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Abstract: Microstructured materials, characterized by their lower weight and multifunctionality,
have great application prospects in the aerospace field. Optimization methods play a pivotal role
in enhancing the design efficiency of both macrostructural and microstructural topology (MMT)
for aircraft. This paper proposes a multiscale aeroelastic optimization method for wing structure
and material considering realistic aerodynamic loads for large aspect ratio wings with significant
aeroelastic effects. The aerodynamic forces are calculated by potential flow theory and the aeroelastic
equilibrium equations are solved through finite element method. The parallel design of the wing
MMT is achieved by utilizing the optimization criterion (OC) method based on sensitivity information.
The optimization results indicate that wing elastic effects reinforce the outer section of the wing
structure compared with the optimization results obtained under rigid aerodynamic forces. As the
optimization constraints become more rigorous, the optimization results show that the components
with larger loads are strengthened. Furthermore, the method presented in this paper can effectively
optimize the wing structure under complex boundary conditions to achieve a reasonable stiffness
distribution in the wing.

Keywords: microstructured material; macrostructural and microstructural topology; multiscale
aeroelastic optimization; aeroelastic effects

1. Introduction

Long-endurance vehicles typically use wings with large aspect ratios to achieve supe-
rior aerodynamic performance. The wings undergo considerable bending and torsional
deformation due to aerodynamic force, resulting in significant aeroelastic effects [1]. In
aircraft design, traditional design methods tend to introduce the undertaking of load analy-
sis and the consideration of aeroelasticity effects on the aircraft late in the design process,
leading to increased mechanical mass, reduced aerodynamic performance, and wasted
resources due to duplicate designs [2]. Therefore, modern design concepts propose fully
considering the impact of aeroelasticity during the initial aircraft design stage, maximizing
the utilization of structural deformation through optimization methods, and achieving a
lighter wing structure. In previous studies, aeroelastic optimization has usually included
the design of wing structural stiffness [3], the layout of the aerodynamic shape [4]. With
the advancement of computational techniques, topology optimization methods have been
widely used in aeroelastic optimization. This more efficient method has become a design
tool which aims to improve aircraft performance and reduce weight [5].

Topology optimization methods seek the optimal material layout in the reference
domain, in order to satisfy constraints and minimize the objective function. The current
topology optimization methods mainly comprise the level-set method (LSM) [6], evolu-
tionary structural optimization (ESO) [7], and solid isotropic material with penalization
(SIMP) [8,9]. The LSM provides precise mathematical derivations and a clear description
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of topological boundaries. Thus it is widely used in academic research [10]. The primary
difficulty of the conventional LSM is resolving the “Hamilton–Jacobi equation [11]”. Wang
et al. [12] used radial basis functions to interpolate the level-set function. This method is
known as the parameterized level-set method (PLSM). By separating the temporal and
spatial terms in the level-set function, the partial differential equations (PDEs) in optimal
control are transformed into ordinary differential equations. The PLSM has the advantage
of being both efficient and accurate.

Optimizing structural topology has the potential to enhance mechanical properties [13].
Based on this concept, researchers have considered designing microstructural topology
on the microscopic scale to optimize material properties. Macrostructural topology is
formed by stacking and mixing microstructured material to achieve an overall structure
with superior properties [14]. Rodrigues [15] pioneered the optimization of structural
performance by considering both “structure” and “material”. The first step is to design the
macrostructure, followed by optimizing the topological shape of the microstructured mate-
rial using the density of each finite element as the objective. Jie Gao et al. [16] investigated
the issue of multiscale topology optimization for 2D and 3D structures and materials. They
utilized SIMP with compliance as the objective function to obtain MMT and provided their
concise and efficient Matlab code. The characteristics of microstructured material align
well with the rigorous quality requirements of the aerospace industry, leading scientists
to explore their potential use in aircraft. An example of this is the work performed by
Cramer et al. [17], who utilized an octahedral-shaped microstructured material to create
the internal structure of a flexible vehicle. As a result, this vehicle’s mass density was found
to be lower than that of a bird-like vehicle. Microstructured material has also been used in
commercial aircraft wing structures [18] and hypersonic applications [19], demonstrating
favorable characteristics. In addition, Jenett et al. [20] designed two different microstruc-
tural topologies, aligned along the span and chord directions of the wing, to realize the
stiffness design of the wing. They also performed an aeroelastic analysis. Nevertheless, the
microstructural topology is based on empirical design and a fixed topology does not fully
exploit the properties of the microstructure material. Wang et al. [21] applied multiscale
topology optimization to tackle the internal structure design issue of the hypersonic vehicle
rudder in aerospace. They used the SIMP to obtain a hybrid structure with specific stiffness
exceeding that of the solid structure. However, the boundary conditions in the study
simplify the flight load to a uniformly distributed aerodynamic pressure, which does not
accurately reflect the realistic load experienced by the vehicle during flight.

