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Abstract: Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs) are commonly
used for various purposes, and their cooperative systems have been developed to enhance their capa-
bilities. However, tracking and interacting with dynamic UAVs poses several challenges, including
limitations of traditional radar and visual systems, and the need for the real-time monitoring of UAV
positions. To address these challenges, a low-cost method that uses LiDAR (Light Detection and
Ranging) and RGB-D cameras to detect and track UAVs in real time has been proposed. This method
relies on a learning model and a linear Kalman filter, and has demonstrated satisfactory estimation
accuracy using only CPU (Central Processing Unit)- in GPS (Global Positioning System)-denied
environments without any prior information.

Keywords: deep learning; UAV tracking; object detection; linear Kalman filter; LiDAR-inertial odometry

1. Introduction

Multi-robot systems, particularly those involving UAVs and UGVs, have gained
significant attention in various field robotics applications due to their advantages in terms of
reliability, adaptability, and robustness [1]. A heterogeneous multi-robot system refers to a
system that consists of different types of robots with different nature, hardware or operating
environment. In the case of a UAV-UGV combination, the system includes both UAVs
and UGVs, working together towards a common goal [2]. The ground-air configuration of
UGV/UAV heterogeneous systems offers a wide coverage within a working space, making
it an attractive solution for tasks such as precision farming [1], automated construction [3],
search and rescue operations [4], firefighting [5], air quality sensing in smart cities [6], and
many others.

A critical aspect of building an effective heterogeneous system is the development of a
robust relative positioning method [1]. Relative positioning plays a fundamental role in
coordinating the movements and interactions among UAVs and UGVs within the system.
Traditional approaches to relative positioning have predominantly relied on visual methods
or distance measurement techniques. However, these methods often encounter challenges
such as limited accuracy, susceptibility to environmental conditions, and difficulties in han-
dling dynamic scenarios. To address these challenges, the fusion of visual and LiDAR data
has emerged as a promising approach in relative positioning for UAV/UGV heterogeneous
systems [7,8]. By leveraging the advantages of both sensing modalities, the visual-LiDAR
fusion can provide more comprehensive and accurate perception capability for the system.
Visual sensors, such as cameras, can capture rich visual information about the environment,
including object detection, tracking, and scene understanding. On the other hand, LiDAR
sensors can provide precise 3D point cloud data, enabling accurate localization, mapping,
and obstacle detection even in low-light or adverse conditions [9,10].
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The fusion of visual and LiDAR data has been widely explored in various robotics
applications, spanning human tracking [11–13], 3D object detection [14,15], and dynamic
object tracking [10]. These studies have compellingly showcased the effectiveness of
integrating visual and LiDAR sensing for improved perception and localization capabilities.
Leveraging the strengths of both modalities, the proposed low-cost relative positioning
method for UAV/UGV coordinated heterogeneous systems aims to enhance the system’s
reliability, adaptability, and robustness within the operational environment.

In this work, we propose a centralized ground-based perception approach that offloads
all sensory modules to the terrestrial robot, thereby reducing the cognitive load on the UAV.
In line with existing literatures [16,17], we argue such ground-based precepting method
could significantly lighten the burden of the UAV. By considering the constraints of size,
weight, and power (SWaP), UAVs can allocate more resources for other mission-critical
payloads. Furthermore, it is a feasible method to let the airborne platform have more agile
maneuver, as it does not need to take the relative positioning factor into consideration
during path planning or trajectory optimization. In addition to the above, for some relative
positioning methods, strong computation capabilities might be a requirement. Thus, by
allocating this module to UGV, where it could be equipped with more sensors and com-
puting power, the ability to collect and process data could be significantly improved. Last
but not least, the UGV can possibly act as a mobile ground station, which can improve
communication and data transfer between the UAV and ground control; from time to time,
the UGV can provide additional situational awareness by monitoring the UAV’s surround-
ings during the collaborative mission. The contributions of this work are summarized
as follows:

1. A framework that can automatically complete real-time detection and localization of
targets without human intervention, using only CPU is proposed. All components
in the system are released as open-source packages. https://github.com/HKPolyU-
UAV/GTA (accessed on 20 May 2023);

2. Unlike other methods that use a priori target point cloud as a registration reference,
this framework combines the advantages of RGB-D and LiDAR to detect and track
the desired target without any prior information;

3. LiDAR-inertial odometry (LIO) is integrated into the system to provide accurate
altitude estimation for vehicle navigation in GPS-denied environments;

4. Both indoor and outdoor experiments are designed and carried out to illustrate
the proposed ideas and methodologies in this work and validate their performance.
These indoor and outdoor experiments also serve to provide experimental ideas to
other researchers.

The rest of the paper is organized as follows: Section 2 discusses related works.
Section 3 introduces the overall software and hardware equipment of the UGV and UAV
used in this study. Section 4 provides the methodology of the overall system as well as
its implementation details. Section 5 describes the experiments and discusses the results.
Section 6 concludes this paper and discusses possible future research directions.

2. Related Works

In this section, a comprehensive review of the existing literature related to relative po-
sitioning methods will be presented. This review aims to provide a contextual background
for the proposed low-cost relative positioning method based on a visual-LiDAR fusion. The
literature review covers topics such as visual-based positioning techniques, LiDAR-based
positioning techniques, and visual-LiDAR fusion approaches.

2.1. Visual-Based Positioning Techniques

Visual-based positioning techniques utilize cameras mounted on a vehicle to extract
visual information from the environment and estimate their positions. These techniques
often involve marker-based and learning-based methods. Several studies have explored the
application of visual-based techniques for relative positioning in robot-coordinated systems.

https://github.com/HKPolyU-UAV/GTA
https://github.com/HKPolyU-UAV/GTA
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A common approach in visual-based positioning is the utilization of markers or
landmarks for position estimation. Hartmann et al. [18] used marker-based video tracking
in conjunction with inertial sensors to estimate the 3D position of a vehicle. Eberli et al. [19]
focused on a vision-based position control method for MAVs (Micro Air Vehicles) using a
single circular landmark. They detected and tracked the circular landmark in the camera
images, leveraging its known geometry for position estimation. It is worth noting that
the relative position of the marker and the object needs to be calibrated in advance. Once
the position of the marker changes during work, it will lead to errors in positioning the
object. Some researchers prefer to use LEDs as markers because they are small and easy
to detect [16,17]. However, this will bring about another problem. The LED needs to be
powered on the object, which will affect the durability of the object itself.

