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Abstract: Geometrical shock dynamics (GSD) is a model capable of efficiently predicting the position,
shape, and strength of a shock wave. Compared to the traditional Euler method that solves the
inviscid Euler equations, GSD is a reduced-order model derived from the method of characteristics
which results in a more computationally efficient approach since it only considers the motion of the
shock front instead of the entire flow field. Here, a study of post-shock flow effects in two dimensions
has been performed. These post-shock flow effects become increasingly important when modeling
blast wave propagation over extended times or distances, i.e., a shock front that decays in speed and
that has decaying properties behind it. A comparison between the first-order complete, fully complete
and point-source GSD (PGSD) models reveals the importance of preserving an intact post-shock
flow term, which is truncated by the original GSD model, in predicting blast motion. Lagrangian
simulations were performed for the case of interaction between two cylindrical blast waves and the
results were compared to prior experimental work. The results showed an agreement in attenuation of
the maximum pressure at the Mach stem, but an overestimation of the Mach stem growth at its early
stage was observed using PGSD. To address this issue, another model was developed that combines
the PGSD model with shock–shock approximate theory (PGSDSS), but it excessively attenuates Mach
stem evolution.

Keywords: blast wave; geometrical shock dynamics; simulations; post-shock flow effect

1. Introduction

In general, to study shock interaction problems numerically, one can, for example,
use the Navier–Stokes equations for the case of viscous flows or the Euler equations of
gas dynamics if assuming inviscid flows. The results involve all flow variables within
the simulation domain such that shock fronts are either captured by detecting sharp
discontinuous changes in the variables if shock-capturing schemes are applied, or explicitly
introduced in the solution by shock-fitting schemes. However, since the shock front usually
has a large Mach number in compressive regions, a smaller time step is needed to satisfy the
Courant–Friedrichs–Lewy (CFL) condition [1] to maintain numerical stability. Moreover,
the thickness of the shock front is usually on a much smaller scale compared to the grid
size and large gradients are always present in the neighborhood of the shock front, so
for the sake of accuracy a coarse grid resolution is not an option. Though nowadays
parallel computing on graphics processing units (GPUs) enables the fast implementation
and solution of the Navier–Stokes and Euler equations for shock dynamics problems with
refined temporal and spatial resolution, a more computationally efficient model still has
its value if it can decrease the cost by a few orders of magnitude. In particular, if there is a
need to quickly run through a large number of shock dynamics cases to find an optimal
configuration of, e.g., number of shocks, their individual geometry, placement, and timing
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relative each other, a reduced-order computational model may be preferred. This need
motivated the work described herein.

For the purpose of modeling shock propagation problems numerically, the geometrical
treatment of the shock behavior has received considerable attention over the last few
decades. In 1957, Whitham [2–4] published a hyperbolic model that simplified the full
Euler equations into descriptions of only the position, geometry, and strength of a shock
by applying linearized characteristic rules. The resulting theory, called geometrical shock
dynamics (GSD), successfully reduces the dimensionality of the problem by one [5,6], and
thus the complexity, as well as the cost, of the numerical computation are significantly
reduced. In GSD theory, a shock front is discretized into numerous elements, and rays
are introduced as orthogonal trajectories of the successive positions of these shock front
elements. Then, each element propagating along its own ray is treated as a problem of
shock propagation in a non-uniform tube with solid walls. GSD allows the determination
of a relation between the ray tube area and the shock Mach number—the “area–Mach
number (A-M)” relation, which is the fundamental component of GSD. Notably, the same
relation was independently derived by Chester [7] and Chisnell [8], separately. The results
of GSD are accurate for shock propagation in uniform media with moderate shock strength
if no large gradient exists in the post-shock flow. Various efforts have been made to extend
the application of GSD, including modifications to accommodate for moving media [9],
post-shock flow effects [10–13], and detonation waves [14,15].

2. Numerical Methods

Since only a limited number of shock dynamics problems can be solved analytically
using GSD, many numerical algorithms have been developed to implement GSD models
including front tracking methods [6,10–12,16–20], finite difference [5] and finite volume
schemes [21,22] based on the conservation form of GSD, and a recent level-set fast marching
approach [23]. Among these schemes, the front-tracking-based Lagrangian schemes appear
to be the most popular ones that have been used for a wide range of shock dynamics prob-
lems, since accuracy and speed can be well balanced. First developed in two dimensions
by Henshaw et al. [16] and then extended to three dimensions by Schwendeman [17], the
front tracking methods use particles to represent a smooth shock front. These particles
advance along individual rays normal to the shock front subjected to the local Mach number.
Following this concept, Schwendeman [19] computed the propagation of shock waves in
gases with non-uniform properties. Best [11] and Peace et al. [12] applied the front tracking
method to quantitatively investigate the influence of the post-shock flow effect on the
accuracy of GSD by taking into consideration the interaction between the shock front and
the non-uniform flow behind. Qiu and Eliasson [10,18] used this approach to study the
blast interaction to take advantage of its speed and achieved a good agreement with results
from simulating the Euler equations. Ridoux et al. [20] extended Henshaw’s Lagrangian
scheme to remove its limitation for expanding shocks.

In general, a front-tracking GSD model consists of two parts: a kinematic equation
derived purely from geometry and a kinetic equation describing the shock’s motion. If x
is used to denote the position vector of a particle on the shock front, then the shock front
kinematics is given by

dx
dt

= a0Mn, (1)

where a0 is the speed of sound in the undisturbed region ahead of the shock wave. The
shock Mach number, M, is defined as the ratio of the shock velocity in laboratory coordi-
nates, U, to the velocity of sound in the undisturbed gas, i.e., M = U/a0, and n refers to
the unit normal to the shock front that defines the propagation direction of the particle.
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One widely used kinetic equation is

dM
dt

=
−a0M
g(M)

A′

A
, (2)

where A′ = dA
dn , and g(M) is given by

g(M) =
M

M2 − 1

(
1 +

2
γ + 1

1− µ2

µ

)(
1 + 2µ +

1
M2

)
, and (3)

µ2 =
(γ− 1)M2 + 2

2γM2 − (γ− 1)
, (4)

where γ is the heat capacity ratio.
For general M, the solution of Equation (2) leads to the classic A-M relation that

explicitly states how the shock front strength varies with the area upon it:

A
A0

=
f (M)

f (M0)
, (5)

leading to

f (M) = exp
{
−
∫

g(M)dM
}

. (6)

To integrate the original GSD model consisting of Equations (1) and (2), an explicit
expression for A′

A = 1
A

dA
dn is needed. In fact, A′/A is the curvature of the shock front, κ. The

proof starts from one assumption of GSD theory, that the rays are normal to the surface,
which leads to

∇ · n
A

= 0. (7)

This can be rewritten as

∇ · n− n · ∇A
A

= 0. (8)

Finally,

n · ∇A
A

=
1
A

dA
dn

=
A′

A
⇒ A′

A
= ∇ · n = κ. (9)

Therefore, the A-M relation can now be replaced by the κ-M relation.
The κ-M relation represents the rate of change in the shock front Mach number

subject to the local curvature, so it can be numerically integrated. Moreover, given that it
is always cumbersome to define ray tubes and compute the cross-section areas in the
original GSD method, another advantage of replacing the A-M relation with the κ-M
relation is that, unlike ray tubes that only exist virtually, curvature is clearly defined in
differential geometry.

