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Abstract: A three-dimensional upwind conservation element and solution element method (CESE) in
cylindrical coordinates is first developed to effectively solve the unsteady reactive Euler equations
governing a hydrogen–air rotating detonation engine (RDE) with coaxial structures. The effects of
the annular width on the structure of the detonation front and the relationship between the thrust
and mass flow rate are then investigated. Additionally, RDEs with various injection conditions are
systematically analyzed regarding flow patterns and propulsion performance. The results reveal
a positive correlation between the specific impulse and the area ratio of the injection slot to the
head-end wall. Nevertheless, the specific impulse shows minimal dependence on the injector slot’s
location when the area ratio is constant. Ultimately, it is concluded that the area ratio between the
injector and the head-end wall is critical in determining the loss of specific impulse.

Keywords: rotating detonation; numerical simulation; three-dimensional effect; propulsion
performance; CESE method

1. Introduction

The rotating detonation engine (RDE) has attracted significant interest due to its
potentially high propulsive efficiency. Since its early conceptual development, significant
experimental [1,2] and numerical [3–5] advances have been made in recent years to enrich
the fundamental understanding of the stability and performance of RDEs.

Most RDEs typically employ a structure consisting of coaxial cylinders. It is also
important to note that the concept of non-circular RDEs has recently been proposed and
successfully demonstrated in experimental studies [6,7]. Numerically, if the combustor
width is small compared to the size of the RDE, it can be unwrapped as a two-dimensional
(2D) problem. Based on this assumption, many numerical studies have been carried out.
For instance, Schwer and Kailasanath [8] demonstrated the viability of RDEs for both
hydrogen and hydrocarbon fuels. In addition, Tsuboi et al. [9] studied the performance
of RDEs for a stoichiometric hydrogen–oxygen gas mixture; the specific impulse (Isp) and
thrust were correlated with the mass flow rate. Zhao and Zhang [10] focused on the chaotic
propagation of detonation with discrete reactant inlets, where explosive spots were found
arising from the interaction between the shock waves and the deflagrative fronts. Further-
more, solvers for two-phase RDEs have also been developed to study the effects of the fuel
droplet diameter and pre-vaporization [11], the effects of the pre-vaporized gas tempera-
ture and equivalence ratio [12], and the limit of operational stability [13]. If the combustor
width is not negligible, or the geometry of the RDE is a hollow cylinder [14–16], the three-
dimensional (3D) effect should be modeled. For RDEs with a wide combustor chamber,
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Katta et al. [17] reported that compression emerges near the outer wall, and expansion
appears at the inner wall, making the detonation wave sensitive to the combustor channel
width. Nevertheless, the influence of the combustor width on the propulsion performance
was not reported. In a series of experimental studies conducted by Kawasaki et al. [18],
the radius of the outer wall was fixed, and the injectors were located near the outer wall.
The measured specific impulse decreased when reducing the radius of the inner wall. This
deficit was concluded as a loss through deflagration. Despite significant advancements, our
understanding of rotating detonation waves still needs to be improved for a comprehensive
analysis. As observed in these studies, the wave structures and engine performance can
be affected by the geometry of the combustor and the positions of the injectors. Towards
this end, one objective of the current study is to identify the wave dynamics and engine
performance of different injector positions at varied injector to head-end wall area ratios of
the RDE.

According to the characteristics of the coaxial cylinders of the RDE geometry under
consideration in the present study, the space-time conservation element and solution ele-
ment method (CESE) adapted to cylindrical coordinates are developed. As a scheme with a
compact stencil, the CESE method with an arbitrary order of accuracy only requires neigh-
boring cell information for the update of a cell. This characteristic greatly benefits parallel
computation. In a study by Jiang et al. [19], the computational efficiency of a 2D second-
order CESE scheme was compared to that of a finite volume method (FVM) that utilized
the second-order monotonic upstream-centered scheme for conservation law (MUSCL)
reconstruction, the van Leer limiter, and the HLLC Riemann solver. Results showed that,
under the same resolution, the CESE scheme exhibited superior computational efficiency
compared to the FVM method mentioned. Additionally, the CESE scheme demonstrated
better capturing of narrower contact discontinuities and small flow structures, which is
crucial for simulations involving highly compressible reactive flows. The original CESE
method was proposed by Chang [20], and it unifies the treatments of space and time
with a staggered advancing strategy, where both the conserved variables and their spatial
derivatives are computed simultaneously. Recently, a characteristic (upwind) CESE method
was developed by Shen et al. [21,22] to overcome the excessive dissipation of the original
central CESE methods. In the upwind versions, the marching scheme for the conserved
variables is the same as in the original CESE scheme. When computing the spatial deriva-
tives, the equation of the non-dissipative CESE scheme is utilized. Meanwhile, Riemann
problems are solved to determine the inner fluxes [21–23]. These updated CESE schemes
have shown small numerical dissipation even with minimal CFL numbers. Numerical
tests have shown their satisfying conservativeness and accuracy. This method has been
widely extended to solve hypersonic viscous flows [23], detonation waves [24–26], magneto-
hydrodynamics [27], shock–bubble interactions [28], and two-phase flow problems [29].
The CESE schemes have been applied to solve the above flow dynamics mainly using either
rectangular or unstructured meshes. However, for the simulation of rotating detonation
waves in coaxial cylinders, it would be preferable to employ an extended version of the
upwind CESE scheme that incorporates coordinate transformation.

