The rise of advanced persistent threats (APTs) which
are a very highly sophisticated malware is evolving and aims to avoid security measures.
Consequently, the attackers often send phishing emails until the first target system gets
compromised. Once the malware has been deployed, other intrusive tools can enable the
propagation to the internal network. Therefore, data extraction can be conducted, allowing
the attackers to steal sensitive information. Thus, all the significant risks are essential
for the organization to adopt cybersecurity measures [15]. Additionally, it is important
to recognize potential breaches and analyze the consequences in order to strengthen the
protection of the digital assets.

Safety and cybersecurity in aerospace have become crucial priorities to be maintained
in modern aircraft systems. The increasing systems interconnection and high dependency
on software have enhanced the potential threats, leading cybersecurity to be a high priority
in ensuring safety [16]. Vulnerabilities in software require focusing on its resilience in order
to guarantee system security [17]. The implementation of advanced technology in modern
aviation such as autopilot, engines control, air data communication, and electrical power is
controlled by software. The flight control of the aircraft has evolved. Software is in charge
of the code execution which generates the outputs to control the aircraft. The high level
of security, which is required to integrate this system in aerospace, has established that
up to 70% of the software development is dedicated to the robustness of the code [18,19].
This process includes the generation of rigorous tasks such as failure detection, isolation,
synchronization, reconfiguration in a detected failure, and system control. In this context,
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any failure that occurs within data or code execution should not be propagated to the
aircraft systems [18].

The design of any aviation system is implemented according to the high safety stan-
dards, which include guidelines on development, verification, validation, and configuration.
Design assurance levels are also established to safeguard the aerospace assets [19]. All these
approaches are aligned with the National Institute of Standards and Technology (NIST)
within the cybersecurity framework, aiming to enhance security systems. Consequently,
safety analysis is of paramount importance to ensure aircraft safety [20].

In this paper, the analysis was conducted after injecting malicious data, which has
generated a negative impact on the performance of the predictive algorithms. The motiva-
tion to carry out this research was to analyze the impact of cyberattacks, to highlight its
importance, and to understand the consequences generated on the engineering processes
in the aerospace manufacturing plant. Thus, the performance of the algorithm, after the
dataset was compromised, has been the main focus of this study. An assessment of the
impact on time and error rate was carried out. Additionally, a detection strategy to detect
a potential cyberattack has been set up to protect the algorithm. The hypotheses, which
were considered, assumed that the attacker has information on the dataset of the victim
and has succeeded to access the system. The following research questions are formulated
as follows:

• Can data injection stop the manufacturing of electrical harness?
• Can this event be avoided by the application of proper cyber defense techniques?
• Does the quantity of compromised data affect the efficiency of the algorithm?

The remainder of this paper is as follows: Section 2 presents the structure of the
model algorithm developed and the necessity of the contribution of the cybersecurity to
the cyber–physical space. Section 3 takes an approach of the inconsistencies generated
after data have been injected into the algorithm and shows an analysis of the consequences
observed on the outcomes. Also, this Section includes the detection strategy to stop the
algorithm operation after data have been injected. Section 4 contains the conclusions and
future work.

2. Materials and Methods

The increasing interconnectivity and complexity of the systems requires the use of
advanced technologies in cyberspace. The cyberspace environment highly relies on digital
applications, which are based on innovative techniques developed within the context of
artificial intelligence such as predictive algorithms [21]. Machine learning techniques are
used to develop predictive algorithms, which play a relevant role to optimize manufac-
turing processes, mitigate errors, and enhance safety. At the same time, cyberspace is
more vulnerable and exposed to cyberattacks in this new digital environment. Thus, the
importance of cybersecurity has been raised as a main priority to maintain the integrity
and security of the digital cyberspace [12].

2.1. Predictive Algorithm

The predictive algorithm applies input parameters within the real dataset presented
in the ‘bill of material’ of each electrical harness in a military aircraft. This dataset is
used for the creation of the processes necessary to manufacture the electrical harnesses.
The experimental data in this case study are the electrical harnesses manufactured and
installed in an aircraft. The initialization of the kernel is based on the data from the
selected parameters, where the risk matrix function classified each harness and established
a different level of probability of error creation during the manufacturing processes. After
processing the data, the algorithm outputs show an evaluation of the likelihood of error
creation and threats visualization represented by the following elements:

• The automation script: The generation of the automatic processes will avoid human
errors which are the main trigger of error creation [22].
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• The dendrogram: The hierarchical representation of the dataset can help to establish
relationships between different levels of risk by clustering the dataset in groups with
similarities [23].

• The logistic regression: The statistical method can be used to model the probability
of occurrence using the variables from the risk matrix and to predict the risk of error
creation in new harnesses assessment [24].

