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Abstract: This paper explores the use of the averaging method in the optimal control problem related
to the multirevolution orbital transfer of a spacecraft with low-thrust capabilities. The regularized
equations of motion are expressed using modified equinoctial elements with the eccentric longitude
as a fast variable. The control function is represented as a Fourier series relative to the eccentric
longitude. The classical averaging technique’s usage results in the averaged trajectory depending
only on a limited number of optimization parameters. Moreover, when transferring between near-
circular orbits, the averaged motion can be estimated using analytical formulas. As such, the optimal
multiorbit flight problem is simplified to nonlinear programming with fewer parameters, thereby
accelerating the optimal solution’s derivation. Two practical examples illustrate the technique’s
application: orbital transfer near the geostationary orbit and circular orbit raising maneuver. The
solutions derived are compared with Pontryagin extremals.

Keywords: orbital transfer; approximate solution; close form; trajectory optimization; low thrust

1. Introduction

Many space missions prefer to utilize low-thrust propulsion systems because they have
higher specific impulse compared with high-thrust propulsion systems that significantly de-
creases the quantity of the propellant used. Two commonly used approaches to low-thrust
optimal control problems are indirect and direct methods [1,2]. Indirect methods utilize
the Pontryagin maximum principle, which transforms the optimal control problem into a
two-point boundary value problem [3–5]. Using indirect optimization, the global search
for fuel-optimal low-thrust transfers from a low Earth orbit to the vicinity of the Moon was
performed in the Earth–Moon planar circular restricted three-body problem [6]. Extensive
research and classification of low-thrust low-energy transfers between low Earth and lunar
orbits using indirect optimal control are thoroughly examined in [7]. On the other hand,
direct methods rely on discretization/parametrization and transform the optimal control
problem into a nonlinear programming problem [8–10] to solve transfer [11], rephasing [12],
and rendezvous [13–16] problems. Both approaches struggle with significant sensitivity to
the initial guess, lead to numerous local extrema, and incur high computational costs during
the optimization process. To overcome these difficulties, various methods are used [17],
including modified continuation techniques [18], search space landscape analysis [19],
convexification [20,21], and neural control [22,23].

Both direct and indirect methods often use averaging as a key preliminary step in
solving low-thrust optimization problems. The averaged equations provide an overview
of the orbit’s mean evolution, excluding short-term oscillations resulting from the thrust
or disturbances. Additionally, they are numerically more stable than the system without
averaging. The application of averaging allows for a fast and accurate search for optimal
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orbital transfers [24–26]. In [27,28], analytical solutions of minimum fuel and minimum en-
ergy transfer problems were achieved for close elliptic coplanar orbits using the Pontryagin
principle with the averaging of the Hamiltonian.

Averaging is also applied within the direct optimization framework. According to a
study [29], when the thrust (or perturbation) is a function with a constant spectrum, the
averaged right-hand side of the Gauss variational equations depends solely on 14 thrust-
perturbation Fourier coefficients. This fact was used to define low-thrust control using a
finite number of variables and solve an optimal control problem using direct methods [30].
However, the classical orbital elements used in [29] are singular in the instances of circular
and equatorial orbits. Additionally, the averaged variational equations in classical orbital
elements are not integrable.

The authors present an advancement of the above approach in the current study. By
expressing the spacecraft orbital motion in terms of modified equinoctial elements and
taking the eccentric longitude as a fast variable, we found that the averaged equations of
motion contain only 13 Fourier coefficients. Moreover, a closed-form solution for cases
with low eccentricity is found. Now we are interested in the application of this averaging
technique with analytical formulas to multiorbit low-thrust transfer optimization problems.
The essence of this work is the reduction of the optimal control problem to a nonlinear
programming problem with a small number of optimization parameters and its solution.

