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Abstract: As defense technology develops, it is essential to study the pursuit–evasion (PE) game
problem in hypersonic vehicles, especially in the situation where a head-on scenario is created.
Under a head-on situation, the hypersonic vehicle’s speed advantage is offset. This paper, therefore,
establishes the scenario and model for the two sides of attack and defense, using the twin delayed
deep deterministic (TD3) gradient strategy, which has a faster convergence speed and reduces over-
estimation. In view of the flight state–action value function, the decision framework for escape control
based on the actor–critic method is constructed, and the solution method for a deep reinforcement
learning model based on the TD3 gradient network is presented. Simulation results show that
the proposed strategy enables the hypersonic vehicle to evade successfully, even under an adverse
head-on scene. Moreover, the programmed maneuver strategy of the hypersonic vehicle is improved,
transforming it into an intelligent maneuver strategy.

Keywords: hypersonic vehicle; deep reinforcement learning; TD3; intelligent maneuver strategy

1. Introduction

A hypersonic vehicle is an aircraft that flies in near space at a speed of more than
5 Mach; its flying altitude is situated between that of a conventional aircraft and low-
orbit satellites. Hypersonic vehicles have the advantages of strong evasion ability, strong
mobility, long range and high flight speed, which can realize longer flight distances and
rapid striking tasks. At the same time, along with massive developments in related technical
fields, such as scramjet technology, composite light and high-temperature resistant material
technology [1], hypersonic aerodynamics [2] and navigation [3], and guidance [4] and control
technology [5,6], hypersonic vehicles are of research interest to major aerospace countries.

At present, an important problem to be overcome in hypersonic vehicle strategy
design is that of the pursuit–evasion (PE) game [7,8] between hypersonic vehicles and their
opponent. Moreover, pursuer technology is developing rapidly, thereby posing a threat
to the mission execution of hypersonic vehicles. It is, therefore, necessary to conduct a
deeper study into the game strategy and evasion methods of hypersonic vehicles to enable
their inherent advantages to be fulfilled and to ensure an effective response to the new
developments in pursuer technology.

The literature [9–12] reports that research into corresponding trajectory planning,
trajectory optimization and guidance law design was undertaken to address the evasion
processes of hypersonic aircrafts. In order to improve guidance accuracy, the use of neural
networks to predict interception points and target positions in the future has been reported
in the literature [13,14]. The above literature involves programmed trajectory planning
and design from either the pursuer’s side or the evader’s side, but a real flying situation is
constantly changing, so a single programmed trajectory plan cannot meet rapidly changing
battlefield needs. Consequently, there are reports of strategic research being conducted
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on the direction of attack and defense game confrontation. One report [15] considered the
adversarial guidance problem among interceptors, hypersonic vehicles and active defenders
and proposed an optimal guidance scheme for each participant in the engagement based
on a linear–quadratic differential game strategy. In another report [16], the pursuit problem
was described as a differential game, in which a method of intercepting evaders in the
capture area by using the approximate optimal guidance law of deep learning was proposed,
and simulation cases of evaders with different maneuvering strategies were presented.
Furthermore, [17] game-switching strategies were deduced to match the target’s different
strategies using complete information obtained by the interceptor. In the interception
process, the target switched multiple strategies to avoid the interceptor.

Among scenarios of attack and defense confrontation, however, the head-on scenario
is the most serious challenge for a hypersonic vehicle to evade. This is because a hypersonic
vehicle possesses lengthy and wide-range maneuvering abilities during flight, and it also
has a speed advantage compared with other different types of pursuers. Considering
existing interception technology, the pursuer is most likely to adopt the head-on impact
strategy; that is, the pursuer approaches the target in the opposite direction of the target
velocity vector. In this way, the speed advantage of the hypersonic vehicle is greatly
reduced. If the head-on impact situation is not satisfied, the pursuer will not pose enough
of a threat to the hypersonic vehicle, and the hypersonic vehicle can easily escape from the
threat of the pursuer using its speed advantage [18]. At the same time, it is convenient for
the seeker to stably track and intercept the target in this way. When approaching the target,
the rendezvous angle is close to zero, so there is a high probability that a low-speed missile
could hit a high-speed target.

In a study by [19], based on the model predictive static programming (MPSP) algo-
rithm, the head-on trajectory planning for intercepting high-speed targets met the terminal
constraint of terminal arrival at the predicted hit point and consumed less energy. In view
of the head-on intercept of the kinetic energy interceptor, another study [20] analyzed the
possibility of penetration by the aerodynamic maneuvering of a hypersonic glide vehicle,
deriving the penetration guidance law according to the state parameters of the kinetic
energy interceptor at the time of boost separation.