On the other hand, some studies focused on learning-based object detection algorithms
for position estimation. Chang et al. [20] focused on the development of a proactive
guidance system for accurate UAV landing on a dynamic platform using a visual–inertial
approach. Additionally, a mono-camera and machine learning were used to estimate and
track the 3D position of a surface vehicle [21]. These studies highlight the potential of
learning-based methods in visual positioning tasks and demonstrate their applicability in
various domains.

In our work, a learning-based method for object detection was utilized on the visual
part. Referring to [22], YOLO-fast-v2 and YOLOv4-tiny became our candidates due to
their good performance on CPU-only microcomputers with limited computational power.
In practice, we found that the former has shorter running time, but the accuracy is not
satisfactory for our work requirements. The latter is slower but has satisfactory accuracy.
Our method releases the visual-LiDAR fusion method from tight coupling and allows it
to run in parallel, which can greatly reduce the running speed requirements for the visual
part. More specific details will be expanded in Section 4.3.

2.2. LiDAR-Based Positioning Techniques

LiDAR-based positioning techniques utilize LiDAR sensors to capture the surrounding
environment and estimate the positions of vehicles. LiDAR sensors provide precise 3D
point cloud data, enabling accurate localization and tracking. In the context of UAV/UGV
coordinated systems, researchers have explored both learning-based and non-learning-
based approaches for LiDAR-based positioning.

Non-learning-based LiDAR-based positioning techniques primarily rely on the geo-
metric characteristics of LiDAR data. Quentel [23] developed a scanning LiDAR system for
long-range detection and tracking of UAVs. This technique provides a reliable and accurate
means of detecting and tracking UAVs, enabling their effective positioning in GNSS (Global
Navigation Satellite System)-denied environments. Additionally, Qingqing et al. [24] pro-
posed an adaptive LiDAR scan frame integration technique for tracking known MAVs in
3D point clouds. By dynamically adjusting the scan frame integration strategy, this method
improves the accuracy and efficiency of UAV tracking based on LiDAR data, contributing to
the precise positioning of UAVs in coordinated systems. However, the geometric properties
of the UAV depend on its shape and volume. Without prior information, it is not easy for
humans to discover features to detect small UAVs (i.e., DJI F330 drone) relying only on
point clouds.

Learning-based LiDAR-based positioning techniques leverage machine learning and
deep learning algorithms to extract latent meaningful information from LiDAR data.
Qi et al. [25] proposed a point-to-box network for 3D object tracking in point clouds.
This method represents objects, including cars, as 3D bounding boxes, enabling accurate
and robust tracking using LiDAR data. Their approach achieves satisfactory speed and
accuracy on a single NVIDIA 1080Ti GPU, but is limited by the CPU-only situation, which
is common in heterogeneous systems for UAVs and UGVs. Inspired by learning-based
visual methods for object detection, some researchers have tried to convert point cloud
information into images and use one of the most advanced visual detection algorithms,
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YOLO or CNN, to detect the 2D position of objects. Then, the depth information is given
from the point cloud to get the 3D position [8,26]. The proposed UAV tracking system
in [8] is consistent with our idea. However, their methods are limited to position estimation
based on the output of object detection. Learning-based object detection is time-consuming,
which leads to a decrease in overall positioning capabilities or an increase in computational
power requirements. Returning object detection to more specialized vision algorithms and
freeing 3D object estimation from the constraints of object detection can ensure accuracy
while greatly reducing computational costs.

2.3. Visual-LiDAR Fusion Approaches

In the realm of UAV/UGV coordinated heterogeneous systems, the integration of
visual and LiDAR sensors holds great promise for achieving accurate and robust position
estimation. However, each sensor modality has its limitations and strengths. Visual sensors
can provide high-resolution imagery and semantic information but are sensitive to lighting
conditions and susceptible to occlusions. On the other hand, LiDAR sensors offer accurate
3D point cloud data but struggle with low-texture environments. They are also affected
by weather conditions. To overcome these limitations and leverage the strengths of both
sensor types, Visual-LiDAR fusion approaches have emerged as a compelling solution.

While ignoring computational power constraints, some learning-based visual-LiDAR
fusion frameworks have achieved satisfactory results. Among them, some research frame-
works simultaneously extract visual and LiDAR information [10,15], and some explore
multi-frame learning using 2D backbone and 3D backbone joint [14]. Different from these,
Dieterle et al. [11] presented a sensor data fusion based on a recursive Bayesian estimation
algorithm, namely the JPDAF. However, although the detection capabilities of a single
sensor can be improved by relying on traditional visual and point cloud data processing
methods, accuracy is still a key issue since the RGB information is not utilized to assist
object detection.

3. System Overview

This system overview section provides a comprehensive understanding of the hard-
ware platform and software architecture used in our proposed UAV tracking system. This
section highlights the key components and their functionalities, emphasizing how they
work together to achieve our research objectives. The section is divided into two parts: the
hardware platform and the software architecture.

3.1. Hardware Platform

To better demonstrate the effect of the proposed method, a UAV (F330, manual as-
sembly), and a UGV (Scount-mini, produced by AgileX Robotics, Shenzhen, China) will
be used for the experiment as shown in Figure 1. The UAV is the object being tracked
with no tracking devices other than the equipment itself to maintain flight. In the indoor
experiment, a VICON motion capture system was used to locate the UAV and the UGV.
The position output for the UAV can be used as the ground truth for the tracking results,
and for the UGV, it can provide position feedback for the controllers of the UGV for navi-
gation. The UGV component of the system is responsible for tracking and following the
UAV in real time using a combination of the RGB-D camera (D435i, produced by Intel
RealSense, US), the 3D LiDAR (Livox-avia, produced by DJI, Shenzhen, China), and an
onboard computer (NUC8i7BEH, produced by Intel, US), as depicted in Figure 2. The
RGB-D camera captures color and depth information of the surrounding environment,
while the 3D lidar provides accurate distance measurements. In the outdoor scene, we
apply a LiDAR-inertial odometry (LIO) on the UGV to provide position information for its
navigation and path planning.
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Figure 2. The hardware platform for the UGV.

The UGV utilized in our system is the Scout-Mini UGV, which serves as the mobile plat-
form for UAV tracking. It is a compact and agile UGV capable of traversing various terrains.

For the UAV configuration, we have selected the DJI Flame Wheel 330 (DJI, Shenzhen,
China) as the airframe, along with a Pixhawk flight controller mounted on a carrier board as
Figure 3 shown. The DJI Flame Wheel 330 is renowned for its stability and maneuverability,
making it an ideal choice for our UAV tracking system. The UAV is equipped with four
T-motor F80 PRO 1900 KV Brushless Power Motors, which deliver the necessary thrust for
flight. The Pixhawk flight controller, an open source and versatile controller, commands
the Electronic Speed Controllers (ESCs) to regulate the motor speeds and control the
UAV’s movements.

