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Abstract: The objective of this study is to investigate the effects of a magnetic field gradient on the
performance of a magnetically shielded Hall thruster. The Particle-in-cell with Monte Carlo collision
method (PIC-MCC) is used to simulate the discharge process of the thruster. The performance and
plasma characteristics are obtained in conditions with different magnetic field gradients by numerical
simulations. As the maximum of the gradient is increased from 1.2 to 3.33 T/m, the electron number
density near the channel exit decreases, which leads to less ionization and a weaker radial electric
field. As a result, the thrust and specific impulse are decreased, while the plume divergence angle
is reduced.

Keywords: magnetically shielded Hall thruster; PIC-MCC; magnetic field gradient; numerical
simulation; thruster performance

1. Introduction

The Hall thruster is a type of efficient electric propulsion device employed to satellites
to complete orbit transfer and station keeping maneuvers.The Hall thruster was first
developed in the Soviet Union in the 1960s. Due to its high specific impulse, large thrust
to power ratio and high reliability, the Hall thruster has become the most frequently used
electric thruster in orbit. In recent years, Hall thrusters have been applied to the orbit
maneuver missions for satellites and the main propulsion missions for space probes [1,2].
In a Hall thruster, as shown in Figure 1, electrons are confined by a magnetic field to
produce ionization. The ions are accelerated by the electric field between the anode and
the cathode and generate thrust. The magnetic field not only determines the propellant
ionization process, but is related to the electric field distribution and ion acceleration, which
is closely linked with the thruster performance. Hall thrusters have been developed for
decades; however, the technology of magnetic field design is still a focus of research due to
difficulties involving the complicated mechanisms of the coupling between the magnetic
field, electric field and plasma characteristics [3,4].

Magnetic shielding, which achieves nearly zero-erosion on the ceramic walls and ex-
tends the thruster lifetime [5–7], is an important development in Hall thrusters contributing
to magnetic field optimization. According to the principle of equipotential state of the
magnetic field lines, the magnetic field topology is modified and the ions flux and energy
to the wall decrease significantly. The magnetic field in the magnetically shielded (MS)
Hall thruster has several differences compared with the traditional Hall thruster. Firstly,
unlike the magnetic field lines that intersect the channel walls of traditional Hall thrusters,
the magnetic field lines are parallel to the chamfered wall near the exit [7]. Secondly, the
peak magnetic flux density is mostly located at the exit plane of traditional Hall thrusters,
while its counterpart in MS Hall thrusters is pushed downstream and out of the discharge
channel. Thirdly, the magnetic field parameters such as the axial gradient of the radial
magnetic field and the curvature of the magnetic field lines all experience changes, either in
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quantity or in location. As a result, the mechanisms of the magnetic field parameters on the
discharge processes need to be investigated for better design of high-performance thrusters
considering the MS configuration. The magnetic field gradient involves magnetic flux
density distribution and electron transport, which have impacts on thruster performance.
Therefore, the magnetic field gradient is one of the most important design parameters.
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Figure 1. Schematic diagram of a Hall thruster.

Efforts have been made to investigate the effects of magnetic field gradients on the
thruster discharge characteristics of traditional Hall thrusters [8]. The positive gradient
of the magnetic field in the discharge channel can achieve both a low discharge current
and low oscillation amplitude [9], and this became one of the criteria in Hall thruster
design. One numerical study indicated that a longer zone of intensive magnetic field
contributes to a larger electric potential drop and produces minor impacts on the plume
divergence [10]. In different magnetic field gradient cases, the variation in thrust, specific
impulse and efficiency could not be distinguished. In addition, the magnetic flux density
near the anode was not kept constant in the cases in reference [10]. A scalar function of
magnetic field gradient was defined and the location of its maximal value was found to
be related to the sputtering boundary and ionization zone [11]. The notable influence of
the magnetic field gradient on ion acceleration behavior and plasma oscillation have been
illustrated by experimental study [12]. The ion energy distributions tended to be more
concentrated when the magnetic field gradient was increased. The influences of magnetic
field parameters as single variables on thruster performance have been evaluated in the
Hall thruster PPS-FLEX [13]. The divergence half-angle decreased slightly from 36.7 to
35.6 deg when the steep gradient of the magnetic field inside the channel was applied,
while the thrust performance did not change with a steeper gradient.