• The confusion matrix: It is used to evaluate the performance of the classification model
used for predictions through the logistic regression method. The true positives, true
negatives, false positives, and false negatives provide insights into the performance
of the logistic regression model in predicting risk events. Thus, it helps to not only
define the performance of the algorithm, but also to detect inconsistences within the
dataset. A large amount of true or false negatives can indicate the low performance of
the algorithm [25].

Data generation was analyzed and processed through the following algorithm struc-
ture, as represented in Figure 1.
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2.2. Risk Matrix

The risk matrix is the mechanism based on the assessment of the electrical harnesses
which depends on the following parameters. These input parameters are the number of
zones (Z), number of wires (H), and number of electrical components (N) in each harness.
The risk matrix function is represented in the following equation:

Φ(Z, H, N) = ∑4
i=1 Xi = X1(Z) + X2(H) + X3(N) + X4(H) (1)

This function is defined with four parameters Xi, which are evaluated on a scale of 1
to 5, with 1 being the simplest geometry and 5 the most complex. These four parameters
(X1, X2, X3, X4) depend on three other parameters, namely, the number of zones (Z),
number of wires (H), and number of electrical components (N) present on each electrical
harness. X1 represents the scores assigned due to the complexity of the 3D geometry.
X2, X3, X4 are related to the scores assigned based on the electrical architecture, number
of electrical connections, and number of electrical components. They are used as input
parameters to define the manufacturing processes of electrical harnesses [14].

2.3. Cybersecurity Context

Cyber defense techniques are crucial to protect systems, data, and networks from
threats. The application of cyber defense techniques to the predictive algorithm ensures
confidentiality, integrity, and availability of the sensitive data. The analysis of vulner-
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abilities, anomalies, and countermeasures is an essential strategy to defeat cyberattack
scenarios [26].

In the cybersecurity context, the way to compromise data can be presented as follows:

• Data modification: Malicious data can search for specific data within the dataset and
modify them to achieve their goals.

• Changing random values: To change data values randomly to cause confusion and
make the data less reliable.

• Data deletion: To delete certain information in order to cause significant problems,
especially if the deletion of the data is critical to the business or customers.

• Data reformatting: To change the data format in order to make it more difficult to use.
• Insertion of false data: To falsify data into the dataset to deceive users who query it.

In this study, the existing dataset which is used as input data to analyze the algorithm
performance, has been compromised. The main consequences related to the error rate
within the results after data injection have been analyzed. Data injection was carried out on
the predictive algorithm, which is in charge of dataset analysis, patterns identification, and
the outcomes forecast for decision making. It is hosted in the internal network within the
infrastructure. The provided access is via security protocols which are updated regularly.
No external access to the information system is allowed. The predictive algorithm interacts
with data sources and means, which comply with security measures. However, the exposure
of the system to the attack surface can allow unauthorized users to potentially exploit
vulnerabilities and cause the damage [27]. Vulnerabilities within the code and unpatched
software can expand the attack surface, amplifying the risk of data breaches. Indeed, a
smaller attack surface mitigates the risk and makes the exploitation more difficult and the
system more secure [28]. Despite security measures, social engineering attack surface such
as phishing can contribute to the enlargement of the surface attack, highlighting the need
for more security measures. Thus, the development of detection strategy can significantly
reduce an organization from a potential cyberattack [29].

These types of data, which were injected in this study, were linked to the risk matrix
function. The experiment was performed at the electrical harness department in the
aerospace industry using a dataset related to 157 harnesses installed in a C295 military
aircraft. The data were modified by selection of random values within the minimum and
maximum of the scalar function risk matrix defined in Equation (1) for each electrical
harness. The data affected before and after injection, represented by different levels of the
risk matrix function, are presented in Table 1. One hundred and twenty-three harnesses
have presented a low-risk matrix, 29 presented a moderate-risk matrix, and 5 of them have
presented a high-risk matrix. After data injection, 147 showed a low-risk matrix, 10 showed
a moderate-risk matrix, and none of them have presented a high-risk matrix. Overall,
38 (24.22%) harnesses have shown a different risk matrix function after data have been
injected.

Table 1. Data affected before and after data injection represented by different levels of the risk matrix
function.

Risk Matrix Before Data Injection After Data Injection

Low 123 147
Moderate 29 10

High 5 -

3. Results

The real dataset of 157 electrical harnesses, which were manufactured for this type
of aircraft, has shown that only 3.18% of the harnesses have presented a high-risk matrix,
18.47% a medium-risk matrix, and most of the harnesses, 78.34%, have presented a low- risk
matrix of error creation during the manufacturing processes. However, after the dataset has
been modified, 93.63% of the harnesses have shown a low-risk matrix, 6.36% a medium-risk
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matrix, and none of the harnesses have presented a high-risk matrix. The probability of
error creation during the manufacturing processes has increased by 24.22% in comparison
with the real dataset scenario. This situation threatens the safety in aerospace. Thus,
countermeasures are necessary to be applied and to protect the dataset. Table 2 shows the
likelihood of error creation before and after data injection.