The rise of intelligent technology, such as machine learning and artificial intelligence,
provides new and feasible solutions to problems such as high dimension, real-time state
change and complex input. Reinforcement learning [21], as a branch of machine learning,
has developed rapidly in recent years. Reinforcement learning enables the agent to con-
stantly interact with the environment so that it can obtain a reward when each state takes
a specific action. Through this process, the agent iteratively updates its own strategy so
that the agent can obtain more rewards in the next moment. It is an unsupervised heuristic
algorithm that does not need to establish an accurate model and has good generalization
ability [22,23]. The use of intelligent algorithms, therefore, facilitates a solution to be found
for the PE problem. In the course of combat, the environment changes rapidly. Simple
procedural maneuvers cannot adjust the maneuvering time and direction according to
the real-time situation; as a result, adaptability is insufficient and does not meet the re-
quirements. In order to improve the intelligence and autonomy of hypersonic vehicles, the
penetration strategy should be improved. This can be realized by changing programmed
maneuvering to intelligent maneuvering, which can circumvent the limitations of tradi-
tional methods, improving the accuracy, and achieving better simulation results, thereby
solving several problems that are currently difficult to resolve using such methods.

Aimed at the terminal penetration scenario of ballistic missiles, one study [24] con-
structed the penetration scenario of targets, missiles and defenders based on deep reinforce-
ment learning, proposing a maneuver penetration guidance strategy that took into account
guidance accuracy and penetration ability. Another team [16] studied the 1-to-1 minimax
time-track pursuit problem at the given final distance. In order to successfully intercept the
evader using any unknown maneuver, a near-optimal track pursuit interception strategy
was proposed. In one study [25], to consider the problem of missile penetration control



Aerospace 2023, 10, 86 3 of 16

decision-making, a model based on a Markov decision process was established. A deep
reinforcement learning model based on the deep deterministic strategy gradient algorithm
was given to generate the optimal decision-making network for missile penetration control.
In another study [26], an anti-interception guidance method based on deep reinforcement
learning (DRL) was also proposed: the problem was modeled as a Markov decision process
(MDP), and a DRL scheme composed of actor–critic architecture was designed to solve this
problem. Both [26] and [27] improved the reinforcement learning algorithm accordingly.

Based on the above research and analysis, this paper designed a strategy to address the
pursuit–evasion problem in hypersonic vehicles under the adverse situation of a head-on
scenario. The main contributions to this paper are as follows:

1. Unlike simulations in other papers, this paper chose the most unfavorable classic head-
on situation for a hypersonic vehicle to design the evasion strategy in the scenario
of a pursuit and evasion confrontation; this is because the speed advantage of a
hypersonic vehicle in this scenario is greatly weakened, and the evasion process is
more dependent on the strategy device.

2. Most research on strategy design for hypersonic aircraft has been based on unilateral
ballistic planning. However, this paper focuses on the process of game confrontation
between the two parties and constructs the problem of a pursuer-and-evasion game.

3. Based on the twin delayed deep deterministic (TD3) policy gradient, deep reinforce-
ment learning was used to study the decision-making strategy of evasion control,
improving the evasion strategy of a hypersonic vehicle from being a programmed
maneuver evasion to an intelligent maneuver evasion.

The paper is arranged as follows: Section 2 describes the model of the hypersonic
vehicle and pursuer missile, analyzing and constructing the motion model for the pursuer
and evader under the head-on reversal situation scenario. In Section 3, a deep reinforcement
learning algorithm based on the TD3 policy gradient network is designed and deduced. In
Section 4, the proposed algorithm based on the pursuer-and-evasion scenario is simulated
and verified; finally, Section 5 offers a conclusion.

2. PE problem Modeling
2.1. Modeling

According to the dynamic characteristics of a hypersonic vehicle during flight, me-
chanical analysis and coordinate transformation were performed to establish the centroid
dynamics and centroid kinematics models of a hypersonic vehicle, as shown below:

dVH
dt = g(nxH − sin θH)

dθH
dt = g

VH
(nyH − cos θH)

dψH
dt = − g

VH cos θH
nzH

(1)


dxH
dt = VH cos θH cos ψH

dyH
dt = VH sin θH

dzH
dt = −V cos θH sin ψH

(2)

Similarly, the kinetic models and kinematic models of pursuer missiles can be estab-
lished, as shown below: 

dVI
dt = g(nxI − sin θI)

dθI
dt = g

VI
(nyI − cos θI)

dψI
dt = − g

VI cos θI
nzI

(3)
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dxI
dt = VI cos θI cos ψI

dyI
dt = VI sin θI

dzI
dt = −V cos θI sin ψI

(4)

Here, subscript H and I represent evader (hypersonic vehicle) and pursuer projectiles,
respectively; V is velocity; θ denotes the ballistic inclination angle; and ψ is the ballistic
deflection angle. nx, ny, and nz respectively represent the overload of the three axes of the
aircraft under the ballistic coordinate system, and x, y, and z respectively represent the
displacement of the three axes of the aircraft under the geographical coordinate system.