This paper is organized as follows. Section 2 presents the general optimal control
problem that is under investigation. Section 3.1 explains the developed averaging approach.
Then, in Section 3.2, the case of transfer between near-circular orbits is formalized, and the
corresponding closed-form solution of the averaged equations is presented. Section 4 out-
lines the process of transforming the optimal control problem into nonlinear programming
using the averaging method. In Section 5, two test energy-optimal control problems are
defined and solved: orbital transfer near the geostationary orbit (Section 5.1) and circular
orbit raising maneuver (Section 5.2). Section 5.3 compares the optimal solutions with the
Pontryagin extremals, which were obtained using the Pontryagin maximum principle. The
final section draws conclusions from the study and suggests directions for further research
on the topic.

2. The General Optimal Control Problem under Study

The perturbed orbital motion of the spacecraft in the vicinity of the center of attraction
is considered. The motion of the spacecraft is described by a system of differential equations
in terms of the modified equinoctial elements as follows [31]:

dp
dt

=
2

σ(F)

√
p3

µ
· fc, (1)

dex

dt
=

√
p
µ

{
sin L(F) · fr +

(
cos L(F) +

ex + cos L(F)
σ(F)

)
· fc − ey

ix sin L(F)− iy cos L(F)
σ(F)

· fn

}
, (2)

dey

dt
=

√
p
µ

{
− cos L(F) · fr +

(
sin L(F) +

ey + sin L(F)
σ(F)

)
· fc + ex

ix sin L(F)− iy cos L(F)
σ(F)

· fn

}
, (3)

dix

dt
=

√
p
µ

1 + i2x + i2y
2σ(F)

cos L(F) · fn, (4)
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diy
dt

=

√
p
µ

1 + i2x + i2y
2σ(F)

sin L(F) · fn, (5)

dF
dt

= φ3
√

µ

p3 +
dex

dt
cos F−

dey

dt
sin F+ (6)

+

√
p
µ

{
− 2

φ
· fr − b

1 + σ(F)
φ2 (ey cos L(F)− ex sin L(F)) · fc +

ix sin L(F)− iy cos L(F)
φ2 · fn

}
,

where

σ(F) = 1 + ex cos L(F) + ey sin L(F),

sin L(F) =
(1− e2

xb) sin F + exeyb cos F− ey

1− ex cos F− ey sin F
,

cos L(F) =
(1− e2

yb) cos F + exeyb sin F− ex

1− ex cos F− ey sin F
,

b =
1

1 + φ
,

φ =
√

1− e2
x − e2

y.

Here, p, ex, ey, ix, and iy are the modified equinoctial elements that are related to the
semimajor axis a, eccentricity e, inclination i, right ascension of the ascending node Ω, and
argument of periapsis ω by the expressions [31]

p = a(1− e2),

ex = e cos (Ω + ω),

ey = e sin (Ω + ω),

ix = tan(i/2) cos Ω,

iy = tan(i/2) sin Ω.

(7)

The variable F is the eccentric longitude; it relates to Ω, ω, and the eccentric anomaly
E by the expression F = Ω + ω + E. The perturbation variables fr, fc, and fn are the pro-
jections of the perturbation acceleration f on the axes of the local-vertical/local-horizontal
frame; fr is the radial component; fc is the component orthogonal to the radius vector of
the spacecraft; and fn is the component normal to the orbital plane. The parameter µ is the
gravitational parameter of the attracting body.

The equations above can be written in a compact form:

ẋ = g(x, F, f), (8)

Ḟ = h(x, F, f), (9)

where x = [p, ex, ey, ix, iy] is a vector of modified equinoctial elements, and g(x, F, f) and
h(x, F, f) are the right-hand side of Equations (1)–(6).

In the current study, the optimal control problem between two points of phase space
characterized by the elements and the eccentric longitudes p0, ex,0, ey,0, ix,0, iy,0, F0 and
p1, ex,1, ey,1, ix,1, iy,1, F1 in a given time interval [0, T] governed by Equations (8) is considered.
In the current work, no other perturbations other than thrust are considered. The objective
for minimization is J =

∫ T
0 |f(t)|

2 dt. This is the general minimum-energy transfer optimal
control problem between two phase states in a given time [1]. It can be easily shown that in
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the case of an ideally regulated engine, this problem is equivalent to minimizing the fuel
costs for a transfer between the two points in a given time.

