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Abstract: This study investigates the preliminary trajectory design for high-thrust missions to near-
Earth asteroids (NEAs), considering distance and phase angle constraints during the approaching
phase to enable pre-rendezvous optical navigation and the scientific identification of asteroids. A
global optimization algorithm called monotonic basin hopping is used to design ∆v-optimal impulsive
trajectories both with and without constraints. Comparisons reveal that extending the final leg of
the unconstrained reference trajectory and incorporating a few deep-space maneuvers in that final
leg can yield a constrained trajectory with a ∆v increase of only a few percent. The effects of the
phase angle and minimum distance constraint on ∆v are also examined. The results indicate that in
∆v-optimal constrained trajectories, an additional deep-space maneuver enables the redistribution of
maneuvers in the last leg to ideally insert the spacecraft into the constraint cone. However, additional
small maneuvers may be necessary at times to ensure that the spacecraft remains within the cone.
Based on these findings, we present a two-step approach for the preliminary design of constrained
trajectories for NEA missions based on global optimization algorithms. This approach serves as a
valuable tool for initial mission design and trade-off analyses involving constraints, fuel usage, and
transfer durations.

Keywords: preliminary trajectory design; impulsive trajectory; near-Earth asteroid; close approach
to small celestial bodies

1. Introduction

Preliminary trajectory design is a critical step in the planning of interplanetary mis-
sions. The selection of an optimal interplanetary transfer trajectory has a direct impact on
key mission parameters, such as the ∆v requirement, characteristic energy (C3), and transfer
duration, which in turn directly affect the mission’s cost and feasibility. Additionally, the
interplanetary trajectory is closely linked to other mission aspects, including the spacecraft
bus and its subsystems’ configuration, as well as the scientific objectives of the mission. In
some cases, the trajectory design imposes constraints on these factors, while in others, it is
influenced by them. As such, preliminary trajectory design plays a pivotal role in the early
stages of mission planning and in the initial assessment of mission feasibility.

Numerous studies have addressed the preliminary trajectory design of interplanetary
missions. There are a few major approaches for preliminary trajectory design/optimization,
with the propulsion type of the spacecraft engine (low-thrust or high-thrust) mainly de-
termining the applicability of these approaches [1,2]. This study focuses specifically on
high-thrust chemical propulsion engines (such as mono- or bi-propellant engines). Due
to the very short burn durations (compared to the overall transfer duration) associated
with high-thrust trajectories, the impulsive thrust assumption can be utilized during the
preliminary trajectory design process for spacecraft equipped with high-thrust engines,
with only a minimal loss of fidelity.
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A direct method based on the use of global optimization algorithms to solve nonlinear
programming problems (NLP) has advantages when designing impulsive interplanetary
trajectories involving gravity assists. In this approach, impulsive trajectories are transcribed
into finite-dimensional NLPs, and the globally optimal solution (that is, optimal decision
variables that minimize or maximize the given cost function) is searched using global
optimization algorithms. There are several well-known interplanetary trajectory transcrip-
tion models, such as the multiple gravity assist (MGA) model [3,4] and the MGA model
with one deep-space maneuver per leg (MGA-1DSM) [3–5]. Although global optimization
algorithms have several disadvantages, including a low probability of reaching global
optimality (often caused by failing to escape from local optima), the heavy multimodality
of interplanetary trajectory design problems renders this approach appealing. Furthermore,
when compared with indirect methods, it is more straightforward to introduce arbitrary
path constraints using methods such as the penalty method [6,7]. Consequently, multiple
studies have been conducted to solve impulsive interplanetary trajectory design problems
using diverse global optimization algorithms. A few algorithms, such as monotonic basin
hopping (MBH), differential evolution (DE), and their derivative algorithms, have been
shown to be time-efficient for solving these problems [8–11]. Meanwhile, other algorithms
demonstrated advantages in different facets of these trajectory design problems; for in-
stance, the hidden gene genetic algorithm was proven to be capable of solving several
subproblems involving a different number of gravity assists and different gravity assist
sequences within a single problem [12].

One current trend in interplanetary exploration is the increased interest in missions to
near-Earth asteroids (NEAs), as evidenced by several recent and near-future missions, such
as Hayabusa (2003, low-thrust) [13], Hayabusa-2 (2014, low-thrust) [14], OSIRIS-REx (2016,
high-thrust) [15–17], DART (2021, both high- and low-thrust) [18], Hera (high-thrust) [19],
and DESTINY+ (low-thrust) [20]. Other than the scientific value of these asteroids, a reason
for their popularity as mission targets lies in the relative ease with which they may be
visited. Transfer trajectories to NEAs with low orbital inclinations are often feasible with a
single gravity assist from a nearby planet (Earth, Venus, or Mars), or sometimes with only
a few deep-space maneuvers (DSMs) without any gravity assist [21].

Most NEAs are much smaller than traditional interplanetary mission targets. For
instance, all targets of recent NEA missions, namely Itokawa, Ryugu, Bennu, and Didymos,
measure just several hundred meters. Their small sizes make it difficult to acquire precise
information (such as size, mass, and shape) from ground-based observations prior to
a mission. For this reason, it is effective to introduce the concept of an approaching
phase, where the spacecraft approaches the target asteroid slowly, in the final part of the
interplanetary transfer. The most basic requirements for this approaching phase trajectory
are specified by the spacecraft–asteroid distance and phase angle (an angle between the
asteroid–Sun line and asteroid–spacecraft line), so that optical cameras can detect the target
asteroid and gather information en route. Such an approaching phase can assist in precise
relative orbit determination, trajectory correction, crude asteroid mapping, and the pre-
rendezvous identification of significant scientific information (e.g., standard gravitational
parameters and the rotational state) [16]. For example, OSIRIS-REx adopted a series of four
maneuvers called asteroid approach maneuvers during its Bennu-approaching phase so
that the spacecraft could gently approach the asteroid and fully utilize pre-rendezvous
optical navigation [17].

Naturally, its significance has spawned several recent studies on the design of approach-
ing phase trajectories toward small celestial bodies. Wang et al. [22] and Qiao et al. [23]
presented guidance strategies that can be utilized for low-thrust missions. Wang et al.
studied a time-fixed glideslope method for robust rendezvous, while Qiao et al. presented
a methodology for designing approaching trajectories that can improve optical navigation
performance (observability). Meanwhile, Yuan et al. [24] presented a modified multipulse
glideslope method for approaching phase guidance that can improve optical navigation
observability, which is suitable for autonomous high-thrust asteroid missions.
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However, these studies can only offer partial insights when it comes to estimating the
degree to which such an approaching phase trajectory update affects the overall trajectory
or propellant use, which may need to be assessed during preliminary mission design and
reflected in the design outputs, such as the propellant budget. Therefore, this study focuses
on the preliminary design of fuel-optimal high-thrust trajectories from Earth to NEAs,
with the basic requirements for optical camera use during the approaching phase being
considered as constraints. The basic concept of the problem dealt with in this paper is given
in Figure 1. Unconstrained fuel-optimal solutions obtained via frequently used trajectory
models such as MGA and MGA-1DSM (red trajectories in Figure 1) are likely to approach
the target asteroid from an arbitrary phase angle at a high relative speed, both of which can
make pre-rendezvous optical camera use challenging or even impossible. The reference
unconstrained trajectory can be updated to accommodate the approaching phase without
further optimization, i.e., by adding a deep space maneuver whose timing and location
are fixed to desired values (orange trajectories in Figure 1). However, such an approaching
trajectory guarantees neither fuel-optimality nor the satisfaction of the approaching phase
constraints, especially if the desired distance at which the spacecraft begins optical camera
use is far from the asteroid. For this reason, further optimization may be necessary so as
to find a fuel-optimal trajectory that also satisfies the approaching phase constraints (blue
trajectories in Figure 1).
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Figure 1. The problem description of the current study.