The research mentioned above indicates the influence of magnetic field topology on
plasma characteristics and thruster performance in traditional Hall thrusters. Due to the
changes in configurations and physical mechanisms in plasma in the MS Hall thruster,
numerous investigations into the principles and design of the magnetic field have been
conducted [14,15]. Compared with the traditional unshielded Hall thruster, the physical
processes and performances in MS Hall thrusters were found to be modified. It was
demonstrated that the ionization region was located near the channel exit [16] and that
the acceleration region was moved downstream of the exit plane [17]. As a result, the
performances were found to be lower in a MS Hall thruster than in an unshielded one [18].
The matching characteristics of the magnetic field and the chamfered wall were studied
in [15]. In that work, different magnetic field lines were chosen, and the corresponding
matched channel walls were manufactured and tested. The tests revealed that the matching
characteristics could influence both the thruster performance and wall energy loss [15,19],
which provides a reference for magnetic field design.
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Investigations on magnetic field parameters are necessary to improve the performances
of the MS Hall thruster due to its complicated mechanisms related to plasma. In this paper,
the effects of the magnetic field on the performance and plasma characteristics are studied.

2. Computational Methods
2.1. PIC-MCC Method

A two-dimensional axisymmetric model is established for the simulation of the dis-
charge processes in a 1.35 kW MS Hall thruster developed at the Beijing Institute of Control
Engineering (BICE). The thruster operates at 360 V/3.75 A with xenon as the propellant.
The Particle-in-cell with Monte Carlo collision method (PIC-MCC) is used to simulate the
movements and collisions of particles during the discharge. This methodology can capture
the motions of particles in the electric and magnetic field at a microscopic level and has
been applied to simulate the physical processes in Hall thrusters [20,21]. The features of
the electric field, energy distribution, and thruster performances can be obtained in such a
simulation [22–24].

The computational domain includes the discharge channel and the near plume area. In
the computational domain shown in Figure 2, there are five types of boundaries, including
the ceramic boundary, magnetic pole boundary (metal wall), anode boundary, symmetric
boundary and free space boundary. The ceramic material used in the walls is boron nitride.
The cathode is located outside of the thruster and it is also outside of the computational
domain; therefore, the cathode electrons are commonly injected at the upper and right
free space boundaries, where the electric potential is set as 0 V. There are chamfers at the
inner and outer ceramic walls near the exit of the discharge channel, which is a feature of
MS Hall thrusters. The magnetic field lines are curved to match the chamfered channel
walls. The solution of the collisions between the particles and walls follows the method in
reference [20]. The self-consistent electric field is obtained by the Poisson equation, which
is solved by the dynamic alternating direction implicit (DADI) algorithm. This algorithm
turns a large matrix into a tridiagonal matrix problem [25]. The self-induced magnetic field
is negligible compared with the applied one, so the magnetostatic field is pre-computed.
Particles including electrons, single charged ions and atoms are all regarded as particles.
Ionization, excitation and elastic collisions are considered between the electrons and xenon
atoms. Multiple ionizations are not considered in this simulation due to the relatively
low collision frequency. Bohm collision is also applied to the simulation to perform the
anomalous transport in the Hall thruster [26,27]. The anomalous transport coefficients are
determined empirically by comparing the simulation with experimental results and are
kept the same in the cases simulated in this paper. According to the criteria presented in
Appendix A, the spatial and time parameters of the numerical model are listed in Table 1.
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Table 1. Simulation parameters.