Remarkably, the UAV in our system does not contain any onboard computing unit or
tracking sensors for position estimation. Instead, the responsibility of position estimation
for the UAV is completely delegated to the UGV.
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3.2. Software Architecture

The software architecture of the UAV tracking system consists of four main modules:
localization, perception, object tracking, and vehicle control. Figure 4 provides an illustra-
tion of the software architecture, highlighting the interactions between different modules.
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The localization module plays a crucial role in providing accurate position feedback
for the autonomous navigation of the UGV. Chen et al. [27] proposed a robust stereo visual
inertial pose estimation system. This work contributes valuable insights into developing
precise self-localization techniques for robotics and autonomous systems. Depending on
the environment, two different localization methods are employed. In indoor experiments,
the real-time position information of vehicles is obtained from an external VICON motion
capture device. In outdoor scenarios, the UGV utilizes LIO to estimate its position, replacing
the VICON system since LIO can utilize point cloud information with a higher information
collection frequency and has better robustness and accuracy outdoors compared to visual
slam, which is mostly used in indoor environments.
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The perception module is responsible for processing data captured by the camera
and LiDAR sensors. Prior to system operation, a calibration procedure is performed to
determine the 6D pose relationship between these two sensors. The perception module
receives RGB images and depth images from the stereo cameras. Utilizing a learning-based
object detector called YOLOv4-tiny, the perception module identifies and localizes the
UAV within the camera’s field of view (FOV), resulting in a 2D bounding box (2D-BB).
Subsequently, a continuous region of interest is computed based on the 2D-BB. This region
of interest is utilized to fuse measurements obtained from depth images or 3D point clouds.
This fusion process provides accurate 3D position measurements of the UAV relative to
the UGV.

The object tracking module utilizes a linear Kalman filter prediction module to process
the 3D position measurements obtained from the perception module. The Kalman filter
refines the position estimates and generates the desired waypoints for the UGV. Through
the vehicle coordinate transformation to the world coordinate system, the UGV determines
the position it needs to reach in order to track the UAV effectively.

Finally, the vehicle control module takes the desired waypoint generated by the object
tracking module and guides the UGV to reach that particular position. A PID (Proportional-
Integral-Derivative) controller is used to generate appropriate control instructions for the
UGV, ensuring the precise and robust tracking/following of the UAV. A preliminary user
visualization interface was created on an off-board computer using Rviz, a 3D visualiza-
tion tool in Robot Operating System (ROS). ROS serves as the fundamental framework
for information transfer and communication between the various modules in the UAV
tracking system.

4. Methodology

In this section, we present the methodology employed in our UAV tracking system.
The methodology is divided into four sub-sections, each focusing on a specific aspect of the
system’s functionality. We begin with discussing the extrinsic calibration between the stereo
camera and LiDAR, which is essential for accurate object detection and position estimation.
Next, we delve into the two-dimensional (2D) object detection module, followed by the
three-dimensional (3D) position estimation module. Finally, we provide an overview
of the 3D tracking algorithm used to track the UAV’s position over time and guide the
UGV’s movements.

4.1. Extrinsic Calibration between Camera and LiDAR

In order to fuse the data from LiDAR and RGB camera, it is necessary to calibrate them
to ensure that their coordinate systems are aligned. The D435i contains an RGB camera and
a depth camera whose intrinsic and extrinsic parameters are already known, which means
that if the extrinsic parameters of the LiDAR and RGB cameras are obtained, the relative
positions and rotations of the coordinate systems of these sensors are also available. This
calibration process involves determining the transformation matrix between the LiDAR
and camera coordinate systems. In this section, the calibration process between the LiDAR
and RGB camera is discussed.

There are several approaches to calibrating LiDAR and RGB camera, but one popular
method is to use a calibration target with known geometry. A planar board is the most
commonly used, as shown in Figure 5. The corners of the board can be detected in both
the LiDAR and RGB images, and their correspondence can be established. This allows us
to compute the transformation matrix that maps points in the LiDAR coordinate system
to the camera coordinate system based on the solution for a Perspective-n-Point (PnP)
problem [28].



Aerospace 2023, 10, 924 8 of 27Aerospace 2023, 10, x FOR PEER REVIEW 8 of 27 
 

 

 

Figure 5. The planar board data from the RGB camera and the LiDAR camera for calibration from 

different angles and distances. The RGB image above and the point cloud image below were col-

lected by the RGB camera and LiDAR at the same time and correspond one to one. Four correspond-

ing corner pairs within the two images are manually extracted. 

The PnP problem can be simply summarized as follows: Given a set of n 3D points 

in a reference frame and their corresponding 2D image projections and calibrated camera 

intrinsic parameters, the 6 degrees-of-freedom (DOF) pose of the camera relative to the 

reference frame in the form of rotation and translation can be determined. As shown in 

Figure 6, there are four coordinate systems belonging to the camera, the imaging plane of 

the camera, the LiDAR, and the real world, in which the coordinates are distinguished by 

the superscripts C (camera), I (image plane), L (LiDAR) and W (real world), respectively. 

For instance, 𝑝𝐼
𝑚

 is the pixel coordinate corresponding to a point in the real world on the 

camera imaging plane, while 𝑃𝐿
𝑚   is the corresponding 3D coordinate in the LiDAR 

frame. 

Figure 5. The planar board data from the RGB camera and the LiDAR camera for calibration from
different angles and distances. The RGB image above and the point cloud image below were collected
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corner pairs within the two images are manually extracted.

The PnP problem can be simply summarized as follows: Given a set of n 3D points
in a reference frame and their corresponding 2D image projections and calibrated camera
intrinsic parameters, the 6 degrees-of-freedom (DOF) pose of the camera relative to the
reference frame in the form of rotation and translation can be determined. As shown in
Figure 6, there are four coordinate systems belonging to the camera, the imaging plane of
the camera, the LiDAR, and the real world, in which the coordinates are distinguished by
the superscripts C (camera), I (image plane), L (LiDAR) and W (real world), respectively.
For instance, pI

m is the pixel coordinate corresponding to a point in the real world on the
camera imaging plane, while PL

m is the corresponding 3D coordinate in the LiDAR frame.
Suppose enough 3D-2D corresponding point pairs have been collected, where the 3D

coordinate of a point is PL
m and the 2D pixel point is pI

m.