All quantities required for Equations (1) and (2) are thus known. The two-dimensional
GSD model now can be numerically solved at a set of particle locations xi. The discretized
forms of the ordinary differential equations become

dxi
dt

= a0Mini, (10)

dMi
dt

=
−a0Mi
g(Mi)

κi, (11)



Aerospace 2023, 10, 838 4 of 24

for i = 1, 2, . . . N, and should be integrated simultaneously. This can be achieved by, for
example, adopting a third-order Runge–Kutta scheme [24]. In this work, the third-order
Runge–Kutta scheme was selected over a fourth-order one because it achieved similarly
accurate results given the spatial resolution, with fewer evaluations per time step.

For the purpose of evaluating the curvature, spline interpolation can be fitted to the
shock front with the parameterization with respect to arc length. If si is used to denote the
arc length along the curve from the first particle to particle i, it can be approximated as
shown below with satisfying precision, assuming that the particle density is sufficient.

si(t) =

{
0 if i = 1,
si−1(t) + ‖xi(t)− xi−1(t)‖2 if i = 2, 3, . . . N.

(12)

Then, the first- and second-order derivatives required for curvature can be obtained at
particles from spline interpolation. An approximation of the arc length is necessary, which
requires the shock front to be adequately resolved. Guided by the resolution conditions
proposed by Henshaw et al. [16], an appropriate number of particles that balances accuracy
and speed should be selected to represent the shock front. If the average arc length between
particles is denoted by dsavg, the criterion is given by

∆savg(0) =
sN(0)

N
= k1 � 1. (13)

This condition provides a lower bound on the number of particles, and typically k1
is set to 0.01. To maintain shock front resolution throughout the Lagrangian simulation,
a scheme that adds or deletes particles according to the local density is needed, because
particles tend to spread out in expanding regions and cluster in compressive regions. Here,
the particle spacing is checked every few time steps using

σmin ≤ σi(t) =
∆si(t)

∆savg(t)
≤ σmax for i = 2, 3, . . . N, (14)

where ∆si(t) = si(t) − si−1(t), and σmin and σmax are typically set to be 0.5 and 1.5, re-
spectively. If σi(t) > σmax, a particle is added using spline interpolation evaluated at
1
2 (si(t) + si−1(t)), and if σi(t) < σmin, particle xi is deleted. Given that the accumulation
of particles in compressive regions drastically restricts the time step to avoid ray crossing,
by removing redundant particles, not only is the numerical cost reduced, but numerical
stability is ensured at each time step.

The two-step smoothing procedure is another component of the numerical implemen-
tation of GSD that is used to dampen high frequency errors in xi(t) and Mi(t). If x̃i and
M̃i(t) denote the smoothed position and Mach number associated with the ith particle,
respectively, then the smoothing procedure is given by

x̃i(t) =
1
2
(xi−1(t) + xi+1(t)), (15)

M̃i(t) =
1
2
(Mi−1(t) + Mi+1(t)), (16)

where first i-even and then i-odd particles are scanned. Best [11] found it desirable to
apply such a smoothing procedure for compressive flows every few time steps, but that is
unnecessary in the case of expanding flows.
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An appropriate time step size is guided by the CFL condition. Following Henshaw’s
work [16], the scheme used in this study that provides the upper bound on the selection of
a time step, ∆t, is given by

∆t
∆smin(t)

=
∆t

σmin∆savg
< k2, (17)

where the constant k2 is usually taken to be 0.2.

3. Application of GSD to an Expanding Blast Wave

It is well known that GSD is accurate for shock waves with constant properties behind
the shock front [4,5,10,13,16]. For a blast wave, the flow properties behind the shock
front are decaying exponentially. This contradicts the assumption made in deriving GSD,
which requires a uniform state behind the shock. To investigate whether the accuracy is
compromised if this assumption is violated, we start by comparing Whitham’s original
GSD model with Bach and Lee’s analytical solution [25] and the simulation using the Euler
equations. The latter two solutions not only provide initial conditions for the Lagrangian
schemes but also are used as a reference to evaluate the accuracy of GSD models in
predicting blast motion.

3.1. Original GSD Model

Whitham’s original GSD model, in its discretized form (Equations (10) and (11)), was
solved first. To start the original GSD scheme, a shock front was represented by particles
placed on a circle with a radius of 10 mm with spacing ∆s ≈ 0.1 mm. The corresponding
Mach number at R0 = 10 mm was found to be 11.81, via a simulation of the Euler equations,
and 9.76 from the analytical solution. Smoothing procedures are not needed for a single
blast expansion but particles are added if the local particle density becomes sparse as the
blast front area increases.

To solve the Euler equations, we use the open-source framework called Overture [26],
which has been introduced and validated in detail prior to this study [27–29]. To simulate
blast propagation in air, the conservation laws of mass, momentum, and energy for inviscid
compressible flows are solved with a second-order Godunov scheme [30]. Instead of
simulating a condensed energy source, the solver is initialized with a specific wave front
of finite size such that the requirement of a fine mesh and numerical oscillations arising
from sharp discontinuities at the wave front can be avoided. The initial conditions used
for the Euler equations are based on Taylor’s similarity law [31], outlined in Appendix B.
For two-dimensional blast dynamics problems, Taylor’s similarity law can be modified to
generate initial conditions for cylindrical blasts [32]. Details of the verification of the Euler
solver, a description of the initial conditions, the computational domain set-up, and a grid
independence study are presented in Appendix A.

Both Bach and Lee’s analytical solution and the Euler equations for a single cylindrical
point-blast were numerically solved with an initial energy of E0 = 8000 J/m. To study the
shock front behavior during its expansion, the variation in Mach number as a function of
radius (i.e., M-R) is shown in Figure 1. A discrepancy can be observed between the M-R
curves from the analytical and Euler solutions at an early stage when the blast front is very
strong. The two curves gradually become closer as the blast front further expands and
almost agree once the radius exceeds its initial size by a factor of 20.

The GSD results are presented in Figure 1, where each resulting M-R curve lies well
above its corresponding reference. This indicates that the blast front was not sufficiently
attenuated throughout the Lagrangian simulation by the original GSD model. This result
shows the importance of including the post-shock flow effect into the GSD model.
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Figure 1. M-R plots of the propagation of a single cylindrical blast in air. Initial conditions:
E0 = 8000 J/m for the Euler and analytical solutions, and initial conditions R0 = 10 mm with
either M01 = 11.81 or M02 = 9.76 for GSD solutions.