Parameter Value

Computational domain, axial length, Z (m) 5 × 10−2

Computational domain radius, R(m) 8.2 × 10−2

Time step (s) 5 × 10−12

Grid size (m) 5 × 10−4

Due to the enormous computational cost of the PIC-MCC simulation, acceleration
methods are applied in the simulation. The significant difference between the mass of
electrons and heavy particles (i.e., ions and atoms) leads to a large gap in their velocity. As a
result, the heavy particles move much slower than electrons, with the result that a long time
is required for the heavy particles to achieve a relatively steady state. Reducing the mass of
heavy particles could speed up the convergence of the simulation. The computational time
step should be shorter than ωpe

−1 and ωce
−1, where ωpe is the plasma oscillation frequency

and ωce is the electron cyclotron frequency. ωpe is inversely proportional to the square
root of electrical permittivity of the vacuum ε0. Increasing ε0 allows a larger time step and
accelerates the simulation. Therefore, the acceleration methods and the corresponding
recovery of physical solution given by Szabo [20] are applied in this simulation. The mass
of heavy particles is reduced by 100 times, and the free space permittivity constant is
increased by a factor of 1600 to reduce the grid density. The heavy particles are sped up by
a factor of 10 and ωpe

−1 increases by a factor of 40 [20,28].

2.2. Magnetic Field Configuration and Model Validation

In order to study the effects of the magnetic field gradient on the discharge and thruster
performance, magnetic fields in the thruster are constructed with different axial gradients,
keeping constant the peak value and position of the radial magnetic flux density on the
discharge channel centerline. The magnetic field near the anode is also kept constant to
maintain single variable of the magnetic field conditions in the research. According to the
magnetic fields generated by Mazouffre [13], it is possible to change the magnetic field
gradient in a magnetic circuit by adjusting the current in several coils. Since generating
magnetic fields with different gradients is feasible and has been successfully applied in
previous studies [10,13], the method of obtaining the magnetic fields by coils is not within
the scope of this article. Instead of designing the magnetic circuit with multiple coils and
modifying the coils’ current, in this work, different cases of magnetic field parameters
are constructed in a simpler way, which consists of multiplying a baseline field profile
(Case 3 in Figure 3) by a piecewise function. The details of the function are demonstrated
in Appendix A. As shown in Figure 3, five cases of magnetic field gradients are studied
with both a constant magnetic field peak value and a similar morphology of magnetic field
lines. The axial position of z = 0 denotes the discharge channel exit, while the negative
and positive axial positions are in the channel and plume area, respectively. The radial
magnetic flux density keeps increasing axially from the near anode area and reaches its
maximum downstream of the channel exit. The maximum magnetic field gradient in Hall
thrusters is generally around 1.0–2.6 T/m [4,29–32]. Taking this range as a reference, the
1.35 kW MS experimental prototype, of which the maximum of magnetic field gradient is
1.52 T/m, is set as the baseline Case 3. The maximum axial gradients of the radial magnetic
flux density ranging from 1.2 to 3.33 T/m are listed in Table 2. A wider range of magnetic
field gradients, compared with the research performed by Ding [30], has been selected to
obtain more obvious results and plasma behaviors at higher gradients.
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Figure 3. Axial distribution of the radial magnetic flux density at the channel centerline. (L is the
length of the discharge channel.)

Table 2. The maximum axial gradients of Br in the five cases.

Case Number Case 1 Case 2 Case 3 Case 4 Case 5

Maximum Axial Gradients of Br (T/m) 1.2 1.3 1.52 2.11 3.33

The simulation model is validated by comparing the calculated performance param-
eters with experimental results as shown in Table 3 and Figure 3. The thruster operated
at the following conditions: Ud = 360 V, Id = 3.75 A, and mass flow rate = 4.6 mg/s. The
background pressure in the vacuum chamber was maintained at 3 × 10−3 Pa with the
thruster operating. The thrust T was measured by an electromagnetic feedback balance,
and the anode specific impulse Isp-an and the anode efficiency ηan were obtained from the
thrust [33]. Since the thrust of the prototype thruster is relatively low, the thrust measure-
ment has an error of 2%. The balance was calibrated in situ by weights before and after
the experiment to reduce the error. The magnetic field in Case 3 was measured by a Gauss
meter with an error of 0.1%. In order to measure the magnetic field at different positions,
the Gauss meter was installed on a displacement platform with a position error of 0.1 mm,
which is quite small compared with the thruster dimensions. The Gauss meter was moved
at a step of 1 mm from the plume area into the channel on the channel centerline, and the
three-dimensional magnetic field was acquired. The magnetic field was measured eight
times and the results were averaged to reduce the error. It was shown that the simulation re-
sults, including the magnetic field and the thruster performances, were in good accordance
with experimental results.