PL
m =

[
Xm Ym Zm

]T , (1)

pI
m =

[
um vm 1

]T . (2)
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According to the pinhole camera model, the relationship between the corresponding
3D point position and the pixel position can be established as follows:

dm pI
m = KTC

LPL
m, TC

L ∈ SE(3), (3)

where dm is a scalar representing the distance between the point and the origin of the
camera frame (OC) in the real world, and K stands for the intrinsic parameter matrix of the
camera, which converts the camera frame to the pixel frame. Usually, there is a distortion
matrix used to correct the distortion generated during the imaging process of the camera.
However, the stereo camera D435i used in this study has been corrected at the factory.
Therefore, it is not considered in this paper. TC

L is the extrinsic parameter matrix converts
the 3D point to the 2D point, which we want to find out through the measurement of 3D-2D
point pairs. In particular, TC

L is a 4-by-4 matrix, PL
m is a 3-by-1 vector, and K is a 3-by-3

matrix. In order to make the matrix multiplication on the right side of Equation (3) hold
true, PL

m is augmented to 4-by-1 during the actual calculation. Thus TC
LPL

m is a 4-by-1
vector. Then, take its first three dimensions yields, the 3-by-1 vector, and multiply it with K.
The result should be a 3-by-1 vector whose dimension is equal to the result on the left side.

If an initial value of TC
L is given, which is highly likely to be different from the true

value, by using Equation (3), a reprojection error em can be obtained:

em = pI
m − 1

dm
KTC

LPL
m, (4)

Each point pair can be calculated for a reprojection error based on Equation (4). By
adding them up, a least squares problem can be constructed:

TC∗
L = argminTC L

1
2

n
∑

m=1
‖em‖2

2. (5)

There are many ways to optimize Equation (5), such as the first-order gradient
method, the second-order gradient method, the Gauss–Newton method and the Levenberg–
Marquardt method, etc. Here, the Levenberg–Marquardt [29] method is used, which can
be implemented by directly calling the function in the OpenCV library [30]. In particular,
the selection of the initial value of TC

L should consider taking a value near the true value,
which is to prevent the solution of Equation (5) from falling into a local optimum. Here, a
raw value measured in the Solidworks 3D model interface (a solid modeling computer-aided
design (CAD) and computer-aided engineering (CAE) application published by Dassault
Systèmes) is adopted.
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4.2. Two-Dimensional (2D) Object Detection

To perform 2D object detection in real time, we utilized the You Only Look Once
(YOLOv4-tiny) object detection algorithm, which is an improved version of the original
YOLO algorithm proposed by Redmon et al. [31]. YOLOv4-tiny is a lightweight version of
the YOLOv4 [32] algorithm, specifically designed for real-time object detection tasks on
embedded devices with limited computational resources. Using this detector to obtain the
2D bounding box corresponding to the object and establish a custom data set to train the
YOLOv4 model will be mainly discussed in this section.

4.2.1. Two-Dimensional (2D) Bounding Box Prediction

According to Redmon and Farhadi’s work [33], an anchor-based method is used
to maximize the intersection over union (IOU) between the ground truth box and the
bounding box. Taking the image stream from the camera as the input, each image is resized
to a fixed size. Then, the input image is passed through a deep neural network (backbone),
a modified backbone (CSPDarknet53-tiny), to extract features at different scales. The feature
maps obtained from the backbone are then processed by several prediction layers. Based
on these maps, by using k-means clustering, we can generate the anchor boxes that are
predefined boxes of different sizes and aspect ratios being placed at different positions on
the image. These anchor boxes are used to predict bounding boxes in a one-to-one way
with following equations:

bx = σ(tx) + cx, (6)

by = σ
(
ty
)
+ cy, (7)

bw = pwetw , (8)

bh = pheth , (9)

where

• bx, by, bw, and bh are parameters for the bounding box, with x representing the po-
sition of the center (on the image plane), y representing the position of the center,
w representing the width, and h representing the height, respectively;

• tx, ty, and tw, and th are the predicted values from the network for the bounding box,
which is utilized to compute the parameters for the bounding box;

• pw and ph are the prior width and height for the bounding box;
• σ is the sigmoid function applied to constrain the offset range between 0 and 1;
• Figure 7 shows an illustration of the bounding box predicted by YOLOv4-tiny.
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relative coordinates.

4.2.2. Custom Training Dataset Establishment

Establishing a custom training dataset is a crucial step in fine-tuning the YOLOv4-
tiny model for detecting both the UAV and yellow bulb objects in our specific scenario.
The dataset should contain a representative sample of images that capture the range of
variations in the environment and conditions under which the UGV is required to track
the objects.

The dataset was established through a two-step process. First, we manually selected
frames from the video footage captured by the UGV using D435i, which contains the UAV
in different orientations and locations, and is representative of the scenarios that the UGV
would encounter during dynamic UAV tracking. Next, the open source annotation tool
LabelImg [34] is was utilized to annotate the dataset by drawing bounding boxes around
the UAVs and assigning them the corresponding class labels. The annotated images were
split into training and validation sets with a ratio of 4:1. The training set was used to
fine-tune the pre-trained YOLOv4-tiny model, while the validation set was used to evaluate
the model’s performance during training and determine when to stop training to avoid
overfitting. Total 9000 images were utilized to establish the dataset, where each object (the
UAV/the yellow bulb) had 2000 training images and 500 validation images, while 4000
background images without target objects were used to train the model to learn the scenario
with no objects in the scene, thereby reducing false positive (FP) results and improving
the accuracy of the model. To improve the robustness of the model, we also applied data
augmentation techniques, such as random scaling, flipping, and rotation, to the training
images, as shown in Figure 8. This helped to increase the diversity of the dataset and
reduce the likelihood of overfitting.
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angles, scenes, distances, and clarity were collected to train the yolo model.

4.3. Three-Dimensional (3D) Position Estimation

After obtaining the 2D bounding box of the UAV in each frame, we used it to generate
a region of interest (ROI) in the depth image and point clouds captured by the RGB-D
camera and LiDAR, correspondingly. The ROI can help to extract the depth information of
the object. Then, the measurement of 3D position was obtained. Then, a Kalman Filter was
applied to track the object.

