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Abstract: Task allocation is an essential element for determining the capability of multi-UAV systems
to perform various tasks. This paper presents a procedure called a “rebalancing algorithm” for
generating task-performing routes in heterogeneous multi-UAV systems. The algorithm adopts a
greedy-based heuristic approach to find solutions efficiently in dynamically changing environments.
A novel variable named “loitering” is introduced to satisfy temporal constraints, resulting in im-
proved performance compared to heuristic algorithms: a sequential greedy algorithm, a genetic
algorithm, and simulated annealing. The rebalancing algorithm is divided into two phases to mini-
mize the makespan, i.e., the initial allocation and reallocation phases. Simulation results demonstrate
the proposed algorithm’s effectiveness in highly constrained conditions and its suitability for het-
erogeneous systems. Additionally, the results show a reduction in calculation time and improved
performance compared to the heuristic algorithms.

Keywords: multi-UAV system; constrained task allocation; makespan; temporal constraints

1. Introduction

A multi-UAV (unmanned aerial vehicle) system refers to a group of multiple UAVs
that work together to accomplish a common goal. The UAVs can be remotely controlled
or operated autonomously, and they can perform their own tasks with simple directions.
Recent advances in multi-UAV systems have focused on improving the coordination and
autonomy of vehicles. When the paths for each UAV to perform tasks are predetermined,
a task allocation method is not necessary. However, multi-UAV systems are being used
in new ways, such as environmental monitoring [1], disaster response [2], and precision
agriculture [3], for which tasks are presented with various constraints. Efficient task
allocation methodologies can help properly derive the paths for performing the tasks
under constraints.

Task assignment is a combinatorial optimization problem that is known to be NP-
hard [4]. When task assignments involve constraints, the situation becomes significantly
more challenging than when there are no restrictions on the assignments. A considerable
amount of research has been conducted on the constrained task assignment problem. One
study suggested an algorithm that generates solutions about task priorities and control
inputs [5]. Decentralized approaches are also reviewed for asynchronous conditions [6],
coupled constraints [7], cooperation constraints [8,9], and minimizing communication [10].
This problem is also solved by meta-heuristic methods like ant colony [11], genetic algo-
rithm [12–18], particle swarm optimization [19], and simulated annealing [20–24].

The real-world mission scenario involves a heterogeneous multi-UAV system and
a diverse set of tasks with varying characteristics and temporal constraints. Temporal

Aerospace 2023, 10, 1032. https://doi.org/10.3390/aerospace10121032 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10121032
https://doi.org/10.3390/aerospace10121032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-2697-3551
https://orcid.org/0000-0003-3985-0419
https://doi.org/10.3390/aerospace10121032
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10121032?type=check_update&version=3


Aerospace 2023, 10, 1032 2 of 16

constraints are typically applied to situations such as time-limited tasks or precedence
conditions between two tasks. To address these temporal constraints, various methods
have been developed and investigated. The market-based approach has yielded good
results when dealing with temporally and spatially distributed tasks [25,26]. Iterated local
search (ILS) is a method that complements the initial-value-dependent local search, and
the ILS-based meta-heuristic algorithm shows robust results with regard to parameter
tuning [27]. Also, much research about heterogeneous task allocation is performed. An
optimal control approach [5] and a reinforcement learning approach [28] are suggested.
The combination of the heterogeneity in multi-UAV systems and temporal constraints can
make the problem particularly challenging due to its complexity.

This paper introduces a new variable, “loitering”, which is a term from aeronautics
used to describe an air vehicle staying in the air while waiting for further direction. The
proposed variable helps ensure that all constraints are satisfied in the task allocation process.
Firstly, several algorithms are selected to solve the constrained task allocation problem,
and the variable “loitering” is utilized to obtain feasible solutions. Next, a greedy-based
heuristic algorithm, named the “rebalancing” algorithm, is proposed to generate paths
for the heterogeneous multi-UAV system and to minimize the makespan of performing
tasks while satisfying temporal constraints. In this paper, a path means the sequence of
tasks performed by a UAV. The makespan is the total time to complete all given tasks
by the UAVs in the system. The proposed algorithm is divided into two steps. In the
first step, each task is allocated sequentially and greedily with evaluation for reward and
penalty to form an initial path. In the second step, named “rebalancing”, a task is removed
from the current path and reallocated to the most advantageous location, with a loitering
time calculation used to determine if the new allocation is better than the original path.
The proposed algorithm consisting of the initial allocation and rebalancing steps typically
reduces makespan, and a more-balanced number of tasks is assigned to each UAV.

The structure of this paper is as follows. In Section 2, the problem statement is
presented, which details the specific problem that is addressed in this paper. Section 3
outlines the calculation method of loitering time, which refers to the waiting time before
initiating a task. Section 4 introduces the sequential greedy algorithm, genetic algorithm,
and simulated annealing to solve task allocation problems using the calculation technique
in Section 3. Section 5 explains the proposed rebalancing algorithm, which generates paths
for each UAV and calculates a loitering time to satisfy all temporal constraints. Section 6
describes the various numerical simulation settings, results, and analyses. Finally, Section 7
concludes this paper.