3.2. First-Order Complete GSD Model

To explore the reason why GSD is less accurate when applied to blast waves, the deriva-
tion of Whitham’s original model needs to be re-evaluated without linearizing conservation
equations about the local conditions. One important derivation is through the characteristic
form of its solution. The compatibility equation along the C+ characteristics is

∂p
∂t

+ (u + a)
∂p
∂x

+ (ρa)
(

∂u
∂t

+ (u + a)
∂u
∂x

)
+ ρua2 A′(x)

A(x)
= 0, (18)

with p, u, a, and ρ denoting pressure, particle velocity, speed of sound, and density of the
flow, respectively.

By relating ∂t p, ∂x p to dt p and ∂tu, ∂xu to dtu along the shock trajectory, a simple
manipulation yields

(
dp
dM

+ ρa
du
dM

)
dM
dt

= −

a0M
ρua2

u + a
A′(x)

A
+

(
a0M
u + a

− 1
)(

∂p
∂t

+ ρa
∂u
∂t

)
︸ ︷︷ ︸

Term A

. (19)

The equivalence of Equation (19) to Equation (2) is established by the use of shock
jump conditions in the determination of dp/dM and du/dM, along with the truncation of
“term A” in Equation (19). Best [11] concluded that the criterion of Whitham’s A-M relation
being a good approximation through linearization is

a0M
ρua2

u + a

∣∣∣∣A′(x)
A

∣∣∣∣� ∣∣∣∣ a0M
u + a

− 1
∣∣∣∣ ∣∣∣∣∂p

∂t
+ ρa

∂u
∂t

∣∣∣∣︸ ︷︷ ︸
Post-shock flow term

. (20)

Equation (20) lists two sources of disturbances that possibly modify the shock front:
(1) the term on the left-hand side of the inequality characterizes the effect of changing area
upon the shock front, and (2) the right-hand side represents the interaction between the
shock front and the flow behind it. The post-shock flow term describes the non-uniformity
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of the flow behind the shock. This term is equal to zero for a uniform flow, which is exactly
the case of applying small perturbation theory to deduce the A-M relation, as performed
by Whitham. Even though the change in area upon the shock front disturbs the flow
immediately behind it such that the post-shock flow term is bigger than zero, its absolute
value is usually very small along the C+ characteristics originating from a uniform state. This
justifies the appropriateness of using the A-M relation to describe the motion of an initially
uniform shock wave. However, this term can also be fairly large if a strong gradient exists in
the flow just behind the shock front. To what extent such a non-uniformity affects the shock
motion is determined by | a0 M

u+a − 1|, which indicates the coincidence of the C+ characteristic
line and the shock trajectory. Recall that when deriving the A-M relation, the compatibility
equation along the C+ characteristics is applied at the shock front by using the shock jump
conditions, but such being a good approximation requires the leading C+ characteristic to
coincide with the shock trajectory. This is true only in the sonic limit, i.e., M→ 1, where the
disturbances stemming from the non-uniform flow behind the shock propagate along the
C+ characteristics but do not meet the shock front and, therefore, they impose no influence
on its motion. On the other hand, if M→ ∞, Best reported that | a0 M

u+a − 1| tends to be 0.215
for γ = 1.4 [11], which suggests the significance of the post-shock flow effect, as in this
situation disturbances overtake and then modify the shock front. Consequently, since the
right-hand side of Equation (20) is non-zero for most cases, the A-M relation is accurate only
when the effect of area change upon the shock dominates that of the interaction between the
shock front and the non-uniform flow behind it.

For the case of shocks with decaying properties behind, blast waves for example, the
gradient in the flow immediately behind the shock front can make the post-shock flow
term very large. As long as the shock is of moderate strength, disturbances will catch up
with the shock front and modify it. The inequality in criterion (20) is then violated, since
the right-hand side becomes as significant as the left-hand side in terms of magnitude.
Therefore, to make the A-M relation appropriate for this type of shock dynamics situation,
a correction term must be added that accounts for the post-shock flow effect, and obviously,
the truncated term itself is a good starting point. A generalization of GSD was carried out
by Best [11], who closed the motion rule for shock propagation by an infinite sequence of
ordinary differential equations given as follows

dM
dt

=
−a0M

dM p + ρadMu

[(
ρua2

u + a

)
A′

A
+

(
1

u + a
− 1

a0M

)
Q1

]
, (21)

dQk
dt

= − a0M
{

∂k

∂t

(
ρua2

u + a

)
A′

A
+

k

∑
i=1

[(
k
i

)
∂i

∂t

(
1

u + a

)
Qk−i+1

]
+

∂k−1

∂t

(
∂(ρa)

∂t
∂u
∂x
− ∂(ρa)

∂x
∂u
∂t

)
+

(
1

u + a
− 1

a0M

)
Qk+1

}
,

(22)

for k = 1, 2, . . . , where

Qk =
∂k−1

∂t

(
∂p
∂t

+ ρa
∂u
∂t

)
. (23)

The above closed system can be written in a concise form by setting M to be Q0:
dtQk = f (Q0, . . . , Qk+1, A′/A), for k = 0, 1, . . . . Evidently the expression for dtQk depends
on Qk+1, such that each differential equation in the system is coupled to its successor in the
sequence. By truncating all the terms involving Qk+1, a kth-order complete GSD system
is achieved. It is so named because there remain no derivatives of orders higher than
k, leading to the post-shock flow effect being partially complete. For example, the front-
tracking-based two-dimensional original GSD model consisting of Equations (1) and (2) only
achieves zeroth-order completeness. Moreover, if Q1 is preserved but terms involving Q2 are
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discarded, the first-order complete GSD model is obtained as follows, which contains three
coupled ordinary differential equations for three unknowns, namely, x(t), M(t), and Q1(t):

dx
dt

= a0Mn, (24)

dM
dt

=
−a0M

dM p + ρadMu

[(
ρua2

u + a

)
A′

A
+

(
1

u + a
− 1

a0M

)
Q1

]
, (25)

dQ1

dt
= −a0M

[
∂

∂t

(
ρua2

u + a

)
A′

A
+

∂(ρa)
∂t

∂u
∂x
− ∂(ρa)

∂x
∂u
∂t

+
∂

∂t

(
1

u + a

)
Q1

]
. (26)

Once initial conditions are provided, the system can then be solved by numerical
integration.

In this study, the first-order complete GSD model was solved with the Lagrangian
scheme for the same case as the original GSD model presented in Section 2. In addition
to the initial blast radius and Mach number, the initial value of Q1 is also necessary. Since
Q1 requires partial derivatives with respect to time and location, which are not present
until the scheme advances at least one time step, it is only possible to estimate its value at
R0 = 10 mm using some prior knowledge. By estimating dx M from the analytical solution,
all partial derivatives can be computed as functions of dx M [11] and then Q1 follows.