4.3.1. Depth Assignment Based on 2D Bounding Box

The ROI is defined as a rectangular region that is scaled down by a certain ratio
relative to the center of the bounding box, which is to ensure that all the extracted depth
information comes from object pixels rather than the background. From Section 4.2.1, we
used 4 parameters to describe a 2D bounding box Rbb:

Rbb =
[
bx by bw bh

]
, (10)

By applying a scale factor τ to Rbb, the ROI RI can be obtained:

RI =
[
bx by τbw τbh

]
, (11)

where τ is set to 0.25 as an empirical value in the experiments. The ROI on the image plane
is shown in Figure 9.
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The aligned depth image eliminates invalid depth values in the corresponding ROI
and averages the remaining effective pixels to represent the depth in the ROI, that is, the
depth of the object from the stereo camera. The calibrated LiDAR can use Equation (3) to
convert the 3D point cloud coordinates into the 2D pixel coordinates of the corresponding
image and obtain the depth value of the corresponding pixel. Similarly, after removing
the outlier, the depth of the ROI can be obtained by averaging the remaining pixel depth
values. In case no point cloud data of the UAV is captured by the LiDAR, we can use the
depth image to compensate for depth information. Finally, based on the pinhole camera
model, the depth value is used to determine its scale, and the 3D position measurement
value in the camera frame of the object is obtained.

4.3.2. Tracking by Kalman Filter

The linear Kalman filter is a mathematical tool used to estimate the state of a system
based on a set of noisy measurements. In the context of the 3D position estimation, the
system refers to the position of the UAV in 3D space, while the noisy measurements refer to
the 3D position of UAV that is computed by the 2D bounding box and depth information
obtained from the RGB-D camera and the LiDAR. The Kalman Filter was used to predict
the UAV’s position based on its previous position and velocity, and to correct the prediction
using the new measurements obtained from the sensors.

Firstly, we defined the state vector of the object at time k, which consists of the 3D
position in the camera frame and the corresponding velocity, which is a 6-by-1 vector.

sk =
[
px py pz vx vy vz

]T , (12)

In the linear Kalman filter, two assumptions need to be satisfied: (1) the state at the
current moment is linearly related to the state at the previous moment, and the measure-
ment at the current moment is linearly related to the state at the current moment; and (2) all
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states, measurements, and noises follow Gaussian distribution. Then, we can obtain the
state equation and observation equation of the system:

sk = Ask−1 + Buk−1 + wk, (13)

mk = Hsk + nk, (14)

Specifically,

A =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (15)

H =

1
0
0

0
1
0

0
0
1

0
0
0

0
0
0

0
0
0

 (16)

mk =
[

p′x p′y p′z
]

(17)

where A is the state transition matrix, Buk−1 is the input that is equal to zero in our system,
wk is the process noise, mk is the measurement, H is the mapping matrix from the state
space to the measurement space, and nk is the measurement noise. Kalman filtering can be
divided into two processes: prediction and correction.

Prediction:
ŝ−k = Aŝk−1, (18)

P−k = APk−1 AT + Q, (19)

Correction:
Kk = P−k HT(HP−k HT + R

)−1, (20)

ŝk = ŝ−k + Kk
(
mk − Hs−k

)
, (21)

Pk = (1− Kk H)P−k , (22)

in which Q and R are the covariance matrices of noises wk and nk. Q and R are fixed and
set by ourselves empirically. Pk is the error covariance matrix.

Suppose we have the optimal state (ŝk−1) at time k− 1 and its corresponding covariance
matrix (Pk−1). By applying Equations (18) and (19), the prediction of the state (ŝ−k ) at k
and its corresponding covariance matrix (P−k ) can be obtained. Then, the Kalman gain (Kk)
is computed by using Equation (20). The optimal state (ŝk) at time k can be acquired in
Equation (21) with Kk and ŝ−k . Finally, Equation (22) corrects the corresponding covariance
matrix (Pk) of the state at time k for the calculation of next time step (k + 1). Through this
iterative process, the 3D position in camera frame of the UAV can be tracked all the time,
even if the sensor fails in a short period of time.

The tracking of the UAV’s 3D position is accomplished using a Kalman filter, as
depicted in Figure 10. The Kalman filter takes the output of the YOLO detector with depth
information (operating at a frequency of 16 Hz) and the 3D point cloud data from the 3D
LiDAR (operating at a frequency of 50 Hz). By decoupling lidar and visual information
processing, the output frequency can be comparable to that of lidar, close to 50 Hz, at a low
computational cost. Figure 11 presents the details of Kalman filter processing.
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During the initialization phase of the Kalman filter, the first measurement of the
UAV’s position was used as the prior state. To ensure the accuracy of the tracking results,
a strict criterion was applied to determine the validity of the measurement. Given the
higher accuracy of the LiDAR, the depth information was given priority. Only when a
correct 2D bounding box (2D-BB) of the UAV was obtained from the YOLO detector was
the point cloud of the UAV extracted based on the 2D-BB and the centroid coordinate of
the point cloud considered as the position measurement. If this measurement met the
validity criterion, it was saved as the prior state. Otherwise, the depth information from the
depth camera was considered. If the depth camera measurements also failed to meet the
criterion, indicating that the information from the current frame is invalid, another frame
will be considered.

Once the initialization was complete, for each new frame, the Kalman filter predicted
the position based on the last state of the UAV. Subsequently, the point cloud data were
primarily used to cluster the measurements based on the predicted state without relying
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on visual information. However, if the output from the YOLO detector was available, the
point cloud of the UAV was extracted based on the 2D-BB obtained from YOLO instead
of relying solely on the predicted state. As before, LiDAR measurements took precedence
over depth camera measurements. The state of the UAV was then corrected using the
validated measurements and output to other modules. In cases where all measurements
failed, the predicted state was the output. This ensures that the frequency of the output
closely matches the highest frequency of the two sensors even under the no-GPU limitation,
which is 50 Hz.

It is important to note that if 100 consecutive measurement failures occur, the Kalman
filter is re-initialized to ensure the accuracy of the output. However, the initialization
process is time-consuming due to the stringent criteria for success, which are imposed to
guarantee accuracy in the tracking results.

4.4. Overview of 3D Tracking Algorithm

The overall tracking process is shown in Algorithm 1. The system receives the RGB
image from the camera and uses a learning-based detector to recognize the image and detect
the presence of the target object (in this case, a UAV and a yellow light bulb). If the target
object is identified, its 2D bounding box is output, and the ROI is calculated. The depth
image or point cloud data will calculate the distance of the target object relative to the sensor
based on ROI, and for accuracy considerations, point cloud data from LiDAR will be given
priority. When LiDAR fails, depth images are used to compensate for depth information.
Finally, the pinhole camera model is used to recover the 3D position measurement of the
target object in the camera frame. In order to prevent the detector from misidentifying,
only when the confidence value of the detected object is greater than a threshold will the
object be regarded as the target object. Empirically, the threshold is set to 0.9. The valid
measurements are sent to the Kalman filter configured to track the 3D position of the object.
The correction value of each iteration will be regarded as the actual 3D position of the object
at the current moment.

