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Abstract: Most conventional speech recognition systems have mainly concentrated on voice-driven
control of personal user devices such as smartphones. Therefore, a speech recognition system
used in a special environment needs to be developed in consideration of the environment. In
this study, a speech recognition framework for voice-driven control of unmanned aerial vehicles
(UAVs) is proposed in a collaborative environment between manned aerial vehicles (MAVs) and
UAVs, where multiple MAVs and UAVs fly together, and pilots on board MAVs control multiple
UAVs with their voices. Standard speech recognition systems consist of several modules, including
front-end, recognition, and post-processing. Among them, this study focuses on recognition and
post-processing modules in terms of in-vehicle speech recognition. In order to stably control UAVs
via voice, it is necessary to handle the environmental conditions of the UAVs carefully. First, we
define control commands that the MAV pilot delivers to UAVs and construct training data. Next, for
the recognition module, we investigate an acoustic model suitable for the characteristics of the UAV
control commands and the UAV system with hardware resource constraints. Finally, two approaches
are proposed for post-processing: grammar network-based syntax analysis and transaction-based
semantic analysis. For evaluation, we developed a speech recognition system in a collaborative
simulation environment between a MAV and an UAV and successfully verified the validity of each
module. As a result of recognition experiments of connected words consisting of two to five words,
the recognition rates of hidden Markov model (HMM) and deep neural network (DNN)-based
acoustic models were 98.2% and 98.4%, respectively. However, in terms of computational amount,
the HMM model was about 100 times more efficient than DNN. In addition, the relative improvement
in error rate with the proposed post-processing was about 65%.

Keywords: speech recognition; voice-driven control; acoustic model; grammar network; syntax
analysis; semantic analysis; unmanned aerial vehicle (UAV); UAV control

1. Introduction

Since speech recognition technology has been successfully used in personal assistant
devices such as artificial intelligence (AI) speakers and smartphones, various speech recog-
nition applications have been introduced. In particular, many attempts have been made to
apply voice control to moving objects such as cars, and the speech recognition function has
played a very important role in controlling flying objects such as unmanned aerial vehicles
(UAVs). In order to control a moving object through speech recognition in such a special
environment, research considering the specificity of the environment is necessary. This
study proposes a speech recognition framework for voice-based UAV control in a collab-
orative environment of manned aerial vehicles (MAVs) and UAVs. In this environment,
multiple MAVs and multiple UAVs fly together, and pilots on board the MAVs perform
collaborative tasks with UAVs by controlling multiple UAVs with their voices.
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Several previous studies introduced systems for controlling UAVs via voice [1–3]. Most
conventional studies have focused on a typical speech recognition environment where
speech recognition controls a single UAV. In a previous study, we presented an efficient
speech recognition architecture and front end for controlling multiple UAVs with voice [4].

If the current speech recognition scheme (that is, server-centric scheme) that processes
speech recognition in a remote server is applied to a collaborative environment of a MAV
and an UAV, various problems may arise. First, multiple MAV pilots simultaneously
submitting voice commands to a single server can place a heavy burden on the server,
delaying the sending of commands. The server-centric scheme also manages indirect UAV
control by performing three data transmission sequences: the MAV to the recognition server,
the server to the MAV, and the MAV to the UAV. This indirect communication can incur
communication costs, resulting in misrecognition or dropped commands due to packet loss
while the MAV and the UAV are moving. For high-speed moving, special-purpose UAVs
(e.g., military UAVs), the packet loss problem can be more serious.

In [4], we proposed an efficient recognition scheme to solve such disadvantages of
conventional speech recognition schemes in the multi-UAV control via voice. The proposed
scheme is summarized as distributed speech recognition in which the MAV and UAV share
speech recognition processes. The MAV system processes the front-end module to extract
acoustic features from the input speech uttered by the MAV pilot. When the acoustic
features are sent to the UAVs, the UAV’s system performs the recognition process that
follows the front-end process.

This study introduces a speech recognition process not covered in the previous study.
There are few studies considering an efficient speech recognition framework for the envi-
ronment where a MAV and an UAV cooperate to perform military operations. This study
proposes a speech recognition framework suitable for this environment. In particular, we
concentrate on an acoustic model suitable for a distributed speech recognition system in
which the MAV and UAV share speech recognition tasks and a post-processing method to
minimize the risk caused by speech recognition errors in a collaborative environment of a
MAV and an UAV.

In recent years, research on speech recognition and understanding in air traffic control
(ATC) environments have been conducted through projects such as HAAWAII [5] and
SESAR [6]. In a voice communication environment between air traffic controllers (ATCo)
and the pilot, the ATCo receives the pilot’s voice command and performs recognition. ATC
systems with relatively high-performance hardware can handle complex models such as
end-to-end ASR models [7–9]. However, in the collaborative environment between an
UAV and a MAV targeted in this study, the speech recognition module is operated on the
UAV with hardware resource constraints. Thus, the conventional research has somewhat
different characteristics from the environment we are targeting in that the ATC system has
relatively few hardware resource limitations and is processed at the ground control center.

The remainder of this paper is organized as follows. In Section 2, we propose an
efficient speech recognition framework for voice-driven UAV control in a collaborative
environment of MAVs and UAVs. In Section 3, several experiments conducted on speech
data and their results are reported and discussed. Finally, Section 4 concludes the paper.