To make the simulation of the designed PE confrontation problem more consistent with
the actual results, the characteristics of the aircraft autopilot were also taken into account in
this process. To simplify the calculation, the aircraft autopilot model was assumed to be a
first-order dynamic system. The relationship between the actual overload obtained by the
hypersonic vehicle and the overload command can be expressed as follows:

nH(s)
nH_order(s)

=
1

1 + Ts
(5)

where nH_order is the overload order calculated for the hypersonic vehicle, nH is the overload
response of the hypersonic vehicle, and T is the responsive time constant of first-order
dynamic characteristics.

2.2. The Scenario Description

In this paper, the evasion strategy of the hypersonic vehicle was designed in the
situation of a head-on scenario.

If the two sides form a head-on situation, it can be assumed that the velocity direction
of the pursuer missile is along the line of pursuer and evader and points to the hypersonic
target. At the same time, it is reckoned that the angle between the initial velocity direction
of the hypersonic vehicle and the missile target line is small enough or even close to 0; that
is, both parties constitute a (standard) head-on situation.

To avoid the influence of a change of speed and altitude on engine thrust during the
evasion process, the hypersonic vehicle prefers to complete the evasion through lateral
maneuvers. Therefore, the pursuer missile transforming into the final guidance is assumed
to be at the same altitude as the hypersonic vehicle. At this time, the pursuer and evader
confrontation scenario can be simplified into a two-dimensional plane, based on which the
corresponding derivation and research can be performed.

The diagram of the relative motion relation between a hypersonic aircraft and a
pursuer missile under the PE state in the two-dimensional plane is shown in Figure 1.
Where rHI is the relative distance between the hypersonic vehicle and the pursuer missile,
q is the line of sight angle between the hypersonic vehicle and the pursuer missile, φ is the
angle between the velocity vector of the aircraft and the line HI, namely, the lead angle.
The lead angle of the hypersonic vehicle and the pursuer missile, respectively, have the
following relation: {

φH = ψH − q
φI = q + ψI

(6)

According to the geometric relationship, the relative kinematic Equation of pursuer
and evader, confrontation can be written as:

.
rHI = VrHI = −VH cos φH + VI cos φI.
λHI = (VH sin φH −VI sin φI)/rHI
..
rHI = aH sin φH + aI sin φI + rHI

.
λ

2
HI.

ψH = nH g/VH.
ψI = −nI g/VI

(7)
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HIr

Figure 1. Schematic diagram of pursuer and evader confrontation in a two-dimensional plane.

In the head-on scenario, there is little change in the deflection of both sides. Based
on the small-angle hypothesis, the kinematic model of offensive and defensive confronta-
tion can be linearized at the X-axis. If the state variable is XHI = [zHI ,

.
zHI , nH , nI ]

T , the
linearized model of the pursuit–evasion problem can be obtained as follows:

.
XHI = AXHI + BHnH + BInI (8)

The corresponding matrix expression in the formula is:

A =


0 1 0 0
0 0 g cos ψH0 g cos ψI0

0 0 − 1
TH

0
0 0 0 − 1

TI

 (9)

BH =


0
0
1

TH
0

 (10)

BI =


0
0
1
TI
0

 (11)

The main content of this paper is about the scenario where the pursuer missile and
the evader vehicle have formed a head-on state. Therefore, this paper will only discuss
the guidance law adopted by the pursuer missile in the final guidance stage. The most
typical and commonly used missile guidance law is proportional guidance (PN), whose
longitudinal and lateral overload instructions are shown as follows:nyI =

NVc
.
qy

g + cos θI

nzI = −
NVc

.
qz cos θI

g

(12)

where N is the navigation coefficient, and is usually selected between 3 and 5, and Vc is the
approach speed of the pursuer and evader.
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2.3. The Designing Goal

To make the simulation fit the reality and ensure the simulation results have strong
credibility, it is necessary to make assumptions about and place constraints on the perfor-
mance and conditions of the aircraft.

Here, δ is supposed to be set as the lowest boundary value of miss distance. In addition,
when the present formula is true, the hypersonic vehicle can be considered as making a
successful evasion:

min r > δ (13)

The maximum available overload refers to the normal/lateral acceleration generated
by the aircraft when the actuator of the aircraft reaches the maximum angle or limitation.
Thus, the maximum available overload for the hypersonic vehicle in this paper is assumed
to be:

|nH(t)| ≤ nHmax (14)

In summary, the whole problem can be described as Problem 1.