Algorithm 1. 3D Tracker Based on Learning Model and Filter

Notation: RGB image set C, depth image set D, LiDAR point cloud P, object state ŝk,
measurement mk, Kalman filter KF
Input:

RGB image C
depth image D
point cloud P

Output: the actual state of the object at the current moment ŝk
While true do

2D-Detector.detect(C, D)
if confidence value > 0.9 then

mk = Detector.output()
end if

end while
While true do

if object detected then
update mk by fusing P and Detector.output()
if KF initiated then

KF.predict()
if validated measurement then

ŝk= KF.correct(mk, KF.predict())
continue

else
sk = KF.predict()
continue

end if



Aerospace 2023, 10, 924 17 of 27

Algorithm 1. Cont.

else
initiate KF
continue

end if
else

if KF initiated then
KF.predict()
point cloud process(P)
if validated measurement then

ŝk= KF.correct(mk, KF.predict())
continue

else
sk = KF.predict()
continue

end if
else

continue
end if

end while

5. Results and Discussion

In this section, we present the experimental results to validate the proposed system for
tracking a dynamic UAV in real time using a LiDAR and RGB-D camera mounted on a UGV.
The experiments are divided into three parts. Firstly, we evaluate the performance (accuracy
and speed) of the trained YOLOv4-tiny model based on a custom dataset designed for the
proposed scenario of two objects. Secondly, we conduct an indoor experiment by utilizing
the motion captured devices (VICON) to verify the accuracy of 3D position estimation.
Finally, we conduct a field test in an outdoor environment with an integrated LiDAR-inertial
odometry to demonstrate the effectiveness of the proposed system.

5.1. Training Result for YOLOv4-Tiny Model on Custom Dataset

A good performance for 2D object detection is a prerequisite for accurately estimating
the 3D position of the target object. In order to obtain good training results, we compared
the performance of the trained model on the dataset in terms of different input size. The
input sizes are of 320 × 320; 416 × 416; 512 × 512; and 608 × 608 resolutions, respectively.
In the training results shown in Table 1, it can be seen that the training model with an input
size of 608 × 608 has the highest accuracy and whose mean average precision (mAP) is
98.63% with an intersection over a union threshold of 0.5 (AP50), while the highest speed is
shown with the size of 320 × 320 under the same backbone according to Table 2. Notably,
two backbones (i.e., CSPDarknet-53-tiny and NCNN) were used to run the trained model
to find the best performance for speed because in the proposed system the requirement
of real-time tracking takes higher priority. Obviously, the higher input sizes give better
accuracy, but also lower speed, which is in line with our expectation. In the trade-off
between accuracy and speed, we chose 416 × 416, which is the fastest while still meeting
acceptable accuracy. NCNN was finally chosen as the backbone running on the UGV due to
its lightness, which is a high-performance neural network optimized for mobile platforms
and open sourced by Tencent Youtu Lab.

The effect of data without any objects (background images) was also considered in
the experiments. The datasets with/without background images are trained separately,
and the results of resolution are shown in Table 3. It can be seen that the accuracy of the
training results with background images trained is significantly improved by reducing the
false positive situations (see Section 4.2.2).
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Table 1. Accuracy of YOLOv4-Tiny with respect to different resolutions based on CSPDarknet-53-tiny.

Method Backbone Resolutions AP50

YOLOv4-Tiny CSPDarknet-53-tiny

320 × 320 94.17%
416 × 416 97.52%
512 × 512 98.28%
608 × 608 98.63%

Table 2. Speed (FPS) of YOLOv4-Tiny with respect to different resolutions based on different
backbones (CSPDarknet-53-tiny and NCNN).

Method Resolutions FPS (CSPDarknet-53-Tiny) FPS (NCNN)

YOLOv4-Tiny

320 × 320 22 30
416 × 416 20 26
512 × 512 17 21
608 × 608 12 17

Table 3. Results of YOLOv4-Tiny trained with/without background images.

Method Backbone Resolutions
AP50

(Without
Background Trained)

AP50
(With

Background Trained)

YOLOv4-Tiny CSPDarknet-53-tiny

320 × 320 92.17% 96.22%
416 × 416 95.52% 98.67%
512 × 512 96.28% 98.55%
608 × 608 96.63% 98.89%

Finally, 2D detection is applied in both indoors and outdoors environments, and good
results are obtained to verify its robustness.

5.2. Indoor Experiment for 3D Position Estimation in VICON Environment

In the indoor experiment, our primary objective is to validate the effectiveness of
the 3D tracking algorithm based on the Kalman filter. To achieve this, we conducted
a controlled experiment where we temporarily removed the fixed setup of camera and
LiDAR sensors from the UGV. Instead, we held the sensors setup in our hands and manually
tracked the flying UAV within the VICON environment. The reason behind removing
the sensors from the UGV is due to the limited size of the VICON environment, which is
approximately seven by seven meters. This size constraint makes it challenging for the
UGV to freely move around and track the UAV in real-time. The validity and credibility
of VICON’s output results are paramount in shaping the evaluation of our positioning
algorithm. By temporarily detaching the sensor setup from the UGV and holding it in
our hands, we are liberated from spatial constraints, enabling us to gather ground truth
data and algorithm output throughout the entire experiment. This approach allows us to
conduct a comprehensive evaluation of the algorithm’s performance.

As demonstrated in Figure 2, the camera remains fixed above the LiDAR using a
frame, ensuring that their relative positions are consistently maintained. The process of
external parameter calibration is designed to determine the fixed external parameter matrix
between these sensors, whether they are mounted on the UGV or held by hand. It is worth
noting that over time, sensor positions may undergo changes due to factors like collisions,
vibrations, or other external influences. This opens the door to a distinct avenue of research,
automatic sensor calibration, a topic that may well be part of our future work. However,
for the scope of this paper, we assume that the coordinate transformation matrix between
sensors remains constant, owing to their fixed nature within their components.

To maintain data consistency and reliability, we adopted a specific approach in data
collection. We chose to gather test data starting at 30 s after the sensors were initialized.
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This strategy ensured that we consistently acquired frames from different sensors with the
same timestamp, which is crucial for the accurate initialization of the algorithm. It is worth
emphasizing that the data collection process required the continuous and uninterrupted
operation of the sensors within a designated time frame to reflect normal operating con-
ditions. On rare occasions, unforeseen hardware issues could cause one or more sensors
to disconnect suddenly from the computer. In such instances, data collected during these
periods would be deemed invalid and excluded from the analysis to preserve the integrity
of the dataset.