Let us now proceed to the description of the averaging method used in this work.

3. The Averaging Technique and Approximate Solutions
3.1. Averaged Variational Equations in Modified Equinoctial Elements

In this section, we briefly describe the technique of obtaining the averaged variational
equations and present the result of averaging. For that purpose, we first represent the
perturbation acceleration by the Fourier series:

fr,c,n = αr,c,n
0 +

∞

∑
k=1

(αr,c,n
k cos kF + βr,c,n

k sin kF),

where αr,c,n
k and βr,c,n

k are the Fourier series coefficients, and the upper script indicates
one of the acceleration components. This representation allows us to average the right-
hand sides of the variational equations on p, ex, ey, ix, and iy over the mean longitude
λ = F + ex cos F + ey sin F over one revolution:

dx
dt

= g(x, f) =
1

2π

∫ 2π

0
g(x, F(λ), f(F(λ)))dλ =

=
1

2π

∫ 2π

0
(1− ex cos F− ey sin F)g(x, F, f(F))dF.

(10)

Here, x is the vector of the modified equinoctial elements, and x is the vector of their averaged
values. Equations (1)–(5), averaged using the scheme (10), take the following form:

dp
dt

=
1

φ2

√
p3

µ

{
(2 + e2

x + e2
y)α

c
0 − 2exαc

1 − 2eyβc
1 +

e2
x − e2

y

2
αc

2 + exeyβc
2

}
, (11)

dex

dt
=

√
p
µ

{
−eyαr

0 + ex ey
1− φ

2e2 αr
1 +

φe2
x + e2

y

2e2 βr
1 −

3ex

2
αc

0 +
e2

y(1 + φ2) + 2φe2
x

2e2φ
αc

1 − ex ey
(1− φ)2

2e2φ
βc

1− (12)

− ex
(e2

x − e2
y)φ + 2 e2

y

4 e2φ
αc

2 − ey
2 e2

xφ− e2
x + e2

y

4 e2φ
βc

2 + 3ey
eyix − exiy

2φ2 αn
0+

+ ey
(exiy − eyix)(2 + φ)ex + φ(1 + φ)iy

2(1 + φ)φ2 αn
1 − ey

(eyix − exiy)(2 + φ)ey + φ(1 + φ)ix

2(1 + φ)φ2 βn
1−

− ey
(ex iy + ey ix)(1 + φ)− 2exey(exix + eyiy)

4 (1 + φ)φ2 αn
2 + ey

φ(1 + φ)(ex ix − ey iy) + 2exey(eyix − exiy)

4 (1 + φ)φ2 βn
2

}
,

dey

dt
=

√
p
µ

{
exαr

0 −
φe2

y + e2
x

2e2 αr
1 + ex ey

φ− 1
2e2 βr

1 −
3 ey

2
αc

0 − ex ey
(1− φ)2

2e2φ
αc

1 +
2φe2

y + (1 + φ2)e2
x

2e2φ
βc

1+ (13)

+ ey
(ey

2 − e2
x)φ + 2 e2

x

4 e2φ
αc

2 − ex
2 e2

yφ + e2
x − e2

y

4 e2φ
βc

2 + 3ex
ex iy − ey ix

2φ2 αn
0−

− ex
(exiy − ey ix)(2 + φ)ex + φ(1 + φ)iy

2(1 + φ)φ2 αn
1 + ex

(eyix − exiy)(2 + φ)ey + φ(1 + φ)ix

2(1 + φ)φ2 βn
1+

+ ex
(ex iy + ey ix)(1 + φ)− 2exey(exix + eyiy)

4(1 + φ)φ2 αn
2 − ex

(ex ix − ey iy)φ(1 + φ) + 2exey(eyix − exiy)

4(1 + φ)φ2 βn
2

}
,
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dix

dt
=

1 + i2x + i2y
4

√
p
µ

{
− 3ex

2φ2 αn
0 +

e2
x(2− φ2) + φe2

y

e2φ2
αn

1 + ex ey
2− φ2 − φ

e2φ2
βn

1 + ex
e2

y − e2
x − 2φ e2

y

2e2φ2
αn

2− (14)