The rest of the manuscript is organized as follows. The governing equations and
physical models for a 3D RDE are first introduced in Section 2. A meticulous extension
of the numerical scheme is presented in Section 3, where the 3D upwind CESE method
is applied to Euler equations in cylindrical coordinates. In Section 4, the effects of the
geometrical size of the RDE and the locations of the injection slots are discussed both in
regard to wave structures and propulsion performance. Conclusions are summarized in
Section 5.
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2. Physical Model

Following previous studies [30–32], neglecting the effects of viscosity, thermal conduc-
tion, and molecular diffusion, the flow field of an RDE is governed by the three-dimensional,
reactive Euler equations:

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
+

∂H(U)

∂z
= S (1)

Here, U = [ρ, ρu, ρv, ρw, E, ρλ]T is the vector of conservative variables, and ρ, u, v, w, p, E, λ
are the density, velocities, pressure, total energy, and mass fraction of the reactant, respec-
tively. The vectors of flux and the vector of the source are expressed as

F =



ρu
ρu2 + p
ρuv
ρuw
(E + p)u
ρλu

, G =



ρv
ρvu
ρv2 + p
ρvw
(E + p)v
ρλv

, H =



ρw
ρwu
ρwv
ρw2 + p
(E + p)w
ρλw

, S =



0
0
0
0
0
ω̇

, (2)

where ω̇ = −Kρλe−
Ea
RT denotes the mass production rate of the reactant governed by the

one-step reaction model for hydrogen–air detonation [4,33]. K, Ea, R, and T are the pre-
exponential factor, activation energy, gas constant, and temperature, respectively. The equa-
tion of state for a perfect gas p = ρRT is adopted here, and the energy per unit volume is
defined as

E =
p

γ− 1
+

1
2

ρ
(

u2 + v2 + w2
)
+ λρQ (3)

where γ is the specific heat ratio. In the present study, the thermodynamic and chemical pa-
rameters for the reaction from Ma et al. [33] are used as follows: γ = 1.29, K = 7.5× 109/s,
Ea = 4.794× 106 J/kg, R = 368.9 J/(kg ·K), and heat release Q = 2.72× 106 J/kg. A Strang
operator splitting method is used to split the computation of flow and reactions. The inte-
gration of the reaction source term is achieved implicitly to avoid the stiffness problem.

For continuous rotating detonation waves that propagate within an annulus combustor,
four types of injection arrangements are considered, as schematized in Figure 1. For ideal
(full) injection, a combustible gas can be injected through any part of the head-end wall.
For non-ideal (inner, outer, and middle) injection, a combustible gas can be only injected
through a slot on the head-end wall. This is to replicate certain experimental configurations
where injectors are positioned exclusively near the outer wall [18]. Although the injectors in
experiments are commonly angled about the sidewall, and the non-premixed phenomenon
is crucial, these features are not within the scope of this study. Here, the RDE is assumed to
operate without any exit nozzle effects [30,34] and directly exhaust the burnt gas with a
back pressure of 1 atm. The combustible gas is assumed to be injected into the manifold
through Laval micronozzles, and the boundary condition at the combustor inlet is specified
according to the local pressure near the wall pw and the inlet stagnation pressure p0:

(a) if pw ≥ p0, there is no injection, and the slip wall boundary will be implemented;
(b) if pcr1 ≤ pw < p0, the inflow velocity is locally subsonic;
(c) if pcr2 ≤ pw < pcr1, the throat of the nozzle maintains choking conditions, and the

injection is subsonic;
(d) if pw < pcr2, the injection is supersonic and not affected by pw.

The detailed calculation of the critical pressures, pcr1 and pcr2, can be found in the
study by Zhdan et al. [35]. The non-reflective boundary condition is imposed at the exhaust.
The adiabatic slip wall condition is implemented on the inner and outer chamber walls.
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(a)

(b) (c)

(d) (e)
Figure 1. (a) Schematic model of an RDE with an annulus combustion chamber, and injection patterns
on the head-end wall, (b) ideal, (c) inner, (d) outer, and (e) middle injector slots.

3. Extension of 3D CESE Method to Cylindrical Coordinate System

Here, we develop the second-order 3D upwind CESE scheme in cylindrical coordinates.
For a more comprehensive review of the development of other CESE schemes, the readers
can refer to Jiang et al. [19] and Wen et al. [36].

By disregarding the source term due to reaction, the governing Equation (1) in the
physical domain is transformed into the computational domain with uniform meshes
(Figure 2) with the mapping relation (x, y, z) = f (η, ξ, ζ), such that

∂Ũ
∂t

+
∂F̃
∂ξ

+
∂G̃
∂η

+
∂H̃
∂ζ

= 0. (4)

The quantities that are labeled with a tilde denote the variables in the computational
domain, and

Ũ = |J|U,

F̃ = |J|
(
Fξx + Gξy + Hξz

)
,

G̃ = |J|
(
Fηx + Gηy + Hηz

)
,

H̃ = |J|
(
Fζx + Gζy + Hζz

)
,

(5)

where J ≡ ∂(x,y,z)
∂(ξ,η,ζ) is the transformation Jacobian. For a typical cell in 3D cylindrical

coordinates with the resolution of ∆r, r∆θ, and ∆z along the radial, azimuthal, and axial
directions, x = ξ cos η, y = ξ sin η, z = ζ. Thus J can be analytically computed. As a result,
the above equations can be further deduced as

Ũ = ξU = ξÛ,

F̃ = ξ(F cos η + G sin η) = ξF̂,

G̃ = ξ

(
−F

sin η

ζ
+ G

cos η

ζ

)
= ξĜ,

H̃ = ξ(H) = ξĤ.

(6)
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(a) (b)

Figure 2. Mesh in (a) physical domain and (b) computational domain.