2. In-Vehicle Speech Recognition for Voice-Driven UAV Control in a Collaborative
Environment of MAV and UAV

Although considerable research on speech recognition has been conducted in various
fields, research on speech recognition for UAV control is relatively insufficient [10]. Several
studies on multimodality using speech and visual data have been introduced [10,11],
and most of the speech recognition studies have considered situations where speech
recognition is performed at a ground control station [12–14]. However, most speech
recognition processes for UAV control are performed in a similar way to general speech
recognition systems.
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A traditional speech recognition system consists of several modules, including front-
end, recognition, and post-processing modules, as shown in Figure 1 [15,16]. The front-end
module performs several processes, such as noise reduction, voice triggering, and acoustic
feature extraction. Next, in the recognition module, speech recognition is performed
using pre-trained acoustic models using common pattern recognition techniques such
as deep neural networks (DNNs) or hidden Markov models (HMMs). Finally, the post-
processing module performs syntax and semantic analyses to improve the recognition
output’s accuracy and clarity.
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Figure 1. The general procedure of standard speech recognition systems.

As mentioned in Section 1, a speech recognition scheme suitable for the collaborative
environment of MAVs and UAVs is a form of distributed speech recognition in which a
MAV and an UAV share speech recognition processes. Figure 2 summarizes this scheme
in which the MAV processes the front-end module and the UAV performs the recognition
process.
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In this section, we propose each module suitable for collaborative environments of
MAVs and UAVs.

2.1. Front-End of Speech Recognition

The front end of speech recognition consists of four main processes: voice activ-
ity detection (VAD), feature extraction, noise reduction, and voice trigger, as shown in
Figure 3 [4,17]. The first two processes are essential for speech recognition. VAD is the
process of detecting target speech regions to perform speech recognition. Feature extraction
is to extract features representing acoustic characteristics in the time or frequency domain
from input speech data.
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Noise reduction and voice triggering should be developed according to the system
environment. In the previous study, noise reduction and voice-triggering approaches were
proposed to handle multi-UAV environments [4]. In particular, to consider multi-UAV
control, we proposed a multi-channel voice-trigger approach in which each UAV has a
unique name used as a trigger word, and the MAV pilot establishes a connection between
the MAV and the target UAV among multiple UAVs. Figure 4 represents the multi-channel
voice trigger-based front end and speech recognition procedures for multi-UAV control.
When MAV pilots have a conversation and a situation arises where they need to call an
UAV among multiple UAVs, they call the name corresponding to the target UAV. Then, the
voice-trigger module detects a specific UAV name according to the process shown in the
upper block of the figure, and it attempts to connect with the target UAV. When connected
to the target UAV, the pilot speaks a command, and the features extracted from the voice
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are transmitted to the target UAV, and finally, speech recognition proceeds, as shown in the
block below in Figure 4.
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2.2. Model Construction for Speech Recognition

As described in Figure 4, after the pilot calls the trigger word for the target UAV and
a connection is made with the UAV, the pilot delivers a command to the UAV, and the
UAV starts speech recognition for this command. This subsection describes the speech
recognition process performed in the UAV system.

2.2.1. Definition of Voice Commands for Training Data Collection

For speech recognition, an acoustic model must be constructed in advance (this is
called model training), and training data is required in this process. Therefore, for collecting
training data, we first define a set of voice commands that the pilot of the MAV delivers
to control the UAV. For this work, we conducted expert consultation through several
meetings with military aviation officials. The characteristics of commands used for military
operations between MAV pilots and UAVs are shown in Table 1.

Table 1. Characteristics of commands used for military operations between MAV pilots and UAVs.

Restrictions Expert Advice

Structure of commands Simple and clear commands for precise delivery
(1 to 5 connected words)

Vocabulary size 150 to 200 words available to pilots

Language English is used for communication between military aircraft
(International Telecommunications Standard)

In other words, for the voice commands for military operations between MAVs and
UAVs, a command structure consisting of 1 to 5 connected words out of approximately
150 to 200 words available to MAV pilots is suitable for accurately delivering commands to
the UAV.

The voice command sets must be designed considering various missions the UAV must
perform and various collaboration situations between MAV and UAV. In addition, the com-
mand sets should be composed of frequently used words for the pilot’s convenience and
consist of words that are easy for speech recognition. There have been several international
cooperation projects related to the collaborative operation of MAVs and UAVs, and various
related reports and standards have been published, including the Standardization Agree-
ment (STANAG)-4586, Manned–Unmanned Teaming (MUM-T), and Manned–Unmanned
Systems Integration Capability (MUSIC) [18,19]. By analyzing the documents, we investi-
gated the collaboration situations and missions between MAVs and UAVs and specified
the division of roles between MAVs and UAVs according to cooperative operation.
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In some documents, the core missions of UAVs in the cooperative operation of a MAV
and an UAV are known as missions related to reconnaissance, attack, condition monitoring,
and location/route management [20,21]. In addition, STANAG-4856, a military standard
established by the North Atlantic Treaty Organization (NATO), defines data link interface
(DLI) messages between a ground control center and an UAV [18]. Therefore, we derive
the voice command sets by linking the UAV core missions with the DLI messages provided
by STANAG-4856. Table 2 summarizes the mission command sets configured for several
DLI messages.

Table 2. Examples of mission command sets.