− ey
2 e2

x − (e2
x − e2

y)φ

2e2φ2
βn

2

}
,

diy

dt
=

1 + i2x + i2y
4

√
p
µ

{
−

3ey

2φ2 αn
0 + ex ey

2− φ− φ2

e2φ2
αn

1 +
e2

y(2− φ2) + e2
xφ

e2φ2
βn

1 − ey
e2

x − e2
y − 2e2

xφ

2e2φ2
αn

2− (15)

− ex
2 e2

y + (e2
x − e2

y)φ

2e2φ2
βn

2

}
,

where e =
√

e2
x + e2

y, φ =
√

1− e2.
As one can see from the expressions above, the right-hand side of the equations

depends only on the 13 Fourier coefficients: αr
0, αr

1, βr
1, αc

0, αc
1, βc

1, αc
2, βc

2, αn
0 , αn

1 , βn
1 , αn

2 ,
and βn

2 . Note that the major complexity in the right-hand sides of the equations is due to
the terms proportional to ex and ey. In the case of transfer between near-circular orbits,
these terms can be neglected, and the averaged equations appear to be integrable. In the
following subsection, the exact solutions to the simplified equations are given.

3.2. Closed-Form Averaged Solution of Orbital Motion Equations

In this section, the approximate closed-form solution of the averaged Equations (11)–(15)
is presented for a low-thrust transfer between near-circular orbits.

A simple approximate relationship can be established between the error in the solu-
tions of Equations (11)–(15) |∆x| and the error in the calculation of their right-hand sides
|∆g|:

|∆x| ≈ |∆g|(t− t0), (16)

where t0 is the initial moment of time. It can be noticed that in dimensionless units (with
the unit of distance being the mean Earth radius RE = 6371 km and the unit of acceleration
being the standard gravity gn = 9.8067 m/s2) for near-circular orbits (e ≤ 10−3) and
low-thrust control (|f| ≤ 10−4), the terms proportional to ex and ey in (11)–(15) are less than
10−6. Thus, neglecting them from equations yields an error of |∆g| ≤ 10−6 and, according
to (16), over time intervals of several hundred revolutions (t− t0 = 2π · 160 ≈ 103), results
in an error in solutions of the order 10−3 that can be considered acceptable.

After dropping the terms proportional to ex and ey, Equations (11)–(15) have a simple
and compact form:

dp
dt

= 2

√
p3

µ
αc

0,

dex

dt
=

√
p
µ

(
βr

1
2

+ αc
1

)
,

dey

dt
=

√
p
µ

(
βc

1 −
αr

1
2

)
,

dix

dt
=

√
p
µ

1 + i2x + i2y
4

αn
1 ,

diy

dt
=

√
p
µ

1 + i2x + i2y
4

βn
1 .
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This system of equations is integrable; its solution, hereinafter called the zeroth-order
solution, is presented below:

p(τ) = p(0) exp (2αc
0τ), (17)

ex(τ) = ex(0) +
(

βr
1

2
+ αc

1

)
τ, (18)

ey(τ) = ey(0) +
(

βc
1 −

αr
1

2

)
τ, (19)

ix(τ) =
αn

1 ρ tan
(
γ + ρ

4 τ
)
+ βn

1K
ρ2 − K2 , (20)

iy(τ) =
βn

1ρ tan
(
γ + ρ

4 τ
)
− αn

1 K
ρ2 − K2 , (21)

τ(t) = − 1
αc

0
ln

(
1− αc

0

√
p(t0)

µ
(t− t0)

)
, (22)

where

K = βn
1 ix(0)− αn

1 iy(0),

ρ =
√
(αn

1 )
2 + (βn

1)
2 + K2,

γ = arctan

(
αn

1 ix(0) + βn
1 iy(0)

ρ

)
.

Thus, in the case of low eccentricity and perturbation magnitude, the evolution of
the orbit can be described analytically, which reduces the time of trajectory propagation in
comparison with the numerical integration of the initial averaged Equations (11)–(15). It is
notable that the simplified equations depend on only seven Fourier coefficients: αr

1, βr
1, αc

0,
αc

1, βc
1, αn

1 , and βn
1 .