During the experiment, human operators took control of the UAV’s movements
within the VICON environment. They executed various flight patterns and behaviors,
including drawing circles, ascending, descending, and other maneuvers that simulate real-
world scenarios and tasks. These movements allow us to assess the tracking algorithm’s
performance in different situations and evaluate its ability to accurately estimate and
track the 3D position of the UAV relative to the UGV. The ground truth was captured by
VICON because it provides highly accurate and precise measurements of object movements,
capturing the positions and orientations of objects with great detail. Figure 12 shows the
visualization of algorithm-running process in the indoor experiment. To highlight the
necessity of sensors fusion, we implemented the tracking algorithm with only stereo
cameras for comparison. The performance is shown in Figure 13. The comparison between
the ground truth positions and the estimated positions obtained from the stereo-camera-
only algorithm highlighted the inconsistencies and larger deviations without sensors fusion.

Aerospace 2023, 10, x FOR PEER REVIEW 19 of 27 
 

 

worth noting that over time, sensor positions may undergo changes due to factors like 

collisions, vibrations, or other external influences. This opens the door to a distinct avenue 

of research, automatic sensor calibration, a topic that may well be part of our future work. 

However, for the scope of this paper, we assume that the coordinate transformation matrix 

between sensors remains constant, owing to their fixed nature within their components. 

To maintain data consistency and reliability, we adopted a specific approach in data 

collection. We chose to gather test data starting at 30 s after the sensors were initialized. 

This strategy ensured that we consistently acquired frames from different sensors with 

the same timestamp, which is crucial for the accurate initialization of the algorithm. It is 

worth emphasizing that the data collection process required the continuous and uninter-

rupted operation of the sensors within a designated time frame to reflect normal operating 

conditions. On rare occasions, unforeseen hardware issues could cause one or more sen-

sors to disconnect suddenly from the computer. In such instances, data collected during 

these periods would be deemed invalid and excluded from the analysis to preserve the 

integrity of the dataset. 

During the experiment, human operators took control of the UAV’s movements 

within the VICON environment. They executed various flight patterns and behaviors, in-

cluding drawing circles, ascending, descending, and other maneuvers that simulate real-

world scenarios and tasks. These movements allow us to assess the tracking algorithm’s 

performance in different situations and evaluate its ability to accurately estimate and track 

the 3D position of the UAV relative to the UGV. The ground truth was captured by VICON 

because it provides highly accurate and precise measurements of object movements, cap-

turing the positions and orientations of objects with great detail. Figure 12 shows the vis-

ualization of algorithm-running process in the indoor experiment. To highlight the neces-

sity of sensors fusion, we implemented the tracking algorithm with only stereo cameras 

for comparison. The performance is shown in Figure 13. The comparison between the 

ground truth positions and the estimated positions obtained from the stereo-camera-only 

algorithm highlighted the inconsistencies and larger deviations without sensors fusion. 

 

 

Figure 12. Rviz visualization interface of algorithm running process with sensors fusion. The green 

line indicates the ground truth position, and the red line represents the estimated position. The side 

length of each square grid is 1 m. 

Figure 12. Rviz visualization interface of algorithm running process with sensors fusion. The green
line indicates the ground truth position, and the red line represents the estimated position. The side
length of each square grid is 1 m.



Aerospace 2023, 10, 924 20 of 27Aerospace 2023, 10, x FOR PEER REVIEW 20 of 27 
 

 

  

Figure 13. Rviz visualization interface of algorithm running process with the stereo camera only. 

The green line indicates the ground truth position, and the red line represents the estimated posi-

tion. The side length of each square grid is 1 m. 

We computed the error in the x, y, and z directions of the UAV’s position estimation. 

These errors were then visualized in Figures 14 and 15, providing quantitative insights 

into the system’s accuracy, which was obtained by running different algorithm on the 

same dataset. By examining the distribution and magnitude of the errors, we gained a 

comprehensive understanding of the system’s performance in terms of position estima-

tion. The mean value of the error is basically in the range of −0.3 m to 0.3 m. In the first 

200 frames, due to the uncertainty of the pilot’s operation, the UAV accelerated in the y 

direction, which affected the accuracy of the information collected by the sensors. As seen, 

the errors were relatively large, but the errors were corrected within a short period of time, 

which verified the robustness of the proposed algorithm. The medians of the errors in the 

three directions are 0.061 m, 0.028 m, and 0.013 m, respectively, which is acceptable for 

the proposed system. And the RMSE is 0.032 m, which is smaller than that in [12,35]. 

Figure 13. Rviz visualization interface of algorithm running process with the stereo camera only. The
green line indicates the ground truth position, and the red line represents the estimated position. The
side length of each square grid is 1 m.

We computed the error in the x, y, and z directions of the UAV’s position estimation.
These errors were then visualized in Figures 14 and 15, providing quantitative insights
into the system’s accuracy, which was obtained by running different algorithm on the
same dataset. By examining the distribution and magnitude of the errors, we gained a
comprehensive understanding of the system’s performance in terms of position estimation.
The mean value of the error is basically in the range of −0.3 m to 0.3 m. In the first
200 frames, due to the uncertainty of the pilot’s operation, the UAV accelerated in the y
direction, which affected the accuracy of the information collected by the sensors. As seen,
the errors were relatively large, but the errors were corrected within a short period of time,
which verified the robustness of the proposed algorithm. The medians of the errors in the
three directions are 0.061 m, 0.028 m, and 0.013 m, respectively, which is acceptable for the
proposed system. And the RMSE is 0.032 m, which is smaller than that in [12,35].

To provide a visual representation of the results, we compared the ground truth
position with the estimated position, as shown in Figure 16, which was obtained by
running different algorithms on the same dataset. This allowed us to qualitatively assess
the system’s ability to track and follow the UAV’s movements. By visually examining
the alignment between the ground truth and estimated positions, we could evaluate the
system’s precision and robustness.