3.3. Modified GSD Model

To investigate if solving a higher-order complete GSD model leads to a better accuracy,
Equation (19) is revisited. By explicitly computing the post-shock flow term, ∂t p + ρa∂tu,
through the similitude relation dx M(M) obtained from the analytical solution, the so-called
modified GSD model [10] is obtained as follows

dx
dt

= a0Mn, (27)

dM
dt

=
−a0M

dM p + ρadMu

[ (
ρua2

u + a

)
A′

A︸ ︷︷ ︸
Geometrical effect

+

(
1

u + a
− 1

a0M

)(
∂p
∂t

+ ρa
∂u
∂t

)
︸ ︷︷ ︸

Post-shock flow effect

]
. (28)

This model preserves the full solution without truncation at any level of Qk.

3.4. Point-Source GSD Model

The analytical solution to point-blast propagation and an improved GSD model, point-
source GSD model (PGSD), will be introduced next. Considering that Bach and Lee’s ana-
lytical solution to point-blast propagation [25], outlined in Appendix C, already describes
an accurate blast behavior, a modification to the original GSD model to include this essential
blast property was proposed by Yoo and Butler [33]. Using Taylor’s similarity law [31] and
Equation (11) together with expressions for shock front speed, Ṙs =

dRs
dt = a0M, and shock

front acceleration, R̈s = a0
dM
dt , the following expression is obtained

dM
dt

=
a0M2θ

Rs
=
−a0M
−j/Mθ

j
Rs

, (29)

where j = 0, 1, 2 for planar, cylindrical, and spherical waves. Rs is the shock radius. θ is a
function of M given by

θ(M) =
RsR̈s

Ṙ2
s

. (30)
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In fact, j/Rs is the curvature of a cylindrical (j = 1) and spherical (j = 2) blast front,
meaning that dM/dt can be further expressed as

dM
dt

=
−a0M
Φ(M)

κ, (31)

where Φ(M) = −j/(Mθ).
Equation (31), which is the κ-M relation for the particular blast front, is the core of

the PGSD model. The main advantage of this model is that it defines the motion rule of
blast propagation for all energy contents without the need to specify θ(M) for a particular
point-source explosion. Moreover, the PGSD model can be further modified for condensed
explosives as long as the resulting blast behavior is known beforehand. In this situation,
M-R data can be used to generate Φ(M) that encodes essential blast information for that
particular charge.

3.5. Post-Shock Flow Effect

The influence of the completeness of the post-shock flow term is best illustrated as
shown in Figure 2, where the values of the first term in Equation (28) times the geometrical
effect term, and the post-shock flow effect term, respectively, are tracked throughout the
Lagrangian simulation. Since the opposite of these two terms make up the blast acceleration,
dM/dt, a positive value signals its effect in attenuating the blast front. On the other hand,
starting at the same initial value, the post-shock flow effect from the modified GSD model
soon departs from the first-order complete GSD result on its way to the peak value. Then,
the curve gradually decreases and falls below its counterpart at R ≈ 17 mm. Such an
observation of the post-shock flow effects at an early stage is echoed in the M-R curves,
where the modified GSD model attenuates the blast front as accurately as the analytical
solution, while the first-order complete GSD model predicts a stronger blast. The post-shock
flow effect estimated by the first-order complete GSD model keeps increasing until arriving
at its highest point at R ≈ 25 mm, but its variance with the modified GSD result accumulates
until the two curves intersect for a second time. This explains the over-attenuation of the
blast velocity further away from the explosion center by the first-order complete GSD model.
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Figure 2. Geometrical terms and post-shock flow terms are plotted as functions of the blast
radius. Initial conditions: R0 = 10 mm and M0 = 9.76 for the first-order complete GSD and
modified GSD solutions.
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Using these four models, original GSD, first-order complete GSD, modified GSD, and
PGSD, to solve for the expansion of a cylindrical blast wave in air with initial conditions
M0 = 9.76 and R0 = 10 mm, yields the results presented in Figure 3. The geometrical
effects obtained from solving the first-order complete GSD model and from the modified
GSD model do not deviate much from each other, as seen in Figure 3, the change of area
upon the blast front should not be the reason for the discrepancy manifested in the blast
behaviors for these two models.

Obviously, the first-order complete GSD model succeeds in attenuating the blast front
when compared to the original GSD model, however, the first-order complete GSD model
predicts a much weaker blast at distances beyond 23 mm. The results of the modified GSD
overlap with those of the PGSD model, which in turn overlap with the analytical result, as
expected, since both the modified GSD and PGSD models preserve the full solution, i.e.,
there is no truncation of the Qk terms. Therefore, by comparing the post-shock flow effects
from the two models and analyzing how their resulting blast behaviors differ, a conclusion
can be made here that the level of the completeness of the post-shock flow term determines
the accuracy of geometrical shock dynamics when being applied to expanding blast waves.
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Figure 3. M-R plots of the propagation of a single cylindrical blast in air for different GSD models.
Initial conditions: E0 = 8000 J/m for the analytical solution; R0 = 10 mm and M0 = 9.76 for the GSD,
1st-order complete GSD, modified GSD, and PGSD solutions.

3.6. Interaction of Two Cylindrical Blast Waves Using PGSD

Higashino et al. [34] carried out experiments on the interaction of a pair of identical
blast waves in 1991. By rapidly discharging a high voltage through two thin metal wires,
the wires exploded as a result of the applied voltage and two cylindrical shock waves were
generated simultaneously. The same wires, made of either copper or nichrome, were used
in an experiment. Each wire was 34 mm in length and 0.1 mm in diameter. The two wires
were placed side by side 60 mm apart, as shown in Figure 4. The energy from the wire
explosions were estimated by Higashino to be 25 J and 170 J for the copper and nichrome
wires, respectively. Later, Qiu [10] successfully replicated the experiments using energy
density of 59 J/m and 117 J/m, respectively, in his simulations.
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θ
w

Figure 4. Schematic illustration of the experiments of [34], in which the exploding wire centers (represented
by red stars) are located 60 mm apart from each other. The wedge angle is represented by θw.

In this study, Higashino’s experiments, mentioned above, were chosen to test the PGSD
model’s performance on blast interaction. First, the critical conditions for the transition
from regular to irregular reflection taking place where two neighboring blasts intersect is
determined. If prior knowledge is accessible, the instantaneous Mach number and position
of the shock front can be obtained through processing, e.g., experimental schlieren images
or data from simulations. An approach to compute the transition conditions from regular
to irregular reflection for the interaction between two identical cylindrical shocks was
introduced by [10] by communicating the shock motion known beforehand to the sonic
criterion [35] via the wedge angle (defined in Figure 4). Following this approach, the
initial conditions for the copper and nichrome wires in the current PGSD simulations were
determined to be M0 = 1.13, r0 = 46.60 mm and M0 = 1.30, r0 = 41.46 mm, respectively.
These initial conditions will be referred to as I.C.1. The initial two-blast front was discretized
with five particles per degree, i.e., ∆s ≈ 0.2 mm for the copper and ∆s ≈ 0.18 mm for
the nichrome wire case. A second set of initial conditions, based on von Neumann’s
detachment theory [36], was also used. These initial conditions are referred to as I.C.2., and
were determined to be M0 = 1.25, r0 = 42.83 mm and M0 = 1.50, r0 = 45.96 mm for the
copper and nichrome wires, respectively.