By implementing the product rule, the governing equation can be rearranged as

∂Û
∂t

+
∂F̂
∂ξ

+
∂Ĝ
∂η

+
∂Ĥ
∂ζ

= Ŝg (7)

where Ŝg = −F̂/ξ is the source term due to geometrical transformation. Equation (7) is
the exact equation that needs to be solved. In the CESE scheme, the conservative variables
and their spatial derivatives are required and must be updated. If the spatial derivatives of
Û, defined as Ûm ≡ Um in the mth direction (m = ξ, η, ζ), are known, the derivatives of
fluxes, i.e., Fm, Gm, and Hm in the physical domain, as well as F̂m, Ĝm, Ĥm, and Ŝg,m in the
computational domain, can be straightforwardly computed by the chain rule. The temporal
derivative Ût is then obtained using the Cauchy–Lowalevski procedure as

Ût = −F̂ξ − Ĝη − Ĥζ + Ŝg. (8)

Then, F̂t, Ĝt, Ĥt, and Ŝg,t are well defined in a similar manner as when computing the
spatial derivatives. The detailed descriptions and formulations of the 3D LLF CESE can
be found in Appendix A. The Sedov blast wave problem and 1D detonation are used as
benchmark tests to validate the present 3D upwind CESE scheme in cylindrical coordinates.
Details of the tests are provided in Appendix B.

4. Results and Discussion

The length of the RDE model in the present study is held constant at 40 mm, the outer
radius (Ro) is 20 mm, the stagnation temperature is fixed at 300 K, and the ambient pressure
is 1 atm, while the stagnation pressure (p0), the area ratio of the injector throat to the
injector exit of the Laval micronozzles (A∗/A), the annulus width (w), and the area ratio of
the injection slot to the head-end wall (α) are adjusted accordingly. Tables 1–4 summarize
the conditions for different cases, and these details will be further discussed in the following
sections. The inner radius is limited to not less than 11 mm to ensure that the resolution
near the inner wall does not change much compared to that near the outer wall. All
cases are run with 15∼23 operation cycles depending on different setups to ensure that
the data are analyzed when the RDEs are statistically stable. The annulus width varies
within 1∼9 mm, and the area ratio of the injection slot to the head-end wall changes from
0.33 to 1 with different positions of the injector slot. It is noteworthy that Sow et al. [37]
attributed the deficit in detonation velocity observed in an extremely narrow 2D channel to
the viscous boundary layer. Since most cases involve a relatively wide channel, to maintain
consistency, the viscous effects were not considered in the present study. To preface, all of
the tested conditions in the present study demonstrate the presence of continuous rotating
detonation waves.
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Table 1. Simulation conditions for the effects of grid resolution.

w (mm) p0 (atm) A∗/A ∆r, Ro∆θ, ∆z (mm)

1 10 0.2 0.5, 0.4, 0.4
1 10 0.2 0.2, 0.2, 0.2
1 10 0.2 0.1, 0.1, 0.1

Table 2. Simulation conditions for the effects of annulus width and inner radius.

w (mm) winj (mm) Inj Loc α p0 (atm) A∗/A

1, 3, 6, 9 same as w Full 1 10 0.2
6 3 Outer 0.5441 10 0.2
9 3 Outer 0.3978 10 0.2

Table 3. Simulation conditions for the effects of injector location and size.

w (mm) α Inj Loc p0 (atm) A∗/A

9 0.33∼0.75 Outer 10 0.2
9 0.33∼0.75 Middle 10 0.2
9 0.33∼0.75 Inner 10 0.2

Table 4. Simulation conditions for the effects of stagnation pressure and area ratio of nozzle.

w (mm) α Inj Loc p0 (atm) A∗/A

9 0.33∼1 Outer 10 0.2
9 0.33∼1 Outer 20 0.2
9 0.33∼1 Outer 10 0.1

4.1. Grid Sensitivity Analysis

To ensure the accuracy and reliability of the numerical results, a convergence study
is performed for a combustor of 1 mm width with three sets of mesh grids (Table 1),
M1: ∆r = 0.5 mm, Ro∆θ = 0.4 mm, ∆z = 0.4 mm; M2: ∆r = 0.2 mm, Ro∆θ = 0.2 mm,
∆z = 0.2 mm; and M3: ∆r = 0.1 mm, Ro∆θ = 0.1 mm, ∆z = 0.1 mm. Ignition is attained
by a segment of a detonation wave that propagates circumferentially near the inlet. Usu-
ally, stable propagation can be established after a few cycles of propagation. Figure 3 shows
the temporal traces of pressure at a point located at the outer wall and 1 mm away from
the inlet (noting that no attempt has been made to align the pressure profiles in these
cases). It is shown that the pressure periodically oscillates after about four cycles of prop-
agation. The detonation velocity averaged from five stable cycles at the outer wall for
M2 case is 1976 m/s, which is close to the Chapman–Jouguet (CJ) value [4]. Overall, no
significant difference is observed for these three resolutions, except for the peak pressure
values. Furthermore, all results can produce similar macroscopic structures, as depicted
in Figure 4. For the consideration of both the accuracy and computational efficiency, M2
is adopted as the resolution for the remaining simulations. This resolution is on a similar
scale to previous studies on hydrogen–air RDEs [17,38]. It is indeed important to note that
the resolution used in our study is still insufficient to fully capture the detailed cellular
structures present in RDEs. To accurately capture these structures, a resolution of at least
one order smaller than the reaction zone is typically required, as suggested by previous
studies [24]. Achieving such a fine resolution for a wide channel would demand compu-
tational resources surpassing the current capabilities. Therefore, in the present study, our
focus was primarily on investigating the macro flow structures and overall performance
of the RDE. Future research with more advanced computational resources could aim to
explore and analyze these structures in greater detail. In the present study, for a typical
case with a channel width of 9 mm, approximately 4.89 million computational cells were
used. A total of 25 cases were conducted, with each case involving 15∼23 cycles of detona-
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tion propagation to ensure reliability. For a typical case with a 9 mm channel width and
4.89 million computational cells, approximately 211 CPU-hours were required per one cycle
of detonation wave propagation. All cases were performed in parallel with MPI standards
on the Tianhe supercomputer in the Tianjin Supercomputer Center, China.