2. Problem Statement
2.1. Heterogeneous Multi-UAV System and Temporal Constraints

This paper addresses the problem of allocating heterogeneous tasks to a heterogeneous
multi-UAV system. The objective is to minimize the time required to complete all tasks,
known as makespan, while ensuring that temporal constraints are satisfied. Different
types of UAVs are considered, each with its own unique set of equipment and capabilities.
For example, UAVs with cameras can be used for aerial photography and video, while
those with depth cameras or LIDAR (light detection and ranging) can be used for creating
digital elevation models for terrain, buildings, and other features. An illustrative example
of compatibility is presented in Table 1. The value of 1 in cell (1,2) indicates that a UAV
equipped with a thermal camera is capable of performing search tasks. On the other hand,
the zero value in cell (4,1) tells that a UAV with a camera is supposed to be unable to
perform mapping tasks.

The realistic situation consists of heterogeneous UAVs and tasks, as well as temporal
constraints. One example of temporal constraints is a time-limited task. For instance,
surveillance with a typical camera must be finished before sunset due to visibility. Another
temporal constraint is a precedence condition between two tasks. For this, a delivery
mission is a good example: a “Pickup” task must be performed before a “Delivery” task.
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Additionally, if a complex task needs multiple UAVs at the same time, it could be repre-
sented by a simultaneous constraint.

Table 1. Example of compatibility matrix.

Task
UAV Camera Thermal LIDAR

Search 0 1 0
Fixed surv. 1 1 0

Moving surv. 1 1 0
Mapping 0 0 1

For more details, a representation of the time interval constraints is well organized
in [29]. Temporal constraints on the relations between two tasks are represented in algebraic
forms. For example, the constraint that task A should be finished before the beginning
of task B can be represented as ‘A+ < B−’. The superscript “+” means the end point of
task A and the superscript “−” means the beginning point of task B. Inspired by the time
interval constraints, we defined and renamed a few temporal constraints. The algebraic
representations of the temporal constraints are shown in Table 2.

Figure 1 summarizes the graphical representation of the temporal constraints with
renamed labels: ‘Task A Before Time T’, ‘Task A After Time T’, ‘Task A Before Task B’, ‘Task
A After Task B’, ‘Task A Simultaneous Task B’, ‘During Task A Start Task B’, ‘During Task
A End Task B’, and ‘Task A Envelop Task B’. The labels are clear and intuitive, but Figure 1
has been prepared to provide a more comprehensive explanation.

Table 2. Algebraic representation of temporal constraints.

# Temporal Constraint Algebraic Representation

1 Task A Before Time T A+ < T
2 Task A After Time T A− > T
3 Task A Before Task B A+ < B−

4 Task A After Task B A− > B+

5 Task A Simultaneous Task B A− = B−

6 During Task A Start Task B A− < B− ∩ B− < A+

7 During Task A End Task B A− < B+ ∩ B+ < A+

8 Task A Envelop Task B A− < B− ∩ B+ < A+

Figure 1. Graphical illustration of temporal constraints.

2.2. Problem Formulation

Minimization of makespan with temporal constraints can be formulated from Equation (1)
to Equation (7). Nu means the number of UAVs, Nt means the number of tasks, and Nc
is the number of constraints. P and W represent the collection of the paths and loitering
times of all UAVs, respectively: P = {p1, p2, . . . , pNu} and W = {w1, w2, . . . , wNu}.



Aerospace 2023, 10, 1032 4 of 16

min Tmax(P, W) (1)

where:
Tmax(P, W) = max

i
Ti(pi, wi), ∀i ∈ I (2)

subject to:
Nt

∑
j=1

xij = Lpi ≤ Nt, ∀i ∈ I (3)

Nu

∑
i=1

Lpi

∑
l=1

xipil = Nt (4)

Nu

∑
i=1

xij = 1, ∀j ∈ J (5)

wil ≥ 0, ∀i, l ∈ I × pi (6)

Vk(P, W) = 0, ∀k ∈ C (7)

In the equation, xij is the binary variable that shows whether task j is allocated
to UAV i, pil represents the index of the task in the lth position on UAV i’s route, and
pi = {pi1, pi2, . . . , piLpi

} is the ordered set of tasks allocated to the ith UAV and is called
the "path" of UAV i. The number of tasks assigned to UAV i is the same as Lpi , and this
number should be equal to or smaller than the number of total tasks. Also, the UAV can
perform more than one task (Equation (3)). All tasks should be assigned to any UAV
(Equation (4)). A specific task must be assigned to exactly one UAV (Equation (5)). The
variable wil means the length of time that is scheduled to wait before UAV i performs
the lth task. If there are no temporal constraints on tasks, a UAV does not need to wait
before performing the tasks. In this paper, the concept of “loitering time” is introduced
to satisfy the temporal constraints. For example, if a constraint is given that tasks A and
B should start at the same time and a UAV arrives at task A’s area, then the UAV needs
to wait until task B also becomes executable. The loitering time is the waiting time before
execution of a task, so it should be non-negative (Equation (6)); wi = {wi1, wi2, . . . , wiLpi

