# The Application of a Laser-Printed Miniature Five-Hole Probe in the End-Wall Flow Measurement of a Multistage Axial Compressor

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Calibration Strategy

#### 2.1. Probe Structure and Angle Frames

#### 2.2. Angular Space Division

#### 2.3. Calibration Coefficients for Low Flow Angle

#### 2.4. Calibration Coefficients for High Flow Angle

#### 2.5. Calibration Results

## 3. Error Evaluation Based on Test Data

## 4. Application in End-Wall Flow Measurement for a Low-Speed Repeating-Stage Axial Compressor

## 5. Summary and Discussion

- Data reduction and error analysis of the miniature five-hole probe.

- 2.
- Application in end-wall flow measurement in a multistage axial compressor.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

${b}_{s}$, ${b}_{t}$ | Static and total pressure coefficients |

${b}_{\alpha}$, ${b}_{\beta}$, ${b}_{\theta}$, ${b}_{\varphi}$ | Pitch, yaw, cone, and roll angle coefficients |

${P}_{1}$,…,${P}_{5}$ | Pressure measured at port 1, …, 5 |

${P}_{t,inlet}$, ${P}_{t,outlet}$ | Total pressure at inlet and outlet |

${q}_{1}$, ${q}_{2}$ | Dynamic pressure for low-angles and high-angles |

${U}_{m}$ | Rotational speed at mid span |

${V}_{z}$ | Axial velocity |

$\alpha $, $\beta $, $\theta $, $\varphi $ | Pitch, yaw, cone, and roll angle |

$\epsilon $ | Error between the measured and true value |

$\rho $ | Density |

$\mathsf{\Phi}$ | Flow coefficient |

${\mathsf{\Psi}}_{TT}$ | Total-to-total pressure rise |

## References

- Wisler, D.C. Aerodynamic effects of tip clearance, shrouds, leakage flow, casing treatment and trenching in compressor design—Blading design in the endwall region. In Lectures on Tip Clearance Effects in Axial Turbomachines; Von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 1985. [Google Scholar]
- Koch, C.C.; Smith, L.H. Loss sources and magnitudes in axial-flow compressors. J. Eng. Gas Turbines Power
**1976**, 98, 411–424. [Google Scholar] [CrossRef] - Wennerstrom, A.J. Low aspect ratio axial flow compressors: Why and what it means. J. Turbomach.
**1989**, 111, 357–365. [Google Scholar] [CrossRef] - To, H.-O.; Miller, R.J. The Effect of Aspect Ratio on Compressor Performance. J. Turbomach.
**2019**, 141, 081011. [Google Scholar] [CrossRef] - Koch, C.C. Stalling Pressure Rise Capability of Axial Flow Compressor Stages. J. Eng. Power
**1981**, 103, 645–656. [Google Scholar] [CrossRef] - Smith, L.H. Casing Boundary Layers in Multistage Axial Compressors. In Flow Research on Blading; Elsevier: Amsterdam, The Netherlands, 1970; pp. 275–304. [Google Scholar]
- Ren, X.; Gu, C. A numerical study on the tip clearance in an axial transonic compressor rotor. Appl. Therm. Eng.
**2016**, 103, 282–290. [Google Scholar] [CrossRef] - Town, J.; Akturk, A.; Camci, C. Total pressure correction of a sub-miniature five-hole probe in areas of pressure gradients. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012; Volume 1, pp. 855–861. [Google Scholar]
- Gilarranz, J.L.; Ranz, A.J.; Kopko, J.A.; Sorokes, J.M. On the Use of Five-Hole Probes in the Testing of Industrial Centrifugal Compressors. J. Turbomach.
**2005**, 127, 91–106. [Google Scholar] [CrossRef] - Coldrick, S.; Ivey, P.C.; Wells, R.G. The Influence of Compressor Aerodynamics on Pressure Probes: Part 2—Numerical Models. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004; pp. 515–520. [Google Scholar]
- Li, J.; Du, J.; Geng, S.; Li, F.; Zhang, H. Tip air injection to extend stall margin of multi-stage axial flow compressor with inlet radial distortion. Aerosp. Sci. Technol.
**2020**, 96, 105554. [Google Scholar] [CrossRef] - Yasa, T.; Paniagua, G. Robust procedure for multi-hole probe data processing. Flow Meas. Instrum.
**2012**, 26, 46–54. [Google Scholar] [CrossRef] - Hall, B.F.; Povey, T. The Oxford Probe: An open access five-hole probe for aerodynamic measurements. Meas. Sci. Technol.
**2017**, 28, 35004. [Google Scholar] [CrossRef] - Liu, B.; Qiu, Y.; An, G.; Yu, X. Utilization of Zonal Method for Five-Hole Probe Measurements of Complex Axial Compressor Flows. J. Fluids Eng.
**2020**, 142, 061504. [Google Scholar] [CrossRef] - Gerner, A.A.; Maurer, C.L.; Gallington, R.W. Non-nulling seven-hole probes for high angle flow measurement. Exp. Fluids
**1984**, 2, 95–103. [Google Scholar] [CrossRef] - Everett, K.N.; Gerner, A.A.; Durston, D.A. Seven-hole cone probes for high angle flow measurement Theory and calibration. AIAA J.
**1983**, 21, 992–998. [Google Scholar] [CrossRef] - Babu, C.V.; Govardhan, M.; Sitaram, N. A method of calibration of a seven-hole pressure probe for measuring highly three-dimensional flows. Meas. Sci. Technol.
**1998**, 9, 468–476. [Google Scholar] [CrossRef] - Pisasale, A.J.; Ahmed, N.A. A novel method for extending the calibration range of five-hole probe for highly three-dimensional flows. Flow Meas. Instrum.
**2002**, 13, 23–30. [Google Scholar] [CrossRef] - Shaw-Ward, S.; Titchmarsh, A.; Birch, D.M. Calibration and Use of n-Hole Velocity Probes. AIAA J.
**2015**, 53, 336–346. [Google Scholar] [CrossRef] - Mortadha, J.; Qureshi, I. Extending the usable range of the calibration map of a four-hole probe for measuring high flow angles. Flow Meas. Instrum.
**2019**, 65, 257–267. [Google Scholar] [CrossRef] - Ericksen, A.L.; Gallington, R.W.; Rao, B.M. Rapid Calibration of Seven-Hole Probes; NASA Technical Memorandum 107040; National Aeronautics and Space Administration: Washington, DC, USA, 1995. [Google Scholar]
- Johansen, E.S.; Rediniotis, O.K.; Jones, G. The Compressible Calibration of Miniature Multi-Hole Probes. J. Fluids Eng.
**2001**, 123, 128–138. [Google Scholar] [CrossRef] - Herrmann Schlichting, K.G. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 3540662707. [Google Scholar]
- Crawford, J.; Michael Birk, A. Improvements to Common Data Reduction and Calibration Methods for Seven Hole Probes. J. Fluids Eng.
**2013**, 135, 031206. [Google Scholar] [CrossRef]