Problem 1. There is a PE game for which the attack and defense models can be expressed, as
shown in Equation (7). More specifically, the state-space Equation which is based on the head-
on scenario, is given by Equation (8). The evasion strategy should be derived to guarantee
that the miss distance satisfies Equation (13) and the control constraint satisfies Equation (14).

3. Method

In reinforcement learning tasks, the types of actions are usually classified into continu-
ous actions and discrete actions. The DQN algorithm can deal with the high-dimensional
and observable state space, but the state space must be discrete and have a low-dimensional
action space. Managing the huge continuous action space to calculate the probability of
each action or the corresponding Q-value is difficult for the DQN network. In view of
the defects of the DQN algorithm, David Sliver proposed a Deterministic Policy Gradient
(DPG) algorithm in 2014 and proved the effectiveness of this algorithm for continuous
action tasks. TP Lillicrap and others proposed a DDPG algorithm based on the Actor–Critic
(AC) framework, firstly, by taking advantage of the superiorities of the DPG algorithm
to make it possible to critique it in high-dimensional continuous action space; they then
combined this with the advantages of the DQN algorithm to take the high-dimensional
state space as input. However, the Q-value is always overestimated due to a function
approximation error in DDPG algorithm training, so the TD3 algorithm was proposed and
produced a better performance.

The remainder of this section is divided into subheadings to provide a concise and
precise description of the experimental results, as well as the experimental conclusions.

3.1. TD3 Method

The TD3 algorithm is an optimization algorithm based on DDPG. Therefore, TD3
and DDPG have relatively similar framework algorithms, both of which are updating
algorithms based on the actor–critic framework. The characteristics of the TD3 algorithm
are as follows:

1. The updated value function is different from the DDPG algorithm, which uses the
maximum estimation method to estimate value functions; it is, therefore, common
for over-estimation problems to occur with the DDPG algorithm. For this reason, the
TD3 algorithm was improved. Referring to the idea of two action value functions
in twinned Q-learning, the minimum value of two Q-functions was adopted when
updating the Q-function of the critic.

2. Referring to the experience replay and target network technology in deep Q-learning,
the TD3 algorithm stores the data obtained from the system exploration environment
and then randomly takes a sample to update the parameters of the deep neural
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network to reduce the correlation between the data. Moreover, the sample can be
reused to improve learning efficiency.

3. To ensure its smoothness, regularization of the strategy was carried out, and dis-
turbance was introduced when the TD3 network output the action. Thus, the Twin
delayed deep deterministic policy gradient algorithm can be obtained. The algorithm
framework is shown in the Figure 2 below:
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The detailed structure of the algorithm is described below.

3.1.1. Actor–Critic Structure

DDPG is a value-based reinforcement learning algorithm. Inspired by the idea of
value estimating, the actor–critic structure came into being. The actor–critic structure refers
to the fact that the reinforcement learning algorithm learns two networks simultaneously:
the evaluation network Qθ(s, a) and the strategy network πφ(s).

The predecessor of the actor network is based on the policy gradient algorithm, which
can select the corresponding action in the continuous action space. Its updating mode
regenerates at every turn, so learning efficiency is relatively slow. However, the problem
of dimension explosion is often encountered using the value-based method of Q-learning
updating. Moreover, by using a value-based updating algorithm to select the critic network,
a single-step update can be realized. By combining two reinforcement learning algorithms,
the policy-based policy gradient and the value-based Q-learning, the actor–critic structure
can be formed.

The actor network πφ(s) is responsible for analyzing the data observed by the system
from the external environment, obtaining the most suitable action for the current state,
and then updating the gradient so that the agent can obtain the best score. The gradient-
updating expression of the actor parameter is shown as follows:

∇φ J(φ) = N−1
A ∑∇aQθ(s, a)

∣∣∣a=πφ(s)∇φπφ(s) (15)

where φ is the parameter in the actor network, and θ is the parameter in the critic network.
To reduce the amount of computation and improve efficiency, the updating data are se-
lected using Mini batch; that is, N groups are extracted from the data obtained from the
existing interaction with the environment to train the actor. When the number of training
sessions does not reach the set maximum number of sessions, the system generates the
action and records the action-state-reward data for each session, which can be recorded
as (st, at, st+1, rt), and the data stored in the replay buffer. At the beginning of training,
the parameters in the action network and the parameters in the evaluation network are
randomly initialized.
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The critic network Qθ(s, a) evaluates the action a produced by the current policy
network and the current state s of the system in the time step. The evaluation network
adjusts the parameters within its own network based on feedback from the environment,
which is the reward generated by the reward function.