Table 3. Performance parameters of the 1.35 kW Hall thruster.

Performance T/mN Isp-an/s ηan

Experiment 76.13 1681 46.5%
Simulation 75.44 1673 45.8%

3. Results and Discussion

Since the maximum radial magnetic flux density, which is located at the channel exit
in a traditional Hall thruster, is pushed downstream of the channel exit plane in the MS
Hall thruster, the processes of electron transport and ion acceleration are both altered. The
electrons are captured in the region of the intensive magnetic field, where the resistivity
is large. As a result, the electric potential mainly drops and the ions primarily accelerate
in this region. Compared with the traditional Hall thruster, the acceleration region of the
MS Hall thruster is moved downstream and the corresponding physical processes, which



Aerospace 2023, 10, 942 6 of 15

are largely dependent on the magnetic field topologies, might present different regularity.
Therefore, the trends in performance parameters as they vary with the magnetic field
configuration are of interest in thruster optimization.

3.1. Simulation of the Hall Thruster and Performance Results

A series of numerical simulations on the Hall thruster discharge processes are demon-
strated for the five cases of magnetic field conditions. The major performance parameters,
which are the main concern of this research, are obtained from the simulation. The diver-
gence half-angle is an important performance parameter which links the ions behavior
with the macroscopic beam phenomena. The large divergence angle of a Hall thruster may
cause deposition on the satellite or its optical elements, leading to the functional failure of
the satellite.

The divergence half-angle α is calculated by integrating the ion current density radially
from the thruster centerline. As is shown in Figure 4, the boundary of α is defined as the
position where 95% of the total ion current is collected. The specific calculation of α is as
follows [34]:

Ii(p = 95%) =
∫ rα

0
2πr · j(r)dr, (1)

α = arctan
rα − rout

z1
, (2)

where Ii(p = 95%) is 95% of the total ion current, j(r) is the ion current density as a function of
radial position r, rout is the radius of the outer ceramic channel, and z1 is the axial distance
from the channel exit in the plume area. The thrust T can be calculated by the collected flux
and the mean velocity of ions at the right boundary in the simulation:

T =
.

mv =
.

mivi +
.

mnvn ≈
.

mivi, (3)

where
.

m,
.

mi and
.

mn are the total mass flow rate, ion beam flow rate, and neutral flow rate,
respectively, and v, vi and vn are the mean exit velocity of both kinds of particles, ions and
neutrals, respectively [20]. The anode specific impulse Isp,an is defined by [33]

Isp,an =
T

.
mag

, (4)

where
.

ma is the propellant mass flow rate in the anode.
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The variations in the performance parameters with the radial magnetic field gradient
are shown in Figure 5. For the magnetic field gradient range studied in this work, it can
be seen in Figure 5a that the divergence half-angle α tends to decrease with the increase
in the Br gradient. Although the differences in divergence in the five cases are slight,
with the minimum and maximum being 32.4 deg and 37.0 deg, respectively, the trend
observed could still provide evidence for better beam-focusing characteristics with higher
Br gradients. The thrust and anode specific impulse clearly fall with the increase in the Br
gradient. The mechanisms which lead to the better focusing and poor thrust performances
at high gradients could be investigated by analyzing more detailed plasma discharge
characteristics.
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Figure 5. Variation in performance parameters with magnetic field gradients: (a) divergence half-
angle; (b) thrust; and (c) anode specific impulse.

3.2. Plasma Properties and Mechanism Analysis

The simulations were run according to the methods described in Section 2 and the
plasma properties obtained, including the plasma density and velocity distributions, self-
consistent electric field, ion energy distribution function (IEDF) and so on. On this basis,
the influences of the B gradient on plasma properties are discussed.