}
is the vector of the loitering times along UAV i’s path and has same size as path pi. I is
the set of indexes of UAVs, J is the set of indexes of tasks, and C is the set of indexes of
constraints. Ti(pi, wi) is the total time required for UAV i to perform all assigned tasks
along its path. It is calculated to include the times for flight, task operations, and loitering
along pi. Tmax(P, W) is the makespan of performing all the given tasks. Vk(P, W) is a
penalty function and is non-negative. When any constraint is violated, the penalty function
has a positive value; otherwise, the penalty function is zero (Equation (7)). This is used
to help heuristic algorithms find feasible solutions. Specifying the limiting conditions for
calculating the penalty value is shown in Table 3, and the penalty values under the limiting
conditions are shown in Table 4.

Table 3. How to generate induced constraints.

Constraint 1 Constraint 2 Action

A0 < T1

A0 < T2
Remove “A0 < T1” (if T1 < T2)
Remove “A0 < T2” (if T1 > T2)

A0 > T2
Infeasible (if T1 ≤ T2)
No action (if T1 > T2)

A0 > B0 Add “B0 < T1”

A0 < B0 No action

A0 = B0 Add “B0 < T1”
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Table 3. Cont.

Constraint 1 Constraint 2 Action

A0 > T1

A0 > T2
Remove “A0 > T2” (if T1 < T2)
Remove “A0 > T1” (if T1 > T2)

A0 > B0 No action

A0 < B0 Add “B0 > T1”

A0 = B0 Add “B0 > T1”

A0 > B0

A0 < C0 Add “B0 < C0”

C0 < A0 No action

A0 = B0 Infeasible

A0 = C0 Add “B0 < C0”

A0 = B0 A0 = C0 Add “B0 = C0”

Table 4. Penalty calculation.

kth Constraint Vk(P, W)

A0 < T1
big number (if violated)

0 (if not)

A0 > T1 max(T1 − TA0 , 0)

A0 < B0 max(TA0 − TB0 , 0)

A0 = B0 abs(TA0 − TB0 )

UAVA ̸= UAVB
big number (if violated)

0 (if not)

3. Loitering Time and Penalty Value Calculation
3.1. Temporal Constraints

“Task A Before Time T” and “Task A After Time T” in Table 2 are about one task
and a time limitation. “Task A Before Task B” and “Task A Before Task B” are precedence
conditions between two tasks. The remaining four constraints are more complicated:
“Task A Simultaneous Task B” means that Task A and B should be started simultaneously.
“During Task A Start Task B” implies that Task B should be started while performing Task A.
“During Task A End Task B” denotes that Task B should be finished while performing Task
A. “Task A Envelop Task B” indicates that Task B should be both started and finished while
performing Task A. Since one UAV cannot perform two tasks simultaneously, different
UAVs should be assigned to perform tasks A and B. Therefore, for these four complicated
constraints, the additional constraint ‘UAVA ̸= UAVB’ needs to be added. UAVA means
the UAV performing task A. Algebraic expressions have five types: “A0 < T”, “A0 > T”,
“A0 < B0”, “A0 = B0”, and “UAVA ̸= UAVB”. A0 is common form of A+ or A−. After
representing the constraints with algebraic forms, some constraints are induced trivially.
For example, if there are constraints ‘A+ < B−’ and ‘B+ < C−’, then ‘A+ < C−’ is natural.
If there are constraints ‘A− = B−’ and ‘B− = C−’, then ‘A− = C−’ is reasonable. The
rest of the details are presented in Table 3. Generating all the induced constraints enables
convenient computation of loitering times and penalty values.

3.2. Loitering Time Calculation Method

To solve the task allocation problem, we define the path (P) and loitering time (W)
in Section 2.2. Temporal constraints can be satisfied with the loitering time (wil). In this
chapter, a method is suggested to determine the value of loitering times (wil). This method
is inspired by [30]. The loitering time is the waiting time between the arrival to an area to
perform a task and the starting time of the task. Before calculation of the loitering time,
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there are a few precedence conditions, for which constraints are represented with algebraic
forms and trivially induced constraints are added. Also, it is necessary to allocate all tasks
and to calculate the starting and finishing times for each task. To calculate arrival times to
the locations for specific tasks, the distances between the UAVs and tasks and the velocities
of the UAVs are used.