Accordingly, the main aims of this study are (a) to determine the characteristics of ∆v-
optimal constrained trajectories, (b) to quantify the effects of these constraints on ∆v and the
transfer duration, and (c) to present an efficient method of designing a constrained trajectory
from a baseline reference trajectory, based on the results obtained. In order to mitigate the
possibility of missing a feasible optimal constrained solution, the current study is structured
in a way that begins with searching for solutions with more freedom in design (in terms
of decision variable bounds and the number of impulses), but incrementally diminishes
the size of the search space by identifying critical parameters that bring about differences
between unconstrained and constrained solutions. Also, in order to accommodate the
infinite possibilities of geometry, the trajectory optimization procedure is performed for
20 selected NEAs. As for the method of optimization, a modified version of the MBH
algorithm is used. The analyses presented here may suffer from numerical limitations (such
as the solutions being suboptimal) due to the stochastic nature of the methodology, and
cannot be fully comprehensive because the number of possible geometries of the planetary
bodies and the spacecraft trajectory are infinite. Still, these analyses can provide trajectory
designers with a general idea of the effects of the approaching phase constraints on the



Aerospace 2023, 10, 855 4 of 25

fuel-optimal trajectory and allow insights regarding the design or update of trajectories
under such restrictions.

The remainder of this paper is organized as follows. In Section 2, several impulsive
trajectory models are introduced, and Section 3 presents the modified version of the MBH
algorithm used in this study. The list of 20 target NEAs used for the trajectory design
analysis, along with the selection criteria, is presented in Section 4. Then, the results and
analyses are presented in Sections 5–7, respectively. In Section 5, the minimum number
of additional maneuvers required and the critical trajectory parameters for designing con-
strained trajectories are identified. In Section 6, the effects of changing the last leg duration,
which is revealed to be a crucial parameter affecting ∆v and the transfer duration, are
discussed. In Section 7, the intertwined effects of the minimum distance and the maximum
phase angle constraints are discussed. Based on these findings, a two-step preliminary con-
strained trajectory design approach is proposed in Section 8, and conclusions are presented
in Section 9.

2. Impulsive Trajectory Transcription Models

The general form of the optimal control problem is extremely difficult to handle in
its original form; thus, several assumptions and approximations are often introduced to
simplify the problem into a solvable one. In the field of impulsive interplanetary trajectory
design, there are already a few well-known transcription models that convert the optimal
control problem into nonlinear programming problems (NLP), such as the n-impulse
model [21,25], the multiple gravity assist (MGA) model [3,4], and the MGA model with
one deep-space maneuver per leg (MGA-1DSM) [3–5]. In this study, since only a single
gravity assist (swing-by) was assumed, the MGA model was excluded from the analysis.
The MGA model is more suitable for trajectories involving several gravity assists.

In the following subsections, we formally introduce the n-impulse model and 1GA-
1DSM (that is, an MGA-1DSM model with only a single gravity assist), along with its
derivative model named 1GA-nDSMt. We also discuss the cost function definitions used
in this study and how the approaching phase constraints are reflected in the optimization
process in the form of penalty functions. In the last subsection, we introduce the cate-
gorization of the trajectory models used throughout this study to avoid confusion in the
following sections.

2.1. Dynamic Model

All trajectory transcription models used in this study assumes the use of the zero-
sphere-of-influence patched conic method. That is, each planetary body’s sphere of influ-
ence is reduced to a point located at the center of the planetary body. With this approxi-
mation, impulsive trajectory models can be designed by simply connecting heliocentric
Keplerian arcs (one of whose foci are at the Sun) with impulses (either by maneuvers or
gravity assists) occurring at the ends of the arcs. This approximation is very effective
in simplifying the interplanetary trajectory design problem without a significant loss of
fidelity, and has been frequently used in preliminary trajectory design stages [3–12,21].

The Keplerian arcs that compose the trajectory can be computed either by solving
Lambert’s problem or using two-body propagators, depending on the known boundary
values for that arc. Hereafter, in this study, we refer to each part of a trajectory that connects
two planetary bodies as a leg, and each Keplerian arc as an arc. Naturally, a leg comprises
one or more arcs. A deep-space maneuver (DSM) is applied to the spacecraft at a point
connecting two arcs of the same leg. On the other hand, a gravity assist occurs at a point
connecting two legs.

One small exception to the forementioned assumption is the definition of an asteroid
rendezvous. In this study, the asteroid rendezvous is defined as reaching the 10 km distance
from the center of the target asteroid in the direction of the Sun (that is, dren = 10 km in
Figure 1) and possessing the same heliocentric velocity as that of the asteroid. Another
point of mention is the perturbing forces acting on the spacecraft during the approaching



Aerospace 2023, 10, 855 5 of 25

phase. Even at the 10 km distance, the acceleration acting on the spacecraft is dominated
by solar gravity for most near-Earth asteroids (NEA); for example, the spacecraft located
10 km away from Ryugu (the most massive among the four NEAs visited) should experience
accelerations owing to Ryugu’s point-mass gravity and solar radiation pressure (two major
perturbation sources), which are smaller than the solar gravitational acceleration by more
than four orders of magnitude. Based upon this, the approaching phase trajectory still
assumes the effect of the solar gravitational force only in this study.

2.2. n-Impulse Model

n-impulse models are impulsive trajectory models that rely on impulsive maneuvers
without assistance from gravity assists, where n denotes the total number of impulses along
the trajectory. For rendezvous problems, the minimum number of impulses required is two,
which corresponds to the solution obtained by solving Lambert’s problem. For models
with n ≥ 3, the model involves n − 2 DSMs. The resultant trajectory consists of a single
leg composed of n − 1 arcs. In this study, the two-impulse model (solution to Lambert’s
problem) is disregarded, and the focus is put on cases where 3 ≤ n ≤ 5.