DLI Message Mission Commands

Vehicle Configuration
Check energy storage unit, read back, report energy state, report fuel

state, report battery state, ready for launch, acknowledge, are you
ready, take off

Vehicle Operating Mode Set up control mode, request manual control, request automatic
control, report control mode

Vehicle Steering

Set up heading point, heading for waypoint (no.), change heading
point, report heading point, say heading point, set up altitude,

request altitude (no.), maintain altitude, change altitude (no.), say
altitude, report altitude, set up speed, reduce speed to (no.), set up

loiter position, request loiter position latitude (no.)

Mission Transfer Set up mission plan, clear route, change route (no.), request route
(no.), clear mission, request mission (no.)

AV Loiter Waypoint

Set up loiter type, request loiter type circle, request loiter type
racetrack, request loiter radius (no.), report loiter type, report loiter
altitude, report loiter speed, request loiter speed (no.), request loiter

duration (no.), report loiter duration, request loiter bearing north

Table 3 introduces several scenarios where the UAV executes its mission by passing
commands from the MAV pilot to the UAV using the defined command sets. In other
words, the phrases in the command scenarios are all examples of commands delivered
by the MAV pilot to the UAV, and commands are delivered sequentially according to the
phrases in the scenario presented for each mission. It shows that three UAVs (each UAV
is named Alpha, Bravo, and Charlie) perform surveillance and reconnaissance under the
control of a manned pilot. In a situation where three UAVs are launched simultaneously
after the pilot determines basic settings such as route and altitude, Alpha is put into a
reconnaissance mission, and Bravo and Charlie are put into surveillance missions. Each
mission command starts with calling the UAV to be controlled.

Table 3. Examples of several mission types and command scenarios.

Mission Type Command Scenario Mission Type Command Scenario

Take-off

Agent Alpha
Agent Bravo
Agent Charlie
Set up heading point
Heading for waypoint 7
Set up altitude
Request altitude 7000
Set up speed
Request speed 250
Ready for launch
Are you ready
Take off
Disconnection

Reconnaissance
flight
instructions

Agent Alpha
Request approach
Set up altitude
Request altitude 3000
Set up area
Request vertices number 1
Request area min
altitude 2000
Request area max
altitude 3000
Request area loop count 10
Disconnection
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Table 3. Cont.

Mission Type Command Scenario Mission Type Command Scenario

Surveillance
flight

instructions

Agent Bravo
Request activity
surveillance
Request loiter type circle
Request loiter radius 200
Request loiter speed 10
Disconnection
Agent Charlie
Request activity
surveillance
Request loiter type
figure eight
Request loiter speed 20
Disconnection

Return after
completing the
mission

Agent Alpha
Agent Bravo
Agent Charlie
Clear mission
Request flight
Change heading point
Heading for waypoint 0
Start flight termination
Set up control mode
Request automatic control
Report arrival time
Disconnection

2.2.2. Acoustic Model Construction

An acoustic model is a fundamental component of speech recognition [22]. Acoustic
model construction is a process of learning to map acoustic features extracted from input
speech signals to phonetic units [23,24]. Typical acoustic models are HMM and DNN.
HMM is constructed by learning the statistical relationships between the acoustic features
and the corresponding phonetic units [25,26]. On the other hand, the DNN-based acoustic
model is trained using deep learning techniques to learn a non-linear mapping between
the acoustic features and the phonetic units [27].

The HMM is a traditional acoustic model that has been successfully used in many
speech recognition systems [24]. It has a simple and interpretable structure and is, therefore,
computationally efficient, especially during decoding. However, the HMM has limited
ability to model complex non-linear relationships between input features and output
phonemes, making it difficult to capture acoustic details [28]. Because of this, the HMM
has limitations in recognizing speech with complex structures (e.g., sentence units).

On the other hand, the DNN is capable of modeling complex non-linear relationships
between input features and output phonemes, making it possible to capture acoustic details
and improve recognition accuracy for sentence-level speech [29,30]. However, it has a more
complex structure than HMM, making it more computationally intensive during training
and decoding, and it may require specialized hardware to achieve real-time performance. In
particular, the DNN requires significant training data to learn many model parameters [31].

Since the HMM and DNN have such conflicting characteristics, selecting and construct-
ing a model suitable for recognizing the mission command sets delivered to the UAV by the
MAV pilot and suitable for the system environment driving speech recognition is necessary.
As described in the previous section, the pilot’s mission commands given to the UAV are
relatively short sentences consisting of at most five words. The sentence is considered a
series of connected words. The total number of words included in the command sets is
only about 400. In terms of the system environment driving speech recognition, UAVs
responsible for speech recognition processing typically have limited computing hardware
capacity and can perform limited computations.

Based on these characteristics, a speech recognition system that can recognize con-
nected words consisting of a relatively small number of words with medium hardware
capacity is appropriate for recognizing UAV mission commands. Therefore, HMM is
expected to solve these limitations more effectively than DNN.

For HMM-based connected word recognition, the HMM must be constructed for each
word included in the command set. Since the recorded training data are composed of
commands in sentence units, it is necessary to segment each speech data sequence into
individual words. For each word, a separate HMM is then trained using the segmented
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speech data. That is, the same number of HMMs as the number of words included in the
command set is constructed during training.