3.1.2. Twin Delayed Deep Deterministic (TD3) Policy Gradient

Based on the above actor–critic framework, by referring to the techniques of expe-
riential replay and target network in deep Q-learning, and the idea of two action value
functions in double Q-learning, the twin delayed deep deterministic policy gradient (TD3)
algorithm can then be obtained.

To create a more stable network performance, the TD3 algorithm introduces the
concept of the target network. The critic network Qθ(s, a) and the actor network πφ(s) each
have a target network, QT

θ (s, a) and πT
φ (s), respectively. The target actor network and the

target critic network are only used to calculate the loss function. Two sets of critic networks
are adopted, the smaller being taken when calculating the target value, so as to restrain the
problem of network overestimation. By using the output value of a relatively stable target
network, the target value is constructed to ensure the learning stability of the critic network.

As a supervised learning model, a deep neural network requires data to satisfy charac-
teristics such as independent and homogeneous distribution. To overcome problems with
the correlation of empirical data and non-stationary distribution, target networks are able
to use experience replay to replace uniform sampling when obtaining data, which would
break serial correlation while reusing past experience.

The specific steps are as follows: after a fixed time interval, the algorithm will conduct
data sampling for the set (st, at, st+1, rt) of experience replay blocks, and update Qθ(st, at)
and πφ(st) with the sampled data as a loss function, according to the following formulas:

LQ = MSE
[

Qθ(st, at), rt + γQT
θ

(
st+1, πT

φ (st+1)
)]

(16)

Lπ = −Qθ

[
st, πφ(st)

]
(17)

In Equation (16), MSE(·) is the second-order norm of output, and rt is the reward
function obtained at the current moment. Since this term QT

θ

(
st+1, πT

φ (st+1)
)

represents
the prediction of the future state and action of the target evaluation network, the future loss
rate γ represents the degree of concern of the algorithm itself to the future benefits. After
training updating, the target network should be renewed according to the learning rate.

Above all, it can be known that the algorithm consists of six deep neural networks:
the actor network π(ut|xt; φ) , used to approximate the optimal strategy π∗(ut|xt) , and
the two value function networks Qθ1(xt, ut; θ1) and Qθ2(xt, ut; θ2), used to estimate the
action value function. There should be three target networks: π(ut

∣∣xt; φT) , QT
θ1
(xt, ut; θT

1 )

and QT
θ2
(xt, ut; θT

2 ). Similar to the deep Q learning, the TD3 algorithm firstly needs to
collect enough experience data (st, at, st+1, rt) during training and store it in the experience
pool. A small batch of data is then randomly sampled from the experience pool to update
the φ, θ1 and θ2 parameters of the network. The specific structure can be seen in the
following Table 1:

Table 1. The structure of TD3 network.

Type of the Network Actor Critic

Network Actor Network
Network Qθ1

Network Qθ2

Target Network Actor Target Network
Target Network QT

θ1

Target Network QT
θ2



Aerospace 2023, 10, 86 9 of 16

In some respects, and similar to the double Q-network, the two Q-functions are
independently studied, and the smaller Q Value of the two values is used to construct the
target value learned by the critic network so as to slow down the overestimation of the
critic network; that is:

y← r + γmin
i=1,2

QθT
1
(st+1, ã) (18)

In the Equation, y is the target value of temporal difference; ã is the noise pruning
added to the output of the target policy network. Because the scores obtained by similar
actions in the same state are usually not significantly different, for the sake of increasing
the stability of the algorithm, ã is introduced for improvement:

ã← πT
φ (st+1) + εε ∼ clip(N (0, σ̃),−c, c) (19)

where clip(·) is the shear function, and it is defined as:

clip(s, c1, c2) =


c1, s < c1
s, c1 ≤ s ≤ c2
c2, s > c2

(20)

The loss of function of the critic network πφ(ut
∣∣xt; φ) can be expressed as:

LA(φ) = −NA
−1∑N

k=1 Q1
π(xt, π(ut|xt; φ); θ1) (21)

After the introduction of the experience replay mechanism, the loss of function used
to update the network parameters of the value function can be defined as:

LC(θi) = NA
−1∑N

k=1

(
yk −Qθi (sk, ak)

)2, i = 1, 2 (22)

where NA represents the length of a small batch of data.
In addition, parameters φ, θ1 and θ2 are updated according to the following formula

to minimize the loss of functions LC(θi) and LA(φ).{
φ← φ− αφ∇φLA(φ)

θi ← θi − αθi∇θi LC(θi), i = 1, 2
(23)