4. Multirevolution Low-Thrust Trajectory Optimization

The fact that the averaged Equations (11)–(15) are the functions of a finite number of
Fourier coefficients allows one to parameterize the continuous perturbation acceleration
and use direct approaches to solve an optimal control problem in averaged dynamics.

Let us utilize the spectral approach for low-thrust optimization problems. Assume that
the problem of optimal control of the spacecraft’s orbital motion is defined as in Section 2.
The solution to this problem is divided into two stages: first, solve the optimal control
problem within the framework of the averaged dynamics with an averaged objective
function; second, use the resulting solution as a starting approximation to solve the original
problem in nonaveraged dynamics.

At the first stage, an optimal transfer between two orbits is sought. The orbits are
defined each by five averaged modified equinoctial elements: p, ex, ey, ix, and iy, which are
equal to the given nonaveraged elements. The averaged orbital dynamics are defined by
the expressions (11)–(15) or, in case of sufficiently low-thrust magnitudes and eccentricities,
which is the case in this work, by Equations (17)–(22). The control is searched among
periodic functions of F with seven nonzero Fourier coefficients, αr

1, βr
1, αc

0, αc
1, βc

1, αn
1 , and

βn
1 , and others equal to zero. Thus, we consider a class of control functions that directly

affect the averaged dynamics of the spacecraft.
To obtain the averaged objective, first, let us average the integrand f 2

r + f 2
c + f 2

n :

1
2π

∫ 2π

0
( f 2

r + f 2
c + f 2

n)dλ =
1

2π

∫ 2π

0
(1− ex cos F− ey sin F)( f 2

r + f 2
c + f 2

n)dF =

= k0 + exkx + eyky,
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where
k0 =

1
2

(
|α|2 + (αc

0)
2
)

, kx = −αc
0αc

1, ky = −αc
0βc

1.

Thus, the averaged objective is

J = k0T + kx

∫ T

0
exdt + ky

∫ T

0
eydt,

which can be obtained analytically using (17)–(22).
At the second stage, we revisit the initial optimal control problem and use the Fourier

coefficients obtained from the averaged dynamics as our initial estimate. It is possible
to add more terms to the Fourier series and assign zero values to the newly introduced
higher-order coefficients.

5. Results

Let us demonstrate the technique on some examples. Two test problems are considered:
the maneuvering in the vicinity of the geostationary orbit (GEO) and the orbit raising
maneuver.

5.1. Maneuvering in the Vicinity of the Geostationary Orbit

First, we consider a transfer between two orbits close to the geostationary orbit
(Case A). Such maneuvers can be performed to correct the orbit of geodetic and nav-
igation satellites. The initial and target modified equinoctial elements are chosen as
follows: p(0) = 42, 500 km, ex(0) = 0.0007, ey(0) = 0.0009, ix(0) = 0.014, iy(0) = 0.022,
p(T) = 42, 164 km, ex(T) = 0.0001, ey(T) = 0.0, ix(T) = 0.044, and iy(T) = 0.0. The time
of transfer T = 20 days.

The eccentricity of both the initial and target orbits is close to zero; thus, the closed-
form solutions (17)–(22) can be used to approximate spacecraft orbital dynamics. The
control is parameterized by the seven Fourier coefficients: αr

1, βr
1, αc

0, αc
1, βc

1, αn
1 , and βn

1 . The
optimal control vector in both the averaging stage and the nonaveraging stage is sought by
the sequential least squares programming (SLSQP) method. The values of the optimal thrust
Fourier coefficients are obtained after 15 iterations for the first stage and 14 iterations for the
second stage. Both sets of the optimal coefficients are presented in Table 1. Since some of the
thrust coefficients are not present in (17)–(22), their optimal value is zero. The averaged and
nonaveraged optimal thrust coefficients are placed on a single diagram in Figure 1.