After building an HMM for each word, connected word recognition proceeds as
follows. First, by detecting the silence regions included in the input speech, the connected
word command is divided into sequences of isolated words. Acoustic features are then
extracted from each isolated word. Next, as shown in Figure 5, the same decoding process
as isolated word recognition is performed using the Viterbi algorithm [32], which computes
the likelihood for each HMM (λ1, . . . , λV) with given acoustic features. Once an HMM
representing the maximum likelihood is determined, the word corresponding to the model
is regarded as the recognition result.
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Figure 5. The procedure of HMM-based isolated word recognition.

In the speech recognition process shown in Figure 5, the HMM with the same structure
can be used for all words. However, since the amount of information that the model
needs to learn varies depending on the length of the word utterance, more effective speech
recognition can be performed by modifying the structure of the HMM considering the
word length.

As illustrated in Figure 6, if all words have the same HMM structure, inefficient
HMMs may be constructed in which one state covers multiple phonemes or several states
simultaneously handle one phoneme. In this study, we construct HMMs with different
structures for each word to improve the structural problem of HMM. Since we expect that
the HMM structure in which one state handles one phoneme is the most effective, we adjust
the number of HMM states according to the number of phonemes in each word, as shown
in Figure 7.
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2.3. Post-Processing with Syntax Analysis and Semantic Analysis

The purpose of post-processing is to improve the accuracy of recognition output
through syntax analysis and semantic analysis. In this study, we propose efficient meth-
ods for each post-processing task, considering the mission commands established in the
collaborative environment of MAVs and UAVs.

2.3.1. Syntax Analysis Based on the Grammar Network

Syntax analysis is the process of analyzing the grammatical structure of a spoken
sentence to determine its meaning [33]. It helps clarify sentences with multiple possible
meanings. Therefore, this processing is very important in the collaborative environment of
MAVs and UAVs where there is a high possibility of misrecognition due to aircraft noise,
and the UAV must clarify the pilot’s mission commands.

In this study, we organized the grammar structure of mission commands into a tree-
type grammar network and performed syntax analysis using this network. That is, the
recognition result conforming to this network was determined to have an appropriate
grammatical structure; otherwise, it was regarded as misrecognition.

The grammar network has one root node and one terminal node, and the network is
formed between the root and the terminal node, with the preceding word becoming the
parent node and the succeeding word becoming the child node according to the grammar
structure of each command. The starting word of each command becomes the child node
of the root node, and the command’s last word becomes the terminal node’s parent node.
When creating a grammar network in this way, several sample commands such as “report
loiter altitude”, “report loiter duration”, and “report battery capacity” can be expressed as
a tree, as shown in Figure 8.
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In Figure 8, “battery capacity” is handled in two ways: storing two words together
in one node or dividing each word into two nodes. The reason for this processing is
to recognize it as one word when uttering this command without a pause between two
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connected words. In addition, some mission commands contain numbers, such as “heading
for waypoint 5”. Since numbers have various lengths, they are expressed as one node when
processing the syntax of such commands.

The principle that the grammar network we built can be used to determine whether
the recognition result conforms to the command syntax is as follows. When a sequence of
words included in the recognition result has a path starting from the root node and arriving
at a terminal node, the word sequence is determined to conform to the command syntax. If
the sequence of words starts from the root node and does not reach the terminal node, the
word sequence may not conform to the command syntax.

If it is determined that the word sequence of the recognition result does not conform
to the command syntax, the result may be regarded as completely incorrect. Nevertheless,
there is a possibility that only one or two words in the word sequence might be incorrectly
recognized. Therefore, rather than concluding that the recognition result is completely
misrecognized, correcting the misrecognized words may help improve overall performance.
In this study, we propose a method to correct such misrecognition of several words by
combining candidate recognition results with a grammar network.

In general, when word recognition is performed on connected words of an input
command, the similarity between given acoustic features and each word model is calcu-
lated. Then, the top several word models selected in order of similarity become candidate
recognition results for the given features. At this time, the similarity of each candidate’s
result is also stored.

Figure 9 shows an example of candidate recognition results for the input command
“report loiter altitude”. If only the first-rank result of each word is accepted, “report route
altitude” becomes the recognition result, which cannot pass through our grammar network.
However, as shown in this figure, if the second-rank result of each word is also accepted,
“report loiter altitude” can be obtained as a recognition result. In other words, after candi-
date results for each word are selected, among all possible word sequence combinations
constructed from the candidates, a word sequence having the highest similarity while
passing through the grammar network becomes the final recognition result of the input
command. The grammar network is used in this process to verify whether each word
sequence constructed from the candidates matches well with the command syntax.
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As the number of candidate results for each word increases, the amount of computation
also increases, so we set the number of candidate results to three, which is considered the
most appropriate. If none of all possible word sequence combinations constructed from
the candidate results pass through the grammar network, the given input command’s
recognition result is considered entirely incorrect.

If the first-ranked word sequence does not match the grammar network, it is combined
with the next ranked results and attempts to match the grammar network again. If the
command consists of five words, the total number of combinations will be 243 = 35. There
are rarely situations where all 243 combinations are considered, because usually the first or
second ranked results match the grammar network and the matching process stops.
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2.3.2. Semantic Analysis Based on Transaction Scheme

Semantic analysis is the process of analyzing the meaning of words and phrases
contained in recognition results to extract the intended semantic content [34]. This involves
understanding the context of recognition results. It is an important process in speech
recognition because it allows systems to accurately transcribe speech into its intended
meaning rather than simply recognizing sounds or phonemes. As such, this process is
particularly important in applications such as natural language processing and virtual
assistants, where understanding the meaning of spoken language is essential for providing
accurate and useful responses.