Table 2. Likelihood of error creation associated with the risk matrix before and after data injection.

Risk Matrix Real Data Injected Data

High 3.18 0
Medium 18.47 6.36

Low 78.34 93.63

Figure 2 depicts the impact of data injection on modifying the real dataset. This event
has created a false behavior on the algorithm performance. The risk matrix has established
different scores on each electrical harness, changing the probability of error creation. The
blue line represents the real dataset associated with the real risk matrix for the experimental
dataset and the orange line represents the variation on the risk matrix after data have been
injected. This false behavior generated by the data injected is affecting the calculation of
the manufacturing time.
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Figure 3 shows that the total manufacturing time established for the entire real dataset
has decreased from 239.3 h in the green bar to 182.5 h, as represented in the gray bar.
The time has decreased by 23.73% after data injection, what has generated a false time
calculation. This anomaly can be an indicator of a cyberattack.

The dendrogram is another indicator to analyze the impact of data injection. Figure 4
represents the clusters showing similarities between the dataset and grouping them into
families. This situation allows for identifying patterns and improving the decision making.
The number of clusters has been increased after data injection from one cluster to three.
In the case of real dataset, it is possible to distinguish one family which needs to receive
special attention. The groups which were created with similarities are clusters I, J, K and L,
M, N, O, P. The rest of the dataset is compact within the main cluster. However, after data
injection, the number of clusters has increased to three and the data have been dispersed.
After dispersion of the dataset, the following groups are defined from A′ to R′.
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Figure 4. Dendrograms presenting groups of similar data in each node before injection (real data
shown on the left) and after injection (false data shown on the right).

The logistic regression shown in Figure 5 represents the best curve fitted to the dataset.
The curve shows the probability of error creation (binary dependent variable) versus the
risk matrix (independent variable). The blue curve is referred to the real data and the
orange curve to the injected data. The probability function associated with the logistic
regression is used for new predictions. The decision boundary with real and false data
is different after the data have been injected. The risk matrix function presents different
values in both situations. Therefore, the model will wrongly predict the new instances.
This situation negatively affects the performance of the algorithm. Thus, the algorithm has
lost its reliability after data have been injected.

Figure 6 represents the confusion matrix showing the performance of the algorithm.
The predictions are labeled as: true negatives (TN), true positives (TP), false negatives (FN),
and false positives (FP). After running the simulation with the real dataset, the results are
as follows: TN = 26, TP = 6, FN = FP = 0. However, after data have been injected, the results
are: TN′ = 1, TP′ = 3, FN′ = 0, FP′ = 27; the increase in the number of false positives can be
observed. This situation indicates a decrease in the performance of the predictive algorithm.
Therefore, the classified data can be used as a good indicator for cyberattack detection. The
confusion matrix collects all the threat indicators. This early detection mechanism enables
a fast reaction and reduces the malicious risk [30].
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Figure 6. Confusion matrix outcomes model before (real data shown on the left) and after injection
(false data shown on the right).

The classifier has changed its performance from 32 correct predictions split between
26 correctly predicted as true negatives and 6 correctly predicted as true positives, while
the algorithm was using correct data. However, after data have been injected, there are
only four correct predictions split between one correct prediction as true negative and three
correct predictions as true positives. There are 27 incorrect predictions as false positives,
which involve a decrease in the performance metrics.

Table 3 shows the main outcomes of metrics defined for the algorithm. It shows the
impact generated on the performance after data have been injected into the algorithm.

Table 3. Metrics calculation to evaluate the algorithm performance before and after data injection.

Metrics Comparison Data Real Data Injection

Precision = TP
TP+FP 1.0 0.1

Recall = TP
TP+FN 1.0 1.0

Accuracy = TP+TN
TP+TN+FP+FN 1.0 0.19

F1 = 2 TP
2 TP+FP+FN 1.0 0.13

The results obtained from the confusion matrix, which compare the metrics using real
and false data, are depicted in Figure 7.
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Overall, data injection compromises the integrity principle based on confidentiality,
availability, and integrity of the data [31]. As the attacker can modify the inputs, the
detection mechanism is necessary to identify this scenario. This anomaly will affect not
only the manufacturing time, but also the risk matrix function Φ, which shows the proba-
bility of creating an error during the manufacturing processes. It is critical for the proper
performance of the algorithm. Thus, security practises are essential to ensure safety and to
protect the algorithm.