Different from the hard update mode of DQN, in which parameters are directly copied
from the current network to the target network, the TD3 algorithm adopts the updating
mode, which is similar to the DDPG soft update mode. The parameters of the three target
networks adopt a soft update mode, which can ensure the stability of the training process.
To ensure stable training of the actor network, the algorithm of the delayed update is used;
in this way, the actor network will be updated after the critic network has been updated
many times. Usually, after the critic is updated twice, the actor network will be updated
again. The parameters of the actor network πφ, network Qθ1 and network Qθ2 are obtained
by running means, respectively, to obtain parameters of the target actor network, the target
network QT

θ1
and the target network QT

θ2
. The calculation formula is shown as follows:{

φT = τφ + (1− τ)φT

θT
i = τθi + (1− τ)θT

i , i = 1, 2
(24)

Here τ is an inertial factor.
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3.2. Method Design Based on Head-On Scenario
3.2.1. Design of the State Space and the Motion Space

The input of the actor network in the deep reinforcement learning algorithm is the
observable state vector. The actor network can also be expressed as a nonlinear function
about the state:

u(t) = f (xstate) (25)

The state space selects the relative state of the hypersonic vehicle and pursuer missile,
that is, xstate =

[
rHI/rHI0, q, σ

.
q, VH/VI

]T .
The selection of state variables should ensure that they can be obtained easily in

practice. Here σ is the normalization coefficient, whose function is to ensure that the
magnitude of the selected state variables is basically the same; this is more conducive to
algorithm convergence.

The output of the actor network is the vertical overload of the hypersonic vehicle
nzH ; then:

nzH ∈ [−nzH_max, nzH_max] (26)

Here nzH_max is the limited overload value of a hypersonic vehicle. Thus, the output
nzH can be expressed as a function of the state space:

nzH = f
(
rHI , q,

.
q, VH , VI

)
(27)

3.2.2. Design of the Reward Function and the Termination Function

During the pursuit–evasion process, the setting of the termination function determines
when the simulation and single training ends. Moreover, the setting of the reward function
directly affects the learning efficiency and convergence of reinforcement learning. Thus,
both have a significant impact on the simulation.

• Termination function

According to the experience and the actual trend, when the relative distance between
the hypersonic vehicle and the pursuer missile begins to increase, it can be determined that
the pursuit–evasion process is over; that is:

drHI
dt

> 0→ end (28)

• Reward function

The design of the reward function includes a terminal reward and a process reward. It
should be noted that process rewards should not be too sparse; otherwise, the agent may
fail to recognize the contribution of an action taken in a certain state to the final reward,
thus failing to identify the key actions and resulting in the failure of the final simulation.

R = r1 + r2 + r3 (29)

where r1 is defined as the reward function of the relevant distance between the pursuer
missile and the evader. When the distance decreases, the reward will be given, but when
the distance increases, punishment will be given. r2 is defined as a reward function related
to the relative angle. In order to ensure that the evader can successfully escape the pursuer,
it is necessary to introduce the relative angle information between the hypersonic vehicle
and the pursuer missile and give the corresponding punishment and reward. r3 is defined
as the termination reward function, when each time the evader escapes from the pursuer
successfully, the corresponding reward or punishment is given. In this situation, the success
criterion is whether the value of the minimum miss distance meets the requirements.
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3.2.3. Design of the Network Structure

Both the policy network and the value function network are realized by the fully
connected neural network, which contains three hidden layers, and the activation function
of the hidden layer is selected as a ReLU function.

The policy network maps
[
rHI , q,

.
q
]T to nzH . Since its overload value is limited, the

activation function of the output layer of the policy network is taken as the tanh function,
and the scaling layer is superimposed. The scaling range is [−nzH_max, nzH_max].

The action value function network takes
[
rHI , q,

.
q
]T as input and outputs Qπi(xt, ut; θi).

Moreover, the activation function of the output layer of the action value network is linear.
The network structure designed in this paper is shown in Table 2. The parameters of

the policy and value function networks are adjusted by the Adam optimizer.

Table 2. Overall network structure in the simulation.

Type of the Network
Policy Network Action Value Function Network

Number of Nodes Activation Function Number of Nodes Activation Function

The input layer 3 None 4 None
The hidden layer1 128 ReLu 64 ReLu
The hidden layer2 128 ReLu 64 ReLu
The hidden layer3 64 ReLu 64 ReLu
The output layer 1 tanh 1 Fully Connection

4. Results and Discussion

Simulation parameter settings are shown in Table 3.

Table 3. The parameters simulation setting table.

