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Abstract: Data-driven Remaining Useful Life (RUL) prediction is one of the core technologies of
Prognostics and Health Management (PHM). Committed to improving the accuracy of RUL prediction
for aero-engines, this paper proposes a model that is entirely based on the attention mechanism.
The attention model is divided into the multi-head self-attention and timing feature enhancement
attention models. The multi-head self-attention model employs scaled dot-product attention to
extract dependencies between time series; the timing feature enhancement attention model is used
to accelerate and enhance the feature selection process. This paper utilises Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) turbofan engine simulation data obtained from
NASA Ames’ Prognostics Center of Excellence and compares the proposed algorithm to other models.
The experiments conducted validate the superiority of our model’s approach.
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1. Introduction

The rapid development of industry has led to a considerable increase in transportation
and related industries. Due to the fact that the engine is the most essential part of mechan-
ical equipment, its frequent use may result in the deterioration of its performance and,
consequently, safety hazards in day-to-day work. As a result, the prediction of the RUL of
the engine is one of the most significant technologies in the field of predictive maintenance.

Predictive maintenance is critical in industrial activities. At present, PHM [1] is
widely employed in the aviation industry [2,3] as a result of the development of the
industrial field. Failure prediction is an essential technology in PHM [4]. Typically, failure
prediction uses the engine’s current parameters to accurately predict the engine’s RUL and
perform maintenance decisions based on the predictions. The RUL is defined as the time
interval between the device’s current time and the point at which it can no longer function
normally. RUL prediction technology has the potential to considerably minimise aviation
accidents caused by engine failures. At the same time, it can help to enhance maintenance
reliability [5] and reduce maintenance costs [6]. Numerous RUL prediction algorithms have
been reported in the literature. They can be classified into physics-based (model-based)
and data-driven methods.

Numerous RUL prediction algorithms based on different theories have been proposed
in the research. Physics-based methods focus on the recognition of failure mechanisms and
rely on specific physical knowledge about damage propagation, which is typically complex
and difficult to obtain [7]. Data-driven methods make use of statistical learning, machine
learning, and deep learning to perform RUL estimation via collected run-to-failure data
from machines by various online monitoring sensors. In the early days of the development
of data-driven methods, many approaches for predicting the RUL of aircraft turbofan
engines based on statistical learning have been proposed by researchers both at home and
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abroad. Miao et al. [8], Niito et al. [9], and Galar et al. [10] proposed the use of statistical
learning-based models, such as SVM, to solve the problem of RUL predictive maintenance.

The RUL prediction method based on statistical learning has yielded some promising
outcomes in dealing with specific system forecasting challenges. When dealing with longer
time series and complex systems, however, high accuracy is difficult to achieve, resulting
in forecast results that do not satisfy prediction expectations. Given the rapid development
and extensive application of machine learning and deep learning, many researchers have
recommended adopting a data-driven method to achieve RUL prediction. At the same time,
the advancement of sensors, computer hardware, and big data computing has enabled
the deep network structure to be more scalable and resilient. Deep learning has achieved
success in a variety of sectors, and has also made significant strides in RUL-related domains
in recent years.

Recently, an increasing number of scholars have attempted to employ deep architec-
tures to solve RUL-related difficulties: Zhang et al. [11] used a Long Short-Term Memory
Recurrent Neural Network (LSTM RNN) to investigate long-term dependencies on Li-
ion battery degradation capacity. Lin et al. [12] used an attention model with Temporal
Convolutional Neural Networks (TCNNs) to solve the solar power forecasting target.
Qin et al. [13] proposed a Dual-Stage Attention-based Recurrent Neural Network (DA-
RNN) to appropriately capture the long-term temporal dependencies, select the relevant
driving series, and use the temporal attention model to select relevant encoder hidden
states. Li et al. [14] and Babu et al. [15] adopted Deep Convolution Neural Networks
(DCNNs) for prognostics.