The three-impulse model is illustrated in Figure 2a. In all the trajectory model illustra-
tions in Figure 2, the thick green arrows refer to arcs computed via two-body propagation,
with arrows pointing towards the direction of propagation, while the thick blue lines refer
to arcs computed via solving Lambert’s problem. When solving Lambert’s problem, we
used only a counterclockwise solution with zero full revolutions. The definition of each leg
is represented by gray dotted lines.
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The three-impulse model is defined by six decision variables, and in the form of the
corresponding decision vector, D3, it is represented as follows:

D3 =
[
t0 T1 η1,a v∞,0 l∞,0 b∞,0

]
. (1)

The initial time of leaving Earth is denoted by t0, and the transfer duration of the first
(and only) leg is denoted by T1. To express the time of flight (TOF) for each of the two arcs
in the first leg, a proportion variable, η1,a ∈ [0, 1], is introduced. The TOF of the first and
second arcs, which are respectively denoted by T1,1 and T1,2, can be computed as follows:

T1,1 = η1,aT1, T1,2 = (1− η1,a)T1, (2)

where the first number in the subscript refers to the leg number and the second number
refers to the arc number within that leg.
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Finally, the remaining three variables are used to express the hyperbolic excess velocity
vector of the spacecraft leaving Earth. v∞, 0 =

√
C3,0 is the magnitude of the vector,

whereas l∞, 0 and b∞, 0 represent the ecliptic longitude and latitude of the vector direction,
respectively. The post-impulse velocity vector of the spacecraft in the heliocentric ecliptic
inertial (HCI) frame can be computed as follows:

v+
0 = v−0 + v∞,0 = v−0 + v∞,0

cos(b∞,0)cos(l∞,0)
cos(b∞,0)sin(l∞,0)

sin(b∞,0)

, (3)

where v−0 is the Earth’s velocity vector in the HCI frame at t0. In addition, r0 (the initial
position vector of the spacecraft in the HCI frame) equals Earth’s position vector in the
HCI frame at the initial time, t0, according to the zero-sphere-of-influence approximation.
Therefore, the initial post-impulse state is as follows:

X+
0 =

[
r0
v+

0

]
. (4)

Similarly, the pre- and post-impulse state vectors at the final time t f = t0 + T1 are
represented by the following:

X−f =

[
r f
v−f

]
, X+

f =

[
r f
v+

f

]
, (5)

where the post-impulse subvectors, r f and v+
f , should be equal to the target asteroid

position and velocity in the HCI frame at the final time under the same principle. However,
as stated in Section 2.1, we assumed that the final spacecraft position, r f , is located 10 km
away from the center of the asteroid in the direction of the Sun.

Now that all the boundary values are defined, we connect the boundary states with
two arcs. As shown in Figure 2a, the first arc is computed by propagating the orbital state
vectors, X+

0 , for the duration of T1,1, which results in the propagated state vector, X−1,1.
Because the initial and final positions for the second arc (r1,1 and r f ) and the TOF of that
leg (T1,2) are now known, the second arc can be obtained from a Lambert solver, which
yields v+

1,1 and v−f . With both arcs fully defined, the impulsive thrust vectors for the DSM,
∆vDSM1, and the final rendezvous maneuver, ∆v f , can be easily obtained as follows:

∆vDSM1 = v+
1,1 − v−1,1 (6a)

∆v f = v+
f − v−f . (6b)

In fact, for missions to planets and massive asteroids, the orbital insertion burn mag-
nitude should be computed considering the insertion orbit; however, for small asteroids,
we can simply assume that Equation (6b) holds, at least during the preliminary design
phase. Figure 2a shows the graphical definitions of v∞,0, ∆vDSM1, and ∆v f with thick black
arrows, which are the vector differences between the thin dotted arrows representing the
pre- and post-impulse velocity vectors. For simplicity, these velocity and impulse vectors
are omitted from the other trajectory model illustrations.

The four- and five-impulse models can be constructed in a similar manner. The
four-impulse model is shown in Figure 2b. For the four-impulse model, the last arc is
obtained by back-propagating the pre-impulse orbital state vector at the final time. For
the five-impulse model, the last two arcs are obtained via sequential backpropagation.
The reason for such backpropagation is to allow the magnitude of the final rendezvous
maneuver to be encoded in the decision vectors, which should be small for trajectories with
approaching phase constraints; thus, it is more straightforward for trajectory designers
to set tight bounds on this variable after some test runs. The two models require 10 and
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14 variables to define a trajectory solution. The decision vectors, denoted as D4 and D5,
respectively, are given below:

D4 =
[
t0 T1 η1,a η1,b v∞,0 l∞,0 b∞,0 ∆v f l f b f

]
(7a)

D5 =
[
t0 T1 η1,a η1,b η1,c v∞, 0 l∞, 0 b∞, 0 ∆v f l f b f ∆vDSM3 lDSM3 bDSM3

]
(7b)

The computation of ∆v vectors (for ∆v f and ∆vDSM3) can be performed in the same
manner as that in Equation (3), simply by replacing v∞,0 with ∆v f or ∆vDSM3 along with
their corresponding ecliptic longitude and latitude values. The TOF of each arc can be
computed from Equation (8a) for the four-impulse model, and from (8b) for the five-
impulse model:

T1,1 = T1η1,a, T1,2 = T1(1− η1,a)η1,b, T1,3 = T1(1− η1,a)(1− η1,b) (8a)

T1,1 = T1η1,aη1,b, T1,2 = T1η1,a(1− η1,b)

T1,3 = T1(1− η1,a)η1,c, T1,4 = T1(1− η1,a)(1− η1,c).
(8b)

2.3. 1GA-1DSM and 1GA-nDSMt Model

The MGA-1DSM model can include multiple gravity assists, but only single swing-by
trajectories were investigated in this study; therefore, we simply refer to this model as
1GA-1DSM. The 1GA-1DSM model consists of two legs, each of which contains a single
DSM, resulting in two DSMs in total. Figure 2c illustrates the 1GA-1DSM model. The
decision vector for this model consists of 10 decision variables as follows:

D1GA−1DSM =
[
t0 T1 T2 η1,a η2,a v∞,0 l∞,0 b∞,0 R1 θ1

]
. (9)

The initial time, t0, and three hyperbolic excess velocity vector variables (v∞,0, l∞,0,
and b∞,0) have the same physical meaning as they do in the n-impulse models. The four
decision variables related to the time duration (T1, T2, η1,a, and η2,a) can be used to compute
the time duration for each arc in the same manner as in Equation (2). The last two decision
variables, R1 and θ1, are required to define the first (and only) swing-by. Here, R1 denotes
the minimum distance between the spacecraft and planet during the swing-by, and θ1 is
the incoming B-plane angle. There are a few different ways to compute the post-swing-by
heliocentric velocity of the spacecraft from the pre-swing-by velocity and these two decision
variables; the method used here is based on Kawakatsu’s approach [26]. Note that although
the gravity-assist planet is not encoded in the decision vector as a variable, it should be
selected for the trajectory to be defined. The remainder of the process, which is basically
linking the boundary conditions with Keplerian arcs, can be performed in the same manner
as with the n-impulse models.

The derivative model, 1GA-nDSMt, where n refers to the total number of DSMs along
the entire transfer, differs from the original 1GA-1DSM model in that more than one DSM
may be allowed in the last leg of the trajectory, whereas the first leg still allows only one
DSM. We only consider cases in which the number of DSMs in the last leg ranges from one
to three (or equivalently, 2 ≤ n ≤ 4); when it equals one, it is simply the original 1GA-1DSM
model. For example, the 1GA-3DSMt model is illustrated in Figure 2d. For the sake of
unity, we refer to the 1GA-1DSM model as 1GA-2DSMt, which has the decision vector
of Equation (9). The decision vectors of 1GA-3DSMt and 1GA-4DSMt, whose problem
dimensions are 14 and 18, respectively, are given by

D1GA−3DSMt =
[
t0 T1 T2 η1,a η2,a η2,b v∞, 0 l∞, 0 b∞, 0 ∆v f l f b f R1 θ1

]
(10a)
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D1GA−4DSMt

=
[
t0 T1 T2 η1,a η2,a η2,b η2,c v∞, 0 l∞, 0 b∞, 0 ∆v f l f b f ∆vDSM4 lDSM4 bDSM4 R1 θ1

] (10b)

In this study, after preliminary tests on three nearby planets (Venus, Earth, and Mars)
as potential swing-by planets, we limited the swing-by planets to Venus and Earth. To
denote the name of the swing-by planet in the trajectory model, we substituted the number
of swing-bys (“1”) with the initial letter of the swing-by planet (“E” or “V”). For instance,
EGA-3DSMt refers to the 1GA-3DSMt model that uses an Earth swing-by, while VGA-
3DSMt refers to the same model that uses a Venus swing-by.