αr
0 αr

1 βr
1 αc

0 αc
1 βc

1 αc
2 βc

2 αn
0 αn

1 βn
1 αn

2 βn
2

�������������������

�����

�����

�����

����	
�

���	

����

����

����



��

��
��
�
��
��
��

�
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������������ ���������������

Figure 1. Averaged and nonaveraged optimal thrust Fourier coefficients for Case A.
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Table 1. Optimal thrust Fourier coefficients in averaged and nonaveraged dynamics for Case A.

Coefficient Averaged Model Nonaveraged Model

Radial, mm/s2

αr
0 0 −0.0001

αr
1 0.0005 0.0005

βr
1 −0.0005 -0.0005

Circumferential, mm/s2

αc
0 −0.0070 −0.0070

αc
1 −0.0008 −0.0009

βc
1 −0.0013 −0.0013

αc
2 0 0.0001

βc
2 0 −0.0002

Normal, mm/s2

αn
0 0 −0.0001

αn
1 0.2129 0.2136

βn
1 −0.1561 −0.1559

αn
2 0 0.0008

βn
2 0 −0.0007

During the maneuver, 20 revolutions are made around the central body. From Table 1
and Figure 1, it can be seen that the thrust coefficients not present in (17)–(22) are changed
from zero to some nonzero optimal values. Their influence on the cost function is insignifi-
cant as their values are several orders of magnitude smaller than the largest coefficients.

The solution derived from the averaging stage is depicted in Figure 2, along with the
nonaveraged solution extracted through numerical integration from the initial orbit using
the discovered optimal control of the averaging stage. This figure indicates a minor dis-
crepancy between the solutions in the averaged and nonaveraged versions of the problem,
even in the absence of optimization in the nonaveraged problem formulation.

����	�

���	��

p�
��
�
�


���������������
�������������������

������

�����	

e x

������

�����	e y

����

����

i x

� 	 �� �	 ��
t������

����

����

i y

Figure 2. Averaged and nonaveraged solutions for Case A.
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The elements of the final orbit, as determined by both the averaged and nonaveraged
dynamics, are compared with the components of the target trajectory in Table 2. The
comparison reveals that the final elements obtained on the averaging stage are close to the
target ones, and after the second stage, they become nearly identical to the target elements,
showing convergence of the method.

Table 2. Osculating modified equinoctial elements of the start, target, and final orbits for Case A.

Start Orbit Target Orbit Final Orbit Final Orbit
at First Stage at Second Stage

p, km 42,500 42,164 42,163.9 42,163.9993
ex 7 · 10−4 1 · 10−4 1.2 · 10−4 9.94 · 10−5

ey 9 · 10−4 0 −7 · 10−6 2 · 10−7

ix 1.4 · 10−2 4.4 · 10−2 4.38 · 10−2 4.3998 · 10−2

iy 2.2 · 10−2 0 −2 · 10−5 6 · 10−7

5.2. Spiral Orbit Raising Maneuver

In the subsequent example (Case B), an optimization of a multirevolution spiral orbit-
raising trajectory is carried out. The starting and target orbits are both equatorial circular
orbits with p(0) = 20, 000 km and p(T) = 40, 000 km, respectively. The transfer time is
set at T = 40 days. Since the eccentricities of the initial and target orbits are zero, the
spacecraft’s dynamics on the averaging stage are approximated using the zeroth-order
solution. In this scenario, the optimal control vector can be calculated analytically and is
solely circumferential (as indicated in Table 3). Using this solution as an initial estimate, the
nonaveraged optimal thrust Fourier coefficients are obtained. Figure 3 provides a graphical
comparison of the averaged and nonaveraged optimal thrust coefficients.

Table 3. Optimal thrust Fourier coefficients in averaged and nonaveraged dynamics for Case B.

