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Abstract: A mega constellation of Nano/microsatellites is the contemporary solution for global-level
Earth observation demands. However, as most of the images taken by Earth-observing satellites are
covered by clouds, storing and downlinking these images results in inefficient utilization of scarce
onboard resources and bandwidth. In addition, the trend of making satellite task execution plans
by ground operators demands the efforts of experts or simulators to predict the real-time situation
of satellites and to decide which tasks should be executed next. Granting controlled autonomy to
satellites to perform onboard tasks will boost mission effectiveness. We experimented with granting
controlled autonomy for satellites in performing onboard image classification and task scheduling.
We designed a convolutional neural network-based binary image classification model with more than
99% accuracy in classifying clear and cloudy images. The model is configured to perform inference in
low-performance computers of ordinary Cubesats. Moreover, we designed an autonomous satellite
task scheduling mechanism based on reinforcement learning. It performs better than a custom
heuristic-based method in scheduling onboard tasks. As a result, the proposed classification and
scheduling techniques with machine learning ensured efficient utilization of onboard memory, power,
and bandwidth in the highly resource-constrained CubeSat platforms and mission accomplishment
of Nano/microsatellite constellations.

Keywords: autonomous cubesat; onboard image classification; onboard scheduling; onboard resource
utilization; Q-learning

1. Introduction

Cubesats are becoming increasingly utilized for various space missions ranging from
technology demonstration to scientific and commercial missions. However, they are rela-
tively constrained in size, power, and weight. These constraints demand the miniaturization
of radiation-tolerant onboard computers and power units. The way mission operations are
planned and executed by satellites should take into account the efficient utilization of these
scarce onboard resources.

Most of the satellites operating in space today are largely ground-dependent for control
commands and mission operation schedules. These satellites have no autonomy to decide
the next best task based on their onboard resource and space environment. Additionally,
due to the uncertainty of the space environment and the difficulty of fixing errors onboard,
satellites may not be expected to become fully autonomous, as is the case with industrial
robots. However, satellite autonomy could be designed by granting rights to the satellite
to independently execute tasks such as operation scheduling, image processing, event
detection, and fault detection. This study focuses on experimenting with onboard image
processing tasks and autonomous mission planning at the same time.
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Machine learning technologies such as artificial neural networks are the most utilized
approaches in designing autonomous machines. The application of artificial neural net-
works in autonomous spacecraft mission planning requires a large amount of previously
performed planning data to train the machine so that it can learn how to make future
decisions. Therefore, this could be difficult for CubeSat missions with no heritage mission
data to be used as a training dataset [1].

A study [2] proposes the importance of increasing nanosatellite autonomy in the
Asteroid Impact Mission (AIM). In this study, a CubeSat applies artificial neural network
algorithms to learn and identify the asteroid impact event onboard as it stays in orbit a
month before the actual asteroid impact event occurs. The CubeSat, during its stay before
the event date, will take pictures of the asteroid and artificially make after-impact image
classes to construct training datasets. In this case, the CubeSat has the autonomy of deciding
by itself, but it needs to have a high-performance onboard computer and large memory
capacity to construct an artificial neural network-based classifier model which will learn
from training datasets and be able to detect when the event occurs.

In another study [3] about the Intelligent Payload Experiment (IPEX) CubeSat, the
CubeSat is designed to have onboard autonomy on its experimental mission by utilizing
several artificial intelligence technologies to perform image processing tasks onboard. In
this case, the satellite is designed to make onboard decisions autonomously without the
support of ground technicians.

European Space Agency (ESA) has recently performed an experimental program,
FSSCat [1], to evaluate the benefit of artificial intelligence in Earth observation. PhiSat-1,
launched in September 2020, is one of the two 6-U CubeSats in this ESA mission. PhiSat-1
is an effort to demonstrate the application of onboard image classification algorithms
to autonomously classify cloudy images onboard the satellite with the help of Intel’s
AI-enabled chip. For onboard image classification, PhiSat-1 has used intel’s commercial
off-the-shelf, low-power, high-performance computer vision chip named Intel® Movidius™
Myriad™ 2 Vision Processing Unit (VPU) to enable the CubeSat to identify cloudy images
and discard them onboard. The Deep Neural Network algorithm is also designed to train
itself with new images acquired onboard. The team claimed that applying onboard image
classification will save about 30% of the satellite bandwidth, as more than two-thirds of
the time the Earth is covered with clouds. However, as our research is based on onboard
computers of standard CubeSats, such onboard training of the image classifier model
is not possible.

In another research about onboard image processing for small satellites [4], the re-
searchers first applied edge detection and sliding window techniques to detect objects on
the open ocean and then applied a deep convolutional neural network to classify objects
into binary classes as ships or not-ships. However, they used GPU-powered Nvidia’s Jetson
TX2 embedded system.

As a study [5] suggests, apart from the onboard memory management, efficient usage
of onboard power supply has a great influence on the overall performance of nanosatel-
lite constellations as the inter-satellite and satellite-to-ground station communications are
power-consuming. In this regard, the proper application of artificial intelligence technolo-
gies could enable nanosatellites to make autonomous decisions on board and boost their
capability while ensuring efficient utilization of scarce onboard resources [6,7].

2. Background

Scheduling of Earth observation satellites’ imaging tasks is generally regarded as an
optimization problem and many researchers proposed the implementation of different
approaches for solving the problem. Liang et.al [8] proposed a heuristic algorithm for
subsystem-level onboard task scheduling, which is designed by considering the precedence
of onboard tasks and resources needed by target subsystems executing these tasks and
reported that the algorithm generated satisfactory scheduling results in a shorter period.
In [9,10] studies, customized heuristic algorithms are designed to support the objective
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function and competent results are reported with shorter computation time. In [9], the
heuristic is targeted to maximize imaging tasks of an agile Earth observation satellite
by considering pitch maneuverability. In [10], the study utilizes a Synthetic Aperture
Radar (SAR) sensor, and the heuristic is designed to select observation targets and the best
observation time of each target.