2.4. Cost Function and Penalty Function Definition

In this study, the cost function for the unconstrained optimization was defined as the
total ∆v magnitude from leaving Earth to the rendezvous with the target asteroid, which
must be minimized for fuel optimality. In most interplanetary missions, spacecrafts are
placed on an interplanetary trajectory via an injection maneuver performed using a launch
vehicle; this burn magnitude is included in the total ∆v. The spacecraft was assumed to
be injected into the transfer trajectory from a circular Earth parking orbit at an altitude of
500 km. The injection burn magnitude was computed as follows:

∆v0 =

√
v2

∞,0 +
2µE(

rE + ap
) −√ µE(

rE + ap
) , (11)

where µE and rE refer to the standard gravitational parameter and Earth radius, respectively,
and ap is the parking orbit altitude. The total ∆v magnitude is the summation of ∆v0, ∆v f ,
and all DSM magnitudes as follows:

J = ∆v0 + ∆v f + ∑ ∆vDSM. (12)

To consider approaching trajectory constraints, we used the penalty function method,
which is a commonly used method for constrained global optimization [6,7]. Penalty
functions are defined as zero when constraints are satisfied, but possess positive values
when violated. These penalty functions were added to the original cost function to form
a modified cost function, and the global optimization algorithm sought a solution that
minimized the modified cost function.

With respect to the spacecraft–asteroid distance, d, if the constraints on the minimum
and maximum distance at some specified time before rendezvous are given by dmin and
dmax, the corresponding penalty function is defined in quadratic form as follows:

pd =


(

d−dmax
dmax

)2
d > dmax

0 dmin ≤ d ≤ dmax(
d−dmin

dmin

)2
d < dmin

. (13)

The reason for placing the minimum distance limit is to prevent trivial solutions,
where the spacecraft rendezvous with the asteroid using the last DSM and follows the
asteroid thereafter, with the actual rendezvous maneuver having near-zero magnitude.
This phenomenon is discussed in more detail in Section 7.
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Similarly, for the phase angle, φ, (a non-negative angle between the asteroid–Sun line
and asteroid–spacecraft line), if the maximum phase angle constraint at some specified
time before rendezvous is given by φmax, the corresponding penalty function is defined as

pφ =

{(
φ−φmax

φmax

)2
φ > φmax

0 φ ≤ φmax
. (14)

For the case in which both distance and phase angle constraints are considered, the
cost function for constrained optimization is defined as

Jp = J + 10000pd + 10000∑ pφ, (15)

where J is in km/s, while pd and pφ are unitless quantities. The static penalty coefficients,
which are set to 10,000 for both types of penalties, were chosen such that a 1% constraint
error corresponds to a 1 km/s penalty, whereas a 2% constraint error corresponds to a
4 km/s penalty. Here, they were set at a high level because one primary objective of this
study is to understand the difference between unconstrained and constrained solutions;
thus, it was desirable for constrained solutions to satisfy constraints to a great degree.
If they had been set at a low level, the optimal solutions found would be ones that are
balanced between fuel consumption and constraint violation, which might be acceptable in
practical design, but may hamper the objective of this study.

These distance and phase angle constraints are generally required within a few weeks
or months before the final rendezvous (defined herein as arriving at 10 km distance from
the center of the asteroid with a zero-degree phase angle, as stated in Section 2.1) maneuver.
We assumed a situation where the approaching phase constraints should be in effect from
D-45 to D-day (the eventual rendezvous date). As for the distance constraint, the asteroid–
spacecraft distance monotonically decreases during the last few weeks of interplanetary
transfer in general; therefore, we assumed that a single distance check at D-45 would be
sufficient. However, the phase angle values may vary significantly as it approaches the
rendezvous. Therefore, they should ideally be reflected as path constraints. However, to
reduce the computation time for the objective function evaluation, they were checked three
times: at D-45, D-30, and D-15. This is reflected in Equation (15) using the sigma notation
for pφ.

2.5. Categorization of Trajectory Models

In this subsection, the trajectory models introduced in Sections 2.2 and 2.3 are specified
individually, and their two-fold categorization is introduced, the notation of which will be
useful in understanding the analyses of the study.

In this study, we considered a total of nine trajectory models, counting different
swing-by sequences as constituting different trajectory models. The three come from n-
impulse models (3 ≤ n ≤ 5). The remaining six are VGA-nDSMt and EGA-nDSMt models
(2 ≤ n ≤ 4). The nine trajectory models were first categorized according to the swing-by
planet as no-GA-, VGA-, and EGA-types. This categorization was introduced because
when optimized, the three models inside each category should result in similar trajectories
with which a fair comparison can be made.

The nine trajectory models were also categorized according to the number of DSMs
in the last leg. For instance, three models that have only one DSM in their last legs,
namely three-impulse, EGA-2DSMt, and VGA-2DSMt, constitute the 1DSMLL (one deep-
space maneuver in the last leg) category, whereas the other six models that have two or
three DSMs in their last legs constitute the 2DSMLL and 3DSMLL categories, respectively.
It is known that when there are no trajectory constraints, having more than one DSM
per leg often does not contribute to a meaningful improvement in fuel usage [10,21,27],
indicating that 1DSMLL trajectories are often sufficient for general trajectory design. This
is likely the result of the optimal number of impulses being dependent on the number of
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revolutions [28], and in high-thrust interplanetary trajectory design, it is uncommon to
have a many-revolution trajectory owing to practical limitations in the transfer duration.
Therefore, it is natural to use 1DSMLL trajectory models to design reference unconstrained
trajectories. However, when we consider approaching phase constraints, having more
than one DSM in the last leg may allow for a decrease in fuel usage, and thus 2DSMLL
and 3DMSLL trajectories are likely to be more fuel-optimal than 1DSMLL trajectories
are. For these reasons, in the following sections, 1DSMLL models are often referred to as
reference models, and the unconstrained solutions of these 1DSMLL models are referred
to as reference trajectories in the sense that they constitute the baseline to which the other
models/trajectories can be compared. Table 1 lists the nine trajectory models according to
their two-fold categorization.

Table 1. The nine trajectory models used in this study, categorized by the swing-by sequence and the
number of DSMs in the last leg.

No-GA-Type VGA-Type EGA-Type

1DSMLL-type
(Reference models) 3-impulse VGA-2DSMt EGA-2DSMt

2DSMLL-type 4-impulse VGA-3DSMt EGA-3DSMt

3DSMLL-type 5-impulse VGA-4DSMt EGA-4DSMt

3. Modified Monotonic Basin Hopping Algorithm

In this section, we introduce the stochastic optimization algorithm used in this study.
Because the algorithm itself is not the focus of the current research, we discuss it only briefly.
More detailed information on the algorithm used in this study can be found in Ref. [10].