To replicate the experiment, the multi-blast front, that is considered as a continuous
curve in two-dimensional space, is represented by particles. Given that a perfect circular
shape is well preserved before any Mach stem arises, it is rational to assume that the
velocity is evenly distributed along the shock front. Given the initial conditions, the Mach
number and coordinate are stored for each particle. Then, the PGSD model was solved
using the Lagrangian scheme with mesh smoothing and regularization procedures applied
dynamically based on the shock front configuration and particle resolution. It should be
noted that time steps start counting at the regular to irregular transition instant.

The time history of the maximum pressure at the Mach stem was recorded in the
PGSD Lagrangian scheme and compared to the modified GSD results, as shown in Figure 5.
The results shown in Figure 5 suggest that the two models’ solutions to the same explosion
case agree in trend but differ in pressure values at the same time instance. The maximum
pressure curves from the PGSD model always lie above the modified GSD results for both
cases. Such a discrepancy may come from differences in the definition of the reference time,
i.e., the transition time instant, or from distinct intrinsic properties of the two models in
terms of how the post-shock flow effect is dealt with.
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Figure 5. Ratio of maximum pressure at the Mach stem, Pm, to ambient pressure, Pa, as a function of
time. Modified GSD data are reproduced from [10], which also provided the initial conditions to the
current PGSD simulations referred to as I.C.1.

The transition conditions measured in the experiments by Higashino et al. contain
some uncertainties simply due to the temporal and spatial resolutions of the experimental
equipment and details of the published data. Therefore, the second set of initial conditions,
I.C.2, were used, and these resulted in a better match of the PGSD model to the experimental
data, as shown in Figure 6.
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Figure 6. Time history of the shock front as a function of the radius using initial conditions I.C.2.

By matching the arrival time of the undisturbed part of the shock front in a least squares
sense, as illustrated in Figure 6, the timeline of the Lagrangian simulation is consistent with
that of the corresponding experiment. This makes the time history of the maximum pressure
at the Mach front from the PGSD model comparable to the experimental data.

Figure 7 summarizes the difference in results from the PGSD scheme using the two
different sets of initial conditions, which also shows the challenge of choosing the correct
initial conditions. The most noticeable difference to the experimental data is that the PGSD’s
pressure value is higher than its counterpart at the same time instance for each case of
initial conditions. This means that a faster Mach stem is predicted by the PGSD model,
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which is in agreement with earlier observations [10,13]. Considering that GSD tends to
generate irregular reflection in compressive flows even when regular reflection is supposed
to occur, the overestimation of Mach stem growth seems to be inevitable.
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Figure 7. Ratio of maximum pressure at the Mach stem, Pm, to ambient pressure, Pa, as a function of
time. Experimental data reproduced from [34] with permission from Springer.

4. Modifying PGSD Using Shock–Shock Approximate Theory

Whitham [4] applied shock–shock approximate theory to the diffraction of a planar
shock by a straight wedge [4], as illustrated in Figure 9, and achieved a triple-point trajec-
tory close to that observed in experiment. Schwendeman [37] extended this approach to
investigate the evolution of Mach reflection arising from the convergence of shocks. As a
result, an original polygonal shape repeats itself at successive intervals and Mach numbers
increase in agreement with the analytical solution. Inspired by these works, a new GSD
model was developed in this study aiming at overcoming GSD’s tendency of producing
irregular reflection in compressive regions even though a regular reflection is expected.
This model is referred to as the point-source GSD model with shock–shock approximate
theory (PGSDSS).

4.1. Shock–Shock Approximate Theory for Planar Shock Diffraction by a Wedge

When a Mach stem has already been formed, the shock front is separated by the triple
point into two regions in which the Mach number is constant: M0 for the undisturbed part
and Mw for the Mach stem (see Figure 8). The angle χ is the deflection angle measured
between the triple-point trajectory and the wedge surface tilted at θw above the horizontal
ground. If a straight Mach stem is assumed, the undisturbed rays contained in a stream
tube of area A0 = AB′ sin(χ+ θw) pass through the area Aw = AB′ sin(χ), so a relationship
can be obtained by using the A-M relation (5) to correlate ray tube area and Mach number

f (Mw)

f (M0)
=

sin(χ)
sin(χ + θw)

, (32)

Since the shock front is continuous at the triple point, the distance traveled by the triple
point as part of the undisturbed shock should be the same as that being the lower part of
the Mach stem, i.e., AB′ = a0M0t/ cos(χ + θw) = a0Mwt/ cos(χ), resulting in

Mw

M0
=

cos(χ)
cos(χ + θw)

. (33)
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Given the Mach number of the planar incident shock, M0, and wedge angle, θw,
Equations (32) and (33) provide solutions to χ and Mw. In this shock–shock approximate
theory, nothing more than the trajectory of the triple point is yielded, which is described by
the single variable χ.

A

A′

θw

χ

B′

Mw

M0

Figure 8. Schematic illustration of Whitham’s application of GSD to diffraction of a planar shock by a
straight wedge. Triple points are represented by red dots.

4.2. Shock–Shock Approximate Theory for Cylindrical Shock Diffraction by a Wedge with
Continuously Decreasing Tilt Angle

Then, we take one step further to consider the interaction between two identical
cylindrical shocks. This is equivalent to the diffraction of a cylindrical shock by a straight
wedge with continuously decreasing tilt. One difficulty is how to extend the theory
developed for a planar shock to a curved one. The most straightforward way is to simply
treat the incident shock as a planar shock in the three-shock configuration, as indicated in
Figure 9. Once the transition angle θwc is reached, the Mach stem forms from the wedge
surface, presumably in a perpendicular manner. Then, solve Equations (32) and (33), with
θw being the instantaneous wedge angle and M0 being the Mach number for the expanding
cylindrical shock. The resulting deflection angle, χ, and Mach number at the wall, Mw,
together give the location of the triple point after an infinitesimal period of time ∆t, i.e.,
B′ = (xA + Mwa0∆t, yA + tan(χ)Mwa0∆t). However, B′ is not guaranteed to be on the
undisturbed part of the shock front as there is no constraint on the radial position of the
triple point in Equations (32) and (33).