The procedure for loitering time calculation is depicted in Figure 2. In simple terms,
loitering time is a variable that ensures compliance with all temporal constraints. Adding
a loitering time to a particular task also changes the starting times for subsequent tasks
that are assigned to the same UAV. Hence, adding a loitering time first to a task with an
early starting time is a way to reduce the amount of computation. Therefore, it is necessary
that the temporal constraints are sorted in chronological order before calculating a loitering
time. In the case of constraints related to two tasks, the reference time is based on the earlier
of the starting times of the two tasks associated with the temporal constraints. In the cases
of “Task A Before Time T” and “Task A After Time T”, the reference time is the starting time
of task A. With reference times, constraints are aligned in chronological order. If constraints
are not satisfied, the required loitering time is added to satisfy this. After adding a loitering
time to a particular task, the starting and finishing times of tasks that start after that task’s
starting time are changed. Hence, constraints are re-aligned with delayed starting times by
injecting loitering times. After that, checking the satisfaction is performed from the first of
the aligned list of constraints to the end. Loitering time calculations are completed if all
conditions are satisfied. For example, when task A initiates before time T under the “Task
A After Time T” constraint, a UAV waits at the location of task A without performing the
task, allowing it to start later than time T. For simultaneous constraints about task A and
B, if a UAV arrives first at the position of task A, it waits for the start of task B. Namely, a
loitering time is a waiting time to satisfy temporal constraints.

Figure 2. Loitering time calculation.

Figure 3 illustrates a detailed example of the procedures for calculating a loitering time.
First, tasks are allocated and constraints are aligned chronologically. After that, a loitering
time is calculated sequentially. In Figure 3b, the loitering time (gray) is added for task A,
and the constraint ‘A− = B−’ becomes satisfied. Eventually, all constraints are satisfied
in Figure 3d after a few iterations of aligning constraints and adding loitering times. The
precedence constraints and simultaneous constraints could be satisfied with loitering times.
However, as the two constraints ‘A0 < T1’ and ‘UAVA ̸= UAVB’ cannot be satisfied by
adding loitering times, they must be satisfied prior to the loitering time calculation. To
satisfy these constraints, a penalty value is used. The penalty value is calculated similar to
the loitering time.
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Figure 3. The description of loitering time calculation procedure. The box with an alphabet represent
a start and an end of the task, The gray shadow represent a loitering time before performing a task.

3.3. Penalty Value Calculation

Generating a feasible path is a prerequisite for calculating the loitering time. To obtain
a feasible path, we use a penalty function, and trivially induced constraints are generated
in order to calculate the penalty at each step. Without generating these constraints, some
tasks may be allocated to infeasible locations. For example, if there are two constraints,
‘A+ < B−’ and ‘B+ < C−’, and only task A among A, B, and C is allocated, task C can
be allocated before task A because there are no relationships expressed mathematically.
Therefore, penalty values can prevent infeasible allocations with regard to every original
and induced constraint.

As mentioned in the previous chapter, the three constraints ‘A0 > T1’, ‘A0 < B0’,
and ‘A0 = B0’ can be satisfied by incorporating loitering times, so they have mild penalty
values. However, constraints ‘A0 < T1’ and ‘UAVA ̸= UAVB’ cannot be satisfied by adding
loitering times. Therefore, the penalty values for these constraints are set to a very large
number. The penalty value is calculated for each constraint, and every penalty value is
summed. By applying this concept, even if some constraints are not satisfied, it is possible
to obtain an initial allocation result that satisfies as many constraints as possible.

4. Modification of Existing Heuristic Algorithms for the Constrained Task Allocation

To solve constrained task allocation problems, a genetic algorithm, simulated anneal-
ing, and heuristics are suitable options. Genetic algorithms and simulated annealing are
renowned meta-heuristic approaches employed to address problems of diverse types. The
goal of an algorithm for constrained task allocation is to calculate the path (P) and the
loitering time (W) while minimizing makespan. To achieve the goal, the genetic algo-
rithm, simulated annealing, and heuristics need to be refined. The genetic algorithm (GA)
and simulated annealing (SA) are meta-heuristics; therefore, task allocation methods are
newly established. The sequential greedy algorithm (SGA) is a centralized version of the
consensus-based bundle algorithm (CBBA) [31]. It is a famous market-based algorithm. It
generates a path to maximize the total score obtained by all UAVs. To consider both the
makespan and the constraints, SGA should be modified also. All three algorithms utilize
the loitering time and penalty calculation techniques to satisfy temporal constraints. The
algorithms generate paths, and after path generation, loitering calculations are performed
for the three algorithms.

4.1. The Sequential Greedy Algorithm

The SGA is a heuristic-based algorithm, so usually it has a lower computation load
than meta-heuristics. SGA’s goal is to minimize the total cost or maximize the total score
gained by each UAV. Therefore, the scoring function needs to be changed to handle the
makespan. The equation shown below explains the scoring function of the ith UAV’s
path (pi).