With the continuous updating of technology, models based on CNNs or RNNs or
combining simple temporal and spatial attention mechanisms in these networks can solve
the problem of long-distance dependence and model accuracy to a certain extent. To
“remember” relevant information and achieve a good target performance, the network will
become complicated. However, computing resources are still one of the bottlenecks that
limit the entire computer industry. The attention mechanism is based on the way humans
perceive visual information. To facilitate an individual’s judgment, the human visual
system tends to concentrate on the salient features of the image and ignore the irrelevant
information [16]. As a result, when faced with issues in natural language processing or
computer vision, some features of the input may be more helpful to decision making
than others. In comparison to convolutional neural networks, the attention mechanism
places a higher priority on the relevance of single layers. As the convolutional operations
accumulate, a loss of information occurs between the layers of the convolutional neural
network, which is amplified further by the pooling operation. The attention mechanism
computes the relevance of features within a single layer, which virtually eliminates the loss
associated with layer deepening. Furthermore, due to the network depth, the convolutional
neural network requires extensive parameter modification and computational complexity,
whereas the attention mechanism can compute the results more rapidly and efficiently. In
comparison to the recurrent neural network, the recurrent neural network can degrade the
model performance factor as the length of the input sequence increases or can result in
computational inefficiencies due to the input sequence’s variable length and disorder. The
attention mechanism can effectively assist the model in resolving difficulties. The recurrent
neural network cannot achieve parallel computing on its own because it is dependent on
the previous computing result, whereas the attention mechanism and convolutional neural
network can.

Due to the attention mechanism’s application in various aspects of deep learning
networks and its advantages over convolutional and recurrent neural networks, some
scholars began to propose using only the attention mechanism to solve related problems
and achieved good results. For instance, the Google machine translation team achieved
excellent results by only utilizing the self-attention mechanism. Many researchers were
inspired by the Transformer (self-attention) model to consider applying the self-attention
model to other applications or developing it to achieve better outcomes. Meanwhile, the
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self-attention model has increasingly become the dominant paradigm utilised for a variety
of difficulties. For instance, Google Brain’s ViT (Vision Transformer) [17] model successfully
applied Transformer to the image domain.

For the classic NLP tasks, the inputs are usually short texts with limited sequential
words; thus, they are easily handled by Transformers. Meanwhile, for the time-series
prediction tasks, the inputs are time-series datum, whose length is equal to the time-series
length multiplied by the number of features; thus, the size of such input data can be
particularly large, which will be quite challenging for both the training and testing of
Transformers. To address this problem, most scholars consider combining various feature
extraction networks (e.g., CNN, LSTM) with the Transformer technique, using a sequential
model to extract features from the original data, and then training the Transformer-based
time-series prediction model. Liu et al. [18] utilised the CNN and attention model to
extract features and adopted the Transformer network to solve the long-term dependency
problems that arise when processing CM sensor data. Mo et al. [19] leveraged the Gated
Convolutional Unit (GCU) to extract features and employed the Transformer encoder for
the RUL estimation task.

Unlike the above-mentioned processing technique, this paper is inspired by ViT, which
considers the data within a time window collectively as the smallest unit, i.e., regardless of
the length of the time series and the number of features of the data in the window, they
are simply viewed as the smallest unit similar to a word of a sentence. Hence, a long-term
sequential task can be treated as a natural language processing task. Here, it is worth
noting that ViT deals with the spatial relationship between images as a set of sequence
information composed of multiple image patches; similarly, this paper understands a
whole-time window as a statement with a temporal relationship that expresses complete
information for speculating the result (remaining useful life).

It is argued in this paper that, in engine RUL prediction applications, the variation in
service life is primarily influenced by some parameters at a specific moment, as well as its
pre- and post-temporal sequence parameters. On such a basis, the self-attention model can
better achieve feature extraction and can improve the performance of such tasks. In this
research, the time sequence data are subdivided into smaller time sequence data (linear
sequence), which are then imported into the Transformer model. The linear sequence data
in this model are processed in the same way as the vocabulary in the NLP task. Supervised
learning is used to train the entire model. Unlike language-related models, the time-series
prediction task has strong temporality and therefore there is no need to ensure that the
output has the same time and semantics as the input. In addition, since the prediction
target is fixed, its result should not be a vague concept, such as semantics. Based on the
above analysis, this paper adopts a supervised learning method, which employs a simple
basic attention module to enhance the time sensitivity of the entire network, and a simple
MLP module to predict the final result. In this way, this paper can predict time-series tasks
more accurately.