Optimization methods have significant potential to increase the design efficiency of
MMT in aircraft. However, the aerodynamic load distribution of the aircraft during flight
is complex. The simplified boundary conditions of the optimization make difficulties in
applying the designed MMT. This paper presents a method for multiscale aeroelastic opti-
mization of the wing structure and material, in which both rigid and elastic aerodynamic
forces are considered separately for the boundary conditions of the optimization problem
to investigate the influence of elastic effects. The linearized aerodynamic potential flow
theory is used to calculate the rigid aerodynamic forces, and static aeroelastic response
equations are employed to calculate the elastic aerodynamic forces. The response equations
are solved using finite element method. The MMT is described using the PLSM, and the
equivalent elasticity matrix is calculated through the homogenization method, which is
then combined with the macrostructure topology to obtain the stiffness matrix. Sensitivity
calculations for the optimization problem are performed using numerical methods. The
optimization criterion method is used to iterate the design variables, enabling parallel
design of the wing’s MMT.

2. Methods
2.1. Homogenization Method

For microstructured material, analyzing boundary problems with a large number of
microstructural components is time-consuming and difficult. As a solution, the mechanical
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properties of these materials are often replaced with an equivalent material model. This
process, known as homogenization, is commonly used to simplify analysis [22]. From a
mathematical perspective, the theory of homogenization can be viewed as a limit theory
that uses asymptotic expansion and the assumption of periodicity to substitute differential
equations that have rapidly oscillating coefficients with differential equations whose coeffi-
cients are constant or slowly varying in such a way that the solutions are close to the initial
equations. Homogenization theory requires two conditions: (1) the microstructure must
be significantly smaller than the entire spatial domain, and (2) the material must have a
periodic arrangement of the microstructure. To describe all quantities within a microstruc-
tured material, two coordinate systems are employed: one on the macroscopic or global
coordinates (x), which indicates slow variations, and the other on the microscopic or local
coordinates (y), which describes rapid oscillations. Consequently, the displacement field in
the macroscopic material can be expressed through the two-scale asymptotic expansion of
the theory:

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · (1)

where ε is a small parameter that indicates the ratio between the length of a unit vector in
microscopic coordinates and the length of a unit vector in macroscopic coordinates.

According to the principle of virtual work and incorporating (1), the equivalent elastic
tensor of the lattice material can be expressed by considering only the first-order expansion
terms of the parameters:

EH
ijkl =

1
|Ω|

∫
Ω

Epqrs(ε
0(ij)
pq − ε

∗(ij)
pq )(ε

0(kl)
rs − ε

∗(kl)
rs )dΩ (2)

where |Ω| is defined as the area (2D) or volume (3D) of the microstructure, ε
0(ij)
pq and ε

0(kl)
rs

corresponds to the initial unit test strain fields, and ε
∗(ij)
pq and ε

∗(kl)
rs represent the response

strain of the microstructure, which is solved using the elastic balance equation:

1
|Ω|

∫
Ω

Eijpqε
∗(kl)
pq

∂vi
∂yj

dΩ =
1
|Ω|

∫
Ω

Eijpqε
0(kl)
pq

∂vi
∂yj

dΩ (3)

where vi is defined as virtual displacement. To solve equation, the microstructure is imposed
with the unit test strain fields and the periodicity condition is satisfied [23]. Consequently,
the displacement field can be expressed as follows:

ui = ε0
ijyj + u∗i (4)

where u∗i is the periodic fluctuation displacement field. This field is unknown and difficult
to solve. Hence, Equation (4) is transformed by the displacement constraint relation satisfied
by the corresponding points on the symmetric boundary:

uk+
i − uk−

i = ε0
ij4 yk

i (5)

where ∆yk
i = uk+

i − uk−
i denotes the length between corresponding points on the symmetric

boundary of the microstructure. According to (5), the boundary constraint equations of the
microstructure can be added directly. In addition, Equation (5) makes it possible to reduce
the linear elastic equilibrium equations and speed up the computational efficiency of finite
elements [24].

2.2. Parameterized Level-Set Methods

An LSM is an implicit method for describing structural boundaries [25]. The surface
is represented implicitly through a level-set function Φ(x), which is Lipschitz-continuous,
and the surface itself is the zero isosurface or zero level-set

{
x ∈ Rd|Φ(x) = 0

}
(d = 2, 3).
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In the present level-set-based shape and topology optimization method, the shape and
topology of a structure are described by a level-set function Φ(x) defined as:

Φ(x) > 0, ∀x ∈ Ω\Γ
Φ(x) = 0, ∀x ∈ Γ ∩ D
Φ(x) < 0, ∀x ∈ D\Ω

(6)

where D ∈ Rd is a fixed reference domain in which all admissible shapes Ω (a smooth
bounded open set) are included. Γ is denoted as the boundary of the structural topology
with level-set function of size 0.

Furthermore, the surface motion can be described by PDEs involving Φ(x). The normal
velocity V is used as the advection velocity in the following Hamilton–Jacobi equation:

∂Φ
∂t
−V|∇Φ| = 0 (7)

where t represents the pseudo time of the optimization. Therefore, the direction and
distance of the shape boundary movement can be determined by solving Equation (7).
However, obtaining analytical solutions for PDEs are difficult. In a Eulerian approach, a nu-
merical procedure for solving the Hamilton–Jacobi PDEs are indispensable. This procedure
requires an appropriate choice of upwind schemes, extension velocities and reinitialization
algorithms, which may limit the utility of the LSM. In order to solve the above problems,
an interpolation function is employed to enhance the accuracy and effectiveness of the
LSM. In this work, the compactly supported radial basis function (CSRBF), as presented by
Wendland, is adopted [26]:

φi(x) = (1− r)4 · (4r + 1) (8)

where r is the radius of support defined in a two-dimensional Euclidean space, as:

r =
dI

dmI
=

√
(x− xi)

2

dmI
(9)

where dI denotes the Euclidean distance between the current sample knot x and the knot
xi within the whole reference domain. The parameter dmI defines the size of the influence
domain of the sample knot. The level-set function is obtained by using a series of CSRBFs
with interpolation of N different knots. The parameterized level-set function is denoted
as [27]:

Φ(x, t) =
N

∑
i=1

αi(t)φi(x) (10)

where αi is the expansion coefficients of the CSRBF at the ith knot, which is only dependent
on time. Thus, (10) can be expressed in the form of a matrix:

Φ(x, t) = ϕ(x)T
α(t) (11)

where:
ϕ(x) =

[
φ1(x) φ2(x) · · · φN(x)

]T (12)

α(t) =
[

α1(t) α2(t) · · · αN(t)
]T (13)

The topological control equations based on the CSRBF function can be obtained by
bringing the parameterized level-set into Equation (7):

ϕ(x)T dα(t)
dt
−V

∣∣∣(∇ϕ(x))T
α(t)

∣∣∣ = 0 (14)
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The decoupling of the temporal and spatial terms can be realized through the PLSM.
In addition, the time-varying initial value problem is transformed into a relatively simple
generalized expansion coefficient initial value interpolation problem. This can greatly
improve the optimization efficiency [28].

2.3. Multiscale Aeroelastic Optimization Method for Wing Structure and Material

Mass is a crucial factor in evaluating the performance of a flying vehicle. Topology
optimization proves to be an efficient method, enabling the vehicle to fulfill the stiffness
requirement while reducing its weight. The aerodynamic loading on a large aspect ratio
wing leads to a significant aeroelastic effect. The distribution of aerodynamic loads
is influenced by the elastic effect. Therefore, it is necessary to consider the influence
of the elastic effect in the multiscale optimization problem of aircraft wings’ structure
and material.

In this paper, a multiscale aeroelastic optimization method is established for
large aspect ratio wings. The optimization framework is depicted in Figure 1 and
consists of three primary steps: finite element model updating, aeroelastic analysis, and
optimization iteration.
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Figure 1. Framework of multiscale aeroelastic optimization method.

Finite element model updating occurs in two steps. First, the equivalent elasticity
matrix of the microstructured material is computed using the homogenization method
based on the microstructure level-set function. Second, the stiffness matrix of the overall
structure is obtained based on the level set function of the macrostructure. The mechanical
properties of the material are defined by employing the previously obtained equivalent



Aerospace 2023, 10, 866 6 of 22

elasticity matrix. For aeroelastic analysis, the linearized aerodynamic potential flow theory
is utilized to determine the rigid aerodynamic forces. The static aeroelastic response
equations are solved to obtain the elastic aerodynamic force and elastic deformation. From
the aeroelastic analysis results, the values for the objective and constraint functions can
be determined. Optimization iterations begin with a numerical method to obtain the
sensitivity values of the objective and constraint functions to the macro and micro design
variables. Next, the OC method is used to iterate the design variables and finally the
optimization is stopped until the convergence condition is satisfied.

2.3.1. Macro- and Microstructure Design Variables

The structural and material optimization problem is divided into two problems accord-
ing to scale. The microscopic scale is used in designing the topology of the microstructure.
Different microstructural topologies produce different equivalent elastic matrices and there-
fore have an impact on the overall stiffness. The macroscopic scale is used in designing the
topology of the overall structure and is analogous to traditional structural topology opti-
mization. By filling the reference domain with materials to form a more efficient structure,
better objective performance is achieved. The macroscopic scale of the multiscale optimiza-
tion problem determines the overall structure and defines the existence of microstructure.
The microscopic scale determines the microstructural topology and governs the equivalent
properties of the microstructured material. During the optimization process, the MMT is
iterated simultaneously to approximate optimal objective performance.

The objective of multiscale optimization includes both macrostructural and microstruc-
tural topology. Thus, it is necessary to define multiple level-set functions that describe the
topology of these structures. The level-set functions are represented as follows:


ΦM(x) > 0, ∀x ∈ ΩM\ΓM
ΦM(x) = 0, ∀x ∈ ΓM
ΦM(x) < 0, ∀x ∈ DM\ΩM
Φm(y) > 0, ∀y ∈ Ωm\Γm
Φm(y) = 0, ∀y ∈ Γm
Φm(y) < 0, ∀y ∈ Dm\Ωm

(15)

where ΦM and Φm are the level-set functions of the macrostructural and microstructural
topology, respectively. ΩM, ΓM, and DM represent the design domain, structural boundaries,
and reference domain of the macrostructure. Ωm, Γm, and Dm represent the design domain,
structural boundaries, and reference domain of the microstructure.

The level-set functions are interpolated for the MMT using CSRBFs. The parameterized
level-set is interpolated in the following form:

ΦM(x, t) =
N
∑

i=1
φi(x)αi

M(t)

Φm(y, t) =
n
∑

j=1
φj(y)α

j
m(t)

(16)

where φi(x) and αi
M(t) represent the CSRBFs and the expansion coefficients of the macrostruc-

ture, respectively. φj(x) and α
j
M(t) represent the CSRBFs and the expansion coefficients of

the microstructure, respectively. The N and n interpolation points have been selected for
the macro and micro level-set functions, respectively.