A

θw

Mw

t = t1 +∆t

B′

t = t1

M0

O

Figure 9. Schematic illustration of the diffraction of a planar shock interaction with a straight surface.
Triple points are represented by red dots.
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In contrast, the circular geometry of the undisturbed part of the shock front is com-
municated to the triple point in an improved theory, as illustrated in Figure 10. Here,
A is still the current location of the triple point but the cylindrical incident shock is no
longer simplified as a planar shock. Instead, a curved shock element is considered as
the incident shock in the three-shock configuration and its curved shape is preserved in
developing the theory, except when computing its ray area. This makes sense because in
the Lagrangian scheme the arc length between two neighboring particles is approximated
as a straight line in the calculation of the A-M relation. The other end of the cylindrical
shock element, point B, will become the triple point located at B′ after an infinitesimal
time interval, but its current position is unknown. As a result, the instantaneous wedge
angle, θw, is unknown, considering that in the original shock–shock approximate theory
the wedge bottom surface is always parallel to the propagation direction of the incident
shock that nonetheless depends on the choice of B. In fact, θw is related to the location of B
as follows:

∠A′AA′′ +∠B′AA′ +∠BAB′ +∠OAB = π,

−→ ∠A′AA′′ + χ +
π

2
− χ− θw +

π − θc

2
= π,

−→ θw = ∠A′AA′′ − θc

2
,

where point O is the explosion center that is given in the initial conditions, and θc is the
central angle of the minor arc between points A and B.

A

A′′

θw

Mw

t = t1 +∆t

B′

t = t1

M0

O

χ

B

A′

θc

Figure 10. Schematic illustration of the diffraction of a cylindrical shock interaction with a straight
surface. Triple points are represented by red dots.

Similar to the shock–shock approximate theory for plane shock diffraction by a wedge,
the relationship between Mach numbers Mw and M0 is established by Mw/M0 = AA′/BB′.
The law of sines further gives

AA′

BB′
=

AA′/AB′

BB′/AB′
=

cos(χ)

sin(π
2 − θw − χ)/ sin(π

2 + θc
2 )

(34)

yielding

Mw

M0
=

cos(χ) cos( θc
2 )

cos(χ + θw)
. (35)

On the other hand, the undisturbed rays contained in a stream tube of area A0 = AB
passing through the area Aw = A′B′ lead to

f (Mw)

f (M0)
=

sin(χ) sin(π
2 + θc

2 )

sin(χ + θw − θc
2 )

. (36)
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The last component is a constraint that enforces the radial position of point B′ to be
on the undisturbed part of the shock front after an infinitesimal time span. This leads to
another advantage of using a cylindrical shock as the incident shock over the simplification
into a planar shock. The constraint is given by

‖(xA + Mwa0∆t, yA + tan(χ)Mwa0∆t)− (xO, yO)‖ = OB′, (37)

which completes the shock–shock approximate theory for cylindrical diffraction off a wedge
with continuously decreasing tilt angle.

4.3. Point-Source GSD Model with the Shock–Shock Approximate Theory

A system comprising Equations (35)–(37) along with the relation θw = ∠A′AA′′− θc/2
can now be solved by a numerical algorithm, with xA, yA, θw, and M0 known at the current
time step. The radius of the undisturbed part of the shock front at the next time step, OB′,
is not necessary to be determined at point B′ that is yet unknown; instead, the average
radius can be used, which is known after integrating the PGSD model for a time interval
∆t. The triple point is always part of the undisturbed shock front, whose propagation is
well described by the PGSD model, such that the motion of a Mach stem is independent of
the post-shock flow effect if a straight Mach stem is assumed. Consequently, the solutions
to Mw, χ, and θw in turn lead to the exact location of B′ at the next time step.

Three processes, namely, individual blast expansion, a special treatment of regular
reflection, and the shock–shock approximate theory for cylindrical shock reflection off a
solid surface for Mach reflection, together form the PGSD model with the shock–shock
approximate theory (PGSDSS). This forms an alternative framework for studying the
symmetric interaction between initially separated blasts.

To test the proposed PGSDSS model, the interaction between two identical cylindrical
blasts located 20 mm from each other was numerically investigated in two dimensions. By
taking advantage of symmetry, only one blast at a height of burst of 10 mm was actually
simulated with the Lagrangian scheme solving the PGSDSS model. Only blast fronts are
of interest and can be tracked. The initial conditions, R0 = 5 mm and M0 = 26.7, were
extracted from a two-dimensional simulation of the Euler equations with an initial energy
density of 10,000 J/m for each point-explosion.

Figure 11 shows the comparison of the triple-point trajectory from the PGSDSS model
with spacing ∆s ≈ 0.08 mm and the Euler results. In contrast to the PGSD model, the
PGSDSS model predicts a Mach stem that grows slower than for the Euler solution. Though
uncertainties exist in the Euler result because the triple points were manually located at
each time step by observing the sharp discontinues in flow properties, the uncertainty
should not exceed the grid size ∆s = 0.04 mm. Obviously, this alone is not sufficient to
explain the discrepancy between the two triple-point trajectories. One primary contributor
may be the assumption of a straight Mach stem made in the shock–shock approximate
theory used in the PGSDSS model. In fact, as found in both the Euler and experimental
results, a curved Mach stem is more often seen to be generated from a cylindrical shock
reflection off a straight wall. This would result in a more significant curvature reverse at
the triple point that accelerates its motion. Also, an even distribution of the Mach number
on the Mach stem is the result of a planar shock, but it in turn suppresses the change in the
Mach stem’s shape. Figure 12 shows the shock front evolution with triple points marked
independently. As expected, a perfectly circular shape is preserved in the undisturbed part
of the shock front. Though the PGSDSS model was used only to describe the symmetric
interaction between two cylindrical blasts by exploiting its equivalence to shock reflection
off a straight wall, it has the potential to deal with multi-blast interactions as long as axial
symmetry can be established between every two neighboring blasts.
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Figure 11. Comparison of the trajectory of the triple point for the interaction between two identical
cylindrical blasts from the Euler (solid line) and PGSDSS (dashed line with circles) solutions. Initial
conditions: E0 = 10, 000 J/m for the Euler solution; R0 = 5 mm and M0 = 26.7 for the PGSDSS solution.
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Figure 12. PGSDSS results showing the evolution of the shock front formed by the interaction
between two identical cylindrical blast waves. Only half of the shock fronts shown with triple
points represented by red circles, and the explosion center indicated by a red star. Initial conditions:
R0 = 5 mm and M0 = 26.7.

5. Conclusions

Considering the case of a single cylindrical expanding blast front, the results from the
modified GSD model and the PGSD model fully recover Bach and Lee’s analytical solution,
as shown in Figure 3. This agrees with expectations considering that these GSD models
should be able to correctly and sufficiently account for the post-shock flow effect by fully
expressing the post-shock flow term. Furthermore, the modified GSD model requires prior
knowledge for a specific explosion, which may be cumbersome to obtain. This renders
the PGSD model more user friendly since it relies on θ(M), Equation (A20). Because θ(M)
is indifferent to the initial energy of the point-source explosion, one only has to solve for
θ(M) once, using, for example, the analytical solution of Bach and Lee [25].