Figure 3. Temporal traces of pressure at a point 1 mm away from the inlet.

(a) (b) (c)

Figure 4. Temperature contours of the RDE with different resolutions. (a) M1, (b) M2, and (c) M3.

4.2. Effect of Channel Width with Full Injection

To understand the effects of the increasing combustor width on the wave struc-
tures and performance of the RDE, the temperature contours of four channel widths
(1 mm, 3 mm, 6 mm, and 9 mm) are compared in Figure 5. The test condition is as shown
in the first row of Table 2. The injector fully occupies the head-end wall in these cases.
For channel widths of 3 mm, the flow fields are close to that of 1 mm. When the channel
width is increased to 6 mm, the detonation front is inclined to the outer wall and reflected
shocks are generated. The strong expansion near the inner chamber wall leads to the
significant curvature of the detonation wave front. The velocity component normal to the
wave front is lower than the CJ value near the inner wall but approaches CJ as it approaches
the outer wall [39,40]. As a result, the velocity measured along the outer wall may be
more appropriately referred to as the velocity of the wave signal rather than the detonation
velocity. This curved detonation wave induces a series of shock waves that bounce back
and forth, similar to the phenomena observed in the study conducted by Katta et al. [17].
These shock trains can be barely observed in the cases with narrower channels.
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By further increasing the channel width to 9 mm, the distance between the leading
detonation wave and the first reflected shock near the inner wall increases. This increased
distance allows for greater pressure relaxation below the critical pressure, resulting in the
faster injection of fresh combustible gas near the inner wall compared to the outer wall due
to compression by the reflected shock. Furthermore, it can be observed that wider chambers
result in shorter propagating detonation waves. The recorded heights of the detonation
waves, ranging from narrow to wide chambers, are measured as follows: 12.2 mm, 11.7 mm,
10.4 mm, and 8.8 mm, respectively.

(a) (b)

(c) (d)

Figure 5. Temperature contours with channel width of (a) 1 mm, (b) 3 mm, (c) 6 mm, and (d) 9 mm.

Per the authors’ knowledge, there is limited numerical research available on the impact
of various annulus sizes on performance. The comparison of the propulsive performance is
achieved in terms of the thrust (F) and mixture-based specific impulse (Isp), defined by

F =
∫

exit

(
ρv2

z + p− p∞

)
dA and Isp =

F
ṁg

, (9)

where vz is the flow velocity normal to the RDE exit, A is the area of the exit, ṁ is the
mass flow rate of the combustible gas, and g is the acceleration of gravity. Table 5 lists the
propulsive performance for different combustor widths. In a highly intuitive manner, it is
noted that increasing the channel width leads to an observed increase in thrust. However,
the specific impulse remains relatively unchanged. This observation suggests that the
thrust exhibits a linear relationship with the mass flow rate. Nevertheless, there is a slight
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variation in the standard deviation (SD) of F and Isp, suggesting that the RDEs maintain
stable operation across all channel widths. Note that when increasing the channel width,
the detonation velocity at the inner wall (Vi) drops due to the vigorous expansion caused
by the convex surface. In contrast, the velocity of the wave signal at the outer wall (Vo)
increases. Overall, these simulations suggest that although the compression and expansion
near the inner and outer walls significantly modify the wave structures, their influence on
performance is negligible.

Table 5. Performance of RDE with different combustor widths.

w (mm) Isp ± SD (s) F± SD (N) Vo± SD (m/s) Vi ± SD (m/s)

1 147.4 ± 0.78 59.7 ± 0.18 1975.43 ± 0.34 1876.66 ± 0.33
3 147.2 ± 0.38 169.1 ± 0.22 2066.44 ± 1.08 1756.4 ± 0.92
6 148.9 ± 0.32 315.5 ± 0.33 2374.99 ± 6.07 1662.4 ± 4.25
9 151 ± 0.9 439.7 ± 0.62 2960.41 ± 8.23 1628.23 ± 4.52

4.3. Effect of Inner Radius with Fixed Injection Area

In the experimental apparatus, the injectors are sometimes located only near the outer
wall [18,41]. In this section, we investigate the impact of the inner radius on the system
while maintaining a constant injection area near the outer wall. We vary the inner radius
within a certain range to analyze its effects on the overall system performance. By keeping
the injection area constant (the width of the injection slot is winj = 3 mm near the outer
wall), we can isolate the influence of the inner radius and gain insights into its role in the
system dynamics. The test conditions are summarized in Table 2. A typical flow field
with the inner radius of 11 mm is shown in Figure 6. In this case, as the injector slot
is near the outer surface, the gas near the inner wall is filled with the burned gas from
previous cycles, forming a stratification structure. Similar to the findings in gaseous layered
detonations bounded by an inert gas with a small inert to reactant acoustic impedance
ratio [42], the difference in acoustic impedance results in a detached shock (DS) in the
burned gas that propagates ahead of the detonation wave. A transmitted oblique shock
(TS) links the detached shock with the detonation front. This transmitted shock seems
inadequate to directly ignite the gas. Additionally, from the pressure history at the outer
surfaces of the three cases (Figure 7a), the pressure peak is weaker for a smaller inner radius,
and the period of two successive peaks decreases (indicating higher rotating frequency).
The specific impulse also decreases for a smaller inner radius. It is further noted that for
cases with w = 6 mm and w = 9 mm, the specific impulse strongly fluctuates (Figure 7b),
with standard deviations of 4.4 s and 5.0 s, respectively.