2.3.2. Optimization Model

For static stiffness design, the problem of topology optimization can be described as
minimizing the compliance of the structure under a given load, where both the macrostruc-
ture and microstructure satisfy the volume constraints. Thus, the minimum compliance
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problem, which is based on parameterized level-sets, can be expressed as the following
mathematical model:

Minimize : J(u, Φ) =
∫

DM
ε(uM)EH(um, Φm)ε(uM)H(ΦM)dΩM

s.t.



a(ΦM, uM, vM, EH) = l(ΦM, vM), ∀vM ∈ H(ΩM,Rd)
a(Φm, um, vm) = l(Φm, vm), ∀vm ∈ H(Ωm,Rd)
GM(ΦM) =

∫
DM

H(ΦM)dΩM −VM ≤ 0
Gm(Φm) =

∫
Dm

H(Φm)dΩm −Vm ≤ 0

αmin
M ≤ αi

M ≤ αmax
M ; αmin

m ≤ α
j
m ≤ αmax

m

(17)

where J represents compliance, which is used as the optimization objective in this pa-
per. GM(ΦM) and Gm(Φm) represent the volume constraints of the macrostructure and
microstructure, respectively. The maximum volume allowed in the optimization are in-
dicated by VM, Vm, αi

M, and α
j
m are the expansion coefficients, which are used as design

variables. uM and um are the displacement fields for the macrostructure and microstructure,
respectively. vM and vm represent the virtual displacement fields. EH refers to the equiva-
lent elastic tensor. The heaviside function H(ΦM) is determined by the level-set function
and signifies the presence of material at each point. Equations for linear elastic equilibrium
are written in a weakly solved form based on the energy bilinear form a(ΦM, uM, vM, EH)
as well as the load linear form l(ΦM, vM). The specific forms are defined as:{

a(ΦM, uM, vM, EH) =
∫

DM
ε(uM)EH(um, Φm)ε(vM)H(ΦM)dΩM

l(ΦM, vM) =
∫

DM
fMvM H(ΦM)dΩM +

∫
DM

pMvMδ(ΦM)|∇ΦM|dΩM
(18)

where f M and pM represent the body and surface forces, respectively.
The static problem involves constant body and surface forces, resulting in constant

boundary conditions throughout the optimization process. In contrast, the aeroelastic
optimization problem involves the elastic deformation of the wing structure due to aero-
dynamic forces, resulting in the redistribution of aerodynamic forces. As the volume
constraint decreases, reducing wing stiffness, the elastic effect becomes increasingly pro-
nounced, resulting in a significant distinction between the elastic and rigid aerodynamic
forces. The boundary conditions of the optimization problem under realistic flight loads
are constantly changing. Equation (18) is transformed into finite element form based on
the principle of virtual work. The linear elastic equilibrium equations are expressed under
flight loads as:

KuM = FA − FI (19)

where K is the stiffness matrix of the structure, FI represents the inertial force load vector,
which is generated by the acceleration of the rigid body motion, FA represents the aero-
dynamic force load vector. The aerodynamic loads include rigid aerodynamic forces and
additional aerodynamic forces caused by the elastic deformation of the structure. Hence,
according to Equation (19), the static aerodynamic elastic response equation of the aircraft
can be obtained as:

(K− qQa)uM = qQxux + FI (20)

where qQauM represents the aerodynamic forces caused by the elastic deformation of
the structure, qQxux represents the aerodynamic forces generated by flight parameters
such as the angle or rudder deflection. By solving (20) using finite element method,
flight parameters, structural deformation, and elastic aerodynamic force distribution can
be obtained.

Rigid aerodynamic computational methods for aeroelastic analysis can be categorized
into linear and nonlinear methods. Among these, the surface element method, based on
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the linearized aerodynamic potential flow theory, is suitable for optimization problems and
enables quick calculation of the rigid aerodynamic loads. It follows a specific format:

(1−Ma2
∞)

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 +
∂2 ϕ

∂z2 = 0 (21)

where Ma∞ is defined as the Mach number and ϕ represents the perturbation velocity
potential. Equation (21) is solved with the doublet-lattice method (DLM), which considers
the wing as a plane and divides the mesh. Different fundamental solutions are defined
in each mesh and results are obtained for the velocity potential based on the boundary
conditions. The velocity potential provides the perturbed velocity, which is then used to
solve the pressure distribution through Bernoulli’s equation.