The MBH algorithm is a stochastic global optimization algorithm that was first pro-
posed in the field of physical chemistry to determine the lowest-energy structure of a
molecular system [29]. This algorithm has been found to be efficient in space trajectory
design problems [8–10], possibly because of their funnel-structured landscapes [30]. The
MBH algorithm aims to locate the global optimum by repeatedly hopping to a better local
optimum, where it relies on local optimization algorithms to locate the local optima.

In the modified version of MBH [10] used in this study, there are three major differences
when compared with the original algorithm. First, during the initial stage of MBH, we
used the multi-start algorithm [31] to locate a good local optimum and set it as the initial
starting point for the MBH algorithm. Second, the algorithm was parallelized in the same
manner as in [32] because the original MBH algorithm cannot fully utilize current multicore
CPUs. Finally, a subroutine for estimating an adequate perturbation size was introduced
in the algorithm [10]. Perturbation size is one of the factors that critically affects the MBH
algorithm’s performance, and this subroutine allows it to be automatically determined to
an adequate value without user intervention.

Figure 3 illustrates the simplified procedure of the modified MBH algorithm, which
seeks the global minimum of a 1D optimization problem. An initial starting point, rep-
resented by the ball with a “0” sign in Figure 3, is chosen by the multi-start algorithm.
Randomly generated perturbations are added to this local minimum solution, and the local
search algorithm is run in parallel from these perturbed states to locate other local minima.
If none of the newly found local minima are better than the currently known best local
minimum, this search is ignored (e.g., balls with a “1” sign in Figure 3) and the perturbation
size is increased to enable a wider search. However, if a search succeeds in locating a local
minimum better than the currently known best one does, an update is made to the best
local minimum (e.g., balls with a “2” sign in Figure 3), and an adequate perturbation size is
re-calculated to reflect the landscape of the new neighborhood. This search-and-update
process continues until a user-defined stopping condition, such as the number of successive
search failures or the computation time, is met.
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Figure 3. Simplified graphical illustration of the modified monotonic basin hopping algorithm
approaching the global optimum for a 1D optimization problem. The numbers written inside the
balls refer to the current number of the parallel local search runs.

As the current study relies on a global optimization algorithm to find globally optimal
solutions, which are then used to analyze the optimal solutions’ characteristics, it is also
important to assure that the algorithm used is effective in solving the problems discussed
in this study. For this reason, a performance comparison between different global optimiza-
tion algorithms is briefly discussed below. Four different algorithms, namely the genetic
algorithm (GA), particle swarm optimization (PSO), multi-start (MS), and the algorithm
used in this study (MBH), were used to solve two different trajectory design problems that
will be discussed in Sections 5 and 6. For each problem, each algorithm was run 200 times
until the pre-defined computation time was met. The GA and PSO algorithms used are
MATLAB built-in functions, while the MS and MBH algorithms are in-house codes. All
algorithms were configured to utilize CPU parallelization.

Figure 4a shows the boxplot for the problem of constrained EGA-2DSMt trajectory
design for asteroid 2004 XZ130 (one of the 20 target asteroids; refer to Section 4) for a broad
search (refer to Section 5.2), while Figure 4b shows that for the problem of constrained
EGA-3DSMt trajectory design for the same asteroid with a fixed last leg duration extension
(refer to Section 6). Boxplots were drawn such that outliers are not explicitly shown but
covered by whiskers. The former problem features a lower dimensionality but wider search
space, while the latter problem has a higher dimensionality but narrower search space.
As can be seen from both panels, local-optimization-based algorithms (MS and MBH)
outperform GA and PSO, and MBH slightly outperforms MS. More comparisons between
optimization algorithms for impulsive interplanetary trajectory design can be found in
Refs. [8–10].
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4. Target Asteroid Selection

NEAs are defined as asteroids with a perihelion distance of 1.3 astronomical units (au)
or less. NEAs can be categorized into four groups based on their orbital elements: Atiras,
Atens, Apollos, and Amors. Atiras are NEAs whose heliocentric orbits are strictly inside
Earth’s orbit, whereas Amors have orbits strictly outside Earth’s orbit. Both Atens and
Apollos cross Earth’s heliocentric orbit; those with a semi-major axis of less than 1 au are
classified as Atens, whereas those with more than 1 au are categorized as Apollos.

We selected 20 NEAs for this study, with five from each orbital group. When choosing
the target asteroids from each group, two criteria were applied, so that the analysis per-
formed in this study could be more easily generalized for realistically feasible missions; the
orbital inclination should be lower than 15◦, and the eccentricity should be lower than 0.5.
These two orbital elements, especially the inclination, affect the ease of visiting the asteroid.
Because more than five asteroids could satisfy the criteria, we sorted the candidate list by
absolute magnitude and selected the five most luminous ones. The luminosity criterion
was adopted to prevent selection bias, which may arise from handpicked selection.

The selected NEAs are listed in Table 2 along with their nominal orbital elements
obtained from NASA JPL Horizons System [33]. However, when computing their positions
and velocities for the simulation, we did not use these nominal elements; instead, high-
fidelity ephemerides generated by the same Horizons System was used [34].

Table 2. List of the 20 NEAs selected for trajectory design analysis.

Group # Name Other
Name SPK ID a (au) e i (deg) Ω (deg) ω (deg)

Atiras

1 2004 XZ130 2164294 0.6175 0.4546 2.95 211.17 5.4
2 1998 DK36 3184472 0.6923 0.416 2.02 151.46 180.04
3 2012 VE46 3617387 0.7131 0.3613 6.67 8.76 190.49
4 2015 DR215 3712675 0.6666 0.4716 4.06 314.66 42.61
5 2021 LJ4 54158076 0.6748 0.3834 9.83 277.61 56.89

Atens

6 1998 XB 2096590 0.9078 0.3511 13.6 75.7 202.72
7 1992 FE 2005604 0.9286 0.4061 4.72 311.9 82.65
8 2003 SD220 2163899 0.8276 0.2099 8.54 273.74 326.94
9 1998 WT24 2033342 0.7188 0.4176 7.37 81.67 167.53

10 2003 UC20 2363505 0.7811 0.3369 3.81 188.3 59.79

Apollos

11 1948 OA Toro 2001685 1.368 0.436 9.38 274.23 127.21
12 1951 RA Geographos 2001620 1.246 0.3354 13.34 337.18 276.97
13 1999 KV4 2025330 1.54 0.371 14.33 50.54 86.1
14 1994 CN2 2136618 1.573 0.395 1.44 99.34 248.28
15 1991 VH 2035107 1.137 0.1442 13.91 139.35 206.95

Amors

16 A898 PA Eros 2000433 1.458 0.2227 10.83 304.29 178.93
17 1929 SH Ivar 2001627 1.863 0.3966 8.45 133.12 167.81
18 1953 RA Boreas 2001916 2.272 0.4499 12.88 340.6 335.9
19 1992 AE Miwablock 2006050 2.203 0.4371 6.4 88.18 284.98
20 1977 RA Beltrovata 2002368 2.105 0.4133 5.22 287.32 43.09
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5. General Analysis of Effect of the Constraints

This section presents a general analysis of the effects of introducing approaching
phase constraints. Solving both unconstrained and constrained problems separately in the
same vast search space and comparing their solutions can reveal the number of additional
impulses required and provide insights into how unconstrained fuel-optimal solutions can
be efficiently modified into constrained fuel-optimal solutions.