We propose a prediction model for the RUL of aero-engines that is entirely based on
a pure attention model improving on the multi-head self-attention model. The primary
work consists of the following topics: firstly, it utilises a sliding window to pre-process
time-series data; secondly, it trains the forecasting capacity of the multi-head self-attention
model on RUL; and lastly, it utilises a simple timing feature attention model to accelerate
feature selection and training.

The main contributions of this paper are as follows: From a theoretical perspective,
this paper investigates the application of the pure attention model to prediction tasks,
in particular using the patch method to obtain the feature relationship within the time
series and between time series and improving the time attention model to strengthen the
temporal feature information acquired by the multi-head self-attention model. From a
practical perspective, we apply the pure attention model to the prediction of the remaining
useful life of the engine to solve the automated maintenance problem of equipment.
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The organisation of this paper is as follows: Section 2 describes the structure of the
proposed model; Section 3 introduces the processing method of the dataset and experimen-
tal details; Section 4 presents the experimental results and analysis; and the conclusions
and future perspectives of the work are exhibited in Section 5.

2. Architecture

We offer our time-enhanced multi-head self-attention model in this part of the paper
for predicting the RUL of simulated aircraft engine data. The following section describes
the proposed approach and its components.

2.1. Time-Enhanced Multi-Head Self-Attention Model

A joint deep learning model combined with a multi-head self-attention (Transformer
encoder) model and time-attention model was constructed to predict the RUL. Figure 1
illustrates the architectural design of the model. It is composed of five layers: the data
time-division module, the time feature enhancement module, the multi-head self-attention
module, the time-attention module, and the prediction module. This chapter introduces
the modules involved in detail.
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Figure 1. Frame diagram of multi-head self-attention and remaining useful life prediction models.

2.2. Data Time-Division Module

The standard Transformer encoder network’s input data are a group of text sequences.
The prediction task presented in this paper was already a complete two-dimensional matrix
with a time-series relationship. At the same time, to strengthen the continuous time-series
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relationship, we divided the input data with a time length of 40 into four patches with a time
length of 10. This means that we treat each patch as a minimum unit, simply reshaping each
patch into a one-dimensional vector to replace each word in natural language processing
tasks. This can significantly lower the overall network’s computational complexity and
better reflect key feature information. Additionally, it can reflect the time relationship
within the patch. Figure 2 illustrates the division method.
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2.3. Time Feature Enhancement Module

For the subsequent attention layer to better extract the time relationship between
engine parameters and obtain relationship information between patches, this study added
a position flag to reinforce the positional information between patches and to ensure that
each patch contains both the engine parameter information for the current time period and
the patch’s position (sequence) information. We also encoded the corresponding sequence
information for each patch. The encoding equation is shown in Equation (1):

PE(pos,2i) = sin
(

pos/10, 0002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/10, 0002i/dmodel

) (1)

where pos represents the timing feature, and i represents the dimension, implying that
each dimension of the timing feature corresponds to a sinusoid. The wavelengths form
a geometric progression from 2π to 10,000·2π. This function enables the model to easily
augment the temporal feature information with relative positions, since for any fixed offset
K, PEpos+K can be represented as a linear function of PEpos.

2.4. Multi-Head Self-Attention Module

The multi-head self-attention module is composed of the multi-head self-attention
layer and the MLP layer. Multi-head self-attention can be interpreted as applying multiple
self-attention models, collectively called the scaled dot-product attention function. The
scaled dot-product attention function is a variant of attention. The input of this attention
model is queried, keys of dimension dk, and values of dimension dv. This attention model
computes the dot products of the query with keys and divides the answer by

√
dk. Finally,

a SoftMax function is applied to obtain the weights of the values. The above values are
integrated to obtain the publicity, as presented in Equation (2), where dk is the length of the
input vector.

Sel f Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2)

Figure 1 illustrates the multi-head self-attention layer. First we performed a layer norm
operation on the whole patch before sending it to the multi-head self-attention layer. Then,
we concatenated the outputs of the multi-head self-attention layer’s multiple attention
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functions. To calculate the attention function, the multi-head self-attention model maps
a matrix with a larger dimension to a matrix with a smaller dimension, then splices and
projects the results. The model architecture of the multi-head self-attention layer is shown
in the lower half of subfigure (b) in Figure 1. Additionally, the equation is presented in
Equation (3):

MultiHead(Q, K, V) = Concat(head1, ···, headh)WO

headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (3)

The MLP layer aims to obtain global timing feature information. The input of the MLP
layer is its patch superimposed with the features information collected from the multi-head
self-attention layer. This is then subjected to a layer norm operation, then supplied to a
multi-layer perceptron for filtering and feature extraction. The model architecture of the
MLP layer is shown in the upper half of subfigure (b) in Figure 1.