4.4. Effect of Injector Location and Size

To further analyze the effect of the injector location, the injection patterns depicted
in Figure 1 are examined. The test conditions are listed in Table 3. While changing the
location of the injection slots, the widths of the injection slots are adjusted accordingly to
keep the area ratio of the injector to the head-end wall fixed. We resort to the cases with an
area ratio of 0.5, of which the pressure contours with density lines are plotted in Figure 8.
When the injector slot is positioned close to the inner wall, there are notable differences
compared to the case with an outer injector. The detonation wavefront appears visually
straight (Figure 8c), and there is a reduction in the distance between the detached shock and
the detonation front. From close observation of the case in which the injector slot is located
in the middle, DS-TS structures exist on both sides of the detonation wave (Figure 8d). All
three cases demonstrate relatively stronger fluctuations in specific impulses compared to
the scenario with full injection. The standard deviations for the inner, middle, and outer
injector cases are 5.6 s, 2.1 s, and 4.1 s, respectively.
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(a) (b)

Figure 6. (a) Density contour and (b) temperature contour for inner radius of 11 mm (w = 9 mm).

(a) (b)

Figure 7. (a) Pressure record at the point near the inlet at the outer wall and (b) specific impulse
when varying the radius of the inner wall. The injection slot is 3 mm near the outer wall.

In addition, we utilize the total pressure as a measure of the system’s capacity to
perform work. This is calculated using the equation

pt = p
(

1 +
γ− 1

2
M2
) γ

γ−1
, (10)

where M is the Mach number. However, it is crucial to accurately define the total pressure
for an unsteady system [30]. To achieve this, we adopt the mass-weighted average total
pressure (MAP) definition proposed by Wen et al. [43]. This Eulerian-based definition has
been shown to be equivalent to the Lagrangian-based definition in stable RDEs. This ap-
proach enables us to accurately provide a reliable metric for comparison between different
injection patterns. The MAP is obtained through integration over a specified surface:

Pt(z) =

∫
S ρ(x, y, z)ω(x, y, z)Pt(x, y, z)dA∫

S ρ(x, y, z)ω(x, y, z)dA
(11)
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As depicted in Figure 9, all four cases, whether full or partial injections, exhibit a
higher total pressure at the exit (z = 40 mm) of the combustor compared to the inlet
(z = 0 mm), a testament to the pressure gain combustion. In the case of full injection, there
is approximately a 67% pressure gain in comparison to the total pressure near the inlet.
The total pressure increases from the inlet until reaching a peak, which roughly corresponds
to the triple point of the detonation wave with the contact discontinuity. Following the peak,
the total pressure gradually decreases due to nonisentropic expansion and interactions
with shocks. This variation in total pressure aligns well with the trends observed in the
theoretical work by Wen et al. [43].

(a) (b)

(c) (d)

Figure 8. Pressure contour with density lines. (a) Outer injection slot, (b) enlarged contour of (a),
(c) inner injection slot, and (d) middle injection slot.

However, when comparing the total pressure to the stagnation pressure of the gas
reservoir, there is still approximately a 29% pressure loss, even in the case of full injection.
This can be attributed to the characteristics of the injectors used. Only injectors with
relatively large area ratios can provide significant pressure gains [44], but this also increases
the risk of poor isolation of the mixture in the plenum from the gas and waves originating
from the combustor in practical applications. Careful design is necessary to achieve a total
pressure gain while preventing backflow from the hot gas to the supply manifold [45–47].
To demonstrate, in the case of full injection using a micro-Laval nozzle with an area
ratio of A∗/A = 0.5, the pressure loss across the inlet boundary is significantly reduced,
resulting in a net pressure gain of 32% compared to the stagnation pressure in the reservoir.
Additionally, it should be noted that the full injection case with a 6 mm channel width
exhibits a similar total pressure distribution to that of the 9 mm case. This further supports
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the previous finding that the channel width alone does not have a significant impact on the
performance of the RDE.

Figure 9. The distribution of total pressure along the axial direction. Typical pressure gain relative to
the total pressure near the inlet is provided, together with that relative to the stagnation pressure in
the reservoir in the brackets.

The effect of the injection location on the total pressure can be explained by analyzing
time-averaged contours across the combustor channel and variable distributions near
the head-end wall. Figure 10 represents the time-averaged contour, which is obtained by
averaging the data azimuthally over the entire RDE. In the case of full injection, the injected
reactant and the heat release are nearly uniform along the radial direction. However,
the partial injection cases show varying degrees of inhomogeneities. This indicates that,
apart from the lack of confinement in the axial direction, the detonation waves in these
partial injection cases also suffer additional losses due to the presence of bounded inert gas
in the radial direction. This observation is further supported by the measured detonation
velocity, where the case with middle injection demonstrates approximately 91% of the
velocity achieved in the full injection case. Figure 11 plots the total pressure and injection
Mach number distributions along the centerline at the bottom of the channel, with the
detonation propagating from left to right (azimuthally). The weaker detonation wave in
the middle injection case leads to lower pressure compared to the others. In the studied
cases, the micro-Laval nozzles at the inlet boundary operate at the choking condition.
However, with the collective impact of the velocity deficit, the extra expansion caused by
the bounded inert layers after passing through the detonation wave, and the absence of
strong reflected shock trains as in the full injection case, the pressure rapidly drops to a
lower value (Figure 11b). Consequently, the partial injection cases experience a stronger
total pressure loss in the inlet gas. In summary, it can be stated that the confinement
provided by hot burnt gas, as opposed to a rigid wall, in partial injection scenarios leads to
a reduction in post-detonation pressure and an elevation in total pressure loss.
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(a) (b)

Figure 10. (a) Averaged density profile along the radial–axial plane and (b) averaged heat release
rate for channel width of 9 mm with different injection patterns. The dashed lines indicate the top of
the detonation wave.