For ensuring the autonomy of satellites in performing onboard duties, recent studies
have employed artificial intelligence algorithms in onboard task scheduling. In [11], re-
searchers proposed Long-Short Term Memory (LSTM), a deep learning-based planning
method to solve a satellite’s onboard observation task planning problem and reported
acceptable results with reasonable response time. Li et.al [12] proposed stable real-time
scheduling using Artificial Neural Network (ANN) algorithms for onboard tasks executed
by different subsystems of the satellite. Li et.al [13] studied an online scheduling prob-
lem for a single autonomous Earth observation satellite in which they proposed a hybrid
heuristic-based online scheduling mechanism with revision and progressive techniques
to schedule normal and urgent tasks appearing in the scheduling horizon. Yao et.al [14]
proposed an autonomous task-planning mechanism for individual satellites which are
members of a multi-autonomous satellite constellation based on an improved branch-and-
bound strategy focusing on the availability of onboard storage.

However, most of the reviewed research only considered planning of next imaging
tasks based on immediate optimality without considering the contribution of the selected
task in bringing overall scheduling optimality. The studies considered imaging and down-
linking tasks in different satellite orbits and maneuverability within short and long planning
horizons. Additionally, separate studies in [1–3] deal with onboard image classification
to enhance the autonomy of satellites. In all cases, the onboard image classification is not
yet considered an onboard task such as imaging or downlinking and is included in the
onboard scheduling.

In this study, we proposed a new strategy of satellite autonomy with machine learning
for efficient resource utilization, which is considering the effect of including onboard
image classification on the effectiveness of upcoming imaging and downlinking tasks as
well as overall resource utilization. Indeed, we assumed that a CubeSat has the standard
performance onboard computer and general memory. For this purpose, we designed a
lightweight convolutional neural network (CNN) image classification algorithm to discard
cloudy images onboard and then we designed an onboard task scheduling algorithm
using Reinforcement Learning (RL). This algorithm will enable nanosatellites to evaluate
available onboard tasks, including autonomous image classification, and make optimal
execution schedules ensuring efficient utilization of onboard resources.

Comparing the performances of our method with algorithms employed in different
studies becomes difficult as the basis of the problem, constraints, and mission objectives are
mostly not similar to our case [15]. Hence, for the sake of evaluating the efficiency of our
method, we have designed a task scheduling based on a heuristic algorithm and compared
its results with the RL-based scheduling in light of efficient resource utilization, as well as
the number of scheduled imaging and downloading tasks in the planning horizon.

The main contributions of this research work are:

• Design an onboard image classification model that can run on a standard CubeSat
computer to autonomously classify cloudy and clear images so that the satellite
can ensure efficient use of bandwidth and onboard storage while discarding cloudy
images onboard.

• Formulate the task scheduling problem in the form of a Markov Decision Process
(MDP) and ensure the next task in the schedule is not only locally optimal but also
contributes to bringing an overall optimal scheduling solution.

• Design an autonomous task scheduling based on a reinforcement learning algorithm
for a CubeSat to make schedules of its imaging, downlinking, pointing, and onboard
image classification tasks. In addition, assess the importance of including onboard
image classification in the schedule.
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• Compare the efficiency of the designed scheduling algorithm against a heuristic-based
scheduling algorithm in light of the scheduling objective and overall resource utilization.

3. Problem Statement

Advanced High-REsolution Image and Video satellite (A-HiREV) is a 6U CubeSat
designed by the Korean Aerospace Research Institute (KARI). It is an advanced version of
HiREV CubeSat [16]. It is initiated for an Earth observation mission with an optical camera
that has a 5M ground resolution. The satellite is currently in the test phase and is expected
to be launched into ISS or Sun Synchronous Orbit. In this study, we assumed a constellation
of A-HiREV-type CubeSats with a standard onboard processor.

A-HiREV is equipped with a UHF/VHF antenna for the transmission of telemetry
data and the reception of commands from the Daejeon ground control station. For research
purposes, we assumed an additional ground station in East Africa, Ethiopia. For downlink-
ing high-resolution payload data, the satellite has an S-band transmitter with a 0.25 MB/sec
transmission rate. It also has an onboard battery with a capacity of 40 watt-hours (wh) and
an 866 MHz Xilinx Zinq-7020 series onboard computer that has a 256 MB RAM and 16 GB
external memory. Figure 1 shows HiREV’s structural design [16] which is identical to the
ongoing A-HiREV’s design.
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Similar to other Earth observation satellites with an optical payload, A-HiREV could
take images of selected locations only during the daytime. In addition, the nature of the
payload does not support viewing of the Earth’s surface through dense clouds. According
to studies [17–19], more than 66% of the time, the Earth’s surface is covered by clouds. This
implies that more than half of the images taken by A-HiREV are not clear images of the
Earth’s surface. The payload is capable of taking an image of resolution 3376 × 2704 pixels;
a single uncompressed image takes 27.4 MB of onboard storage and needs 109.6 s to down-
link this image with its S-band transmitter to one of the two ground stations. Considering
the mega constellation of A-HiREV satellites, control of satellite operations from ground
experts will be difficult and the data generated from the camera will result in a shortage of
onboard storage since the downlink rate is too slow to send acquired images compared to
image acquisition and storing rate.

In the usual operation scenario, it is expected that operators from the ground control
stations send a schedule of operational tasks for the satellite to perform sequentially. This
schedule is made by ground operators every day or every two days and uploaded to
the satellite. However, this technique does not allow the satellite to autonomously make
decisions considering the current situation of its subsystems, operational conditions, and
available onboard resources.
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4. Proposed Methodology

In this study, assuming A-HiREV as part of the mega constellation of similar satellites,
we proposed granting controlled autonomy to satellites in performing certain onboard
tasks. It results in efficient utilization of highly constrained onboard resources as well
as improvement of the overall mission performance of individual satellites and their
constellations. For this purpose, we experimented with the effects of granting autonomy in
terms of onboard image classification and autonomous task scheduling.

4.1. Onboard Image Classification Using Deep Learning

This method enables the satellite to classify acquired images into cloudy and relatively
clear images. This will be achieved by equipping the satellite with a simplified deep
learning model which is trained to make image classification. This approach helps the
satellite make autonomous decisions for identifying useful and useless images and discard
cloudy ones onboard. As a result, it enables the satellite to have efficient utilization of
crucial onboard resources such as memory, power, and communication bandwidth as it
discards images covered with dense clouds and refrains from downlinking them.

CNNs are becoming state-of-the-art techniques for image classification tasks applied
in various disciplines. The technology is not fully utilized in space applications [20] as it
usually needs huge processing capacity, and such computing devices are not yet manufac-
tured as space-grade. However, within the capacity of A-HiREV’s onboard computer, we
can use simplified deep-learning models for onboard image classification.