Semantic analysis plays a key role in a system that recognizes mission commands in
the collaborative environment of MAVs and UAVs. During an important military operation,
if a command transmitted by a pilot is recognized as a command that contradicts the current
state of the UAV due to a recognition error or a pilot’s ignition mistake, it can encounter a
very dangerous situation.

For example, in a situation where the UAV receives the command “Request automatic
control”, meaning to switch from manual flight to automatic flight and performs the
mission, if “Ready for launch” to prepare for take-off is recognized as the next command,
the UAV should consider it as a recognition error or a pilot’s ignition mistake and report it
as an unacceptable command. In this study, we utilize semantic analysis to block dangerous
situations caused by recognition errors or pilot ignition mistakes.

The proposed method implements semantic analysis using the transaction scheme
used in data management. A transaction refers to a sequence of operations in data manage-
ment that are treated as a single task unit [35]. It is used to ensure data consistency and
integrity through key properties referred to as ACID, which represent atomicity, consistency,
isolation, and durability.

Atomicity means that a transaction must be treated as a single indivisible operation,
and all operations must succeed or fail as a unit. In other words, if any part of a transaction
fails, the entire transaction is rolled back to its previous state. Consistency is the property
that the data must be in a consistent state before and after a transaction is executed. Isolation
means that the transaction must be executed in isolation from other concurrent transactions.
That is, the results of one transaction should not be visible to other transactions until it
is committed. Finally, durability is the property that once a transaction is committed, its
effect on the data must be permanent. The system can provide reliable and robust data
management by ensuring that transactions are ACID-compliant, especially in mission-
critical applications where data consistency and integrity are essential.

Because of the characteristics of the transaction, transaction-based semantic analysis
of speech recognition results can be effectively used to control UAVs performing critical
missions. The process of transaction-based semantic analysis is as follows.

First, critical command sets are defined, such as safety-critical commands, mission-
critical commands, and flight-critical commands; then, commands corresponding to each
set are selected. Next, each mission is classified as a transaction type, such as a take-off
transaction, landing transaction, or reconnaissance transaction. Furthermore, as shown in
Figure 10, each critical command set is mapped to a mission transaction, allowing more
than one command set to be mapped to a single transaction. Although illustrated here,
the mapping information between the critical command set and the mission transaction is
managed as a kind of mapping table.

Figure 11 shows the process of making a final decision on whether to accept or reject
the command recognition result based on the status of the transaction. We apply the concept
of transaction status, commonly used in data management, to this study. A transaction
has five statuses: active, partially committed, committed, failed, and aborted. When a
transaction starts, it becomes “active”. When the transaction ends, it becomes “partially
committed”, and when it is completely finished, it becomes “committed”. On the other
hand, if the transaction fails to complete in the active status, it goes into the “failed” status
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and eventually changes to the “aborted” status. Sometimes, it is partially committed and
becomes a failed status.
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The proposed method determines whether to accept or reject the command recognition
result based on the transaction status. Assume that a UAV starts a transaction, and a new
command is recognized while this transaction is active. At this time, a transaction that
the new command corresponds to is found in the mapping table. The new command is
accepted if it corresponds to the currently executing transaction; otherwise, it is rejected. As
a result, this verification prevents the start of another new transaction before the currently
executing transaction becomes committed or aborted.

The proposed method guarantees the independence of individual missions the UAV
performs using the transaction scheme. The process for validating recognition results
utilizes the ACID characteristics of the transaction discussed above to ensure that the UAV
can safely carry out its mission.

Figure 12 shows an example of securing the mission’s independence via a UAV by
rejecting a disallowed command through transaction-based semantic analysis. In this
figure, when a MAV pilot delivers the command “Request activity surveillance” related
to the reconnaissance mission to the UAV, the UAV starts the reconnaissance transaction.
While performing the reconnaissance transaction, if the UAV recognizes another voice
message from the pilot as “Ready for launch” that is related to the take-off mission, the
UAV understands that this command is not related to the reconnaissance transaction and
informs the MAV that the command is not allowed.
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3. Evaluation

To validate the efficiency of the proposed speech recognition framework, we conducted
several experiments, including speech recognition, syntax analysis, and semantic analysis.

3.1. Validation of Speech Recognition for Mission Command Set in a Collaborative Environment of
MAVs and UAVs

Speech recognition experiments were performed to verify the performance of the
acoustic models introduced in Section 2.2.2. Training data are required to build acoustic
models. As described in Section 2.2.1, we constructed voice command sets related to
voice-driven UAV control in a collaborative environment of MAV and UAV, and as a result,
obtained about 300 different commands and about 400 different words. We then recorded
50 speakers pronouncing each command and word three times in a clean environment. As
a result, 105,000 pieces of voice data (45,000 data for command units and 60,000 for word
units) were collected. These data were divided into 10 groups, and speech recognition
experiments were conducted using a 10-fold cross-validation method. That is, the data of
5 speakers in the first group were used for testing, and the data of the remaining 45 speakers
were used for model training. In this way, the experiments were conducted 10 times by
changing the test and training data groups, and the average of each experiment result
was calculated.