The protective mechanism is based on the following detection strategy. The strategy
is set up on anomaly detection and monitoring. The implemented mechanism aims to
detect the unusual behavior of the risk matrix function defined in Equation (1) in order to
identify security breaches. This function depends on four parameters shown in the explicit
formula. Indeed, the risk matrix is equal to the sum of those parameters associated with
each harness. The scalar function maintains this equality when the real data are used as
input of the algorithm. Thus, this condition is fulfilled, allowing the code to continue its
execution. However, if this condition is not fulfilled, the code execution will be stopped.
Thus, the algorithm will not calculate any outcomes and will not show any false data. This
detection strategy is represented in Figure 8.

The model was previously validated using Monte Carlo simulation, which is a method
to assess the reliability of the engineering system. The simulation was carried out using the
following input parameters: p1 for wiring length, p2 for number of electrical components,
and p3 for the protective sheath quantities present in the ‘bill of material’ on each harness.
The Monte Carlo simulation determines the performance of the model for implementation
purposes. The baseline run of Monte Carlo simulation was executed 1000 times across a
range between maximum and minimum values of meters of wiring length (0.29–2374.79),
units of number of components (4–2243), and meters of protective sheath (0.06–22.59) [32].
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Figure 8. Detection strategy to stop the algorithm computation after data have been successfully
injected.

The results of the Monte Carlo simulation were evaluated through the cumulative
distribution function, which was defined for the three parameters selected. The results
showed that the expected values were within a range of high probability of occurrence.
After running the simulations, a new outcome was expected to have a wiring length of 2 m,
45 electrical components, and a protective sheath length between 1.49 and 4.48 m within
a range of probabilities between 50 and 90%. These results showed that 123 out of 157
(78.34%) of the total electrical harnesses used in the simulation have presented the most
common values, which are typical for this type of aircraft.

Moreover, the 1000 runs provide enough evidence to consider the predictive algorithm
as a reliable system. Conclusively, the predictive algorithm can be implemented as an
auto-failure predictor [32–34].
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4. Conclusions

This study was based on the dataset of electrical harnesses, manufactured and installed
in a military aircraft. The experimental approach was based on data injection in predictive
algorithms, which is necessary to develop manufacturing processes correctly. The main
outcomes obtained from the algorithm are the risk matrix, the automation scripts, the
dendrogram, the logistic regression, and the confusion matrix, which were developed
using machine learning techniques within the artificial intelligence context. The risk matrix
brings a state-of-the-art innovation since the aerospace manufacturing processes will be
generated from the perspective of failures prevention by using techniques developed
within the artificial intelligence context. Traditional methods establish the creation of
the manufacturing processes without this consideration, generating failures which can
potentially threaten safety in aerospace. This proposed innovative approach leverages the
risk matrix, which is the mechanism used to assess the risks based on the likelihood and
potential impact. This integrated approach can enhance decision-making processes, and
therefore the development of the effective risk mitigation strategies.

The algorithm performance was analyzed before and after data injection. Before the
data have been modified, the algorithm had shown a good performance. These results
prove the high reliability level of the algorithm. However, the accuracy of the algorithm
has been reduced to 19% after data injection. The findings after data have been injected
show a negative impact on the performance of the algorithm. Data modification caused
the failure of the algorithm performance. Consequently, the algorithm’s effectiveness and
reliability were compromised as a result of the data modification. After data injection, the
risk matrix function has changed, showing that the probability of error creation during the
manufacturing processes has increased by 24.22% compared to the real dataset scenario.
Security techniques were considered and developed to protect the algorithm and avoid
malicious propagation to the outcomes. These techniques are used to secure the correct
performance of the algorithm. By prioritizing security measures, the integrity and reliability
of the algorithm are maintained, thereby preserving the accuracy and trustworthiness of its
outputs. Synchronization of the outcomes is also guaranteed.

Based on the results of this study, it can be concluded that the comparison identified
between the algorithm performance before and after data injection has provided valuable
insights into the manufacturing processes of electrical harnesses. The study highlights
the importance of monitoring the metrics and the discrepancies found within the dataset
in order to detect possible cyberattacks. It can also prevent the occurrence of errors and
enhance the reliability of the manufacturing processes.

Future work should focus on the analysis of the model variability from another type
of aircraft with more extensive datasets. This situation will enable a more comprehensive
assessment of the performance of the algorithm across a wider range of aircraft types.
Indeed, the use of diverse data will allow this study to further analyze the robustness of
the predictive model, enhancing its applicability and reliability in real-world scenarios.
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Abbreviations

CIA Confidentiality, Availability, and Integrity
ENISA European Union Agency for Cybersecurity
APT Advanced Persistent Threats
TP True positives
TN True negatives
FP False positives
FN False negatives
NIST National Institute of Standards and Technology
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