As image classification by itself is a resource-demanding task, we decided to build
a custom CNN classifier model and train it on the ground. The model is then pruned
and quantized to fit into A-HiREV’s onboard computer for inference purposes. These
techniques reduce the computational resource demand and memory footprint of the model
during the inference phase by eliminating unnecessary parameters [21–23].

We deployed and tested the quantized CNN classifier model on the ZedBoard platform
which has similar specifications and performance as the actual onboard computer used
in A-HiREV. The Deep Neural Network Development Kit (DNNDK) is a deep learning
environment developed for Zynq-7000. We followed detailed setup and implementation
steps as described in the DNNDK user guide [24].

4.2. Autonomous Task Scheduling

The second method is to allow the satellite to receive operation commands from
ground control stations and autonomously make an optimal schedule for the order of
execution considering its onboard resources. The tasks identified for this purpose are nadir
pointing for image acquisition, taking images of selected locations, ground pointing for
communication with the ground station, downloading acquired images to ground stations,
pointing towards the sun to maximize battery charging, and most importantly, onboard
image classification tasks.

A satellite is a system of subsystems operating together for the success of a common
mission. Every subsystem plays its role in a synchronized manner. Individual tasks
executed by the satellite need to be lined up in a certain order of execution. This order
of execution is called a task schedule or plan. The importance of making a schedule is to
effectively achieve the objective set by ground operators while keeping the health of the
satellite and its subsystems.

Satellite task scheduling is an optimization problem that tries to make an optimal order
of execution in a given scenario within an environment, having observed and assumed
constraints. There are different approaches to making an optimal satellite task schedule.
Rule-based scheduling is a straightforward expert-led solution for making execution orders
for satellite tasks. But this method greatly needs expert knowledge to make complex
rules of execution. It is also less scalable for additional tasks and optimality is not always
guaranteed [8]. A genetic algorithm (GA) is another alternative to deal with complex
problems such as task scheduling. There is plenty of satellite task scheduling research
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based on genetic algorithms [25,26]. Mixed-Integer Linear Programming (MILP) is also
another approach to making satellite task schedules [27–29]. These days, with the recent
advancement of machine learning, people have started to use reinforcement learning
algorithms for task scheduling [30,31].

4.2.1. Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a general framework for modeling and solving
decision-making problems. MDPs formally described an environment for reinforcement
learning (RL). Figure 2 shows the agent–environment interaction in a general Markov
Decision Process. As illustrated, the agent (the satellite) chooses an action (At) in the
current state (St), receives a reward (Rt + 1) from the environment, and then transits to the
next state (St + 1). The process is repeated for available states in the planning horizon. The
objective is to find a policy that maximizes the expected reward.

Aerospace 2023, 10, x FOR PEER REVIEW 6 of 22 
 

 

schedule. Rule-based scheduling is a straightforward expert-led solution for making exe-
cution orders for satellite tasks. But this method greatly needs expert knowledge to make 
complex rules of execution. It is also less scalable for additional tasks and optimality is not 
always guaranteed [8]. A genetic algorithm (GA) is another alternative to deal with com-
plex problems such as task scheduling. There is plenty of satellite task scheduling research 
based on genetic algorithms [25,26]. Mixed-Integer Linear Programming (MILP) is also 
another approach to making satellite task schedules [27–29]. These days, with the recent 
advancement of machine learning, people have started to use reinforcement learning al-
gorithms for task scheduling [30,31]. 

4.2.1. Markov Decision Process (MDP) 
A Markov Decision Process (MDP) is a general framework for modeling and solving 

decision-making problems. MDPs formally described an environment for reinforcement 
learning (RL). Figure 2 shows the agent–environment interaction in a general Markov De-
cision Process. As illustrated, the agent (the satellite) chooses an action (At) in the current 
state (St), receives a reward (Rt + 1) from the environment, and then transits to the next 
state (St + 1). The process is repeated for available states in the planning horizon. The 
objective is to find a policy that maximizes the expected reward. 

MDP is formally defined in four tuples: the state space (S), action space (A), transition 
function (T), and reward function (R). M = (S,A,T,R). MDP formulation of the satellite task 
scheduling problem is explained in Section 4. 

 
Figure 2. Agent–Environment Interaction in Markov Decision Process. 

4.2.2. Reinforcement Learning (RL) 
Reinforcement learning is one of the basic machine learning paradigms, besides su-

pervised, semi-supervised, and unsupervised learning. What is practiced in supervised 
learning is teaching a machine by a collection of approved training sets and letting it make 
its own decision for new cases based on what it has learned from the training set. The 
image classification technique discussed above is an example of a supervised machine 
learning methodology. Whereas in reinforcement learning, the agent (satellite) will be in 
a certain situation (state) with a possible set of actions it can take. The decision to take any 
of the actions and transiting to the next state is positively or negatively rewarded with 
reward values computed in terms of the action’s role in the optimal achievement of the 
planning objective. Then the agent learns to take the best actions that will maximize its 
total reward (or minimize its cost in our case). 

Q-learning is a temporal difference control algorithm. It is one of the approaches to 
implementing reinforcement learning, given the MDP requirements are satisfied. The next 
section holds details of how Q-learning is implemented. 

5. Implementation 
5.1. Onboard Image Classification using Deep Learning 

Generally, for an image classification task, we need to build a classifier model that 
learns how to classify images and then use it for inference. For the classifier to learn how 
to classify, we need to prepare a dataset of initially labeled classes of images. 

Figure 2. Agent–Environment Interaction in Markov Decision Process.

MDP is formally defined in four tuples: the state space (S), action space (A), transition
function (T), and reward function (R). M = (S,A,T,R). MDP formulation of the satellite task
scheduling problem is explained in Section 4.

4.2.2. Reinforcement Learning (RL)

Reinforcement learning is one of the basic machine learning paradigms, besides
supervised, semi-supervised, and unsupervised learning. What is practiced in supervised
learning is teaching a machine by a collection of approved training sets and letting it make
its own decision for new cases based on what it has learned from the training set. The
image classification technique discussed above is an example of a supervised machine
learning methodology. Whereas in reinforcement learning, the agent (satellite) will be in a
certain situation (state) with a possible set of actions it can take. The decision to take any of
the actions and transiting to the next state is positively or negatively rewarded with reward
values computed in terms of the action’s role in the optimal achievement of the planning
objective. Then the agent learns to take the best actions that will maximize its total reward
(or minimize its cost in our case).