As explained in Section 2.2.2, we considered the HMM a more efficient model than the
DNN in recognizing mission commands in the form of connected words composed of a
small number of words. Therefore, an HMM model was built for each word, and connected
word recognition experiments were conducted using this model.

In addition, a DNN model was also constructed to compare performance with HMM.
However, there is a limit to building a DNN model with about 100,000 voice data we
collected, so we built a model using the DARPA Resource Management (RM) speech
corpus [36,37]. The DNN used in the experiment is a model with a five-layer structure
built based on Kaldi. Kaldi is an automatic speech recognition (ASR) toolkit with many
ASR algorithms [38]. It has been released in various versions and has provided various
training recipes such as the Wall Street Journal Corpus (wsj), TIMIT (timit), and Resource
Management (rm). Since the speech recognition target covered in this study is commands
composed of several word sequences, we tried to use a DNN model that shows stable
performance while minimizing the amount of computation compared to complex DNN
models. For this reason, we trained a TDNN-based triphone model using the Kaldi S5
version by following the recipe using the RM corpus [39,40]. Speech recognition in the
two models was performed on a laptop with relatively low specifications (Intel i5 (quad-
core, 3.4 GHz), 4 GB RAM) considering the UAV system environment, and the average
recognition time was also investigated along with the recognition rate.

Table 4 shows the results. In this experiment, we investigated the command recogni-
tion results of sentence units, word error rate, and average recognition time of commands.
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In Section 2.2.2, we proposed a method to change the structure of HMM so that each state
of HMM processes one phoneme. To verify this method’s validity, the performance of
the fixed HMM, which consists of a fixed number of states for all words, and the variable
HMM, which has a different number of states for each word, were compared. In order to
examine the results more elaborately, recognition experiments were conducted according
to the length of the command, from a command consisting of two words to a command
consisting of five or more words.

Table 4. Performance of acoustic models (HMM and DNN): recognition rate by sentence (%), word
error rate (%), and average recognition time (sec) in command units.

Model Measure 2 Words 3 Words 4 Words 5 or More

Fixed HMM
Rec. Rate (sent.)
Word Error Rate

100
0

97.4
0.87

95.3
1.49

94.2
2.15

Avg. Rec. Time * 0.03 0.05 0.06 0.09

Variable HMM
(proposed)

Rec. Rate (sent.)
Word Error Rate

100
0

98.5
0.54

97.4
0.86

96.9
1.13

Avg. Rec. Time * 0.03 0.04 0.05 0.10

DNN

Rec. Rate (sent.)
Word Error Rate

100
0

98.8
0.49

97.6
0.80

97.2
1.09

Avg. Rec. Time * 2.0 4.5 6.5 9.0
Avg. Rec. Time ** 0.20 0.38 0.55 0.85

* Experiment with a low-spec laptop/** Experiment with a high-spec laptop.

As shown in this table, the proposed variable HMM improved performance compared
to the fixed HMM. The longer the command length, the more noticeable the performance
improvement. However, there was no significant difference in recognition time between the
two models. Therefore, this result indicates that the variable HMM configures the number
of states differently for each word and is more efficient in recognizing connected words.

Next, we compared the performance of the proposed variable HMM and DNN models.
In the experimental results, there was not much difference between the two models in the
recognition accuracy, while showing a good performance of 97% or more. As a result of
recognizing whole command units consisting of two to five words, the proposed variable
HMM and DNN showed an average recognition rate of 98.2% and 98.4%, respectively,
derived from four types of sentence recognition rates (ranging from two words to five or
more words). For commands composed of two words, both models showed 100% accuracy,
and for other commands, the performance of HMM was slightly lower than that of DNN.
Among the two measures of recognition accuracy, the word error rate showed a much
smaller difference between the two models, and for commands consisting of five or more
words, the performance difference was only 0.04%. The reason is that recognition errors
in sentence units are mostly caused by the misrecognition of only one word included in
a sentence.

On the other hand, the two models showed a big difference in average recognition
time. The HMM showed a recognition time shorter than 0.1 s for command sets of all
lengths, while the DNN showed a significantly longer recognition time as the command
length increased, ranging from 2 s (two words) to 9 s (five or more words). This result is
because the DNN has a more complex model structure than the HMM.

Considering that the non-ideally high recognition time of the DNN model was due
to the influence of the laptop used in the experiment, we additionally measured the
recognition time of the DNN model using a high-spec laptop (Intel i7 (12-core, 2.1 GHz),
16 GB RAM). This result is shown in the last row of Table 4. Because the same program
was evaluated on both laptops, the recognition results did not change, but the average
recognition time showed a difference. For commands of each length, the second laptop
showed recognition times ranging from 0.2 to 0.9 s, reducing the average recognition time
by about 10 times compared to the results in the first laptop. However, even with high-spec
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hardware, the HMM model still showed about 10 times lower recognition time. Therefore,
it can be said that HMM, which has a relatively simple structure, is a suitable model to
recognize the UAV control commands targeted in this study.

We measured the amount of computation using the number of model parameters to
examine the theoretical difference in recognition time between the HMM model and the
DNN model. The amount of computation required to process one speech frame in the
DNN model can be calculated through the following equation.