Coefficient Averaged Model Nonaveraged Model

Radial, mm/s2

αr
0 0 0.0002

αr
1 0 0.0017

βr
1 0 0.0011

Circumferential, mm/s2

αc
0 0.3783 0.3784

αc
1 0 0.0019

βc
1 0 −0.0033

αc
2 0 0.0003

βc
2 0 0.0001

Normal, mm/s2

αn
0 0 −0.0001

αn
1 0 0

βn
1 0 0

αn
2 0 −0.0001

βn
2 0 −0.0001

The number of revolutions of the optimal trajectory is 80. Table 3 and Figure 3 reveal
that the optimal thrust coefficients undergo substantial changes due to the inaccuracies of
the initial estimate. However, despite these modifications, the nonaveraged optimization
process successfully converges at an optimal solution after 16 iterations of the SLSQP
procedure.
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Figure 3. Averaged and nonaveraged optimal thrust Fourier coefficients for Case B.

Figure 4 illustrates the evolution of the averaged and nonaveraged osculating values
of the modified equinoctial elements, influenced by the achieved optimal control of the
averaging stage. The nonaveraged values of ex and ey experience substantial changes
during the transfer, despite their corresponding averaged elements remaining at a value
of zero. The final and target equinoctial elements are depicted in Table 4. This example
highlights that, in certain instances, the disparity between the averaged and nonaveraged
trajectories can be substantial, necessitating corrections to the averaged optimal control in
the nonaveraged scenario to meet the target orbit constraint within nonaveraged dynamics.

Table 4. Osculating modified equinoctial elements of the start, target, final, and corrected final orbits
for Case B.

Start Orbit Target Orbit Final Orbit Final Orbit
at First Stage at Second Stage

p, km 20,000 40,000 39,999 39,999.7
ex 0.0 0.0 −0.002 −3 · 10−6

ey 0.0 0.0 0.003 −7 · 10−6

ix 0.0 0.0 7 · 10−8 −3 · 10−8

iy 0.0 0.0 2 · 10−8 −8 · 10−8

5.3. Comparison with Pontryagin Maximum Principle Control

It should be noted that the thrust accelerations obtained for Cases A and B are com-
puted under the assumption that the control is a periodic function over the eccentric
longitude. The question is whether the optimal control in a general class of piecewise-
continuous function is close to a periodic function or not. To find it out, the obtained control
is compared with the one calculated using the well-known Pontryagin maximum principle.

The optimal control in the class of piecewise-continuous functions is constructed as
follows. The optimal control problem is posed in the classical Bolza formulation for a
transfer between two fixed phase vectors for a fixed transfer time:

J =
1
2

∫ T

0
|f(t)|2 dt→ min,

ṙ = v, v̇ = −µr/r3 + f, r(0) = r0, v(0) = v0, r(T) = rT , v(T) = vT ,
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where r and v are the position and velocity of the spacecraft; f is the thrust acceleration; T
is a given time; and r0, v0, rT , and vT are the initial and boundary constraints.
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Figure 4. Averaged and nonaveraged solutions for Case B.

From a practical standpoint, the considered optimal control problem is equivalent to
maximizing the spacecraft’s mass at the final time assuming a fixed jet propulsion power.
In fact, since jet power equals P = ( f m)vex/2, where vex represents the exhaust velocity
and f m is the thrust force, then

ṁ = − f m
vex

= − f 2m2

2P
.

After integrating the derived equations, one gets

m(T) =
m0

1 + m0
P J

,

so minimizing J leads to maximizing m(T).
The Hamiltonian function is written as follows:

H = −1
2
|f|2 + pT

r v− pT
v r/r3 + pT

v f,

where pr and pv are the conjugate variables. Maximizing H with respect to f gives f = pv,
so the extended equations are

ṙ = v, v̇ = −µr/r3 + pv, ṗr = pv/r3 − 3rrTpv/r5, ṗv = pr.

The problem of finding an optimal solution is reduced to finding the initial values of the
conjugate variables pr(0) and pv(0) such that propagating the above extended system of
equations with r(0) = r0 and v(0) = v0 gives the target values r(T) = rT and v(T) = vT .
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The derived boundary value problem can be solved using the differential parameter
continuation method with respect to the gravitational parameter, described, for example,
in [32]. To utilize this method, it is necessary to determine the number of revolutions
around the center of attraction. This is typically performed manually by managing the
resulting fuel costs or maximum values of control variables. It is worth noting that the
averaging method presented earlier does not require the specification of the number of
revolutions. Moreover, while the differential continuation method is regular, it does involve
integrating a system of differential equations, which includes the inversion of a matrix on
the right-hand side. When dealing with a large number of revolutions, this method may
face convergence issues, which are further complicated by the need to manually select the
number of turns. This issue is not present in the proposed averaging method.