Q-learning is a temporal difference control algorithm. It is one of the approaches to
implementing reinforcement learning, given the MDP requirements are satisfied. The next
section holds details of how Q-learning is implemented.

5. Implementation
5.1. Onboard Image Classification using Deep Learning

Generally, for an image classification task, we need to build a classifier model that
learns how to classify images and then use it for inference. For the classifier to learn how to
classify, we need to prepare a dataset of initially labeled classes of images.

5.1.1. Preparing Dataset

Image classification is a supervised machine learning technique of teaching the ma-
chine with collected sets of images in different classes and designing an algorithm to study
the details of images in every class and learn what makes every image a member of a
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certain class. Therefore, preparing a huge collection of satellite images is mandatory for
training the classifier.

For this purpose, we have utilized an open release of the Sentinel-2 satellite images
dataset used in [32] and released them on Harvard Dataverse on January 2020. In the prepro-
cessing step, we first prepared our dataset by individually selecting clear and cloudy images
from the released dataset. The images in the two classes have the following properties:

Clear: images showing a clear view of different parts of the Earth’s surface and are
useful for Earth observation.

Cloudy: images with dense/light cloud cover and showing no clear view of the Earth’s
surface but mostly cloudy parts. Images in this class are not useful for Earth observation.

We then resized images to similar dimensions of 256 × 256 pixels for a smooth
operation of the classification algorithm and then converted them into an array containing
each pixel’s color value. When the preprocessing is completed, the next step is building a
classifier model to learn the features of images in both classes.

5.1.2. Building Classification Model

After preprocessing collected images and making the dataset, we built a CNN model
to learn from the given dataset and be able to predict future unseen images into one of
the two classes. We used the TensorFlow platform and Keras machine learning library to
build the CNN-based image classifier model. We used a total of 19,200 color images of 256
by 256 pixels size of which 12,800 are used for training, 3200 for validating, and 3200 for
testing the classifier model. The validation dataset is a set of randomly chosen 20% images
from the training dataset. The random selection is executed in every round of the learning
phase to make new validation set in each round. Unlike the validation dataset, the test
dataset is a separate set of images that are never used in the learning process.

After experimenting with the model building by changing different parameters of
the model and observing classification accuracies, we choose the binary classifier model
with convolutional layers followed by max-pooling after each convolutional layer, and one
fully connected dense layer at the end. As seen in Table 1, the first convolutional layer has
32 kernels of size five by five. Then max pooling is applied before the next convolutional
layer. The second layer has 64 kernels of size five followed by a max pooling before it is
flattened and forwarded to the output dense layer. In both convolutional layers, we applied
strides of one (or same) and rectified linear unit (relu) for the activation function.

Table 1. Summary of Image Classifier Model.

Layer (Type) Output Shape Param #

conv2d_10 (Conv2D) (None, 256, 256, 32) 2432
max_pooling2d_10

(MaxPooling) (None, 128, 128, 32) 0

conv2d_11 (Conv2D) (None, 128, 128, 64) 51,264
max_pooling2d_11

(MaxPooling)
(None, 64, 64, 64) 0

flatten_5 (Flatten) (None, 262144) 0
dense_5 (Dense) (None, 2) 524,290

Total params: 577,986
Trainable params: 577,986
Non-trainable params: 0

Figure 3 shows the training and validation accuracy of the classifier when running in
20 epochs (learning rounds). As seen in the figure, the binary classifier, on average, has
over 99% training and validation accuracies. Figure 4 shows the training and validation
losses of the classifier in each learning round and Figure 5 shows a sample run of the
classifier displaying the predicted classes versus actual image classes when tested to
classify 18 images from the testing dataset. The labels at the top of the sample images show
predicted image class and actual image class (in square bracket) names, respectively.
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While testing the classifier model, before going through the classification process, test
images of any size have to be resized into similar sizes (256 × 256) and also con-verted into
an array of color codes of pixels as images used in the training set.
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The 18 sample images in Figure 5 were intentionally resized to fit A-HiREV’s op-tical
camera resolution (3376 × 2704 pixels) before going through the classifier model. As the
result shows, it has successfully predicted 17 out of the 18 sample test images accurately and
wrongly classified the second image as cloudy while it is a clear image. Due to the nature of
this image, the model understands that the image has a similarity to images in the cloudy class
more than the ones in the clear class. Table 2 shows a summary of the classifier’s prediction
performance in classifying images in the entire test set. As the confusion matrix shows, out
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of the 3200 test images, only six clear im-ages are classified as cloudy while the classifier has
successfully identified all the 1600 cloudy images into the cloudy class.

Table 2. Confusion Matrix Summary of Prediction Performance.

Predicted by the Classifier

Clear Cloudy

Actual Classes
Clear 1594 6

Cloudy 0 1600
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Freezing the trained model and evaluating its performance is required before pruning
and quantization processes are applied to the model to make it fit into the Zedboard. The
Deep Neural Network Compiler (DNNC) is a tool in DNNDK that compiles the resulting
model and creates a file executable by the Zedboard during inference.

For evaluating the inference performance of the quantized model, we tested the
model with 100 images from each class and it showed a 92% overall classification accuracy.
The reduction in classification performance is attributed to the pruning and quantization
of the model.

5.2. Autonomous Task Scheduling
5.2.1. MDP Formulation of Task Scheduling

The satellite task scheduling problem can be formulated as an MDP problem. The satel-
lite is considered as an agent being in a certain state. The execution of imaging, downlinking,
and other commands will change its state, and based on the ultimate objective defied by the
ground operators, the satellite’s decision to execute such commands and transit to another
state will be responded to by rewards computed based on the reward function.

In this study, we considered the A-HiREV satellite as a member of the assumed
CubeSat constellation. A-HiREV is flying at an altitude of 400 KM with a 51.6-degree
inclination. We designed two ground control stations, one in South Korea and one in
Ethiopia. The image acquisition tasks are targeting 27 different cities located in Ethiopia
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and South Korea. Figure 6 shows target areas and ground control stations as simulated in
Systems Tool Kit (STK). The detail of representing our scenario in MDP formulation needs
to define the problem in the form of states, actions, transition function, and rewards.