2.5. Time Attention Module

To predict the process of network layer feature extraction and accelerate the training
process, we input the features that were extracted by the MLP layer perceptron screening
and extraction into the attention layer. To start, we let the input pass through the Permute
layer to invert the dimensions of the timing and MLP layer features. Then, using a fully
connected layer and SoftMax, we calculated the weight of each timing feature and converted
the dimension. Finally, we multiplied the input by the timing attention layer’s output value
to achieve global time-point feature weighting. The subfigure (c) of Figure 1 illustrates
the process.

2.6. Prediction Network Module

Unlike BERT [20] and other networks that added a special classification character
to the data feature, the multi-head self-attention model is used to exchange information
between different dimensions after collecting the time-attention layer’s features from the
multi-head self-attention model. The extra classification features are employed in the final
classification process. To ensure classification accuracy in the prediction task, this study
chose to preserve more feature information and input it into the multi-layer perceptron to
obtain the engine’s final life information.

2.7. Hyperparameter Selection

The benefit of deep learning for models is dependent on the parameters used in
addition to the model itself. While there are usually minor differences in parameters while
training the same model on different datasets, the manual parameter search is a somewhat
ineffective strategy. The parameters were trained in this study using a parameter search
library based on Bayesian optimisation. It is worth noting that, when some parameters
were optimised in this study, the parameters were not properly selected (parameters other
than the learning rate are presented in discrete numerical form). An algorithm used for
automatic parameter selection, called Hyperopt [21], was used in this study to calculate
the basic parameters of deep learning and the six hyperparameters (num head, d model,
hidden layer, num layer, patch size, learning rate) in the network framework. Table 1
includes a list of these parameters.

Table 1. Engine hyperparameter selection range table.

Hyperparameter Range Interval

patch size [1, 10] 1
d model [128, 1024] 64

hidden layer [128, 2048] 64
num layer [2, 4, 8]
num head [2, 4, 8]

learning rate [0.05, 0.02, 0.01, 0.005, 0.002, 0.001]
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3. Experiments

This section assesses our proposed method’s performance on aero-engine life predic-
tion tasks and discusses the datasets, laboratory setup, parameter optimisation method, and
assessment method used in our experiment. Finally, we analyse our experimental outcomes.

Our running environment for experimentation entails the following factors: The CPU
of this experiment used Intel (R) Core (TM) i9-10900X. The memory was 96 G. The GPU
used Nvidia GeForce RTX 3090. The environment for running was TensorFlow 2.4.0 +
Python 3.8 + Win11.

3.1. Dataset Description

The dataset utilised in this study was NASA’s C-MAPSS engine degradation simu-
lation dataset [22]. Each engine in this dataset contains data obtained from 21 sensors
and three operational setup settings. This dataset classifies the entire dataset into four
categories based on operational conditions and failure modes: FD001, FD002, FD003, and
FD004. Figure 3 shows an example of three parameters of an engine (normalised data).
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The dataset included a portion of the life cycle of multiple engines. Each engine
is originally thought to be fairly healthy, but as the engine cycles through, the engine
gradually wears out and eventually ceases to function. The data obtained from multiple
engines formed the final dataset. The four datasets are listed in detail in Table 2.

Table 2. The parameters of C-MAPSS datasets. Each dataset contains parameter information for
multiple engines, from running to non-functioning.

C-MAPSS FD001 FD002 FD003 FD004

Number of engines in training set 100 260 100 249
Number of engines in testing set 100 259 100 248

Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Training set size 20,632 53,760 24,721 61,250
Testing set size 13,097 33,992 16,597 41,215

3.2. Data Preprocessing
3.2.1. Feature Selection

We obtained improved data usability, simplified algorithms, and more easily under-
standable outcomes by reducing dimensionality and eliminating redundant or low-impact
data. Finally, seventeen kinds of feature data were collected.
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3.2.2. Calculating the Remaining Useful Life

The calculation for the RUL of the aircraft engine in the training set is shown in
Equation (4). Cyclemax is the maximum number of operating cycles that each engine in the
training set can achieve, and Cyclenow is the present number of operating cycles that each
record can achieve.