Spi
i = ∑

l
λTi,l c̄i,l (8)



Aerospace 2023, 10, 1032 8 of 16

This equation, which originates from [31], calculates the score for pi by summing the
score of each task using a discount factor λ that is a positive value smaller than 1. Therefore,
tasks performed later receive a lower score. The compatibility value c̄i,l is either 1 or 0
depending on whether UAV ith can perform task l or not. Ti,l represents the operation
time for task l along UAVi’s path. Due to the discount factor, a higher score is awarded
for completing tasks sooner. At each step, the SGA selects the combination of UAV and
task that has the highest score. Once a task is allocated to a UAV, a score is calculated that
accounts for the increment of the score for the ith UAV’s path and the total penalty value
incurred when allocating the task. The maximum value of this summation is determined by
inserting the mission into every location on the path. Vk(P ⊕ j, W) represents the penalty
value for the kth constraint when j is inserted in pi. In the case of total path (P), the symbol
P ⊕ j means P contains the task j at some location in P. However, the symbol pi ⊕l j means
task j is inserted at the lth position in UAVi’s path. The algorithm iterates Nt times until all
tasks are allocated. This procedure is depicted in Algorithm 1. Once all tasks are allocated,
a loitering time is calculated.

Algorithm 1 Sequential Greedy Algorithm

1: Ja = ∅
2: P = (p1, p2, . . . , pNu), W = (w1, w2, . . . , wNu)
3: for n = 1 to Nt do
4: cij = maxl(S

pi⊕l j
i − Spi

i − ∑k Vk(P ⊕ j, W)), ∀i, j ∈ I × J
5: cij = 0, ∀i ∈ I , ∀j ∈ Ja
6: i∗, j∗ = argmax(i,j)cij

7: l∗ = argmaxlS
pi∗⊕l j∗

i∗
8: pi = pi ⊕l∗ j∗∀i = i∗

9: Ja = Ja ⊕end j∗

10: end for

4.2. The Genetic Algorithm

One of the famous meta-heuristic methods is the genetic algorithm. The algorithm con-
sists of chromosome expression and operations for crossover, mutation, and selection [30].
For our scenario, a chromosome has two rows: one is for UAVs and the other is for tasks. A
row of UAVs can have duplicate values, which means that UAVs can perform more than
one task, and a row of tasks cannot have duplicated values. Hence, the number of columns
is the same as the number of tasks. Populations are generated randomly in the initial
phase, and parent chromosomes are selected by a roulette wheel selection. After parent
selection, a crossover operation is performed as depicted in Figure 4b. Firstly, breaking
points for UAVs and tasks are selected, and then offspring take the former part from one
parent and take the latter part from the other parent. For a row of tasks, the former part is
just transferred from parent to offspring. However, the genes of the latter part are filled
with the tasks not assigned to the former part (while avoiding duplication). The order of
filling is arithmetic. After crossover, offspring are generated, and three different mutation
operations are performed. First, one random gene in the UAV row becomes a different UAV.
Second, two random genes in the row of tasks are swapped. Third, two random genes that
belong to the same UAV in a row of tasks are swapped. Usually, changing the paths for
specific UAVs makes better results. Therefore the third mutation operation in Figure 4(c3)
is added. The next generations are selected by higher fitness.

Before the calculation of fitness, a loitering time calculation should be performed to
get the makespan. Fitness is defined as shown below:

Fitness = −(max
i

Ti(pi, wi) + η ∑
i

Ti(pi, wi) + ∑
k

Vk(P, W)) (9)

Ti(pi, wi) is the operation time for UAVi. The second term, η ∑i Ti(pi, wi), is a sum-
mation of the operation times for every UAV. This term is applied for improving not only
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the UAV that needs the longest time but also other UAVs’ paths. If η is too big, then the
algorithm tries to minimize not the makespan but a summation of the operation time.
Therefore, η has a value much smaller than unity. Vk(P, W) is the penalty value for the
kth constraint.

Figure 4. Genetic algorithm for task allocation: (a) graphical illustration of chromosome, (b) crossover
operation, and (c1–c3) 3 different types of mutation operations.

4.3. Simulated Annealing

Simulated annealing is also a well-known meta-heuristic method. Initially, each UAV’s
path is generated randomly. After that, random neighbors are selected repeatedly. If a
neighbor has a higher score, the neighbor is selected for the current solution. However,
with low probability, a neighbor that has a lower score than the current can be chosen. The
final solution has the maximized score. The neighbor can be selected with the procedure
represented in Figure 5. Firstly, randomly selected elements are removed from the path.
Next, the removed elements are allocated random positions in paths. Finally, a specific
UAV’s path is shuffled with low probability. There are three termination criteria: a tem-
perature that is sufficiently low, the iteration number exceeding the maximum iterations,
and the best value remaining unchanged for several iterations. The equation for fitness is
the same as the genetic algorithm. Like the genetic algorithm, a loitering time is calculated
after all tasks are allocated.

Figure 5. The neighbor search procedure in simulated annealing for task allocation: (a) randomly
selected elements, (b) re-allocated elements, and (c) shuffled sequence.