5.1. Broad and Narrow Search Settings

For each asteroid listed in Table 2, unconstrained and constrained optimizations were
performed for all nine trajectory models listed in Table 1. Table 3 lists the bounds of
the baseline decision variable. During the local search stage of the MBH algorithm, the
angular variable bounds are extended by three times the baseline bounds listed in the
table, as stated in the table footer. As the optimization problem landscape is infinitely
repeated over the angular variables, such bound extensions can prevent the occurrence of
unintended premature convergence at the bounds [10]. In terms of constraints, three cases
were explored separately:

Table 3. Baseline decision variable bounds.

Applicable
Trajectory Models

Decision
Variable Lower Bound Upper Bound

All

t0
1 January 2032 00:00:00

UTC
31 December 2034

24:00:00 UTC
T 150 days 700 days
η 0.01 0.99

v∞,0 2 km/s 7 km/s
l∞,0 –180 degrees 1 180 degrees 1

b∞,0 –90 degrees 2 90 degrees 2

2DSMLL-type
3DSMLL-type

∆v f 0 km/s 0.25 km/s
l f –180 degrees 1 180 degrees 1

b f –90 degrees 2 90 degrees 2

3DSMLL-type
∆vDSM 0 km/s 1 km/s
lDSM –180 degrees 1 180 degrees 1

bDSM –90 degrees 2 90 degrees 2

EGA-type
VGA-type

R 1.2 planet radii swing-by 10 planet radii swing-by
θ –180 degrees 1 180 degrees 1

1 These angular variable bounds are extended to [–540, 540] degrees during the local search stage of the MBH
algorithm. 2 These angular variable bounds are extended to [–270, 270] degrees during the local search stage of
the MBH algorithm.

1. No constraints. The corresponding cost function is simply Equation (12).
2. Only distance constraint. The asteroid–spacecraft distance is checked 45 days before

the rendezvous, and should lie between 300,000 km (dmin, approximately 0.002 au)
and 3,000,000 km (dmax, approximately 0.02 au). The cost function is given by Equation
(15) without the pφ term.

3. Both distance and phase angle constraints. The distance constraint is the same as
above, and the additional maximum phase angle constraint is set at 60◦ (φmax) and
checked three times at 15, 30, and 45 days before the rendezvous. The cost function
is given by Equation (15). For reference, a phase angle of 60◦ corresponds to an
illuminated fraction of 75% under the assumption of spherical asteroids [35].

This section focuses on two different search results; the broad search refers to the
broad baseline bound length of the initial time, t0, to distinguish it from the narrow search,
in which the bound length for that variable is shortened to ±15 days of that of the optimal
reference solution obtained from the broad search. The two main objectives of the broad
search are to identify a possible significant shift in the ideal launch date owing to the
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introduction of constraints, and to make a preliminary estimate of the required number
of additional impulses. Meanwhile, the narrow search was conducted to quantify the
differences between parameters of unconstrained and constrained solutions. To address
the distinct aims of the two searches, the number of optimization algorithm runs for each
combination of the target asteroid, trajectory model, and constraint also differed: 150 for the
broad search and 300 for the narrow search (with the exception of 1500 runs for EGA-type
trajectories for Asteroid #9 owing to a very low probability of escaping local minima).
Finally, 3DSMLL searches were ignored in the narrow search as the broad search results
revealed that the difference between optimal 2DSMLL solutions and 3DMSLL solutions
could be very small, as shall be discussed in the following subsection.

The best solution for each combination was selected as the solution with the minimum
cost function value, as defined in Equations (12) or (15). In the following analyses, unless
otherwise specified, a solution always refers to the best solution. Note that the maximum
penalty value (defined only for constrained solutions, as the difference between the cost
output and the total ∆v) across all best solutions was 0.05478 km/s (corresponding to less
than a constraint error of 0.234%) for the broad search and 0.00032 km/s (corresponding to
less than a constraint error of 0.018%) for the narrow search.

5.2. Analysis of Broad Search Results

Using the broad search results, we first studied the number of additional impulsive
maneuvers required when the approaching phase constraints were in effect. As briefly
stated in Section 2.5, when seeking unconstrained fuel-optimal solutions, the addition of a
new DSM to 1DSMLL-type trajectories does not generally lead to a significant improve-
ment. However, when the constraints are reflected, the number of required maneuvers
may change.

Figure 5 shows the total amount of ∆v required for both unconstrained and constrained
solutions. In all three panels, ∆vs for the unconstrained reference (i.e., 1DSMLL-type) solu-
tions are included for comparison with the constrained solutions. Figure 5a demonstrates
that constrained solutions designed with the 1DSMLL models show a marked increase
in ∆v compared to the corresponding unconstrained reference solutions, indicating that
these reference models are inadequate for designing constrained trajectories. However,
Figure 5b,c shows that the constrained solutions reached with the 2DSMLL and 3DSMLL
models can effectively limit the required magnitude of ∆v to a level similar to that of
the corresponding unconstrained reference solutions. It was more difficult to identify a
meaningful difference between the 2DSMLL-type solutions and 3DSMLL-type solutions;
the average ∆v ratio of constrained 3DSMLL solutions to reference solutions was 100.90%,
whilst it was 100.70% for 3DSMLL solutions (for comparison, it was 112.00% for constrained
1DSMLL solutions). Because there was only a statistically insignificant improvement that
could be attained by using 2DSMLL to 3DSMLL under the current constraint setting, we
decided to focus more on 2DSMLL models for the narrow search, while subsequently
discussing situations that could benefit from an additional maneuver.

With respect to the shift in the optimal initial time, t0, most constrained solutions
showed only a small shift of 4.1 days (absolute values averaged without outliers), while
there were 13% of the outliers with more than 100 days of shift. Upon inspection, many
of these outliers appeared to have originated from the non-optimality of solutions and
the multimodality of the search space (i.e., solutions with significantly different t0 values
showing a similar level of ∆v) rather than a meaningful shift in the ideal launch window
caused by the introduction of the constraints.
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5.3. Analysis of Narrow Search Results