2.3.3. Sensitivity Analysis

In aeroelastic optimization, the first-order derivatives of the objective with respect to
the macroscopic expansion coefficients are computed by using the shape derivative, stated
as [29,30]:

∂J
∂αM

=
∫

DM

β(uM, EH)ϕT(x)δ(ΦM)dΩM (22)

where δ(ΦM) is the partial derivative of the Heaviside function, namely the Dirac delta
function. The specific form of β(uM, EH) is as follows:

β(uM, EH) = 2(qQxux + FI)uM − ε(uM)EHε(uM) (23)

Similarly, the first-order derivative of the macroscopic volume constraint with respect
to the macroscopic expansion coefficients can be computed in the following form:

∂GM
∂αM

=
∫

DM

ϕT(x)δ(ΦM)dΩM (24)

The first-order derivative of the objective function with respect to the microscopic
expansion coefficients is

∂J
∂αm

=
∫

DM

ε(uM)
∂EH

∂αm
ε(uM)H(ΦM)dΩM (25)

where ∂EH

∂αm
is the first-order derivative of the equivalent elasticity tensor with respect to

microscopic expansion coefficients in the following form:

∂EH

∂αm
= − 1
|Ωm|

∫
Dm

Epqrs(ε
0(ij)
pq − εpq(u

ij
m))(ε

0(kl)
rs − εrs(ukl

m))ϕ
T(y)δ(Φm)dΩm (26)

Similarly, the first-order derivatives of the microscopic volume constraint with respect
to microscopic expansion coefficients can be computed in the following form:

∂Gm

∂αm
=
∫

DM

ϕT(y)δ(Φm)dΩm (27)
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Here, the OC algorithm is used to update the design variables in the multiscale design.
The details for updating the mechanism in the OC method are described in [31]. The update
scheme for the microscopic expansion coefficients is shown below:

α
i(k+1)
M =



min(αi(k)
M + χM, αmax

M ) i f
{

min(αi(k)
M + χM, αmax

M ) ≤ (Ki(k)
M )

ζM
α

i(k)
M

}
(Ki(k)

M )
ζM

α
i(k)
M i f

 max(αi(k)
M − χM, αmin

M ) <

(Ki(k)
M )

ζM
α

i(k)
M < min(αi(k)

M + χM, αmax
M )


max(αi(k)

M − χM, αmin
M ) i f

{
(Ki(k)

M )
ζM

α
i(k)
M ≤ max(αi(k)

M − χM, αmin
M )

} (28)

where α
i(k+1)
M represents the value of the ith expansion coefficient of the macrostructure in

the (k+1)th step. χM represents the move limit of the macroscopic design variable, which
determines the limit of variation in the level set function. ζM is the damping factor. Ki(k)

M is
the updating factor of the ith design variable of the macrostructure in the kth step, which is
denoted as:

Ki(k)
M = − ∂J

∂α
i(k)
M

/
max(µ, Λ(k)

M
∂GM

∂α
i(k)
M

) (29)

where µ is a small value, in order to avoid an updating factor denominator of 0. Λ(k)
M is the

lagrange coefficient of the kth step of the macrostructure. Similarly, an updated iteration
scheme for the microscopic expansion coefficients can be obtained.

3. Results
3.1. Cantilever Beam

In this example, the cantilever beam is used to study the efficiency of the proposed
multiscale topology optimization method. As displayed in Figure 2, the reference domain
for the macrostructure is a rectangular area measuring 100 mm × 50 mm, whereas the
reference domain for the microstructure is a square area measuring 1 mm × 1 mm. The
left side of the beam has a fixed boundary condition, whereas the right side is subjected to
symmetrical load. Steel, with a modulus of elasticity of 7.1 × 104 MPa and Poisson’s ratio
of 0.33, is selected as the material for the microstructure.
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where ( 1)i k
Mα +  represents the value of the ith expansion coefficient of the macrostructure 
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where µ is a small value, in order to avoid an updating factor denominator of 0. ( )k
MΛ  is 
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Figure 2. Macrostructural and microstructural reference domains. Dimension are shown in millime-
ters: (a) schematic of the cantilever beam; (b) the reference domains of the microstructure.

This example is based on an optimization problem with fixed loads. The objective
function is used to minimize the compliance of the structure. The maximum volume
constraints VM and Vm are defined as 40% and 30%, respectively. The macrostructure
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is discretized using 1 × 1 four-node rectangular finite elements, and 0.02 × 0.02 finite
elements are used to discretize the microstructures. In the OC method, the move limits χM
and χm are 0.01 and 0.005, respectively, with a damping factor ζM of 0.3. Macrostructures
and microstructures reach the volume constraints after 100 steps.

In addition, the traditional PLSM is utilized to optimize the cantilever beam structure
and investigate the similarities and differences between single-scale and multiscale opti-
mization. For single-scale optimization, a volume constraint of 0.12 is imposed to maintain
the same mass as multiscale optimization.

The iterations of the objective functions and constraints are displayed in Figure 3. The
blue line illustrates the convergence process of the multiscale optimization, and the red
line illustrates the convergence process of the single-scale optimization. Figure 3a shows
that the multiscale topology optimization requires more steps for convergence than the
single-scale topology optimization due to the greater number of design variables. In the
first 100 steps of optimization, the objective functions gradually increase as the volume
constraints decrease. Once these 100 steps are completed, the volume constraints maintain
a constant value, while the objective gradually decreases throughout the iteration. It should
be noted that the stiffness of the single-scale topology is greater than that of the multiscale
topology for the same mass. It is shown that the stiffness properties of a single type of
microstructured material are not as good as those of solid materials, and this conclusion is
consistent with the results of [32]. Figure 3b shows the macrostructural volume (MAV) and
microstructural volume (MIV) for multiscale optimization as well as the structural volume
(MV) for single-scale optimization. The results show that the mass of both multiscale and
single-scale optimized structures are significantly reduced in comparison with that of the
initial structure.
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Figure 3. Optimization convergence diagram of algorithms: (a) the objective function; (b) the
volume constraint.