RULtrain = Cyclemax − Cyclenow, (4)

Equation (5) shows the calculation of the RUL of the test set. The RUL is the engine’s
actual RUL as documented in the RUL file. The Cyclemax is the maximum number of
operating cycles that each engine has recorded in the test file, and Cyclenow is the current
number of operating cycles associated with each record. The calculated RUL time correlates
to the predicted label for each record. We observed that the longest engine running cycle in
the training set was 362 cycles, the shortest was 128 cycles, and the average was 217 cycles;
in the test set, the longest engine running cycle was 341 cycles, the shortest was 141 cycles,
and the average was 218 cycles.

RULtest = RUL + Cyclemax − Cyclenow, (5)

In reality, predicting the RUL of an aircraft engine based on its current operating
parameters is difficult. Given that the data created by the long-term operation of the aero-
engine are a long-time sequence and the engine’s performance is stable in the early phase
of operation, the performance degradation is not evident. Due to a variety of factors, such
as hardware wear and ageing during operation, the engine’s RUL reduces as the operation
time grows. As illustrated in Figure 4, the piecewise linear degradation approach was
employed to fit the connection between service time and remaining engine life. We obtained
the number of cycles the engine continues to operate as the RUL and set a predetermined
maximum RUL during the initial stages of engine operation.
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3.2.3. Data Normalisation

Different features of data generally have distinct dimensions and dimensional units
that affect the outcomes of unprocessed data analysis. To erase the dimensional influence
between features, it is essential to normalise the data (normalisation processing) to scale
different data to the same order of magnitude, allowing for a comprehensive comparative
evaluation. Generally, there are two methods for data normalisation. The first is known
as min–max normalisation, and the second is known as Z-score normalisation. Min–max
normalisation was used to normalise the data in this study. The equation is as follows:

x′ =
x− xmin

xmax − xmin
, (6)

The preprocessing steps of data normalisation are data normalisation and the re-divide
training set and the test set using the sliding time window. Specifically, the label of each
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window’s final data was used as the label for that window’s data, and the test set tests only
the last window’s data.

3.2.4. Time Sliding Window

Time series data is vital to and prevalent in a wide variety of industries. Due to
the high dimensionality and time-series characteristics of time series, direct training on
the original data for regression prediction and other operations overlooks the short-term
feature. This not only results in inefficient computing but also affects the algorithm’s
accuracy and reliability. As a result, satisfactory results are impossible to achieve.

There are numerous approaches available to date for dealing with time series. The
fixed-length sliding window is employed to cut and divide the original data for the aero-
engine RUL prediction. By utilizing the divided sub-sequences data obtained for training
prediction, one can effectively enhance the features of time-series data and improve the
algorithm’s accuracy. The following are the specific algorithm steps. A time window with
a time length of L and a sliding step size of S was selected based on the features of the
time series; the first sliding window data were created by taking L pieces of original data
from the first time point. Then, we moved the sliding window forward by the sliding step
S along the time dimension to obtain the subsequent sliding window data. We repeated
the previous step until the sliding window’s end reached the last original data. Finally, N
groups of equal-scale sliding window data of size L*M are obtained.

At the same time, it was important for this paper to study the application of the
attention model when the time window is regarded as the smallest unit. Therefore, in
the choice of the time window length, the 40-step size commonly used in most papers
was selected. As observed in Figure 5, the values of three sensors on the same engine
are randomly chosen as raw data, and the sliding window slides forward along the time
dimension with a fixed size. The size and meaning of the data training and test datasets
after the time sliding window are shown in Table 3.
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Table 3. Size of dataset after sliding window.

Dataset Train Test

Input (simple num, window size, engine feature) (11,631, 40, 21) (96, 40, 21)
Output (simple num, RUL) (11,631, 1) (96, 1)

3.3. Optimisation Function

The preprocessed dataset was used to train the multi-head self-attention model with
the Adam optimiser as the model’s optimiser function. Adam [23] is a method for dynami-
cally adjusting the learning rate of each parameter. It combines the advantages of RMSprop
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and AdaGrad optimisation methods and employs gradient first- and second-order matrix
estimates. This method provides several significant advantages over more typical random
optimisation algorithms, such as Gradient Descent (SGD). Additionally, in many circum-
stances, the default optimiser is excellent. The Adam optimiser’s default parameters were
utilised for training in this study.