Variable Value Variable Value

Pursuer velocity VI 3 Ma Experience pool capability 4000
Hypersonic vehicle velocity VH 6 Ma Small batch sample size 128

|nI_max| 6 The updating frequency of the policy network 300
|nH_max| 3 The updating frequency of the target network 300

Initial position of the pursuer/m (100,000) Learning rate of the value network αθ 4
Initial position of the Hypersonic vehicle (0,0) Discount factor γ 0.99

Navigation coefficient N 4 Inertial factor η 0.99
Type of the guidance law PN Soft updating rate 0.001
Initial line-of-sight angle 0 T 0.1 s

Deflection angle of the pursuer −π σ1 5
Deflection angle of the hypersonic vehicle 0 σ2 8

Learning rate of the actor network απ 1 The time threshold of distance judgment 4 s
The target network smoothing noise variance 0.2 Attenuation Noise standard deviation ns 0.4

Sampling time 0.1 Attenuation noise standard deviation rate ∆ns 1 × 10−5

The mean of reward window length 100

The simulation condition for a strict head-on situation was given, which means the
initial line-of-sight angle between the hypersonic vehicle and the pursuer missile was 0.
The initial ballistic deflection angle of the hypersonic vehicle was set to 0, and the initial
ballistic deflection angle of the pursuer missile was set to −π. The initial position of the
hypersonic vehicle was (0,0), and the initial position of the pursuer missile was (100,000).

To truly reflect the scene, the speed of the pursuer was set at 3 Ma, and the speed
of the hypersonic aircraft was 6 Ma. Meanwhile, the overload capacity of the hypersonic
aircraft was set at 3, while the overload capacity of the pursuer was set at 6. By contrast,
the hypersonic aircraft had an overload disadvantage. Thus, under these circumstances,
i.e., reduced speed advantage and overload disadvantage, the success of evasion depends
more on the active maneuvering time of the hypersonic vehicle.
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Using the above strict head-on situation as the simulation conditions, the agent was
trained in this case, and the maximum number of training rounds was set at 1000. In the
process of each training, some initial quantities were also assigned random deviation to
ensure the effectiveness of the training results.

The training process curve for the agent is shown in Figure 3.
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Figure 3. The curve for agent training during the deep reinforcement learning process.

As seen in Figure 3, as the number of training rounds increases, the average reward
value curve gradually increases. In this process, the agent constantly adjusts its strategy
due to trial and error. According to the feedback for the reward function and the real-time
state information of the environment, the agent was trained and improved iteratively.

After 120 rounds of training, the curve obviously converges and finally stabilizes at
a higher value; that is, it converges to a better solution. This indicates that the overall
performance of the agent tended to be stable in this process, which means that the training
was successful. It can also be further seen from the curve that the deep learning algorithm
designed in this paper shows good convergence.

After the completion of the agent training, we chose a relatively strict condition to
perform the pursuit and evasion confrontation between aircraft for the agent scene test.
The simulation results for the basic indicators are shown in Figure 4.

Figure 4a is a two-dimensional plane diagram of attack and defense. The red line
represents the plane trajectory of the pursuer missile, which adopts the proportional
guidance law, and the blue line represents the plane trajectory of the hypersonic vehicle.
As can be seen from Figure 4a, there is no intersection point between the hypersonic
vehicle and the pursuer. Figure 4b shows the relative distance changing in the process of
attack and defense confrontation. As can be seen from Figure 4b, throughout the entire
process, the minimum relative distance between the hypersonic vehicle and interceptor
missile was greater than 5 m, which satisfies the index requirements assigned in Section 2.3.
According to the design goal in Section 2.3, this miss distance is sufficient to guarantee that
the hypersonic vehicle can evade the pursuer.

Figure 4c is a schematic diagram of the acceleration changes of both sides in the
process of attack and defense confrontation. The blue line is the acceleration curve of the
hypersonic vehicle, and the red line is the acceleration curve of the interceptor missile. As
can be seen from Figure 4c, when the head-on situation formed, the hypersonic aircraft
tried its best to evade with the overload capability allowed, and the pursuer missile also
pursued it with maneuvering advantages. However, even in the case that the head-on
situation was not conducive to hypersonic vehicle evasion, and the interceptor capability
was stronger than that of a hypersonic vehicle, the hypersonic vehicle still successfully
realized evasion through the designed strategy. This demonstrates that the selected state
space, action space and the designed reward function were reasonable.
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Figure 4. Simulation results: (a) Two-dimensional plane diagram; (b) Curve of relative distance;
(c) Acceleration comparison diagram.