State Space: Six different types of tasks (states) are considered while designing the
autonomous satellite task scheduling algorithm. The task types are Onboard Image Classi-
fication (C), Downlinking (D), Ground Station Pointing (G), Imaging (I), Nadir Pointing
(N), and Sun Pointing (S).
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We used the J4 Perturbation propagator while simulating the propagator in STK for a
two day scenario analysis period. We used a true-of-date coordinate system and classical
coordinate type that has the satellite’s orbital elements (semi-major axis: 6778 km, eccentricity:
3.58832× 10−16, inclination:51.6 deg, an argument of perigee: 0 deg, RAAN:359.992 deg). The
orbit epoch time starts on 20 May 2020 at 00:00:00.000 UTCG and with a step size of 60 s.

When imaging tasks are planned for a given duration (in seconds) to take an image of
a specific location (latitude, longitude), the satellite’s attitude propagator will be referenced
to obtain the time at which the satellite will reach the specified location. The same is true
when downlinking tasks are planned to downlink acquired images down to the ground
stations; the contact time at which the satellite will be in contact with the ground stations
(specified with its latitude and longitude) will be referenced from the propagator.

For imaging and downlinking tasks, ground operators provide starting and ending
times of image acquisition or ground contact times based on the propagator. The other tasks,
ground station pointing, nadir pointing, sun pointing, and image classification tasks are to
be automatically added by the scheduler. Sun-pointing tasks are generated by avoiding the
eclipse times of the satellite as generated from the STK simulation.

Accordingly, Tables 3 and 4, respectively, show the list of operator-provided Imaging
and Downlinking tasks with their starting and ending times in the assumed scenario. The
times are expressed in seconds counting from STK simulation time or mission elapsed time
for simplicity.

In Table 3, the notation (‘I’,6237,6251) represents an Imaging task starting at 6237 s and
ending at 6251 s and in Table 4, the notation (‘D’,347,715) represents a Downlinking task
starting at 347 s and ending at 715 s. The access column in Table 4 shows the place of the
target ground control station to be contacted.

The operator-supplied imaging and downlinking tasks along with the automatically
generated pointing and classification tasks will form the state space in MDP formulation.
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Action space: operation tasks are considered as states of the satellite. From a given
state, for example, when an Imaging state is completed, the satellite is expected to transit
to another possible state (or start performing the next task in time). The action set shown
in Table 5 contains the list of possible actions a satellite can perform to transit to the next
state. For example, the notation ‘I’:[‘G’, ‘C’, ‘S’, ‘I’] in the first row expresses that when
the satellite is in an Imaging state, its next possible action is Ground pointing (G), Image
Classification (C), Sun pointing (S), or another Imaging (I).

Table 3. List of Imaging Tasks.

Access Imaging Tasks

1 (‘I’, 6237, 6251)

2 (‘I’, 6241, 6300)

3 (‘I’, 6242, 6289)

4 (‘I’, 6246, 6294)

5 (‘I’, 6251, 6293)

6 (‘I’, 6252, 6285)

7 (‘I’,6253,6321)

8 (‘I’, 6253, 6310)

9 (‘I’, 6286, 6317)

10 (‘I’, 22375, 22416)

11 (‘I’, 22406, 22466)

12 (‘I’, 22417, 22483)

13 (‘I’, 105534, 105583)

14 (‘I’, 105565, 105606)

15 (‘I’, 105588, 105655)

16 (‘I’, 105589, 105656)

17 (‘I’, 118556, 118619)

18 (‘I’, 118562, 118617)

19 (‘I’, 118563, 118574)

20 (‘I’, 118565, 118608)

21 (‘I’, 118566, 118609)

22 (‘I’, 118566, 118614)

23 (‘I’, 118574, 118620)

Transition Function: the transition function maps the current state and its action set
into possible next states. For example, if the satellite is in the ground pointing state (G),
and if it decides to go to downloading state by taking action ‘D’, the satellite will transit to
downloading state (D).

Reward: the reward (or cost) function is determined by the objective of task scheduling.
The environment gives the reward (or cost) to the agent in response to the agent’s action.
The reward (or cost) of each state can be defined by human experts based on the objective
of scheduling. For example, if the satellite is needed to make more image collection or
downlinking, more rewards can be given for such tasks. Alternatively, a cost can be
attached to tasks based on their onboard memory or power consumption when the satellite
is executing them.

In this study, we have considered two rewarding cases. The first one is considering all
tasks as equally important tasks with the objective of executing as many tasks as possible
in the planning horizon. The second case is weighted importance, in which, tasks are
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rewarded based on their consumption or generation of onboard power and usage (or
freeing) of onboard memory. We have considered A-HiREV subsystems’ profiles while
assigning power and memory utilization of tasks and computing rewards of each state.
The reward is computed as follows:

R(s)← tStart(s) + (P(s) + M(s))∗Conflict(s) ∗ Priority(s)/Duration(s), ∀s ε S (1)

Table 4. List of Downlinking Tasks.

Access Downlinking Tasks

Kor1 (‘D’, 347, 715)

Kor2 (‘D’, 5955, 6593)

Kor3 (‘D’, 11784, 12360)

Eth1 (‘D’, 16450, 16852)

Kor4 (‘D’, 17705, 18143)

Eth2 (‘D’, 22104, 22730)

Kor5 (‘D’, 23558, 24032)

Kor6 (‘D’, 29326, 29939)

Kor7 (‘D’, 35108, 35717)

Eth3 (‘D’, 57702, 58289)

Eth4 (‘D’, 63500, 64030)

Kor8 (‘D’, 89143, 89752)

Kor9 (‘D’, 94920, 95534)

Kor10 (‘D’, 100827, 101301)

Eth5 (‘D’, 105272, 105903)

Kor11 (‘D’, 106716, 107154)

Eth6 (‘D’, 111177, 111563)

Kor12 (‘D’, 112500, 113075)

Kor13 (‘D’, 118267, 118905)

Kor14 (‘D’, 124145, 124513)

Eth7 (‘D’, 140923, 141396)

Eth8 (‘D’, 146630, 147244)

Kor15 (‘D’, 172355, 172800)

Table 5. Action Set of States.