The optimization results at different steps are demonstrated in Figures 4 and 5, with
both multiscale and single-scale methods used. Results indicate similar trends in the
optimization iterations for both macrostructures. The final structure exhibits a truss-like
design with a thicker top and bottom, and a middle section formed by a connected beam-
like structure. The final masses for multiscale and single-scale optimization are equivalent.
The multiscale optimization employs less dense microstructured material, resulting in a
larger macro volume.
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The optimized microstructural topology features two thicker beam-like structures
in the X-direction and connects the Y-direction through four rods located at the top
and bottom.

The optimized cantilever beam is shown in Figure 6, where the macrostructure consists
of microstructured materials.

The stress distribution of the structures obtained through single-scale and multiscale
optimization are shown in Figure 7. Shear forces and bending moments act on the can-
tilever beams, with the upper and lower side beams primarily bearing the tensile and
compressive stresses created by the bending moments. These stresses are then transferred
to the fixed boundary. In terms of stress levels, the structure experiences significantly
lower stress magnitudes when subjected to multiscale optimization in comparison with
single-scale optimization. This is demonstrated by the fact that microstructured material
can significantly decrease the stress values of a structure, even though it has decreased
stiffness properties.
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3.2. Multiscale Optimization of Structure and Materials for Wings with Large Aspect Ratios

In this section, the wing of a large aspect ratio aircraft is selected as the object of
study, and the model refers to the Global Hawk Unmanned Aerial Vehicle (UAV) [33].
The geometric parameters are presented in Figure 8 with LRN1015 selected as the airfoil
of the wing. The half wingspan length is 14.39 m, the wing root chord length is 1.52 m,
and the leading edge sweep-back angle is 5.9◦. The wing box segment highlighted in
green is the reference domain for topology optimization. Different materials are utilized
for the skin and internal structure of the wing box. The skin is made of composite mate-
rial, which mainly maintains the aerodynamic shape of the wing. The internal structure
is constructed of a singular microstructured material. Titanium alloy with a modulus
of elasticity of 1.09 × 105 Mpa and Poisson’s ratio of 0.31 is chosen for the microstruc-
ture. During the optimization, the equivalent mechanical properties of the microstruc-
tured material are determined by the microstructure topology. The macrostructure is dis-
cretized with 3600 hexahedral elements. The reference domain for microstructure measures
20 mm × 20 mm × 20 mm and significantly smaller than the macrostructure. It is dis-
cretized with eight-node hexahedral elements of 1 mm × 1 mm × 1 mm.
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Figure 8. Global Hawk UAV wing models: (a) geometry model of wing; (b) finite element model
of wing.

A section of the wing is selected to display the initial model, as shown in Figure 9.
The profile features a total of six spherical holes, each with a 5 mm radius. In the internal
structure, there are a total of 384 such holes. Therefore, the initial macrostructural volume
constraint is 0.972. The initial model of microstructure is entirely filled, resulting in the
initial microstructural volume constraint of 1.0.
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3.2.1. Multiscale Aeroelastic Optimization of Wing Structure and Material under Rigid and
Elastic Loading

Here, the proposed method is applied to topologically design a wing with a large
aspect ratio through both macrostructural and microstructural parts. The flight speed
corresponds to 0.785 Ma at an altitude of 15,000 m and the dynamic pressure is 3051 Pa.
The flight angle is 4◦. The optimization problem has a macrostructural volume constraint of
0.7 and a microstructural volume constraint of 0.7. In the OC method, the move limits χM
and χm are 0.002 and 0.05, respectively, with a damping factor ζM of 0.3. The optimization
objective is to minimize the compliance of the wing structure. Two boundary conditions for
loading are used: elastic and rigid loads. The elastic load considers the effects of elasticity
on the aerodynamic force.

The objective functions and the iteration process of the MMT constraints are shown
in Figure 10. The first 100 steps decrease the structural stiffness as the volume of the
MMT decreases. This leads to an increase in compliance. Once the volume constraints
are reached, the compliance gradually decreases. Optimal results for the two distinct
boundary conditions are larger for the elastic loading than for the rigid loading. Since the
constraint iteration process of the optimization problem under elastic and rigid loading is
approximated, the convergence process of the MMT constraints can be represented by the
two blue lines. The volume constraints reach the constraints after 100 steps for both the
MMT and remains constant.
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Figure 10. Optimizing convergence diagram of algorithms: (a) the objective function; (b) the
volume constraint.

The aerodynamic force distributions, both elastic and rigid, are presented in Figure 11.
It can be observed that the aerodynamic forces, regardless of being elastic or rigid, follow a
similar trend along the spanwise direction of the wing. Moreover, the aerodynamic bending
moments and shear forces increase from the wing tip to the wing root, and the maximum
aerodynamic load is at the wing root. The elastic aerodynamic forces resulting from wing
structure deformation are illustrated in Figure 12. Due to the UAV wing’s small sweep-back
angle and the outer section’s lower stiffness compared with the inner section, the outer
section generates a larger positive torsion under aerodynamic force, thereby increasing the
aerodynamic force. It is noteworthy that the elastic aerodynamic force surpasses the rigid
aerodynamic force for identical angles, leading to relatively larger optimization results
when the elastic effect is taken into account.
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Figure 12. Elastic component of aeroelastic forces.