5. The Rebalancing Algorithm
5.1. Algorithm Structure

In this section, we present the proposed rebalancing algorithm. In essence, the initial
allocation step involves a greedy procedure for generating the initial path, and the rebal-
ancing step serves as an improvement method for task exchange among UAVs. Before
solving the allocation problem, temporal constraints are represented with algebraic forms,
and induced constraints are added to calculate the penalty value. In this algorithm, the
initial allocation is performed first. The initial allocation is based on a greedy procedure to
select the combination of tasks and UAVs that gives the maximum score at the end time.

To enhance the performance of the algorithm, we suggest the “rebalancing” step.
For each iteration in the rebalancing step, a loitering time calculation is performed to
get the makespan. The detailed procedure is depicted in Figure 6. The left side of the
figure represents the initial allocation step, and the right side of the figure represents the
rebalancing step.
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Figure 6. The structure of the rebalancing algorithm.

5.2. The Initial Allocation Step

The initial allocation is based on the greedy algorithm. For each iteration, a task is
allocated in some UAV’s path, and iterations are performed until every task is assigned. The
score function ci,j,l for every combination of UAV i, task j, and location l in path pi is shown
in the fourth row of Algorithm 2. To consider both the makespan and the summation of the
time spent performing tasks, fitness SP,W is introduced (Equation (10)). The score function
eventually takes the negative of the fitness changes and all penalty values’ summation. As
the penalty values for each constraint are summed, even if some of the constraints are not
satisfied, it is possible to find a solution that can satisfy the constraints for the loitering
time calculation procedure as much as possible. When compatibility c̄i,j is zero or task j is
already assigned, the score become a negative infinite value. After calculation of scores,
the combination of UAVs, tasks, and locations in the paths that has the maximum score is
selected, and task j∗ is assigned to location l∗ in UAV i∗’s path. Usually, the fitness increases
after the allocation of some task, and the fitness value becomes negative. In other words,
the algorithm finds a combination that creates a smaller increase in the makespan. Also,
the result of task allocation satisfies constraints that have big penalty values after this step,
and the other constraints become satisfied after adding loitering time.

SP,W = max
i

Ti(pi, wi) + η ∑
i

Ti(pi, wi) (10)

Algorithm 2 Initial Allocation

1: Ja = ∅
2: P = (p1, p2, . . . , pNu), W = (w1, w2, . . . , wNu)
3: for n = 1 to Nt do
4: ci,j,l = SP,W − SP⊕j,W − ∑k Vk(P ⊕ j, W), ∀i, j ∈ I × J , ∀l ≤ Lpi
5: ci,j,l = −in f , ∀i ∈ I , ∀j ∈ Ja, ∀l ≤ Lpi
6: if c̄i,j = 0, then ci,j,l = −in f ,
7: i∗, j∗, l∗ = argmax(i,j,l)ci,j,l
8: pi = pi ⊕l∗ j∗∀i = i∗

9: Ja = Ja ⊕end j∗

10: end for

5.3. The Rebalancing Step

At the beginning of each iteration in the rebalancing step, the UAV that has the
maximum operation time is selected. Then, each task in the UAV’s path is detached and is
attached to another location in the same UAV’s path or another UAV’s path. The symbol
pi ⊖ j signifies the detachment of task j from UAV i’s path (pi). Unlike the initial allocation,
the loitering time is calculated in order to compute scores. The method to calculate the
loitering time is represented in Section 3.2. To satisfy temporal constraints, the loitering
time is calculated. If the loitering time value of a UAV is too large, then the UAV should
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remove the task that causes the large loitering time, and that task is added to another UAV.
The score is the decrease in fitness. If the fitness is increased, then it is a worse path and the
score should be zero. When the summation of penalty values becomes larger than zero,
the score is set to be zero. If all penalty values are zero with a proper initial allocation
and loitering time calculation, then the score also becomes zero. When compatibility c̄i,j is
zero, the score becomes zero. There are many conditions for having a zero score. Hence,
a re-allocation should be performed if the maximum score is non-zero. This procedure is
iterated until the maximum score becomes zero. As the path is only changed when the
fitness decreases, the rebalancing step can be seen as a descent method for fitness from an
optimization perspective. This procedure is depicted in Algorithm 3.