N(DNN) ≈ (L − 1) ∗ N2 + N ∗ D + N ∗ S, (1)

where L is the number of layers, N is the number of nodes in each layer, D is the dimension
of the feature vector, and S represents the number of nodes in the output layer. The values
of the Kaldi model parameter used in our experiment are as follows: L = 5, N = 650, D = 39,
and S = 2000. Applying these values to (1), about 3 million operations are required to
process one frame during the recognition process.

On the other hand, in the case of the HMM model, the amount of computation required
to process one speech frame is calculated as follows.

N(HMM) ≈ S ∗ M ∗ D ∗ 2, (2)

where S is the number of HMM states, M is the number of GMM mixtures, and D represents
the dimension of the feature vector. The values of the HMM model parameters used in our
experiment are as follows: S = 100, M = 8, and D = 39. Accordingly, about 30,000 operations
are required to process one frame during the recognition process.

That is, the DNN model requires about 100 times the amount of computation of the
HMM model. Furthermore, this theoretical difference is similarly shown in Table 4, with
the average recognition time of the DNN model showing a value about 100 times higher
than that of the HMM model.

3.2. Verification of the Proposed Syntax Analysis Method for the Post-Processing of Mission
Command Speech Recognition

We verified the validity of the proposed grammar network-based syntax analysis
method through speech recognition experiments. As explained in Figure 9, only the first-
rank recognition result of each word is accepted in a general speech recognition framework.
The speech recognition results in Table 4 are the recognition accuracy considering only the
first-rank results.

However, as mentioned in Section 2.3.1, when the correct answer of a specific word
among connected words is ranked second or third, the recognition accuracy can be increased
if these candidates are also considered. To implement this, we proposed a syntax analysis
method using a grammar network. If the first-rank recognition result is found to be incorrect
in the command syntax through the grammar network, the optimal result that matches the
command syntax is obtained by combining the second or third-rank candidate results.

Table 5 represents the speech recognition results after applying the proposed syntax
analysis method. The proposed variable HMM, which was determined to be the most
efficient model in terms of recognition rate and average recognition time in Table 4, was
set as the baseline. Furthermore, the recognition rate was investigated after performing
grammar network-based syntax analysis for the three best candidate results (that is, the
recognition results up to the third rank in the order of output values calculated in HMMs).

Since the commands composed of two words had all correct answers at the first rank
in the baseline, the combination of the first-rank words conformed to the command syntax,
and therefore, all were recognized as correct answers after applying the syntax analysis. In
the case of commands composed of three or more words, the recognition rate increased in
all lengths of command sets after applying the proposed syntax analysis method. These
results demonstrate that when some of the connected words constituting a command are
incorrect, the baseline treats the command as an error, but in the proposed method, many
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of these data are corrected as the correct answers. In particular, the longer the length of
the command, the higher the improvement in the recognition rate by the syntax analysis,
which explains that the longer the length of the command, the more errors occur, and the
proposed method corrects the errors.

Table 5. Speech recognition results (%) of the whole command unit (not word unit) for validation of
the proposed grammar network-based syntax analysis method.

2 Words 3 Words 4 Words 5 or More

Baseline 100 98.5 97.4 96.9
Applying syntax analysis

(proposed) 100 99.7 99.0 98.8

3.3. Verification of the Proposed Semantic Analysis Method for the Post-Processing of Mission
Command Speech Recognition

The evaluation of speech recognition models or syntax analysis can be quantitatively
evaluated through speech recognition experiments, but the quantitative method is not suit-
able for evaluating semantic analysis. Accordingly, we implemented a real-time recognition
system and a collaborative simulation environment of MAVs and UAVs and attempted to
verify the validity of the proposed semantic analysis method.

Figure 13a shows a program for real-time command recognition, and Figure 13b
represents an experimental environment created to simulate the collaboration of three
UAVs named Alpha, Bravo, and Charlie with a MAV pilot. In this simulation environment,
when the pilot issues a command to a device indicating the MAV, the device transmits
the command to the target UAV, and then, the UAV recognizes the command. All these
processes run in real-time.
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We created several collaboration scenarios between MAVs and UAVs in this simulation
environment to verify whether the proposed transaction-based semantic analysis method
works properly while MAVs and UAVs communicate. Figure 14 shows flow charts config-
ured for collaboration scenarios between a MAV and an UAV. The two figures represent
collaboration examples: (a) is a collaboration scenario related to condition monitoring
and location/route management, and (b) is a scenario representing reconnaissance and
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attack. We made several such scenarios and tested whether the transaction-based semantic
analysis works properly while communicating between the MAV device and the UAV
system in real-time in the MAV and UAV collaborative simulation environment presented
in Figure 13b.
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In Figure 14, the arrows indicate the transaction flow, and the yellow signs indicate the
situation where the MAV pilot delivers a command to the UAV. The solid boxes represent
the transactions the UAV is performing, and the dotted boxes represent the status of the
UAV or the situation the UAV is in. For example, in Figure 14a, the pilot issues a take-off
command, and the UAV enters a transaction called take-off. Afterward, when the pilot
issues a command related to reconnaissance flight, the UAV enters a reconnaissance flight
state. Then, when the pilot issues an environment setup command, the UAV enters the
Flight environment setup transaction. Finally, when the return command is delivered
to the UAV, it changes the UAV into a transaction called mission complete and return.
It is impossible for a transaction to start in an order different from the direction of the
transactions indicated by the arrow in the figure. For example, after the flight environment
setup transaction, the UAV can only enter the mission complete and return transaction
and cannot proceed to the take-off transaction. With this process based on a transaction
concept, we implement flow control of UAVs collaborating with MAVs and utilize this for
semantic analysis of commands to prevent serious situations caused by incorrect speech
recognition results.