To investigate the case of two cylindrical symmetrical interacting blast waves, dif-
ferent models were utilized and compared to experimental work by Higashino et al. [34].
Theoretically, and proved by comparison, the main advantage of the PGSD model over the
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modified GSD model lies in its efficiency. Comparisons of the maximum pressure measured
at the Mach stem as a function of time between the experiments and the simulations show
that the trends are similar but that the PGSD model exhibits an obvious overshoot for
both the copper and nichrome cases. This behavior is likely caused by GSD’s inherent
tendency of overestimating the development of Mach reflection in compressive regions,
even when regular reflection is supposed to take place. Despite being short of information
about the Mach stem generation, the PGSD model preserves its speed to the fullest extent
while only slightly compromising the accuracy in limited situations. For each case of the
copper and nichrome wire explosions, the Lagrangian PGSD simulation took less than
one minute on a single core of Intel Core(TM) i7-8750H CPU operating at 2.20 GHz with
32 GB memory, whereas a simulation of the Euler equations needed more than 48 h with
two cores of Intel Core(TM) i7-3930K CPU operating at 3.20 GHz with 16 GB memory.
The shorter computational time makes PGSD an appropriate model for blast interaction
problems when saving computational time is of the essence, in for example cases with
optimization steps, since it balances accuracy and speed well.

The PGSDSS model was developed aiming at overcoming the issue of GSD and PGSD
overestimating the Mach stem development in the case of two cylindrical symmetrical
interacting blast waves. The PGSD model treats regular and irregular reflection in different
manners. In contrast, the PGSDSS model introduced in this study can be initialized with
two separated blast waves represented by two closed circles in two-dimensional space.
Once the shock fronts expand such that the two circular curves meet, regular reflection
is realized by applying boundary conditions such that a perfect circular shape can be
preserved near the intersections. Irregular reflection follows as soon as a pre-defined
transition condition is reached. Mach stem growth is then governed by the shock–shock
approximate theory for cylindrical shock reflection off a straight wall, while the undisturbed
part of the shock front is still described by the PGSD model. The so-called PGSDSS model
was evaluated by comparing the triple-point trajectory to results from simulations of the
Euler equations for the interaction of two identical cylindrical blast waves. As a result, the
PGSDSS model yielded almost a straight line of trajectory in the xy-plane that lies lower
than its Euler solution counterpart at all times, which signals an underestimated Mach stem
throughout its development. This observation is opposite to that from the PGSD model,
which instead overestimated the Mach stem growth. One possible cause is the assumption
of a straight Mach stem made in deriving the shock–shock approximate theory.

In the future, it would be beneficial to further compare the PGSD and PGSDSS models
to additional experimental data obtained with high-resolution measurement equipment,
such as ultra high speed cameras and pressure sensors.
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Appendix A. Grid Independence Study for Two-Dimensional Simulations Using the
Euler Equations

Appendix A.1

Here, the two-dimensional Euler equations were solved using the open-source frame-
work called Overture [26], which has been introduced and validated in detail prior to
this study [27–29]. The conservation laws of mass, momentum, and energy for inviscid
compressible flows are represented in conservation form as

∂Q
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

= 0, (A1)

with Q, E, F, and G given by

Q =


ρ

ρu
ρv
ρw
e

, E =


ρu

ρu2 + p
ρuv
ρuw

(e + p)u

, F =


ρv

ρvu
ρv2 + p

ρvw
(e + p)v

G =


ρw

ρwu
ρwv

ρw2 + p
(e + p)w

, (A2)

where ρ is the density, u, v, and w are the velocity components in the x-, y- and z-directions,
and e is the energy per unit volume. The pressure p is related by the equation of state (EOS)
for a perfect gas

p = (γ− 1)
[

e− ρ(u2 + v2 + w2)

2

]
, (A3)

where γ still denotes the ratio of specific heats. The conversion of Euler equations from
three to two dimensions can be simply achieved by discarding all terms in the z-direction.

A grid independence study was performed to determine a proper grid size to be used
in the simulations. The test case is blast reflection off a solid wall. Specifically, as illustrated
in Figure A1, a single explosive with a total energy of 8000 J/m is positioned at the center
of the computational domain (10 mm above the reflecting wall) and two pressure probes
are placed (i) 5 mm above the wall (probe A), and (ii) at the wall (probe B).

20 mm

2
0
 m

m

Probe A

Probe B

5 mm

5 mm

R
0

Figure A1. Schematic illustration of the 2D simulation domain for the grid independence study with
locations of probes A and B denoted by orange diamonds. The initial blast wave radius was R0 = 1.5 mm.
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Probe A records the pressure history of the incident blast that expands from the initial
blast radius, R0 = 1.5 mm, while also monitoring the influence of the shock reflection off the
wall. Three different squared grid sizes were tested: 0.1 mm × 0.1 mm, 0.04 mm × 0.04 mm,
and 0.016 mm× 0.016 mm. Figure A2 shows the time history of the pressure recorded by probe
A. The results from the 0.04 mm and the 0.1 mm grid sizes display a maximum difference in
incident blast Mach number of 8.3%, while 5.3% is observed between the 0.016 mm and the
0.04 mm grid sizes. Moreover, the 0.016 mm and the 0.04 mm grid sizes predict an almost
identical second peak as the result of the passage of the reflected shock, while the coarsest
mesh slightly delays its arrival. Similar trends were observed for probe B.
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Figure A2. Time history of pressure recorded at probe A, which is located halfway between the
explosion center and the wall, and a zoomed in view of the pressure during the initial shock passage.

For this test case, more than 72 h were needed for the simulation using the 0.016 mm
grid size with two cores of Intel Core(TM) i7-3930K CPU operating at 3.20 GHz with 16 GB
memory, while that using the 0.04 mm grid size took 12 h.

Therefore, a uniform grid size of 0.04 mm × 0.04 mm was chosen for the two-
dimensional simulations of the Euler equations throughout this work to balance simulation
accuracy and computational speed.

Appendix B. Taylor’s Similarity Law

Appendix B.1

The initial conditions used for the Euler equations are based on Taylor’s similarity
law [31]. This similarity law describes the distribution of flow properties within the blast
front by assuming appropriate similarity assumptions for an expanding blast of constant
total energy E:

p
p0

= R−3
s (t) f1(ξ), (A4)

ρ

ρ0
= ψ(ξ), (A5)

u = R−
3
2

s (t)φ1(ξ). (A6)

Here, p0 and ρ0 denote the ambient pressure and density ahead of the blast front. A
non-dimensionalized variable, ξ = r

Rs
, the ratio between the radial distance measured

from the explosion center and the radius of the blast front at time instant t, is used as the
independent variable for functions f1, ψ, and φ1.
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Furthermore, the non-dimensional forms of f1 and φ1 can be achieved by

f =
a2

0 f1

C2 , (A7)

φ =
φ1

C
, (A8)

where a0 is the speed of sound in ambient air and C is a constant related to E.
Applying these assumptions to the conservation equations of mass, momentum, and the

equation of state for a spherically symmetric flow yields the non-dimensional forms as follows:

φ̇(ξ − φ) =
ḟ

γψ
− 3

2
φ, (A9)

ψ̇

ψ
=

φ̇ + 2φ/ξ

ξ − φ
, (A10)

3 f + ξ ḟ +
γψ̇

ψ
f (−ξ + φ)− φ ḟ = 0, (A11)

where ḟ ≡ d f
dt , and so on.