Algorithm 3 Rebalancing

1: P = (p1, p2, . . . , pNu), W = (w1, w2, . . . , wNu)
2: for n = 1 to Nt do
3: il = argmax iTi(pi, wi)
4: P′ = (. . . , pil ⊖ j, . . . , pi ⊕l j, . . .), W ′ = (. . . , wil ⊖ wil j, . . . , wi ⊕l wil , . . .), ∀i ∈

I , ∀j ∈ pil , ∀l ≤ Lpi
5: W ′ = CalLoitering()
6: ci,j,l = SP,W − SP′,W ′

, ∀i ∈ I , ∀j ∈ pil , ∀l ≤ Lpi
7: ci,j,l = 0, ∀j /∈ pil

8: if SP′,W ′
> SP,W or ∑k Vk(P′, W ′) > 0 or c̄i,j = 0, then ci,j,l = 0

9: val = max(i,j,l)ci,j,l
10: if val > 0 then
11: i∗, j∗, l∗ = argmax(i,j,l)ci,j,l
12: pi∗ = pi∗ ⊕l∗ j∗

13: pi = pi, ∀i ̸= i∗

14: else
15: break;
16: end if
17: end for

6. Numerical Simulation

We compared the performance and computation time of the rebalancing algorithm
and other algorithms. If the tasks are evenly distributed within the area, every UAV’s
path will have an equal number of tasks. Hence, we defined new variable N = Nt/Nu. It
is the number that represents the number of tasks divided by the number of UAVs. We
performed simulations for cases of N = 5, 10. Also, the number of UAVs varies from 3 to
15 for each value of N. Depending on the number of tasks, the area where the task takes
place is assumed to grow as the ratio between the area and Nt is maintained. If the mission
area remains the same and only the number of tasks increases, the gap between tasks is
narrowed, and it would be hard to figure out why the entire task termination time would
be reduced: i.e., due to the algorithm’s performance or the reduced gap. Therefore the
tasks are in a square area for which one side’s length is 0.3 km × (number of UAVs)0.5 to
maintain the ratio between the number of tasks and the mission area. Initially, UAVs are
located in a circle with a radius of 5 m at the center of the square, the duration of all tasks is
30 s, and the speed of UAVs is defined at 5 m/s. Also, there are three cases: unconstrained
condition and constrained condition with homogeneous system and constrained condition
with heterogeneous system. For heterogeneous systems, there are three types of UAVs and
four types of tasks, as in Figure 7. The light-blue-colored task is a common task that can be
done by any UAV, and other colors can be done by a same-colored UAV. Both the UAVs and
tasks have almost the same number for each type. If N = 5, Nu = 12, and Nt = 60, there
would be four red-colored UAVs and fifteen red-colored missions. If the number cannot be
divided evenly, the number of UAVs of each color may vary slightly. When N is equal to 5
or 10, a total of six conditions can be obtained by applying three conditions to each value
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of N. Figure 7 describes the distribution of UAVs and tasks and a temporal sequence for
each UAV. The constraints are “Task 1, 2, 3 should be started simultaneously” and “Task 0
should be after Task 1, 2, 3”. The gray area means a loitering time: the time from arrival
to starting the task. The line in Figure 7a,c means the UAV’s path. The color represents
the UAV and task type. UAV0 is red, UAV1 is orange, and UAV2 is green. Each UAV can
perform the same-colored tasks and light-blue-colored tasks. As represented in Figure 7,
every algorithm can consider both the heterogeneous system and temporal constraints.
If not, the makespan would be very large. When the constraints are violated, loitering
time is added over and over again until the algorithm is forced to stop, and if the tasks are
allocated without consideration of compatibility, it takes a very long time to perform tasks.

Figure 7. Heterogeneous task allocation example—UAV 3, Task 12: (a,b) unconstrained task allocation
example and (c,d) constrained task allocation example. The task numbers 0 ∼ 11 in (a,c) represent
each task’s position and the task numbers in (b,d) show a period to perform each task.

In the genetic algorithm, the total number of chromosomes in each generation is
80, and 40 offspring are generated through crossover and mutation operations. After
the operations, 80 chromosomes are selected based on their fitness score from the prior
generation and new offspring. The mutation probabilities for the first, second, and third
mutation operations are 1%, 1%, and 5%, respectively. The maximum number of iterations
is set to 4000. However, if the same fitness score is maintained for 500 consecutive iterations,
the iteration is stopped.

For the simulated annealing algorithm, elements are selected with a 5% probability and
are removed, and the removed elements are allocated to a random position. Additionally,
a randomly selected UAV’s path is shuffled with a 5% probability.

Figure 8 represents the results of numerical simulation. To get the averages and
variances, 50 runs are performed for each case. The upper side of the figure is a comparison
of the makespan, the middle side of the figure is a comparison of the computation time,
and the lower side of the figure is a comparison of both the makespan and computation
time. For the upper side and the middle side, 25th and 75th percentiles are represented
with bars. For the lower side, an ellipse is used to show two variables’ variance. The
horizontal diameter of the ellipse is the 25th and 75th percentiles of the computation time,
and the vertical diameter of the ellipse is the 25th and 75th percentiles of the makespan. The
abbreviation “SGA” means the sequential greedy algorithm, “Greedy” means the initial
allocation phase of the proposed algorithm, “RA” is the rebalancing algorithm, and “GA”
and “SA” mean genetic algorithm and simulated annealing, respectively. Usually, the
makespan increases along with the number of UAVs, and the makespan when constrained
is longer than for the no-constraint condition.