A direct influence of the magnetic field gradient on the plasma is observed for the
grad-B drift. The electron drift velocity in the magnetic field with the gradient ∇B is [35]

u∇B =
1
2

u⊥rL
B×∇B

B2 , (5)

where u⊥ is the velocity perpendicular to the magnetic force lines, and rL is the Larmor
radius, which is calculated as

rL =
meu⊥

Bq
. (6)

In the Hall thruster, due to the magnetic field B and its gradient∇B being both mainly
in the r-z plane, the direction of u∇B is azimuthal. Although the numerical model is in
two-dimensional coordinates, the three-dimensional velocity and the Lorentz force in the
azimuthal direction are considered. Therefore, the azimuthal velocity of electrons could be
depicted. On the channel centerline, B is almost radial, so ∇zBr is denoted as ∇B in the
following discussion.

It should be mentioned that rL,i is much larger than rL,e and the channel dimensions
in the discharge channel of a Hall thruster. Therefore, the electrons are confined by the
magnetic field while the ions are often considered as unmagnetized. The ions are pre-
dominantly driven by the electric field instead of the magnetic field. As a result, the u∇B
considered in the research is only the drift velocity of electrons. The azimuthal component
of the electron velocity ue,θ in the Hall thruster model is shown in Figure 6a. The velocity
ue,θ increases axially in the channel and reaches its peak at the exit of the channel. The peak
values of ue,θ along the centerline vary significantly with ∇B, from around 1 × 106 m/s
in Case 1 to more than 4 × 106 m/s in Case 5. To present the variation in ue,θ with ∇B
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more intuitively, the average azimuthal electron velocity on the channel centerline ue,θ is
introduced and calculated by summing up ue,θ on the grids along the channel centerline,
and then divided by the grid numbers. As is shown in Figure 6b, ue,θ surges when ∇B
increases from 1.2 to 2.11 T/m, and it increases gradually when ∇B increases from 2.11 to
3.33 T/m. The higher value of ue,θ contributes to a higher total electron velocity ue, which
is related to the electron-neutral collision frequency υen:

υen ≈ nnueQne, (7)

where Qne is the cross section for collisions between electrons and neutrals, and nn is
the number density of the neutrals. Among the five cases, the neutral number density
distributions are similar, and the cross sections do not vary much. When the electron
velocity ue is raised by a higher ∇B, the electron-neutral collision frequency increases and
then the scattering enhances the electron transport towards the anode.
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Figure 6. The electron azimuthal velocity in the five cases: (a) the ue,θ distribution along the channel
centerline; (b) the average values of ue,θ on the channel centerline and variation with the B gradient.

Another influence of the magnetic field gradient on the plasma is the effective magnetic
confinement of electrons. Because Br peaks outside the discharge channel, for the cases
with large ∇B, Br decreases drastically from the peak to a position inside the channel, and
as a consequence, the magnetic field may not be strong enough to confine the concentration
of electrons. To evaluate the degrees of magnetic confinement of electrons in the axial
direction, the Larmor radius of electrons rL according to Equation (6) is computed. As
shown in Figure 7, rL become larger when ∇B increases. In Case 5, which has the largest
parameter of ∇B in this research, rL reaches its maximum of 0.0054 m near the channel exit.
A large rL commonly implies poor confinement of electrons due to a large distance of axial
movement in the cyclotron. Moreover, the high velocity of electrons in the channel near the
exit also contributes to the large rL as ∇B is raised further.

As a result of the changes in the electron transport process, the plasma distribution
and relevant physical processes are affected. The above descriptions of ∇B and electron
transport can be further examined through the electron distribution results. Referring to
Figure 8, with ∇B increasing from Case 1 to Case 5, the concentration of electrons moves
upstream in the channel. In the MS Hall thruster, further increasing the ∇B parameter
would make it more difficult to confine the electrons and to maintain the peak electron
density near the channel exit.
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Figure 8. Contours of the electron number density distribution: (a) Case 1; (b) Case 2; (c) Case 3;
(d) Case 4; and (e) Case 5.

As is discussed above, the enhanced electron transport resulting from higher∇B leads
to lower electron density in the channel, especially near the exit. The axial electron number
density ne distribution is shown in Figure 9. The maximum value of ne on the channel
centerline decreases, from the channel exit towards the anode, from higher than 3 × 1018 to
2 × 1018 m−3 when∇B increases from 1.2 to 3.33 T/m. Since electrons are the source of the
ionization process, less ionization occurs at low electron densities. As a result, fewer ions
are generated in the channel and the related performance parameters, such as thrust and
specific impulse, are reduced, which is presented in Section 3.1.