The three ODEs can be numerically integrated simultaneously from ξ = 1 to 0. The
values of f , ψ, and φ at the blast front (ξ = 1) are determined by the shock jump conditions,
with an assumption of ps � p0 for a strong blast at its very early stage. Thus, the distribu-
tions of pressure, density, and particle velocity within the blast front can be obtained for
any total energy, E.

Approximate formulas that further reduce the effort to compute initial conditions
for the Euler equations are presented by Taylor [31]. The release of energy, E, from the
explosion only affects the maximum pressure and particle velocity at the blast front by

pmax = 0.155R−3
s E, (A12)

umax = 0.360R−
3
2

s

(
E
ρ0

) 1
2
. (A13)

Appendix C. Bach and Lee’s Analytical Solution

Appendix C.1

An approximate analytical method that is able to describe the entire evolution of
a blast wave was proposed by Bach and Lee [25]. The conservation equations of mass,
momentum, and energy for the unsteady one-dimensional adiabatic motion behind the
blast wave are, respectively, written in a dimensionless form as follows:

(φ− ξ)
∂ψ

∂ξ
+ ψ

∂φ

∂ξ
+ jφ

ψ

ξ
= 2θη

∂ψ

∂η
, (A14)

(φ− ξ)
∂φ

∂ξ
+ θφ +

1
ψ

∂ f
∂ξ

= 2θη
∂φ

∂η
, (A15)

(φ− ξ)

(
∂ f
∂ξ
− γ f

ψ

∂ψ

∂ξ

)
+ 2θ f = 2θη

(
∂ f
∂η
− γ f

ψ

∂ψ

∂η

)
, (A16)
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where particle velocity profile φ, pressure profile f , and density profile ψ are defined with

respect to two dimensionless independent variables ξ = r
Rs(t)

and η =
c2

0
Ṙ2

s
as

φ(ξ, η) =
u(r, t)
Ṙs(t)

, (A17)

f (ξ, η) =
p(r, t)

ρ0Ṙs(t)2 , (A18)

ψ(ξ, η) =
ρ(r, t)

ρ0
, (A19)

and

θ(η) =
RsR̈s

Ṙ2
s

. (A20)

Similar to Taylor’s similarity law, ξ is the ratio between the radial coordinate measured
from the explosion center and the instantaneous blast front radius, and η is a function of
Rs. The numerical constant j that appears in the conservation equation of mass is defined
as j = 0, 1, 2 for planar, cylindrical, and spherical blast waves, respectively. The total energy
enclosed by the blast wave should be conserved at all times and the energy integral is given as

y
(

I
η
− 1

γ(γ− 1)(j + 1)

)
= 1, (A21)

where

I =
∫ 1

0

(
f

γ− 1
+

ψφ2

2

)
ξ jdξ, (A22)

y =

(
Rs

R0

)j+1
, (A23)

R0 =

(
E

ρ0a2
0k j

) 1
j+1

. (A24)

It is worth noting that R0 is also called the characteristic explosion length, which
is an intrinsic property of the explosion with total energy E. Also, k j = 1, 2π, 4π for
j = 0, 1, 2, respectively.

Bach and Lee assumed a power-law density profile behind the blast wave

ψ(ξ, η) = ψ(1, η)ξq(η), (A25)

where the exponent q can be determined by substituting the density profile into the integral
of conservation of mass

q(η) = (j + 1)[ψ(1, η)− 1]. (A26)

With the density profile known, Equation (A14) reduces to an ordinary linear differ-
ential equation of particle velocity profile φ(ξ, η). By satisfying the boundary condition
φ(0, η) = 0, the particle velocity profile takes the form

φ(ξ, η) = φ(1, η)ξ(1−Θ ln ξ), (A27)

where

Θ =
−2θη

φ(1, η)ψ(1, η)

dψ(1, η)

dη
. (A28)
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Finally, by substituting the density profile and particle velocity profile along with their
partial derivatives with respect to ξ and η into the conservation of momentum, one can
obtain the pressure profile after some algebraic manipulations

f (ξ, η) = f (1, η) + f2(ξ
q+2 − 1) + f3{ξq+2[(q + 2) ln ξ − 1] + 1}

+ f4{2− ξq+2[(q + 2)2 ln2 ξ − 2(q + 2) ln ξ + 2]}, (A29)

where

f2 =
ψ(1, η)

q + 2

{
(1−Θ)

[
φ(1, η)− φ2(1, η)

]
− θ

[
φ(1, η)− 2η

dφ(1, η)

dη

]}
, (A30)

f3 =
ψ(1, η)

(q + 2)2

{
θ

[
Θφ(1, η)− 2η

d[Θφ(1, η)]

dη

]
−Θφ(1, η)−Θ2φ2(1, η) + 2Θφ2(1, η)

}
, (A31)

f4 = Θ2φ2(1, η)
ψ(1, η)

(q + 2)3 . (A32)

However, θ, which appears in the particle velocity profile and pressure profile, is
yet unknown. In order to complete the solution, the relationship between θ and η must
be determined. By substituting all density, particle velocity, and pressure profiles, i.e.,
Equations (A25), (A27), and (A29) into the energy integral (A21), one can solve for a differ-
ential form of the relationship

dθ(η)

dη
= − 1

2η

{
θ + 1− 2φ(1, η)− D + 4η

γ + 1
− (γ− 1)(j + 1)

[
φ(1, η)− (D + 4η)2

4θy(γ + 1)

]}
+

D + 4η

8η2(γ + 1)

[
(D + 4η)φ(1, η)

θ
− φ(1, η)(γ + 1)

θψ(1, η)
+ 2(η + 1)

+(γ− 1)(j + 1)
(γ + 1)φ2(1, η)

2θ

]
+

2θ[2 + (γ− 1)(j + 1)]
D + 4η

, (A33)

where D = γ(j + 3) + (j− 1).
Moreover, the relationship between y and η is also found to be related to θ as

dy
dη

= − (j + 1)y
2θη

. (A34)

Then, the solutions to the pair of ordinary differential Equations (A33) and (A34)
provide all the essential information about the propagation of a blast front including its
instantaneous radius, velocity, and acceleration. Functions θ(η) and y(η) can be obtained
simultaneously as the result of numerical integration (e.g., Runge–Kutta method) with the
boundary condition satisfied at η = 0. The initial energy E only contributes to y through
the characteristic explosion length R0, while θ(η) acts as a scaling law that is independent
of the energy of the explosion.
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