**Figure 7.**Calibration grid of the probe. (

**a**) Cone $\left(\mathit{\theta}\right)$ and roll $\left(\mathit{\varphi}\right)$; (

**b**) pitch $\left(\mathit{\alpha}\right)$ and yaw $\left(\mathit{\beta}\right)$.

**Figure 8.**Calibration results for sector 1 and sector 3. (

**a**) $\alpha $ for sector 1; (

**b**) $\alpha $ for sector 3; (

**c**) $\beta $ for sector 1; (

**d**) $\beta $ for sector 3; (

**e**) ${b}_{t}$ for sector 1; (

**f**) ${b}_{t}$ for sector 3; (

**g**) ${b}_{s}$ for sector 1; (

**h**) ${b}_{s}$ for sector 3.

**Figure 11.**The errors of 298 test points (

**a**) for pitch angle; (

**b**) for yaw angle; (

**c**) for total pressure; (

**d**) for static pressure.

**Figure 12.**Statistical analysis of the error. (

**a**) for mean absolute deviation; (

**b**) for standard deviation.

**Figure 13.**Drawings of the experimental test facility (

**a**) for the test rig; (

**b**) for the test compressor.

**Figure 16.**The measured axial velocity contour and streamlines (

**a**) for the DP condition; (

**b**) for the NS condition.

**Figure 18.**Radial distribution of flow parameters at the outlet of the vane suction surface. (

**a**) Axial velocity; (

**b**) flow angle; (

**c**) dimensionless static pressure; (

**d**) dimensionless total pressure.

Parameter | Value |
---|---|

Rotational speed range (rpm) | 0~1500 |

Design speed/Test speed (rpm) | 900 |

Casing diameter (mm) | 1500 |

Hub-to-tip ratio | 0.88 |

Blade number (inlet guide vane/rotor/stator) | 60/64/80 |

Chord at midspan (mm, rotor/stator) | 92/74 |

Axial gap (mm) | 20 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ma, S.; Hu, J.; Wang, X.; Ji, J.
The Application of a Laser-Printed Miniature Five-Hole Probe in the End-Wall Flow Measurement of a Multistage Axial Compressor. *Aerospace* **2023**, *10*, 1020.
https://doi.org/10.3390/aerospace10121020

**AMA Style**

Ma S, Hu J, Wang X, Ji J.
The Application of a Laser-Printed Miniature Five-Hole Probe in the End-Wall Flow Measurement of a Multistage Axial Compressor. *Aerospace*. 2023; 10(12):1020.
https://doi.org/10.3390/aerospace10121020

**Chicago/Turabian Style**

Ma, Shuai, Jun Hu, Xuegao Wang, and Jiajia Ji.
2023. "The Application of a Laser-Printed Miniature Five-Hole Probe in the End-Wall Flow Measurement of a Multistage Axial Compressor" *Aerospace* 10, no. 12: 1020.
https://doi.org/10.3390/aerospace10121020