The optimized density of elements for the final macrostructure under rigid and elastic
boundary conditions is shown in Figure 13. The reference domain is partitioned into five
color fields based on the density of elements, with the red region approaching a density
of 1.0 and the blue region approaching a density of 0.0. Due to the similarity in load
distribution along the wing’s spanwise direction under rigid and elastic aerodynamic
forces, the trends in the density of elements exhibit three characteristics: (1) a gradual
decrease in density from the wing’s root to its tip, (2) larger density of elements in the
upper and lower portions than in the middle portion, and (3) a larger density at the wing
box’s front end compared with the density at its back end. Specifically, a density value
of 1.0 is distributed primarily at the upper and lower parts of the wing root’s front end.
When elastic effects are considered, the density value of elements in the wing’s outer
section increases.
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The optimized macrostructural topology is displayed in Figure 14a. The red region
has a density interval of 0.6–1.0, while the green region has a density of 0.2–0.6, and the
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blue region has a density of 0.0–0.2. During the solving of static aerodynamic elastic
response equation, the density of elements in the macrostructure establishes a threshold
value of 0.001. This ensures that the stiffness matrix is nonsingular. However, the display of
macrostructural topology does not incorporate the threshold density. Due to the lower load
on the outer section of the wing compared to the inner section, the optimization process
significantly reduced the structure of the outer section of the wing.
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To achieve a macrostructural topology that is useful for engineering realization, this
paper conducts a post-processing of the optimized outer segment structure of the wing.
Macrostructural elements with wing span positions greater than 11,500 mm were selected
and their densities averaged to the designated structural elements on the outside of the
wing. The results are shown in Figure 14b.

The compliance of the structure obtained by optimization and post-processing is
shown in the Table 1. The objective of the post-processed structure is 11% larger than the
optimization structure. The following sections of this paper will outline the post-processing
structure, resulting in a more definitive macrostructural topology.

Table 1. Optimization and post-processing results.

Optimization Structure Post-Processing Structure

Compliance (J) 7.62 × 102 8.47 × 102

Mass ratio 49% 49%

The optimized MMT is displayed in Figures 14–16. Results from the optimization
problem with two boundary conditions show similar topological. On the macroscopic scale,
the wing structure decreases gradually along the Y-direction with the wing root maintaining
a more complete structure. Along the Z-direction, the middle region displays a more
pronounced weakening, resulting overall in a flanged beam structure. On a microscopic
scale, a cylindrical hole is cut out at the center of the square’s structural reference domain
along the Y-axis. The elastic matrix of the micromaterial structure demonstrate that the
modulus is smaller along the X-axis than in other directions.
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Through load analysis, it becomes apparent that the load on the wings outer section
is minimal. Consequently, the macrostructure of the optimization problem focuses on
weakening the outer section of the structure. The wing structure primarily endures shear
force and a bending moment. The shear force causes the wing to require increased stiffness
in the Z-direction. Additionally, the bending moment results in the upper and lower
portions of the wing structure being subjected to larger tensile and compressive stresses
along the Y-direction. Thus, on the macroscopic scale, the optimization problem assigns
more structure to the more load-bearing sections, resulting in a layout form similar to
the flanged beam. When the sweep-back angle is small, the outer section of the wing
experiences positive torsion that results in an increase in aerodynamic forces. Therefore,
the optimization outcome under elastic load allocates more structures to the outer section
of the wing compared with the rigid load, thus limiting the elastic deformation of the wing.
The aeroelastic problem should be considered at the beginning of the vehicle’s stiffness
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design. The microstructured material will offer more stiffness along the Y and Z directions
under aerodynamic loading, which also emanates from the load distribution of the wing.

3.2.2. Multiscale Optimization of Wing Structure and Material with Different
Volume Constraints

This section considers the effect of volume constraints on the optimization problem.
In an aeroelastic problem, the vehicle is trimmed by accounting for aerodynamic, inertial,
and elastic forces. Decreasing the volume constraint will lead to a decrease in the stiffness
of the structure. Under loading, the resulting larger bending and torsional deformations
have an impact on the aerodynamic loads. The flight conditions in this section align with
Section 3.2.1, with a macroscopic volume constraint of 0.4 and a microstructural volume
constraint of 0.5.

The wing’s external loads are composed of aerodynamic and inertial forces, dis-
tributed as depicted in Figure 17. The MMT volume constraints are 0.7/0.7 abbreviated as
Ma_0.7Mi_0.7 and the MMT volume constraints are 0.4/0.5 abbreviated as Ma_0.4Mi_0.5.
Load distribution remains constant across different volume constraints. Shear force and
bending moment gradually increase from the wing tip to the wing root, with maximum
shear force occurring at the wing root. The decrease in volume constraints results in de-
creased wing structural stiffness, thereby inducing larger elastic aerodynamic force. The
flight load for Ma_0.4Mi_0.5 is significantly larger than for Ma_0.7Mi_0.7.
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Figure 17. Load distribution in the wing: (a) shear force distribution in the wing; (b) bending moment
distribution in the wing.