Furthermore, we generated a 3D path using MATLAB, as shown in Figure 17, incor-
porating both the ground truth data and the estimated position. This path provided a
comprehensive trajectory visualization, enabling us to analyze the overall performance of
the system in tracking the UAV’s movements within the indoor environment.
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5.3. Filed Test in Outdoor Environment with LiDAR-Inertial Odometry (LIO)

In our outdoor experiment, our primary objective was to assess the efficacy of the
proposed system in genuine real-world scenarios in which no ground truth reference was
accessible for comparative analysis. This outdoor experiment encompassed the full scope of
the automatic detection and tracking of UAVs by the UGV, equipped with the sensor setup.
It effectively compensated for the limitation we encountered during indoor experiments in
the VICON space, where it was not feasible to install the sensors directly on the UGV. In
contrast to the indoor experiment where VICON was used for localization, we utilized an
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open ego-localization framework called FAST-LIO [36] from the MARS Laboratory of the
University of Hong Kong, known for its high precision and efficiency in self-localization
when providing accurate position information for the UGV in the outdoor environment.
Notably, instead of a quantitative analysis, we focused on providing a visual assessment of
the system’s performance.

During the outdoor experiment, the UAV, in this case, the F330 model, was manually
controlled by a human operator. The purpose of manual control is to simulate realistic
scenarios and behaviors that may occur during UAV operations in outdoor environments.
The human operator can execute various flight maneuvers and trajectories, testing the
robustness and effectiveness of the proposed system under different conditions.

After the target object is detected, the 3D tracking algorithm outputs the real-time
3D positions of the object and generates the desired waypoints. The waypoints are then
transformed into the world frame using a transformation matrix, with the origin of the
world box being the UGV’s starting position at the beginning of the algorithm. This
transformation matrix is output in real time by the LIO frame and represents the current
position of the UGV in the world frame.

Subsequently, the waypoints and the positions of the UGV are passed through a
PID controller to generate a driving twist, which is sent to the UGV driver to control the
movement of the UGV. The positions of both the UAV and the UGV in the world frame are
plotted in Rviz for visualization and evaluation purposes, as shown in Figure 18. The red
line is for the UGV’s position, and the green one is for the UAV’s.
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5.4. Limitation Study

The use of a simple PID controller for UGV control introduces limitations to the
tracking performance of the system. The PID controller is a classic control algorithm
that operates based on error feedback and adjusts control signals accordingly. While PID
controllers are widely used and effective in many applications, they have certain limitations.

One limitation is the response time of the PID controller, which may restrict the
UGV’s ability to track the UAV accurately during high-speed movements. The controller’s
response may not be fast enough to compensate for rapid changes in the UAV’s position,
resulting in tracking errors or delays. Experiments show that the speeds of the UAV and
UGV are affected by the above-mentioned condition, and that the tracking effect is the best
when the UAV/UGV speed is around 1 m/s.

Additionally, the simplicity of the PID controller may limit its ability to handle complex
maneuvers or trajectories. The control algorithm assumes a linear relationship between
the error and the control signal, which may not capture the full dynamics of the UGV-UAV
system during fast or agile movements. This can impact the system’s ability to accurately
track the UAV’s position and trajectory. To overcome this, Jiang et al.’s method [37] employs
neural networks to achieve model predictive control, offering adaptability, improved
performance in nonlinear systems, and the ability to predict future states and optimize
control inputs over a finite horizon.

Furthermore, the effective tracking range between the UGV and UAV may be limited
due to the control capabilities of the PID controller. If the UAV moves too far away from
the UGV, the tracking performance may degrade as the UGV struggles to maintain accurate
control over the UAV’s position. The best tracking distance is around 5–7 m.

Apart from the inherent limitations of the PID controller, it is essential to take into
account the constraints associated with the field of view (FOV) of the sensor system. While
the field of view (FOV) of the proposed sensor system has been expanded in comparison
to a single-sensor RGB-D camera, it is important to acknowledge that in complex terrains
such as forests and construction sites, autonomous UAV tracking using a UGV, while si-
multaneously avoiding obstacles, presents a notable challenge. This challenge arises due to
the potential for the UAV to move beyond the FOV as the UGV follows its planned obstacle
avoidance path. This limitation is further compounded by the fact that the sensors are
fixed on the UGV. To address this challenge, Z. Liu et al. [38] have proposed an innovative
solution. Their suggestion involves the installation of a two-degree-of-freedom gimbal on
the UGV, upon which the sensors are mounted. This approach allows for independent
rotation of the gimbal, ensuring that the UAV remains within the FOV throughout the
UGV’s movement. By implementing this solution, a more robust and effective tracking
capability can be achieved, particularly in dynamic and obstacle-laden environments.

6. Conclusions

In conclusion, this study presents a novel system designed to enhance the capabilities
of UAV/UGV-coordinated heterogeneous systems. We have successfully integrated a
multitude of sensors to enable the detection, localization, and precise positioning of target
objects, all while facilitating autonomous UGV navigation without any prior knowledge
requirements. Notably, our system showcases a significant departure from the traditional
tight-coupling method, as it effectively decouples the RGB-D camera and LiDAR compo-
nents, resulting in a remarkable reduction in computational demands while maintaining
high accuracy standards. Furthermore, it is worth noting that our system operates seam-
lessly with only CPU power, making it an efficient solution for various applications.
The experimental findings demonstrate the system’s ability to perform in environments
where GPS is unavailable, and the proposed method yields a satisfactory level of estima-
tion accuracy.
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7. Future Work

In the context of future work, it is envisaged that the path planning module can be
extended to achieve a more advanced level of trajectory optimization. This optimization
will be accomplished by incorporating factors such as the estimation of the target’s motion
state, both dynamic and static obstacle constraints, as well as accounting for the physical
limitations of the UGV. The overarching goal is to minimize the likelihood of collisions
during UGV tracking tasks and enhance the overall robustness of the system.

Supplementary Materials: The following are available online at https://youtu.be/9CCYqunSRGs
(accessed on 29 July 2023), Video: A Low-cost Relative Positioning Method for UAV/UGV Heteroge-
neous System based on Visual-Lidar Fusion, https://github.com/HKPolyU-UAV/GTA (accessed on
20 May 2023), Source code.
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Abbreviations

The following abbreviations are used in this thesis:

FPS Frames Per Second
IOU Intersection over Union
ROI Region of Interest
LiDAR Light Detection and Ranging
GNSS Global Navigation Satellite System
GM-APD Geiger-Mode Avalanche Photodiode
DNN Deep Neural Network
RANSAC Random Sample Consensus
CPU Central Processing Unit
mAP Mean Average Precision
ROS Robot Operating System
RMSE Root Mean Square Error
UAV Unmanned Aerial Vehicles
UGV Unmanned Ground Vehicles
LIO LiDAR Inertial Odometry
DOF Degree of Freedom
PTP Precision Time Protocol
GPS Global Positioning System
PPS Pulse Per Second
FOV Field of View
R-CNN Region-based Convolutional Neural Network
2D-BB Two-dimensional Bounding Box
YOLO You Only Look Once algorithm.
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