3.4. Performance Evaluation Index

To assure the model’s successful overall performance, we evaluated our model and
the comparative model by adopting three different performance metrics. The following
factors are the detailed definitions and equations used for the two models:

1. The Root Mean Square Error (RMSE) was used to evaluate the experiment’s perfor-
mance. The Root Mean Square Error (RMSE) is a frequently used performance metric
for evaluating regression prediction models. It is equal to the square of the deviation
and the square of the ratio of the predicted and actual values. It is used to quantify the
deviation between predicted and observed values. The lower the deviation between
the predicted and actual values, the more accurate the prediction model. The equation
for the RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (7)

In the above equation, n represents the total number of predicted samples, y represents
the true value of each sample, and ŷ represents the predicted value of each sample.

2. When predicting the RUL of an aero-engine, there are two possible outcomes: the
predicted RUL is less than the actual RUL, or the predicted RUL is greater than the
actual RUL. In both circumstances, the approach used by RMSE bears the same penalty.
In practice, however, the underestimated RUL prediction benefits from having an
early warning signal, hence decreasing the probability of fatalities caused due to
engine damage. As a result, the scoring index score is proposed in Equation (8). The
cost of an overestimated RUL prediction, on the other hand, is significantly higher
than the cost of an underestimated one. This method is more practical and enables a
more accurate evaluation of the model prediction effect.

Score =


n

∑
i=1

(
e−(

(ŷi−yi)
13 ) − 1

)
, (ŷi − yi) < 0

n

∑
i=1

(
e(

(ŷi−yi)
10 ) − 1

)
, (ŷi − yi) > 0

(8)

A comparison of the metrics is shown in Figure 6.
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4. Results

We evaluated our proposed model using the RMSE and score evaluation functions,
compared it to other existing models, and further analysed the results in this section.

4.1. Experimental Results

Figure 7 depicts the experimental results of the proposed model on the CMAPSS
dataset. Figure 7 illustrates the prediction outcomes of sub-datasets under diverse operation
settings (for the convenience of observation, we sorted the remaining lifetimes observed
from high to low). As indicated in Figure 7, the remaining service life prediction results
for a single engine are not desirable. This may be because, although the dataset offers a
high number of parameters, the relationship between the parameters and the degradation
characteristics is unclear or the overall parameter values are very little. It is evident that the
algorithm model provided in this study is vastly superior when the remaining service life
of the engine is short. This could be because the engine’s parameters did not considerably
alter throughout the early degradation period. Hence, this demonstrates that the model
proposed in this study has the potential to effectively perform preventive tasks. In other
words, the model can effectively provide pertinent recommendations when engine failure
is imminent.
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As a supplementary display, we extracted the prediction results of a single engine
from each sub-dataset in Figure 8. Figure 8 demonstrates that when the result for a single
engine is close to the critical value, the prediction effect is frequently greater than it was at
the beginning of the degradation process. This partially supports the study’s results.
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Combining Figures 6 and 7, it is evident that the predictive effect of the FD001 and
FD003 datasets are considerably greater than that of the FD002 and FD004 datasets. Con-
sidering the operating environment and fault state of the engine, we can conclude that
the engine has an impact on the remaining service-life prediction. Specifically, FD001 is
the strongest predictor because of its single working condition and single failure mode,
whereas FD004 is the weakest predictor due to its 6 working conditions and 2 failure modes.
Table 2 displays the operating conditions and failure modes for each dataset.

4.2. Comparison with Previous Work

Our proposed model is available in two variants, one with an attention model (with
attention) and one without (no attention). We used the RMSE and score evaluation indica-
tors to compare these models with many previous works on the C-MAPSS dataset; the best
results are marked in bold.