Current State Possible Next Action Notation

Imaging (I) Ground Pointing (G), Image Classification (C), Sun Pointing (S), Imaging (I) ‘I’: [‘G’,’C’,’S’, ‘I’]

Downlinking (D) Nadir Pointing (N), Sun Pointing (S), Ground Pointing (G) ‘D’: [‘N’,’S’,’G’]

Sun Pointing (S) Nadir Pointing (N), Ground Pointing (G), Image Classification(C) ‘S’: [‘N’,’G’, ‘C’]

Image Classification (C) Nadir Pointing (N), Ground Pointing (G),Sun Pointing (S) ‘C’: [‘N’,’G’,’S’]

Nadir Pointing (N) Imaging (I) ‘N’: [‘I’]

Ground Pointing (G) Downlinking (D) ‘G’: [‘D’]

As defined in Equation (1), a reward of the state is computed based on its power
consumption (P(s)), memory consumption (M(s)), the number of conflicts with other states
(Conflict(s)), its priority, and duration (Duration(s)). To give better chance for tasks in near
time than late tasks, we have included the task’s starting time (tStart(s)) in computing
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the reward. A task with a greater number of conflicting time windows with other tasks
has a high cost. When choosing the next task after the initial task, among the alternative
candidate tasks, a task with less cost has a better chance to be the next task but the decision
is based on its utility value.

Once the RL environment is defined in MDP, we can apply one of the basic RL
algorithms. We used the Q-Learning algorithm to generate a sequence of actions the
satellite needs to take by evaluating and updating each action’s values in every learning
cycle. The result is an optimal policy in terms of the sequence of actions the satellite needs
to take at each state from the initial up to the end of the planning horizon.

The Q-value of a state is the total amount of reward (or cost) an agent can obtain in
the future, starting from that state and following all possible transitions from the state.
Q-values indicate the long-term importance of states after considering the states that follow
these states.

Rewards are given directly by the environment, but Q-values must be computed and
re-computed from the sequences of actions an agent makes over its entire lifetime. An
optimal policy is a policy that attains the optimal Q-values for every state.

Q-values are computed by using the Temporal Difference (TD) equation and the
well-known Bellman equation.

Temporal Difference (TD): a way of computing how much the Q-value of the action
taken in the previous state has to be changed based on what the agent has learned about
the Q-values of the current state’s actions. It is computed as:

TD(st, at) = rt + γ.min
a∈A

Q(st+1, a)− Q(st, at) (2)

TD(st, at) is temporal difference for the action taken in the previous state,
rt is the reward received for the action taken in the previous state,
γ is the discount factor (between 0 and 1),
min
a∈A

Q(st+1, a) is the least Q-value available for any action in the current state,

Q(st, at) is the Q-value for the action taken in the previous state.
In computing Q-values, we first initialize the Q-table of all actions in states by zero

and continuously update the Q-value of each state’s actions using the temporal difference
value we obtain as the agent transits to the next states. So, the new Q-value of every action
in a state is computed as:

Qnew(st, at) = Qold(st, at) + α.TD(st, at) (3)

Qnew(st, at) is the new Q-value for the action taken in the previous state,
Qold(st, at) is the old Q-value for the action taken in the previous state,
α is the learning rate (between 0 and 1),
TD(st, at) is the temporal difference for the action taken in the previous state.
When there is consideration of onboard resources such as onboard memory and power,

states will obtain a high cost for their addition into onboard memory or consumption of
onboard power whereas they receive less cost value for freeing memory and generating
additional power. Finally, the states (tasks) with less value will be preferred over the other
alternative tasks to transit from a particular state.

5.2.2. Scheduling Algorithm

The Q-Learning-based scheduling algorithm starts by formulating the onboard satellite
scheduling problem in a way suitable for MDP and when executed, it returns the task
execution plan (schedule) as a final output. We implemented the algorithm in python and
evaluated its outcome. Figure 7 shows a flow chart of the scheduling algorithm.

In the inference mode, given a starting state, the scheduler returns a sequence of
the next states leading up to the last state in the planning horizon. While going towards
the final state, it keeps on collecting rewards by following imaging, downlinking, and
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classification tasks. In doing so, the machine is achieving the goal of the scheduling, which
is to plan as many imaging, classification, and downlinking tasks as possible.
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5.2.3. Simulation Results and Discussion

We simulated the algorithm in two cases by altering the objective of scheduling. The
first case considers all tasks as equally important and the second case, weighted importance,
considers less costly tasks as important. The resulting schedule in the first case deals with
the scheduling of tasks based on the order of their starting times as long as the scheduling
horizon duration. The resulting schedule in this case does not guarantee the effective
utilization of onboard resources.

In the second, weighted importance case, tasks are evaluated based on their onboard
resource usage and generation. Additionally, in this case, we evaluated the need of in-
cluding onboard image classification as one of the tasks in the scheduling. The simulation
result shows that the RL-based algorithm autonomously includes important onboard im-
age classification tasks at selected times as they clear out onboard memory and utilize
less power. Table 6 shows the resulting list of tasks chosen by the scheduling algorithm.
Starting from the initial task in time, the algorithm has evaluated the best next tasks based
on the Q-values of each action in tasks. Hence, the RL-based onboard scheduling algorithm
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enables the satellite to autonomously make optimal schedules considering its onboard
resources. When a need arises from ground operators to execute high-priority tasks or the
inclusion of new tasks into the schedule, the algorithm can reschedule the remaining tasks
in time after every contact with the ground stations.

Table 6. RL-Based Scheduling Result.

Order Scheduled Task

1 (‘G’, 316, 346)

2 (‘D’, 347, 715)

3 (‘S’, 716, 6205)

4 (‘N’, 6206, 6236)

5 (‘I’, 6237, 6251)

6 (‘I’, 6252, 6285)

7 (‘I’, 6286, 6317)

8 (‘C’, 6318, 6348)

9 (‘S’, 6349, 22343)

10 (‘N’, 22344, 22374)

11 (‘I’, 22375, 22416)

12 (‘I’, 22417, 22483)

13 (‘C’, 22484, 22514)

14 (‘S’, 22515, 105502)

15 (‘N’, 105503, 105533)

16 (‘I’, 105534, 105583)

17 (‘I’, 105588, 105655)

18 (‘C’, 105656, 105686)

19 (‘S’, 105687, 118524)

20 (‘N’, 118525, 118555)

21 (‘I’, 118556, 118619)

22 (‘C’, 118620, 118650)

23 (‘S’, 118651, 124113)

24 (‘G’, 124114, 124144)

25 (‘D’, 124145, 124513)

26 (‘S’, 124514, 140891)

27 (‘G’, 140892, 140922)

28 (‘D’, 140923, 141396)

29 (‘S’, 141397, 146598)

30 (‘G’, 146599, 146629)

31 (‘D’, 146630, 147244)

32 (‘S’, 149113, 172323)

33 (‘G’, 172324, 172354)

34 (‘D’, 172355, 172800)

In this study, we found that the satellite’s total contact time duration with the two
ground stations is much less than the image acquisition times. In addition, the satellite’s
high-resolution image acquisition camera generates data at a rate higher than the download
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bandwidth of its S-band antenna. This results in the satellite’s onboard memory becoming
full of acquired images which are mostly cloudy and useless for Earth observation missions.