(a) (b)

Figure 11. Total pressure and injection Mach number distributions along the centerline. (a) Full
injection, (b) middle injection with α = 0.5.

The performance of the RDEs when the area ratio of the injector to the head-end wall
ranged from 0.33 to 0.75 and with different injector locations is summarized in Figure 12,
along with the data of the full injection case. Once again, the RDEs with non-ideal injection
conditions are prone to large fluctuations in specific impulse. It is also evident that the
area ratio between the injection slot and the head-end wall is the most critical factor
in determining the specific impulse. In contrast, the injector locations appear to cause
minor changes.

4.5. Effect of Stagnation Pressure and Area Ratio of the Injector Nozzle

In this section, RDEs with a stagnation pressure of 20 atm or with a nozzle area ratio
of 0.1 are simulated (Table 4). Figure 13 displays the specific impulses corresponding
to different area ratios of the injector to the head-end wall. The observation of similar
trends in all three scenarios suggests a conjectured universality regarding the positive
correlation between the area ratio of the injection slot to the head-end wall and the loss in
specific impulse, as discussed in the previous section. It is worth noting that for higher
stagnation pressure, the percentage of specific impulse loss compared to the full injection
scenario is smaller. To elucidate, at an area ratio α = 0.33, the specific impulse for the
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“20 atm− A∗/A = 0.2” scenario is about 79% compared to that with the ideal injector,
while it is 65% for the “10 atm− A∗/A = 0.2” scenario and 54% for the “10 atm− A∗/A =
0.1” scenario.

Figure 12. Specific impulses as a function of area ratio of the injector to the head-end wall with
different injector locations. P0 = 10 atm, A∗/A = 0.2. Error bars indicate the standard deviations.

Figure 13. Influence of stagnation pressure and area ratio of the injector nozzle on specific impulse.
For all the cases, the injector slot is located near the outer wall. Error bars indicate the standard deviations.

5. Conclusions

The present paper extended the three-dimensional upwind CESE method to solve
the RDE problems in cylindrical coordinates. In particular, the effects of the combustor
width and area ratio of the injection slot to the head-end wall on the dynamic features and
propulsion performance were quantitatively determined. For the cases with ideal injection,
by increasing the combustor width, the velocity measured on the outer wall is increased.
It should be noted that this velocity does not correspond to the detonation velocity as the
wavefront is inclined to the wall. On the other hand, the wavefront near the inner wall
appears to be nearly perpendicular to it. Moreover, the measured detonation velocity in this
region is observed to be smaller than the CJ value. This velocity deficit is more significant
when decreasing the radius of the inner wall. However, there seems to be no significant
influence on the propulsion performance. For the cases where the injector occupies only
part of the head-end wall, due to the difference in the impedance of the burned gas and
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fresh reactant, the wave structures are different from the cases with ideal injectors, and the
stratification of burned and fresh gas can be observed near the head-end wall. The total
pressure loss for the cases with partial injection can be primarily attributed to the presence
of bound inert gas. Furthermore, the specific impulse decreases compared to the ideal
cases. With the geometry of the RDE fixed, the specific impulse is measured to be mainly
dependent on the area ratio between the injector slot and the head-end wall, regardless of
whether the injector slot is located at the inner, outer, or middle head-end wall. The drop in
specific impulse manifests less severely at higher stagnation pressure. These numerically
gathered data are anticipated to provide useful insights for the formulation of guidelines
that can aid in the design of practical RDEs.
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Appendix A. 3D CESE Method

Appendix A.1. Upwind CESE Method on 3D Meshes

The CESE unifies the treatment of space and time and uses a staggered time marching
strategy. To be specific, each timestep is divided into two half-steps, i.e., the 1st and 2nd
half-steps. Initially, the values (both conservative variables and their spatial derivatives)
are known at the vertices of each computational cell, e.g., A1∼A8 (at step n) in Figure A1a.
For the 1st half-step, the values at the center of the cell (P∗) need to be computed. For the
2nd half-step, the values are updated at the vertices (Ai) based on the values at the centers
(Pi). The approaches in advancing these two half-steps are in a similar manner. Without loss
of generality, here, we illustrate the procedure for advancing the 1st half-step. For easy
description, B1∼B12 are the midpoints of corresponding grid edges, and C1∼C6 are the
centroids of corresponding surfaces. We use superscript ∗ to denote the grid point in the
next half-step (step n + 1/2). The conservation element (CE) of the 3D CESE is defined as
a Euclidean four-dimensional (4D) space-time region (Figure A1b). For example, the CE
corresponding to P∗(denoted as CE(P∗)) is A1 A2 . . . A7 A8− A∗1 A∗2 . . . A∗7 A∗8 . Consequently,
the term surface of a CE in the context mentioned below refers to a 3D hexahedron,
e.g., A2 A3 A6 A7 − A∗2 A∗3 A∗6 A∗7 as the right-side surface of CE(P∗).