We conducted an experiment to verify that the proposed transaction-based semantic
analysis works properly. For example, in the scenario shown in Figure 14a, let us consider
a situation in which a command related to a take-off transaction is entered while the MAV
pilot delivers the environment setup command and the UAV performs a transaction of
flight environment setup. At this time, we checked whether the UAV system correctly
rejected this command by considering it as a context error. As another example, in the
attack scenario of Figure 14b, when a command related to the landing transaction was
entered while performing a transaction of shooting mission, we checked whether the UAV
rejected this command correctly.
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This way, we checked whether 100 normal commands that matched any given trans-
action were correctly accepted and 100 abnormal commands that violated the transaction
were accurately rejected. As a result of the experiment, it was found that all normal com-
mands were correctly accepted, and all abnormal commands were rejected by the proposed
transaction-based semantic analysis method.

4. Conclusions

In this study, we proposed a speech recognition framework for voice-driven UAV
control in a collaborative environment of MAVs and UAVs. The previous study proposed
an efficient noise-cancellation method in an aerial vehicle environment and a multi-channel
voice-triggering method for controlling multiple UAVs for front-end speech recognition. In
this study, we focused on constructing acoustic models for speech recognition and post-
processing to perform syntax analysis and semantic analysis. In a collaborative environment
between MAVs and UAVs, typical commands that a MAV pilot sends to UAVs are in the
form of connected words consisting of at most five words. This study investigated model
construction and post-processing methods suitable for recognizing such connected words
in a UAV system with low hardware capacity.

First, we explored an efficient acoustic model for recognizing connected words, tar-
geting the HMM, known as the statistical modeling method, and the DNN model using
deep learning techniques. In particular, instead of the traditional method using the same
HMM structure for each word, we proposed a HMM structure that reflects the number of
phonemes in a word. In the average recognition rate of four types of sentence recognition
rates (from commands consisting of two words to commands of five or more words), the
DNN-based acoustic model showed higher performance than the traditional HMM, while it
did not show much difference from the proposed HMM. However, in terms of the amount
of computation and recognition time, it was analyzed that the HMM model performs fast
recognition with about 100 times less computation than the DNN model. Furthermore,
it can be concluded that the proposed HMM model is suitable for recognizing connected
words in a UAV system with low hardware capacity.

Naturally, among the various DNN models currently in use, there are models with
relatively low computational complexity. Although this study highlighted the fact that the
HMM model is less computationally intensive than DNN, this is not a claim that the HMM
is the optimal model, and it can be used as an alternative in constrained environments. If
the UAV system has high-performance hardware capacity and can allocate many resources
to driving speech recognition, the DNN model will also be available.

Next, a grammar network-based syntax analysis method was proposed for post-
processing. We configured the structure of the commands that the MAV pilot delivers to the
UAV as a grammar network, and if the connected words obtained as a recognition result do
not pass through this network, it is determined as a syntax error. In addition, when some of
the connected words contain errors, instead of treating the corresponding command as an
error, we corrected the recognition error by reflecting the results in the upper rank among
the candidate results of each word using the proposed syntax analysis method. As a result
of the speech recognition experiment conducted to verify the validity of this method, it
was confirmed that the speech recognition performance was remarkably improved after
applying the proposed syntax analysis method. As a result of recognizing whole command
units consisting of two to five words, the average recognition rates of the baseline approach
and the syntax analysis-based approach were 98.2% and 99.4%, respectively, which means
that the relative improvement in error rate by the syntax analysis reaches 65%.

Finally, we proposed a semantic analysis approach applying the transaction scheme
used in data management. In a very important situation, such as a military operation,
misrecognition of a MAV pilot’s command may lead to serious danger. To handle this
situation, we categorized cooperation missions between MAVs and UAVs as transactions
and mapped each command set to related transactions. Then, while the UAV is performing
a transaction corresponding to a specific mission when the recognition result of a command
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delivered by the MAV pilot does not belong to the transaction, the UAV regards it as a
recognition error and sends a response indicating that the command cannot be accepted.

To verify the validity of this method, we implemented a real-time recognition system
and a collaborative simulation environment of MAVs and UAVs and created several collab-
oration scenarios between a MAV and an UAV. Then, real-time communication between
the MAV and the UAV was performed using the scenarios to confirm that the proposed
semantic analysis works properly. In experiments conducted with about 200 commands, it
was confirmed that normal commands that match a given transaction are correctly accepted,
and commands that do not match are properly rejected.

As described so far, in this study, we introduced a speech recognition framework for
voice-based UAV control in a collaborative environment between MAVs and UAVs, pro-
posed useful methods in each process, and successfully verified the validity of each module
through various speech recognition experiments. The proposed framework consists of
speech database construction, front-end, acoustic model construction, and post-processing
and focuses on minimizing the amount of computation so that each module can be directly
driven in the UAV system. Therefore, the framework is expected to be efficiently applied
in an environment where speech recognition is directly driven in a device with limited
hardware resources.

In future research, we plan to expand this research by studying an efficient speech
recognition framework for voice-driven communication between the ground control center
and an UAV and between the ground control center and a MAV.
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