Aerospace 2023, 10, 942 10 of 15

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 17 
 

 

As is discussed above, the enhanced electron transport resulting from higher ∇B leads 
to lower electron density in the channel, especially near the exit. The axial electron number 
density ne distribution is shown in Figure 9. The maximum value of ne on the channel 
centerline decreases, from the channel exit towards the anode, from higher than 3 × 1018 to 
2 × 1018 m−3 when ∇B increases from 1.2 to 3.33 T/m. Since electrons are the source of the 
ionization process, less ionization occurs at low electron densities. As a result, fewer ions 
are generated in the channel and the related performance parameters, such as thrust and 
specific impulse, are reduced, which is presented in Section 3.1. 

  

 
Figure 9. The axial distribution of electron number density on the channel centerline. 

As for the mechanisms of the effects of ∇B on plume divergence, it might be related 
to the radial characteristics of the plasma. It can be seen in Figure 8 that the electron den-
sity becomes lower near the channel exit when ∇B increases. Accordingly, the net charge 
density 𝜌net changes along with electron density, according to the Poisson equation: 

2 net

0




   , (8)

The gradient of the radial electric field Er is proportional to the net charge density 
ρnet. The radial distributions of ρnet are shown in Figure 10 for two values of z/L inside 
the channel. In the cases with lower ∇B, the net charge density tends to be larger. This 
tendency is more significant at z/L = −0.14 than at z/L = −0.07 because the density of plasma 
is higher deep in the channel. Overall, as shown in Figure 11, the radial electric field in-
creases as B decreases. The difference in Er between Case 1 and Case 5 reaches 1600 V/m 
at z/L = 0.17, which generates a gap in the radial velocity between the cases. 

-1.0 -0.5 0.0 0.5 1.0
0

1x1018

2x1018

3x1018

4x1018

−1.0 −0.5

E
le

ct
ro

n 
nu

m
be

r 
d

en
si

ty
 (

m
-3

)

z/L

 Case 1
 Case 2
 Case 3
 Case 4
 Case 5

Gradient increases

0

Figure 9. The axial distribution of electron number density on the channel centerline.

As for the mechanisms of the effects of∇B on plume divergence, it might be related to
the radial characteristics of the plasma. It can be seen in Figure 8 that the electron density
becomes lower near the channel exit when ∇B increases. Accordingly, the net charge
density ρnet changes along with electron density, according to the Poisson equation:

∇2 ϕ = −ρnet

ε0
, (8)

The gradient of the radial electric field Er is proportional to the net charge density
ρnet. The radial distributions of ρnet are shown in Figure 10 for two values of z/L inside
the channel. In the cases with lower ∇B, the net charge density tends to be larger. This
tendency is more significant at z/L = −0.14 than at z/L = −0.07 because the density of
plasma is higher deep in the channel. Overall, as shown in Figure 11, the radial electric
field increases as ∇B decreases. The difference in Er between Case 1 and Case 5 reaches
1600 V/m at z/L = 0.17, which generates a gap in the radial velocity between the cases.
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Figure 10. Radial distribution of the net charge density at (a) z/L= −0.14; (b) z/L= −0.07.
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Figure 11. Radial distribution of Er at axial positions: (a) z/L = −0.07, (b) z/L = 0, (c) z/L = 0.10, and
(d) z/L = 0.17.