Furthermore, it is worth noting that every CE can be subdivided into eight subordi-
nate CEs (sub-CE). Each sub-CE is associated with one vertex Ai and encompasses eight
surfaces within the four-dimensional space (Figure A1c). For instance, the sub-CE asso-
ciated with A2 is A2B2C1B1C2B6C3P − A∗2 B∗2 C∗1 B∗1 C∗2 B∗6 C∗3 P∗, and its eight surfaces are
(1) B1 A2B2C1−C2B6C3P, (2) B∗1 A∗2 B∗2 C∗1 −C∗2 B∗6 C∗3 P∗; outer surfaces that are on the exterior of
CE(P∗), including (3) B1 A2B2C1 − B∗1 A∗2 B∗2 C∗1 , (4) B1 A2B6C2 − B∗1 A∗2 B∗6 C∗2 , (5) A2B2C3B6−
A∗2 B∗2 C∗3 B∗6 ; and inner surfaces that are separated from the neighbor sub-CEs, includ-
ing (6) C2B6C3P − C∗2 B∗6 C∗3 P∗, (7) C1B2C3P − C∗1 B∗2 C∗3 P∗, and (8) B1C1PC2 − B∗1 C∗1 P∗C∗2 ,
respectively. The solution element (SE) of P∗ is defined as A∗1 A∗2 A∗3 A∗4 A∗5 A∗6 A7

∗A∗8 −
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A∗∗1 A∗∗2 A∗∗3 A∗∗4 A∗∗5 A∗∗6 A∗∗7 A∗∗8 , where superscript ∗∗ denotes the point at step n+ 1. Within
each SE, the conserved variables and fluxes are assumed to be linearly distributed.

(a)

(b) (c)
Figure A1. (a) Mesh arrangement in three-dimensional CESE method. A denotes the vertex; B and C
denote the centers of line segments and surfaces, respectively; P is the staggered point that needs to
be solved in the 1st half-step. (b) Definitions of CE. (c) Definition of sub-CE, with one outer flux FR,2

and one inner flux FL,2.

Below, we impose the space-time flux balance over the mth sub-CE,∮
S
H · ds =

∫
CEm

ŝgdv, (A1)

where H = (F̂, Ĝ, Ĥ, Û), and ds = dδ · n, with dδ being an infinitesimal area and n the
corresponding unit outward normal vector. The integration over the surfaces of each
sub-CE can be achieved with the multiplication of the surface area and the average flux on
that surface. For the second-order scheme, the average flux is the value at the centroid of
the surface and is computed by the first-order Taylor expansion. For the purpose of clarity
and simplicity in our illustrations, we will omit the use of hat symbols. The dimensions in
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the subsequent paragraphs will also be denoted as x, y, and z. Therefore, the integration of
the surfaces of the sub-CE associated with A2 can be written as

∆x∆y∆z
8

U∗2 −
∆x∆y∆z

8
U2 +

∆y∆z∆t
4

FR,2 −
∆y∆z∆t

4
FL,2 +

∆x∆z∆t
4

GB,2−

∆x∆z∆t
4

GF,2 +
∆y∆x∆t

4
HU,2 −

∆y∆x∆t
4

HD,2 =
∆x∆y∆z∆t

8
Sg,2,

(A2)

where U2, U∗2 , HD,2, HU,2, GF,2, GB,2, FR,2, and FL,2 are the average values of surfaces
B1 A2B2C1 − C2B6C3P, B1

∗A2
∗B2
∗C1
∗ − C2

∗B6
∗C3
∗P∗, B1 A2B2C1 − B1

∗A2
∗B2
∗C1
∗,

C2B6C3P−C2
∗B6
∗C3
∗P∗,B1 A2B6C2− B1

∗A2
∗B6
∗C2
∗,C1B2C3P−C1

∗B2
∗C3
∗P∗, A2B2C3B6−

A2
∗B2
∗C3
∗B6
∗, and B1C1PC2− B1

∗C1
∗P∗C2

∗, respectively. Sg,2 is the average value of the
source term at the center of the 4D space A2B2C1B1C2B6C3P− A2

∗B2
∗C1
∗B1
∗C2
∗B6
∗C3
∗P∗,

and ∆t = tn+1/2 − tn.
The equation presented above can be further rearranged as

(U∗2 −U2) +
2∆t
∆x

(FR,2 − FL,2) +
2∆t
∆y

(GB,2 −GF,2) +
2∆t
∆z

(HU,2 −HD,2) = ∆tSg,2, (A3)

where U2, FR,2, GF,2, and HD,2 can be computed by first-order Taylor expansion, such that

U2 = X
(

U(A2),−
∆x
4

,
∆y
4

,
∆z
4

, 0
)

,

FR,2 = X
(

F(A2), 0,
∆y
4

,
∆z
4

,
∆t
2

)
,

GF,2 = X
(

G(A2),−
∆x
4

, 0,
∆z
4

,
∆t
2

)
,

HD,2 = X
(

H(A2),−
∆x
4

,
∆y
4

, 0,
∆t
2

)
,

and X(M, a, b, c, d) = M + aMx + bMy + cMz + dMt,

(A4)

where the flux terms F(A2), G(A2), and H(A2) are evaluated at the vertex A2, and the
derivatives of the flux are computed using the chain rule, such as Fx = ∂F/∂U · Ux.
Analogously, the average value of the source is computed as

Sg,2 = X
(

Sg(A2),−
∆x
4

,
∆y
4

,
∆z
4

,
∆t
2

)
. (A5)

The other fluxes, FL,2, GB,2, and HU,2, however, are the fluxes across the inner bound-
aries between two adjacent sub-CEs. Since the variables across the inner surfaces can
be discontinuous, these inner fluxes are computed as local Riemann problems. The two-
dimensional CESE schemes on hybrid unstructured meshes with local Lax–Friedrichs flux
(LLF CESE) have been shown to be less dissipative than the Courant-number-insensitive
(CNI) CESE scheme [23]. To ensure simplicity without compromising accuracy, LLF flux is
adopted here as the inner flux of the three-dimensional scheme; for example,

FL,2 =
1
2
[Fl + Fr − |un + c|max(Ur −Ul)], (A6)

where un and c denote the normal velocity and the speed of sound, respectively. The sub-
scripts l and r indicate that the values at the centroid of B1C1PC2 − B∗1 C∗1 P∗C∗2 are recon-
structed either from left or right SEs,

Ur = U2 −
∆x
4

U2,x +
∆t
2

U2,t,

Ul = U1 +
∆x
4

U1,x +
∆t
2

U1,t.
(A7)
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where U1 and U2 are values at the centroids of A1B1C1B4 − B5C2PC5 and A2B2C1B1 −
B6C3PC2 approximated by Taylor expansions from A1 and A2, respectively. In order to sup-
press spurious oscillations, U1,x and U2,x are reconstructed with the WBAP limiter [22,48]. It
should be noted that the values of derivatives are only stored in the computational domain,
and it is not necessary to transform back into the physical domain. With the estimations
of Ul and Ur, Fl , Fr, and FL,2 can be easily computed. The computation procedures of GB,2
and HU,2 bear resemblance to those of FL,2 and are omitted here.