The Pontryagin maximum principle, in conjunction with the method of differential
parameter continuation, was used to address the problems of Cases A and B, resulting
in the acquisition of Pontryagin extremals (the control functions that meet the necessary
conditions for optimality). The acceleration control profiles that were derived from the max-
imum principle and the two-staged optimization method are compared in Figures 5 and 6
for Cases A and B, respectively. It is evident that in Case A, the accelerations achieved
are almost the same. The resulting values of the objective are J1 = 30,205 mm2/s3 for
the presented technique and J2 = 30,204 mm2/s3 for the maximum principle, the relative
difference (J1 − J2)/J1 = 0.003 %. However, in Case B, while the accelerations appear
to be similar, the spectrum of the Pontryagin optimal control is gradually changing over
time. The objective values are also similar: 247,366 mm2/s3 for the two-stage optimization
method and 247,365 mm2/s3 for the maximum principle with a relative difference equal to
0.0004%.
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Figure 5. Corrected and Pontryagin optimal thrust accelerations for Case A.
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Figure 6. Corrected and Pontryagin optimal thrust accelerations for Case B.
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6. Conclusions and Further Research

This study presents a novel approach to generate an initial estimation for low-thrust
optimization problems. This method utilizes the closed-form approximation of the aver-
aged dynamics of a nearly circular orbit, enabling the conversion of the multirevolution
orbital transfer problem into a moderately sized nonlinear programming problem. The
solution to this problem is found to be near the optimal control. Applying this newly
developed approach, two test energy-optimal control problems were successfully solved. It
was determined that for transfers between closely situated near-circular orbits, the obtained
control serves as a precise initial estimate: further optimization in the nonaveraged model
only results in minor modifications.

Numerous aspects of the introduced method are being considered for additional inves-
tigation. For instance, the search for optimal low-thrust acceleration is conducted among
functions with a constant Fourier spectrum. However, the energy-optimal thrust acceler-
ation found in the nonaveraged model through indirect methods possesses a spectrum
that progressively changes over time. In such scenarios, a potential modification to the
introduced method could involve searching for thrust acceleration with a spectrum that
is piecewise constant. This would cause the number of optimization variables to increase
N-fold, but it would remain finite and relatively low.

Another question is the ability to account for various disturbances to the equations of
motion: nonsphericity of the central body, other planets’ attraction, atmospheric drag, solar
radiation pressure, etc. Accounting for them in the model of motion will remove the ability
to analytically average the equations and thus parameterize the control. One of the ideas is
to approximate disturbing accelerations with periodic functions like it is done for the low-
thrust acceleration. This approximation might be quite accurate for disturbing accelerations
with a slowly changing magnitude and direction, such as the gravitational attraction of
other bodies, solar radiation pressure, and atmospheric drag. Unfortunately, nonsphericity
gravity field effects that have a major effect on low orbits are hard to represent this way.
The question of accounting for these disturbances is a subject of further research.
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Nomenclature

a semimajor axis
E eccentric anomaly
e eccentricity
F eccentric longitude
f vector of the low-thrust acceleration
f magnitude of the low-thrust acceleration
fc circumferential component of the low-thrust acceleration
fn normal component of the low-thrust acceleration
fr radial component of the low-thrust acceleration
i inclination
L true longitude
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m spacecraft mass
P jet propulsion power
p, ex, ey, ix, iy modified equinoctial elements
T time of flight
vex exhaust velocity
x vector of modified equinoctial elements
x vector of averaged modified equinoctial elements
αr,c,n

k cosine coefficient, Fourier series of the low-thrust acceleration
βr,c,n

k sine coefficient, Fourier series of the low-thrust acceleration
λ mean longitude
µ gravitational parameter of the central body
Ω longitude of the ascending node

ω
argument of periapsis
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