The density distribution of the macrostructure obtained from the optimization problem
of Ma_0.4Mi_0.5 is shown in Figure 18a. The overall distribution trend of density is similar
to that of the Ma_0.7Mi_0.7 structure. Elements with higher density values are mainly
distributed on the upper and lower parts of the wing root. Figure 18b compares the
percentage of element volume with total volume at different spanwise stations. In the case
of Ma_0.4Mi_0.5, the volume fraction of elements between the 2000 position on the wing
span and the wing tip is 61.3%. In Ma_0.7Mi_0.7, the volume fraction is 65.9%. Hence,
Ma_0.4Mi_0.5 has a higher percentage of element volume than Ma_0.7Mi_0.7 in the inner
section of the wing.
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Figure 18. Element density distribution in the wing: (a) density of elements in the final macrostructure;
(b) ratio of percentage of element volume to total volume at different spanwise stations.

Figure 19 displays the MMT achieved for Ma_0.4Mi_0.5, which still exhibits a struc-
ture comparable to that of Ma_0.7Mi_0.7. In addition, cross sections of the optimized
macrostructure are given for the four span positions, with the darker shade indicating
higher density.
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Figure 19. The optimized macroscopic and microstructural structures: (a) macrostructural topology
for Ma_0.4Mi_0.5; (b) microstructural topology for Ma_0.4Mi_0.5.

Along the X-direction, the microstructure is reduced, and only a slender rod remains
linked to the X-direction. Analysis of the equivalent elasticity matrix of the microstructured
material indicates that the modulus is greater in the Y- and Z-directions, but smaller in the
X-direction.

Since the inner section of the wing receives greater loads than the outer section, the
macroscale weakens the outer section of the wing when the volume constraints decrease.
This maintains the structural stiffness of the inner section. Simultaneously, the micro-scale
weakens the stiffness in the X-direction to ensure the structural stiffness of the microstruc-
tured material in the Y- and Z-directions.
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4. Discussion

Cantilever beam, a typical optimization problem, is able to compare the advantages
and disadvantages of the algorithms. Single-scale and multiscale optimization methods
have both been shown to effectively reduce structural mass. However, the multiscale opti-
mization method necessitates designing two scales of the structure, resulting in a greater
number of design variables and an increased demand for computational power. Further-
more, it is crucial to investigate multiscale optimization algorithms for multidisciplinary
optimization objectives. This will improve the application of microstructured materials in
multidisciplinary fields. Future work will prioritize these aspects.

The results obtained from the multiscale aeroelastic optimization method for wing
structure and material under realistic flight loads are shown in Table 2. The results show
that this method contributes to reducing the compliance of the structure. Extra elastic
aerodynamic forces are caused by the elastic effect for a vehicle with a large aspect ratio, so
that the compliance obtained under elastic aerodynamic loading is larger than that for the
results obtained under rigid flight loading. In addition, the consideration of elastic effects
reinforces the outer section of the wing structure, thereby preventing elastic deformation of
the wing.

Table 2. Optimization results.

Ma_0.7Mi_0.7
(Rigid)

Ma_0.7Mi_0.7
(Elastic)

Ma_0.4Mi_0.5
(Elastic)

Compliance (J) 7.62 × 102 7.87 × 102 1.54 × 103

Mass ratio 49% 49% 20%

Considering the effect of constraints on the final outcome, structural reinforcement of
the inner section of the wing with higher loads enables better configuration of the wing
stiffness. Compared to traditional aircraft design, the manufacturing of microstructured
materials needs to be considered, and additive manufacturing technology provides an
effective technological tool for the application of microstructured materials.

Multiple microstructured materials or solid structures have the advantage of better
stiffness characteristics as compared with a single microstructured material. Therefore, the
use of multiple microstructured materials or hybrid microstructure and solid forms for
the design of vehicle structures will be further investigated in the future. Microstructured
material offers advantages for heat dissipation. The multiscale optimization method shows
promising applications in the hypersonic vehicle field. Our research will concentrate on
hypersonic vehicles in the future. In addition, thin metal structures are more vulnerable to
fatigue, so it is necessary to conduct fatigue studies of the designed wing structure.

5. Conclusions

In this paper, we propose a multiscale aeroelastic optimization method for wing
structure and material under flight loads. A multiscale optimization method for the
structure and material is first investigated and then applied to a two-dimensional cantilever
beam. Compared with topologies obtained based on conventional single-scale optimization
methods, the stiffness of the multiscale topology is reduced under the same constraints, but
the stress level of the macrostructure is greatly reduced. These results indicate the potential
of microstructured material for multidisciplinary applications.

In addition, we investigate a multiscale aeroelastic optimization method for the wing
structure and material. The boundary conditions are obtained from the static aeroelastic
response equations. The expansion coefficients are iterated using the optimization criterion
method based on the derived shape sensitivities, resulting in the achievement of the desired
compliance. The study examines how elastic effects impact optimization results for a
large aspect ratio wing. When compared with optimizing results under rigid aerodynamic
loading, designs produced under elastic aerodynamic loading display more density dis-
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tribution in the outer section of the wing for macrostructure and similar structuring on
the microscopic scale. Additionally, the study investigates the influence of constraints on
optimization results. Along with the harshness of constraints, the density fraction of the
macrostructure becomes larger in the region bearing larger loads, and the stiffness of the
microstructure is distributed in the main load-bearing direction.
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