Figure 8a,b show onboard memory utilization of tasks scheduled in the two-days
planning horizon. We assumed an instance of onboard memory with 1 GB of image data as
an initial point. Figure 8a shows the memory utilization of scheduled tasks in the absence
of onboard image classification, whereas Figure 8b shows the memory utilization when
onboard image classification is included as a task. As clearly observed from Figure 8a,
the imaging tasks keep on adding more data into memory and the rate of downlinking
speed could not cope with this increase in data storage in the absence of onboard image
classification tasks. Whereas, in Figure 8b, the onboard image classification has dramatically
reduced onboard data as cloudy images are cleared out without wasting scarce onboard
memory. This result strongly suggests the need for onboard image processing tasks to clear
out cloudy images before they are downlinked to ground stations. This way, we can save
onboard memory as well as the power and bandwidth needed for downlinking. This in
turn results in the effective utilization of satellite contact times with ground stations for
quick transmission of clear Earth observation images.

Finally, we have made a heuristic-based schedule aimed at selecting the next tasks with
minimum resource requirements to minimize the overall resource consumption during
the planning horizon. In this case, tasks next to the current task are evaluated with their
onboard resource demand and the task with a minimum request will be chosen.

To illustrate this case, we chose an instance imaging task, (‘I’, 6237, 6251) and consid-
ered it as the satellite’s current state. As shown in Table 5 (Action set of states), the satellite
can take one of the actions from imaging, classification, sun-pointing, and ground-pointing
to transit into its next state. Figure 9 illustrates this scenario with the alternative next states’
values and costs as evaluated by the Q-value and cost functions, respectively. In the case of
the heuristic method, the satellite’s next task will be the task with the least cost,(‘C’, 6252,
6282) whereas in the case of the RL-based method, the task with the least value, (‘I’, 6252,
6285), will be scheduled as the next task.

The heuristic-based scheduling algorithm executes quite quickly compared to RL-
based scheduling. However, as it greedily searches for immediate next tasks with minimum
requirement, it fails to consider overall optimization on the horizon and missed schedul-
ing important imaging tasks which could have been accompanied by upcoming image
classification tasks. Table 7 shows this result of heuristic-based scheduling.

Aerospace 2023, 10, x FOR PEER REVIEW 16 of 22 
 

 

inclusion of new tasks into the schedule, the algorithm can reschedule the remaining tasks 
in time after every contact with the ground stations. 

In this study, we found that the satellite’s total contact time duration with the two 
ground stations is much less than the image acquisition times. In addition, the satellite’s 
high-resolution image acquisition camera generates data at a rate higher than the down-
load bandwidth of its S-band antenna. This results in the satellite’s onboard memory be-
coming full of acquired images which are mostly cloudy and useless for Earth observation 
missions. 

Figure 8a,b show onboard memory utilization of tasks scheduled in the two-days 
planning horizon. We assumed an instance of onboard memory with 1 GB of image data 
as an initial point. Figure 8a shows the memory utilization of scheduled tasks in the ab-
sence of onboard image classification, whereas Figure 8b shows the memory utilization 
when onboard image classification is included as a task. As clearly observed from Figure 
8a, the imaging tasks keep on adding more data into memory and the rate of downlinking 
speed could not cope with this increase in data storage in the absence of onboard image 
classification tasks. Whereas, in Figure 8b, the onboard image classification has dramati-
cally reduced onboard data as cloudy images are cleared out without wasting scarce 
onboard memory. This result strongly suggests the need for onboard image processing 
tasks to clear out cloudy images before they are downlinked to ground stations. This way, 
we can save onboard memory as well as the power and bandwidth needed for downlink-
ing. This in turn results in the effective utilization of satellite contact times with ground 
stations for quick transmission of clear Earth observation images. 

 
(a) 

0

200

400

600

800

1000

1200

1400

1600

G D S N I I I S N I I S N I I S N I S G D S G D S G D S G D

DA
TA

 S
TO

RE
D

SCHEDULED TASKS

Figure 8. Cont.



Aerospace 2023, 10, 78 17 of 21Aerospace 2023, 10, x FOR PEER REVIEW 17 of 22 
 

 

 
(b) 

Figure 8. (a) Onboard Memory Utilization without Classification; (b) Onboard Memory Utilization 
with Classification. 

Finally, we have made a heuristic-based schedule aimed at selecting the next tasks 
with minimum resource requirements to minimize the overall resource consumption dur-
ing the planning horizon. In this case, tasks next to the current task are evaluated with 
their onboard resource demand and the task with a minimum request will be chosen. 

To illustrate this case, we chose an instance imaging task, (‘I’, 6237, 6251) and consid-
ered it as the satellite’s current state. As shown in Table 5 (Action set of states), the satellite 
can take one of the actions from imaging, classification, sun-pointing, and ground-point-
ing to transit into its next state. Figure 9 illustrates this scenario with the alternative next 
states’ values and costs as evaluated by the Q-value and cost functions, respectively. In 
the case of the heuristic method, the satellite’s next task will be the task with the least 
cost,(‘C’, 6252, 6282) whereas in the case of the RL-based method, the task with 
the least value, (‘I’, 6252, 6285), will be scheduled as the next task. 

0

200

400

600

800

1000

1200

G D S N I I I C S N I I C S N I I C S N I C S G D S G D S G D S G D

DA
TA

 S
TO

RE
D

SCHEDULED TASKS

Figure 8. (a) Onboard Memory Utilization without Classification; (b) Onboard Memory Utilization
with Classification.

Aerospace 2023, 10, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 9. Sample Value and Cost of Next States. 