Usually, the more complicated the problem, the longer the calculation time. As
depicted in Figures 8 and 9, the heterogeneous and constrained conditions need longer
makespans than other conditions. Meta-heuristics need a much longer computation time
than heuristics. The rebalancing algorithm needs almost the same computation time with
only the initial allocation step (greedy) and SGA for unconstrained conditions. However,
it needs more computation to calculate loitering times for the rebalancing step when
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constraints are applied. Still, its calculation time is much lower than that of meta-heuristics.
The genetic algorithm shows the best performance when N = 5 and there are fewer than
nine UAVs. However, about 100 times more time is needed compared to RA. As the size of
the problem increases, the performance of the genetic algorithm and simulated annealing
decreases, resulting in a significant increase in makespan. If N is constant, the number of
tasks taken by one UAV is constant regardless of the number of UAVs when the assignment
is well done. And the mission area is widened according to the number of tasks, so the
distance between missions becomes similar, so makespan should also be constant. At
N = 10 for the heterogeneous and constrained conditions, the average makespan of the RA
is 632 s for 3 UAVs, and it become 657 s for 15 UAVs. This is only a 4% increase. Therefore,
it can be seen that the RA is working well.

Figure 8. Simulation results—N (NUAV/Ntask) = 5. The number in the lowest graph represents the
agent number, the horizontal length of each ellipse represents the variance of the calculation time,
and the vertical length represents the variance of the makespan.

The goal of these algorithms is to minimize the makespan, which is expected to be
the same for any number of UAVs when the task density is constant. The rebalancing
algorithm shows promising results, as it has an almost equal makespan when the number
of UAVs is increased. In unconstrained conditions, SGA and only the initial allocation
step (greedy) have similar makespans. However, only the initial allocation step (greedy)
has better performance than SGA for constrained conditions. And adding a rebalancing
step can reduce the makespan. When Nu, Nt is small, the genetic algorithm has a much
shorter makespan than others. However, only the initial allocation step (greedy) and the
rebalancing algorithm compose a Pareto front for cases other than N = 5 and Nu < 12 or
N = 10 and Nu < 6. This represents that the meta-heuristic algorithm is not suitable for
large-scale problems. It already needs a lot of computation to improve performance, but
the computation loads become much larger.

The rebalancing algorithm requires more computational resources than simpler al-
gorithms like SGA and greedy, but it can generate paths that have shorter makespans.
In particular, the algorithm is more effective in constrained conditions, where the im-
provements to solution quality are more significant compared to those of unconstrained
conditions. This is because the rebalancing algorithm is designed to consider both the
constraints and the heterogeneity of the system, making it suitable for complex problems
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in real-world scenarios. As a result, the rebalancing algorithm is a promising approach
for solving task allocation problems that involve multiple constraints and heterogeneous
multi-UAV systems.

Figure 9. Simulation results—N (NUAV/Ntask) = 10. The number in the lowest graph represents the
agent number, the horizontal length of each ellipse represents the variance of the calculation time,
and the vertical length represents the variance of the makespan.

7. Conclusions

This paper presents a novel variable called “loitering” and a multi-UAV mission plan-
ning technique based on a heuristic algorithm that addresses task allocation problems in
heterogeneous systems with various temporal constraints. This algorithm is performed
by a centralized planner, so it is appropriate for generating initial paths for every UAV.
The proposed technique calculates the loitering time to enable efficient planning that satis-
fies the temporal constraints while minimizing the makespan. The proposed approach is
compared with three algorithms: the genetic algorithm (GA), simulated annealing (SA),
and the sequential greedy algorithm (SGA). The numerical simulation results show that
the rebalancing algorithm outperforms the SGA while requiring only a slightly longer
computation time. Moreover, the rebalancing algorithm overwhelms the GA when the
number of UAVs and tasks becomes large, in which case the meta-heuristic algorithms
may struggle to generate accurate solutions. Therefore, the rebalancing algorithm is more
appropriate for general cases. Additionally, the initial allocation step can create a path
with a shorter makespan than that of SGA, and the makespan becomes much smaller after
the rebalancing step in constrained conditions. Overall, the proposed loitering-based ap-
proach and the rebalancing algorithm demonstrate promising results for solving multi-UAV
mission planning problems in heterogeneous systems with various temporal constraints.
Future research directions are expected to expand on several fronts. One of the directions
is to consider UAV endurance. Certainly, considering the inherent limitations of UAV
endurance is crucial for developing realistic algorithms. The need for periodic resupply
due to limited flight endurance can be viewed as a constraint for which the UAV must visit
a replenishment base after a specific duration of flight. In future research, incorporating
such considerations into algorithmic frameworks would contribute to the development of
more practical and realistic solutions. Addressing the challenge of optimizing routes and
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scheduling visits to resupply bases in response to UAV endurance limitations is a promising
avenue for enhancing the realism and applicability of the algorithms in UAV operations.
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