The narrow search should enable a more formal and fair comparison between uncon-
strained 1DSMLL solutions (i.e., reference solutions) and constrained 2DSMLL solutions,
as the t0 outliers are removed and the probability of finding suboptimal solutions is lower.
A comparison of the total ∆v between reference and constrained solutions is shown in
Figure 6, where both the absolute difference and relative ratio of change are shown in each
panel. Although the additional ∆v may reach up to a few hundred meters per second in a
few cases, we advise referring to Section 6 for a more thorough analysis of the increase in
∆v; the narrow search results presented here have a limitation in that both the reference
and constrained solutions are obtained within the fixed search space of Table 3.
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Figure 7 shows the shifts in the five important trajectory parameters (t0, T1, Tf , R1,
and v∞,0), compared between reference solutions and constrained solutions. It should
be noted that for the no-GA-type solutions, the TOF of the only leg is classified as Tf
instead of T1. The TOF of the last leg, denoted as Tf , was the only factor that underwent
a significant shift, whereas the other four variables mostly remained close to those of the
corresponding reference solution. The results confirm that when updating a reference
fuel-optimal unconstrained trajectory, the bounds for the four nearly constant decision
variables can be shortened to achieve a computationally efficient design; however, it may be
necessary to explore a wide range of Tf values to obtain a desirable fuel-efficient constrained
solution that satisfies the mission requirements.
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The location and magnitude of the DSMs, particularly those of the last leg, are other
important trajectory parameters. However, it is more difficult to quantify or visualize
their changes because the related parameters are defined differently between the reference
1DSMLL models and 2DSMLL models. Furthermore, even if it is possible to quantify
the trend of shifts for some DSM-related parameters, it is often difficult to control these
parameters directly because of the indirect and implicit manner in which they are encoded
in the design variables. However, because understanding these changes can help us better
understand the general characteristics of constrained trajectories, we qualitatively analyzed
the role of the additional DSM. In many cases, the added DSMs are exerted on the spacecraft
near the time of the rendezvous impulse of the reference solution, and their magnitudes are
slightly smaller than those of the corresponding original rendezvous impulses. These cases
correspond to a situation in which the spacecraft approaches the asteroid in a trajectory
similar to the reference trajectory until it applies a large braking maneuver near the asteroid
before the constraints are in effect, and then slowly approaches the target asteroid. However,
in other cases, it was difficult to pinpoint the newly added DSM because the maneuver
timings and magnitudes were entirely redistributed within the last leg. For this reason, it
is recommended that the bounds for the decision variables related to DSM timings and
magnitudes are set free for constrained trajectory design.
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5.4. Activation of Constraints in Constrained Trajectories

Another topic of interest is the manner in which constraints are activated in the
constrained solutions. Before discussing further, in Figure 8, we present two examples
(EGA-type trajectories to Asteroids #1 and #9) that show variations in the trajectories of
approach for constrained and unconstrained solutions in the asteroid-centered rotating
frame, where the Sun is always located on the X-axis. The activation of the distance
constraint can vary depending on the unconstrained reference solution. In Figure 8a, the
constrained solutions prefer to remain within a very small constraint cone during the last
45 days of the transfer, whereas a larger constraint cone is preferred in Figure 8b.
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With respect to the phase angle constraints, 73.3% of the phase-angle-constrained
solutions neared the phase angle constraint (φ ≥ 57◦) at least once among the three
constraints checks during their final 45 days of transfer. The exact time at which the
constraints were activated differed significantly depending on the approaching trajectory
of the spacecraft.

To analyze the activation of the asteroid–spacecraft distance constraints, the distance
at 45 days before the rendezvous was computed for all constrained solutions, and is
presented in Figure 9. It is apparent from Figure 9b that when both types of constraints
are applied, ∆v-optimal solutions tend to minimize the distance between the asteroid
and spacecraft. In other words, it is generally ∆v-optimal to let the spacecraft to remain
inside the smallest constraint cone possible. The exceptions to this general trend are cases
where the unconstrained reference trajectories already approach the asteroid from the
Sun’s direction, as shown in Figure 8b. In practical applications, the maximum distance
constraints can be relatively more easily defined as the maximum distance at which optical
camera use can be initiated, based on camera performance and the crude estimation of the
asteroid size. However, it would be more arbitrary to define the less intuitive minimum
distance constraint. Nevertheless, the results presented indicate that the minimum distance
constraint (or similar constraints) should be carefully selected. We further examine the
influence of the constraints on the total ∆v in Section 7.
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6. Detailed Analysis on Effect of Last Leg Duration

As discussed in Section 5.3, the careful selection of the last leg duration, Tf , and
maneuver-related parameters may be required to update an unconstrained reference so-
lution to a constrained one, whereas some other major parameters (T1, Tf , R1, and v∞,0)
require a lower level of discretion as their optimal values generally do not shift by a signifi-
cant amount. The analysis presented in Section 5.3 demonstrated that an increase in Tf of a
few hundred days is required to achieve global fuel optimality in some cases, which may be
considered too long in terms of practicality. In fact, it is preferable to view this problem
as a two-objective optimization problem in which we want to optimize both Tf and ∆v in
a balanced manner. Therefore, this section analyzes in more detail the effect of Tf on the
total ∆v.

6.1. Simulation Settings

The fuel-optimal constrained trajectories of the 2DSMLL-type were explored inside the
search space neighboring the reference solutions obtained in the narrow search described
in Section 5. For this analysis, we considered both distance and phase angle constraints.
To effectively observe the influence of Tf , this variable was fixed at 31 different values:
from −70 days to +140 days at intervals of 7 days, relative to that of the reference solution.
Two other important time-related variables, namely t0 and T1, were fixed to those of the
corresponding reference solution so that the shift in Tf became the main factor of the
temporal changes. Meanwhile, bounds for v∞,0 and R1 were severely limited to [90%,
110%] of the reference solution values, where the original bounds given in Table 3 take
precedence when the updated bounds span beyond the original bounds. The bounds for
the other variables remained unchanged from Table 3. The number of optimization runs
was set differently according to the ease with which they could be solved, to five for the
four-impulse model and 20 for VGA-3DSMt and EGA-3DSMt models.

6.2. Effect of Last Leg Duration on ∆v

Figures 10 and 11 illustrate the relative ratio and absolute difference of the total ∆v
values between reference solutions to constrained solutions as a function of the amount of
Tf extension. Figure 10 shows the results for Atiras and Atens, which are relatively closer to
the Sun, whereas Figure 11 shows those for Apollos and Amors, which are relatively farther
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from the Sun. In both figures, the vertical and horizontal black dashed lines respectively
represent the last leg duration, Tf , and the total ∆v of the reference solution. The most
∆v-optimal solutions (among the allowed Tf values) are represented by dots with black
edges. In general, a carefully chosen extension of Tf can limit the increase in the total
∆v by up to 50 m/s under the current level of constraints. It should be noted that as
the optimal v∞,0 undergoes a very minute change (Section 5.3), the additional ∆v caused
by introducing the approaching phase constraints is to be exerted upon mostly by the
spacecraft rather than the launch system. Although this increase may be less than 1% in
terms of the total ∆v, in terms of spacecraft ∆v it can amount to a few percent. Therefore,
it is recommended that this aspect be considered during a preliminary assessment of the
spacecraft mass/propellant budget.
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The general trend of ∆v in terms of Tf was similar in most cases; it decreased with
an increasing Tf until the point at which the change became less noticeable. The relative
flatness from this point on implies that solving the constrained problem directly without a
reference trajectory may be an impractical choice; such a globally fuel-optimal constrained
solution can sometimes require an impractically lengthy extension of the total transfer
duration for a minute decrease in fuel consumption.