The radial acceleration of ions in the plume is analyzed by the radial IEDF. An area
away from the channel centerline is selected to collect the ions in the diverging plume.
This area ranges axially from z/L = 0.23 to 0.75, which is out of the channel, and it ranges
radially from the outer channel wall to r/L= 2.5. Ions are collected and the radial ion energy
distribution functions in the five cases are shown in Figure 12. The radial IEDF presents
double peaks in all of the five cases. The high energy peaks appear from 77 to 120 eV,
while the low energy peaks are in the range from 16 to 43 eV. There are relatively more
low-energy ions than the high-energy ones. When ∇B increases, the energy of the both
populations decreases. This effect is attributed to the decrease in the radial electric field
with the increase in ∇B, as shown in Figure 11.
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The multi-peak phenomenon is also demonstrated in experimental research reported
in the literature [12,36]. The mechanism is commonly explained by the fact that the low
and high energy populations are possibly generated by the backflow of neutral atoms and
the main flow of the propellant, respectively. However, whether the multi-peak of radial
IEDF has the same mechanism as reported for the total IEDF needs to be further explored.
The ions in the diverging plume area, as mentioned above, are traced back to their initially
ionized positions. As shown in Figure 13, the two populations present distinct ionization
regions in Case 1. For the population of low radial energy ions, the ions are generated
mainly near the centerline in the channel, and a small portion of the ions are generated in
the diverging plume, where a relatively weak electric field and only a short distance are
available for ions to accelerate. In contrast, for the population of high radial energy ions, the
ions are generated near the channel wall. As the electric field lines show in Figure 14, the
ions generated near the wall are moved further off the channel centerline and accelerated
radially to the diverging plume by the electric field.
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thruster lifetime. Achieving better performance should be the next goal of MS Hall thruster
research. Compared with traditional Hall thrusters, MS Hall thrusters have different mag-
netic field topology features, among which, the region of positive magnetic field gradient is
extended to downstream of the channel exit. This parameter is related to physical processes
such as electron transport and ion acceleration, which influence the performance of a
Hall thruster. Clarifying the effects of the magnetic field gradient on the MS Hall thruster
performance and its mechanisms is necessary for further optimization of these thrusters. In
this paper, the PIC-MCC method is used to simulate the discharge process of a 1.35 kW MS
Hall thruster to explore the effects of the magnetic field gradient on thruster performance
and plasma characteristics.

When the maximum of magnetic field gradient ∇B on the channel centerline ranges
from 1.2 to 3.33 in the 1.35 kW MS Hall thruster, there are two mechanisms by which the
electron distribution is affected. On the one hand, the higher ∇B enhances grad-B drift and
increases electron azimuthal velocity, which contributes to a higher frequency of electron-
neutral collision, and as a consequence, it increases the ionization rate and intensifies the
electron transport. The concentration of electrons moves upstream in the channel and the
electron density near the exit decreases with increasing ∇B. On the other hand, when ∇B
is raised, the area of strong magnetic field shrinks and the magnetic field at the exit cannot
provide sufficient confinement to the concentration of electrons, which also leads to lower
electron density near the exit. In the axial direction, the lower electron density in cases with
larger ∇B brings less ionization, resulting in fewer accelerated ions and lower thrust and
specific impulse. In the radial direction, the net charge density decreases with the reduced
electron density, leading to a weaker radial electric field and smaller divergence angle. The
results obtained here provide a reference for the parametric design of the magnetic field in
MS Hall thrusters.
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Appendix A

This appendix includes details about the simulation model.
The computational time step should be shorter than ωpe

−1 and ωce
−1, where ωpe is

the plasma oscillation frequency and ωce is the electron cyclotron frequency:

ωpe =

√
nee2

ε0me
, (A1)

ωce =
eB
me

. (A2)

The orthogonal grids are built and their sizes are uniform. The grid size should be
shorter than the Debye length:

λD =

√
ε0kBTe

nee2 (A3)
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The piecewise function f, which is used to generate the magnetic field cases with
different axial gradient, is:

f (z) =


1− a1z2 z < z1

1− (a2z2 + b2z + c2) z1 ≤ z < z2

1− (a3z2 + b3z + c3) z2 ≤ z < z3

1 z ≥ z3

(A4)

where a1, a2, b2, c2, a3, b3, and c3 are the coefficients of the function, and z1, z2 and z3 are
the axial positions. z3 is located at the magnetic field peak. Magnetic fields with different
axial gradients can be obtained numerically through multiplying the radial component of
a baseline field Br by this piecewise function. To keep the curvature of the magnetic field
constant, the axial component Bz is also multiplied by the same function f (z).
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