In order to further verify the effectiveness of the trained agent, here, the value range
of the initial condition was widened, and the initial line of sight angle and initial trajectory
deflection angle that have a greater impact on the initial posture were selected as variables.
To ensure that the head-on situation was still established, the selection range of the initial
line of sight angle was limited to [0

◦
, 1
◦
], and the initial trajectory deflection angle was set

in the range of [0
◦
, 3
◦
].

A Monte Carlo simulation was conducted 1000 times, and the simulation results for
the initial line of sight and initial trajectory deflection angles were selected for combined
dispersion. The simulation results are shown in Figure 5 below.
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As seen in Figure 5, a large number of experimental data illustrate that, in the case of
the initial line-of-sight angle and initial trajectory deflection angle distributions, the miss
distance of the agent after deep reinforcement learning training can be guaranteed to be
greater than 5 m, which demonstrates that the hypersonic vehicle successfully achieved
escape in the case of the formation of a head-on situation or an approximate head-on
situation. This paper shows the correctness and effectiveness of the reinforcement learning
algorithm based on the twin delay deep deterministic gradient to solve this kind of problem.

In fact, the relative distance between the hypersonic vehicle and the pursuer missile
at the initial moment should be the biggest factor that influences the miss distance under
the head-on situation. In order to qualitatively study the influence of the initial distance
between the hypersonic vehicle and the pursuer missile on its miss distance and to provide
schemes and suggestions for the maneuvering time of the hypersonic vehicle, the initial
relative distance between the hypersonic vehicle and pursuer missile was selected as the
variable with a selection range of [6000m, 14000m]. The Monte Carlo simulation results
(1000 times) are shown in the figure below.

It can be seen in Figure 6 that the miss distance is positively correlated with the initial
relative distance dispersion between the hypersonic vehicle and the pursuer missile. The
results even present a relatively good linearity. It can be seen that the closer the initial
distance between the two sides, the smaller the miss distance in the process of the PE game,
and the lower the probability of successful escape for the hypersonic aircraft. Therefore,
when a hypersonic vehicle is escaping under adverse head-on conditions, attention should
be paid to the timing of the maneuver, that is, the initial relative distance between the
evader and the pursuer, which has a great influence on the result. At the same time, it also
provides ideas and references for solving related problems, such as decision-making in
similar scenarios in the future.
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It should be noted that this paper has several limitations. During the design of the
reinforcement learning algorithm, we assumed that the guidance law for the pursuer
missile used the proportional guidance and design corresponding to the evasion strategy of
the hypersonic vehicle. Although the trained agent had a generalization ability, it was only
applicable to classical guidance laws, such as PN or APN, for the pursuer. If the pursuer
adopts more advanced guidance laws, the probability of successful evasion remains to
be verified. In addition, compared with other algorithms, many parameters in the design
process of the deep reinforcement learning algorithm require a certain amount of experience
to debug successfully. This limitation will be time-consuming for designers to resolve.
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5. Conclusions

In this paper, the evasion strategy of a hypersonic vehicle was studied using deep
reinforcement learning under the adverse situation of a head-on scenario. In the actual
scene, once the head-on situation formed, the speed advantage of the hypersonic vehicle
was greatly weakened, and the evasion strategy of the hypersonic vehicle was more
dependent on the design of the strategy. Therefore, based on the head-on situation, the
design and simplification of models were conducted, and the delay to the control link
was considered to create a more realistic scenario. Thus, the background of the research
problem has a high engineering application value. Currently, flight environments and
situations are changing rapidly, and a simple programmed maneuver cannot satisfy the
actual requirements of real use. Accordingly, the deep reinforcement learning algorithm
was used to design an evasion control decision-making strategy so as to improve the
aircraft by changing the programmed maneuver to an intelligent maneuver. Based on
the twin delayed deep deterministic gradient network, the decision framework for escape
control based on the actor–critic method was constructed. The agent was trained and tested
based on the deep reinforcement learning of the twin delayed deep deterministic gradient
network in an attack-and-defense scenario. The simulation results show that the minimum
miss distance between the hypersonic vehicle and the interceptor was greater than 5m.
Several of the initial variables deviated, and the minimum miss distances of all the results
were greater than 5m; this demonstrates that the trained agent could successfully achieve
evasion under different conditions, verifying the effectiveness and feasibility of the strategy
based on a reinforcement learning design. Therefore, this paper provides a solution to
improving the direction of intelligent and autonomous maneuvering for an aircraft.

The present research limited itself to choosing a maneuvering time for a hypersonic
vehicle to evade the adverse situation of a head-on scenario without considering attacking
the target. Future research could consider the constraint of attacking the target at the same
time as evading. To verify the feasibility of the method, algorithm design and simulation
verification were only performed for a 1v1 scenario. In the future, the strategy design could
consider coordinated attacks with multiple missiles.
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