Our paper compared the results to the best results in each subset and presented the
percentage improvement of the results. As observed in Tables 4 and 5, the models suggested
in this study establish a commanding lead in the FD001 and FD003 datasets. However,
only a few metrics in the FD002 and FD004 datasets produce superior outcomes. This
may be because the FD002 and FD004 datasets work under more complex fault working
conditions than the FD001 and FD003 datasets. Overall, our model performed well in
simple working modes and was above average in complex situations. At the same time, the
focus of this paper was mainly on discussing the extent to which attention models can be
applied to the prediction task in this field, and we did not modify the fundamental network
architecture for the task environment of engine-life prediction. This implies that the pure
attention model has good performance in solving time-series problems, but adjustment for
the problem is also essential. While our model shows good performance, there is a great
deal of room for improvement.
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Table 4. Performance comparison between related methods and our proposed model on the C-MAPSS
datasets. The evaluation function is the score.

C-MAPSS YEAR FD001 FD002 FD003 FD004

ConvJANET E-D [24] 2018 262.71 1401.95 333.79 2282.23
HDNN [25] 2019 245.00 1282.42 287.72 1527.42

BiLSTM + ED [26] 2019 273.00 3099.00 574.00 3202.00
RBM + LSTM [27] 2019 231.00 3366.00 251.00 2480.00

MS-DCNN [28] 2020 196.22 3747.00 241.89 2257.27
DA-CNN [29] 2020 229.48 1842.38 257.11 2317.32

RBPF [30] 2020 383.39 1226.97 375.29 2071.51
Attention Bidirectional LSTM [31] 2021 473 1223 676 2684

DCNN-LightGBM [32] 2021 232.0 - 277.8 -
KGHM [33] 2022 250.99 1131.03 333.44 3356.10

Double Attention-based Architecture [18] 2022 198 1575 290 1741
Transformer Encoder 2022 272.17 1045.70 228.92 2277.16

Transformer Encoder + Attention (this paper) 2022 183.75 1008.08 219.63 1751.23
Compare with State of the Art +6.36% +3.40% +4.06% −14.60%

Table 5. Performance comparison between related methods and our proposed model on the C-MAPSS
datasets. The evaluation function is RMSE.

C-MAPSS YEAR FD001 FD002 FD003 FD004

ConvJANET E-D [24] 2018 12.67 16.19 12.80 19.15
HDNN [25] 2019 13.02 15.24 12.22 18.15

BiLSTM + ED [26] 2019 14.47 22.07 17.48 23.49
RBM + LSTM [27] 2019 12.56 22.73 12.10 22.66

MS-DCNN [28] 2020 11.44 19.35 11.67 22.22
DA-CNN [29] 2020 11.78 16.95 11.56 18.23

RBPF [30] 2020 15.94 17.15 16.17 20.72
Attention Bidirectional LSTM [31] 2021 15.87 16.59 15.10 14.36

GCU-Transformer [19] 2021 11.27 22.81 11.42 24.86
DCNN-LightGBM [32] 2021 12.79 - 13.21 -

KGHM [33] 2022 13.18 13.25 13.54 19.96
Double Attention-based Architecture [18] 2022 12.25 17.08 13.39 19.86

Transformer Encoder 2022 12.05 16.72 11.82 18.27
Transformer Encoder + Attention (this paper) 2022 10.35 15.82 11.34 17.35

Compare with State of the Art +8.16% −3.80% +0.70% −20.82%

5. Conclusions and Future Prospects

We presented a model for the engines’ RUL timing prediction in this study that was
entirely based on the mechanism. On the C-MAPSS dataset, the model we proposed
showed its superiority. In comparison to convolutional neural networks, recurrent neural
networks, and their variants, the multi-head self-attention model is more efficient at ex-
tracting correlations from time-series data. Additionally, for time-series-related problems,
effective information can be extracted and analysed with better accuracy and at a more
rapid speed for related tasks after the addition of a time-attention model. The proposed
multi-head self-attention model minimises model overestimation while enhancing overall
fitting, potentially lowering the possibility of an accident caused by engine damage in
actual applications.

Some deficiencies could be addressed further in future studies. First, our approach did
not significantly improve in difficult circumstances. We believe that for the engine there is
an exclusive network capable of processing the relevant data. Moreover, how to further
enhance the model’s performance for time-series data is a topic worthy of discussion and
exploration. In addition, because many applications and research directions have shifted in
the research, the majority of research directions that apply the network to the RUL task are
more concerned with reducing the network’s weight, while this study did not evaluate the
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relevant direction. Lastly, the optimisation of the model would be another intriguing topic
for future research.
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