There are some exceptional cases that should be noted. First, as shown in Figure 10, a
few solutions for Atiras-type asteroids manifested pronounced peaks that were out of the
trend. This phenomenon appears to arise from the difficulty of inserting the spacecraft into
the constraint cone at the right place with only a single additional maneuver. Furthermore,
this phenomenon convolutes the landscape of the optimization problem, making it very
difficult to acquire a truly globally optimal solution despite the smaller search space.
Consequently, the solutions contained in these peaks are most likely suboptimal (i.e., not
truly globally optimal within the limited search space). If the desired arrival time is near
this peak, this phenomenon can be curbed by adding a new maneuver to the trajectory
model, as will be shown in the next section.
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Another interesting phenomenon is the decrease in the constrained solution’s total
∆v to below that of the reference solution as Tf increases, which can also be observed in
Figure 6. This is believed to occur when the last leg is sufficiently long to require two
major impulses for fuel optimality [28]; the reference solution itself may sometimes require
two DSMs in the last leg for fuel optimality (e.g., VGA-type solution for Asteroid #6),
or an increase in Tf can cause it to occur (e.g., EGA-type solution for Asteroid #3). In
these trajectories, the DSM added to the last leg can simultaneously act as a maneuver
for inserting the spacecraft into the constraint cone and as a maneuver that improves fuel
consumption compared to the 1DSMLL-type reference solution. Therefore, if necessary,
trajectory designers may attempt a few options to arrive at a new reference trajectory,
such as (a) designing a reference trajectory with two DSMs in the last leg, (b) obtaining a
reference trajectory with a shortened bound on Tf , or (c) acquiring a reference trajectory
with a new gravity assist that splits the lengthy last leg into two legs.

7. Effect of Phase Angle and Minimum Distance Constraint

In this section, the combined effect of the maximum phase angle and minimum dis-
tance constraints is discussed. As briefly stated in Section 2.4, the minimum distance con-
straint was introduced because, without this limit, the ∆v-optimal phase-angle-constrained
solution is often reduced to a trivial solution, where the spacecraft performs a rendezvous
with the asteroid using what is supposed to be the final DSM, and simply follows the
asteroid thereafter until it eventually performs a virtually zero-magnitude rendezvous
maneuver. This trivial solution requires basically the same ∆v as the unconstrained refer-
ence solution does, but cannot be realized for actual missions because it fails to satisfy the
original purpose of the gentle approach.

To evaluate the constraints’ effect on the total ∆v, EGA-3DSMt and EGA-4DSMt solutions
for Asteroids #4 and #10 were obtained for different constraint combinations. The total ∆v
comparisons for trajectories to Asteroids #4 and #10 are presented in Figures 12 and 13,
respectively, in the same format as in Figures 10 and 11. Examples of trajectories for different
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minimum distance constraints are illustrated in Figure 14. As expected, when there is
no minimum distance limit (red and yellow lines in Figures 12 and 13), the constrained
solutions essentially require the same amount of fuel as the reference solution does, as long
as a sufficient extension of Tf is guaranteed.
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Meanwhile, both a tighter minimum distance constraint (i.e., an increase in the min-
imum distance) and a tighter phase angle constraint (i.e., a decrease in the maximum
phase angle) contribute to an increase in total ∆v by requiring the trajectory to be con-
tained inside a smaller constraint cone. These harsher constraints can also give rise to
the peak phenomenon discussed in Section 6.2, as shown in Figures 12a and 13a, which
can be alleviated by adding a new maneuver, as can be seen in Figures 12b and 13b. In
the example trajectories shown in Figure 14b, these small additional braking maneuvers
are applied inside the constraint cone, preventing the spacecraft from violating the phase
angle constraint.
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Thus, these results indicate that selecting a minimum distance constraint (which, in
the fuel-optimal solution, is highly likely to equal the distance at the timing of the distance
constraint check) can often be important in the preliminary trajectory design phase and
may need to be one of the parameters that should be considered in trade-off analysis.

8. Implications for Preliminary Trajectory Design Process for NEA Missions

Based on the analyses presented in Sections 5–7, this section discusses how they should
be reflected in the preliminary trajectory design process for NEA missions. Although a
fuel-optimal preliminary trajectory design under approaching phase constraints can be
directly performed as single-step constrained global optimization without a reference
trajectory, the increased complexity of the optimization problem and heavily perturbed
problem landscape may hinder the identification of the globally optimal solution and
important trajectory parameters, such as the ideal launch window. Furthermore, the
analysis in Section 6.2 revealed that a globally fuel-optimal constrained solution may
require an unnecessarily long mission duration to achieve a negligible improvement in
fuel consumption.

Therefore, it would be ideal to view this problem as a two-objective optimization
problem, where the goal is to find a mission-adequate combination of the transfer duration
and total ∆v (or spacecraft ∆v). The two-step design approach illustrated in Figure 15 can
assist in achieving a rapid constrained trajectory design and trade-off analysis. First, a
fuel-optimal unconstrained solution is sought using the 1DSMLL models within a broad
search space of the decision variables. Using this reference solution as a baseline to limit the
search space effectively, constrained solutions are to be designed for several different values
of Tf . A trade-off analysis between mission duration and ∆v usage can be performed using
the obtained trajectory solutions, as in Figures 10–14. In addition, this analysis can also hint
at the need for an additional maneuver for reducing the constraint error or an update in
the reference trajectory.
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The obtained preliminary constrained solution can then be realized into a high-fidelity
design or further updated by adding another few small maneuvers to fulfill other re-
quirements. For instance, additional maneuvers inside the constraint cone can be used to
improve optical navigation observability, or ensure robust arrival regardless of different
launch times, as applied to the OSIRIS-REx trajectory design [17].

9. Conclusions

This paper discusses the preliminary design of interplanetary trajectories for near-
Earth asteroids (NEAs), where the basic requirements for the approaching phase trajectory,
namely asteroid–spacecraft distance and phase angle constraints, are reflected in the overall
trajectory design process as constraints. The optimization of the overall transfer trajectory
(instead of designing only the approaching trajectory as an independent problem) enables a
clearer evaluation of the influence of constraints on the overall trajectory and propellant use.

To compare the characteristics of the ∆v-optimal unconstrained (i.e., reference) and
constrained trajectories, they were obtained using a global optimization algorithm in
the same search space. Several comparisons between the solutions revealed that a fuel-
optimal constrained trajectory can be efficiently obtained by adding a few deep-space
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maneuvers in the last leg and increasing the time of flight of the last leg of the reference
solution by an adequate amount. DSM-related parameters may also change significantly
between unconstrained and constrained solutions, but their trend of change is often not
straightforward; thus, it is advised that the bounds for the DSM-related decision variables
be set free during the constrained trajectory design. Meanwhile, the optimal values for
other important variables, such as the launch window, characteristic energy of the launch,
and durations of the other legs, do not significantly differ between the unconstrained and
constrained solutions, enabling trajectory designers to effectively limit their bounds during
the constrained trajectory design step for time-efficient optimization.

Based on further analysis, we demonstrated the need for a trade-off analysis between
transfer duration and fuel usage, as well as the constraints. As their influence can be rather
subtle, such a trade-off analysis can provide better insight into constrained trajectory design
than can single-step constrained trajectory optimization. Furthermore, we identified two
atypical behaviors that a transfer duration vs. fuel usage trade-off graph could manifest,
which may signal trajectory designers to redesign the reference trajectory or add a new
braking maneuver for the constrained trajectory. Based on these findings, we present a
practical two-step approach for designing approaching-phase-constrained trajectories using
global optimization algorithms. The resultant preliminary constrained trajectory can then
be updated into a high-fidelity trajectory or further modified by inserting additional small
DSMs to improve other aspects of the mission, such as optical navigation observability.
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