Likewise, the discrete form for the ith sub-CE (i = 1∼8) is summarized here:

(U∗i −Ui) +
2∆t
∆x

(FR,i − FL,i) +
2∆t
∆y

(GB,i −GF,i) +
2∆t
∆z

(HU,i −HD,i) = ∆tSg,i. (A8)

Moreover, the inner fluxes across two neighboring sub-CEs have the same magnitude,
e.g., FR,1 = FL,2. By adding the discrete Equation (A8) of all the sub-CEs, the inner flux
terms are balanced,

U(P∗) =
1
8

8

∑
i=1

U∗i =
1
8


2∆t
∆x (FL,1 − FR,2 − FR,3 + FL,4 + FL,5 − FR,6 − FR,7 + FL,8)

+ 2∆t
∆y (GF,1 + GF,2 −GB,3 −GB,4 + GF,5 + GF,6 −GB,7 −GB,8)

+ 2∆t
∆z (HD,1 −HD,2 −HD,3 −HD,4 −HU,5 −HU,6 −HU,7 −HU,8)

+∑8
i=1
(
Ui + ∆tSg,i

)
. (A9)

Next, to calculate the spatial derivatives, one can approximate them by differencing
the averaged values of U∗i evaluated from two adjacent sub-CEs at the updated timestep.
By differencing U∗1 and U∗2 , one obtains

U(1)
x (P∗) =

2
(
U∗2 −U∗1

)
∆x

. (A10)

Using the same approach, one can derive U(2)
x (P∗) by U∗4 and U∗3 , U(3)

x (P∗) by U∗5 and

U∗6 , and U(4)
x (P∗) by U∗8 and U∗7 . Then, Ux(P∗) is finally computed with a limited average:

Ux(P∗) = β1
5 + β2

5 + β3
,

β1 =
1
4

4

∑
i=1

U(i)
x (P∗), β2 =

4

∑
i=1

∣∣∣∣∣ β1

U(i)
x (P∗)

∣∣∣∣∣, β3 =
4

∑
i=1

(
β1

U(i)
x (P∗)

)2

.
(A11)

The same approach can be used to calculate Uy(P∗) and Uz(P∗).

Appendix A.2. Numerical Outline for 3D Upwind CESE Method

The above calculation procedure of the three-dimensional upwind CESE scheme can
be condensed into the following steps.

1. At time tn, U and its spatial derivatives Ux, Uy, Uz are known and stored at cell
vertices Ai.

2. The temporal derivative Ut at vertices Ai is calculated by Equation (8).
3. At the 1st half-timestep (tn → tn+1/2), the average fluxes across outer surfaces

are computed by Taylor expansion as in Equation (A5); the average fluxes across inner
surfaces are computed as a local Riemann problem with reconstructed derivatives as in
Equations (A7) and (A8).

4. Update U at cell centers Pi with Equation (A9) and its derivatives (Ux, Uy, and Uz)
with Equations (A10) and (A11).

5. At the 2nd half-timestep (tn+1/2 → tn), repeat step 2∼4 on the cell centers to obtain
the values at the cell vertices.
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Appendix B. Validation of the 3D CESE Method in Cylindrical Coordinates

Appendix B.1. Sedov Blast Wave Problem

The Sedov point-blast wave problem describes the propagation of a spherical blast
wave. The size of the physical domain in curvilinear coordinates (r, θ, ξ) is [10, 12.4] ×
[0, 0.22] × [0, 2.4]. We set the ratio of specific heat as γ = 1.4, with initial condition
(ρ, u, v, p) = (1, 0, 0, 0.851072(γ− 1)/V0) at the center and (ρ, u, v, p) =

(
1, 0, 0, 10−8) oth-

erwise. Here, V0 denotes the volume of the center cell. The computational domains are
composed of 1203 and 2403 cells corresponding to average mesh sizes of 0.02 and 0.01,
respectively. The analytical solution at t = 1 yields the shock front at r = 1 with a density
peak of 6 [49,50]. As demonstrated in Figure A2, the results obtained with the 3D LLF
CESE scheme using coordinate transformation converge to the exact solution when refining
the mesh.

(a) (b)

Figure A2. The 3D Sedov blast problem in curvilinear coordinates. (a) Density contour, (b) density
profile as a function of radius.

Appendix B.2. 1D Detonation Velocity

To validate the code for a highly compressible reactive flow, a 1D detonation simulation
was performed using the developed 3D scheme (Figure A3). In this simulation, the variables
along two of the dimensions were maintained invariant, and uniform meshes with sizes of
0.2 mm and 0.1 mm were used. The initial conditions were set as T0 = 228 K, p0 = 0.29 atm;
other parameters of the gas were consistent with those described in Section 2. To initiate
the detonation, a narrow high-pressure and high-temperature region was added at the left
end. After stabilization, the average detonation velocity was found to be 1957.2 m/s, which
exhibits an error of only 0.06% when compared to the reference value [33]. This further
confirms the capability and reliability of the proposed scheme in accurately simulating
highly compressible reactive flow scenarios.
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Figure A3. Pressure history of the 1D detonation wave.
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