The heuristic-based scheduling algorithm executes quite quickly compared to RL-
based scheduling. However, as it greedily searches for immediate next tasks with mini-
mum requirement, it fails to consider overall optimization on the horizon and missed 
scheduling important imaging tasks which could have been accompanied by upcoming 
image classification tasks. Table 7 shows this result of heuristic-based scheduling. 

Out of the 23 operator-provided imaging tasks, indicated in Table 3, only eight are 
feasible due to conflict in the observation window of target points. The resulting schedules 
of both RL-based and heuristic-based scheduling, Tables 6 and 7 respectively, show how 
many of these imaging tasks are scheduled. In the heuristic case, only four of these tasks 
are scheduled, which is 50% of the possible imaging tasks. Whereas in the RL case, seven 
tasks are included in the schedule, which is more than 85% of the feasible imaging tasks. 
This ensures the RL-based scheduling is fitting in line with the ultimate objective of plan-
ning as many imaging and downlinking tasks while ensuring efficient resource utiliza-
tion. This situation becomes more significant when applied to the constellation of similar 
CubeSats or even with the addition of more imaging tasks in the planning horizon. 

Table 6. RL-Based Scheduling Result. 

Order Scheduled Task 
1 (‘G’, 316, 346) 
2 (‘D’, 347, 715) 
3 (‘S’, 716, 6205) 
4 (‘N’, 6206, 6236) 
5 (‘I’, 6237, 6251) 
6 (‘I’, 6252, 6285) 
7 (‘I’, 6286, 6317) 
8 (‘C’, 6318, 6348) 
9 (‘S’, 6349, 22343) 

Figure 9. Sample Value and Cost of Next States.



Aerospace 2023, 10, 78 18 of 21

Table 7. Heuristic-Based Scheduling Result.

Order Scheduled Task

1 (‘G’, 316, 346)

2 (‘D’, 347, 715)

3 (‘S’, 716, 6205)

4 (‘N’, 6206, 6236)

5 (‘I’, 6237, 6251)

6 (‘C’, 6252, 6282)

7 (‘S’, 6283, 11752)

8 (‘G’, 11753, 11783)

9 (‘D’, 11784, 12360)

10 (‘S’, 12361, 22343)

11 (‘N’, 22344, 22374)

12 (‘I’, 22375, 22416)

13 (‘C’, 22417, 22447)

14 (‘G’, 23527, 23557)

15 (‘D’, 23558, 24032)

16 (‘S’, 24033, 105502)

17 (‘N’, 105503, 105533)

18 (‘I’, 105534, 105583)

19 (‘C’, 105584, 105614)

20 (‘G’, 106685, 106715)

21 (‘D’, 106716, 107154)

22 (‘S’, 107155, 118524)

23 (‘N’, 118525, 118555)

24 (‘I’, 118556, 118619)

25 (‘C’, 118620, 118650)

26 (‘S’, 118651, 124113)

27 (‘G’, 124114, 124144)

28 (‘D’, 124145, 124513)

29 (‘S’, 124514, 124573)

Out of the 23 operator-provided imaging tasks, indicated in Table 3, only eight are
feasible due to conflict in the observation window of target points. The resulting schedules
of both RL-based and heuristic-based scheduling, Tables 6 and 7 respectively, show how
many of these imaging tasks are scheduled. In the heuristic case, only four of these tasks are
scheduled, which is 50% of the possible imaging tasks. Whereas in the RL case, seven tasks
are included in the schedule, which is more than 85% of the feasible imaging tasks. This
ensures the RL-based scheduling is fitting in line with the ultimate objective of planning as
many imaging and downlinking tasks while ensuring efficient resource utilization. This
situation becomes more significant when applied to the constellation of similar CubeSats
or even with the addition of more imaging tasks in the planning horizon.

6. Conclusions

The efficiency of satellite constellations depends on the efficiency of individual satel-
lites in the constellation. This study assumes the development of a constellation of CubeSats
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of standard performance with general memory and focused on ensuring efficient resource
utilization by experimenting on one of the CubeSats in the constellation.

For this purpose, we have developed and tested a custom convolutional neural
network-based onboard image classification model which fits into the processor of the
6-unit CubeSat (A-HiREV). The model is trained and tested with a freely available Sentinel-
2 dataset. The onboard image classifier classified images stored in onboard memory into
cloudy and clear image classes effectively. With the help of this classifier, the satellite can
solve the problem of flooding onboard memory with cloudy images and also avoid wastage
of bandwidth, power, and time in transmitting these images to ground stations.

The second part of this paper focused on designing an RL-based onboard autonomous
task scheduler that is utilized by the satellite considering its resources in real-time. This
proposed method is tested to make effective schedules of imaging, downlinking, pointing,
and image classification tasks. The algorithm iterates from the initial task by evaluating all
tasks and picking the best next tasks not only based on their onboard resource requirement
but also their contribution to making an overall optimal schedule. The ultimate objective
of the scheduling is planning as many imaging and downlinking tasks as possible while
ensuring efficient resource utilization. Compared to a heuristic-based scheduling algorithm
designed for the same objective, RL-based scheduling has performed better in scheduling
more imaging and downlinking tasks while ensuring efficient resource utilization. In the
RL-based scheduling, more than 85% of the feasible imaging tasks are scheduled while
only 50% are scheduled in the heuristic-based scheduling. Both methods have scheduled
all of the feasible downlinking tasks. As more imaging tasks are scheduled in RL-based
scheduling, more onboard memory is required. However, the properly scheduled onboard
image classification tasks have enabled the system to effectively utilize onboard memory
by identifying and discarding cloudy images.

Hence, the two parts of this study jointly ensured efficient utilization of onboard
memory, power, and bandwidth in the highly resource-constrained CubeSat platforms
and their constellations. The study also highlighted the importance of granting controlled
autonomy to satellites as seen in both onboard image classification and onboard task
scheduling techniques. As a result, more than 85% of feasible imaging tasks and all
feasible downlinking tasks are scheduled in the two-day’s planning horizon. The properly
scheduled onboard image classification tasks also protected the onboard memory from
flooding with useless cloudy images. Therefore, we recommend the use of RL-based
onboard task scheduling including onboard image classification in ordinary CubeSats and
their constellations to boost overall mission effectiveness.

In future studies, we will investigate the addition of inter-satellite communication
tasks in onboard scheduling and their effect on efficient resource utilization. The result
of this research can be used as input to further studies regarding constellation-level re-
source utilization.
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