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Abstract: The increasing number of satellites for specific space tasks makes it difficult for traditional
satellite task planning that relies on ground station planning and on-board execution to fully exploit
the overall effectiveness of satellites. Meanwhile, the complex and changeable environment in space
also poses challenges to the management of multi-satellite systems (MSS). To address the above
issues, this paper formulates a mixed integer optimization problem to solve the autonomous task
planning for MSS. First, we constructed a multi-agent-based on-board autonomous management and
multi-satellite collaboration architecture. Based on this architecture, we propose a hybrid genetic
algorithm with simulated annealing (H-GASA) to solve the multi-satellite cooperative autonomous
task planning (MSCATP). With the H-GASA, a heuristic task scheduling scheme was developed to
deal with possible task conflicts in MSCATP. Finally, a simulation scenario was established to validate
our proposed H-GASA, which exhibits a superior performance in terms of computational power and
success rate compared to existing algorithms.

Keywords: multi-satellite system; autonomous task planning; multi-agent; genetic algorithm; simulated
annealing

1. Introduction

Earth observation satellites (EOS) are critical for obtaining surface information re-
sources. They can image the Earth from space within a specified time and play an important
role in meteorological forecasting, emergency rescuing and environmental protecting [1].
With the development of satellite technology, the flexibility and autonomy of satellites are
becoming stronger and stronger. Compared with a single satellite, a multi-satellite system
(MSS) can better meet the current explosive growth of task requirements.

In the traditional satellite observation mode, satellites management mainly depends
on the ground station, and all kinds of spatial information data are mostly transmitted back
to the ground for unified processing [2]. The task control center receives the user’s task
request and transmits it to the ground station to generate an observation plan, which is
uploaded to the satellite for execution when the satellite passes over the ground station.
However, this mode has a slow response and requires significant human involvement
for an MSS with large numbers of satellites, which is very inefficient. The improvement
of satellite autonomous management and online decision-making capabilities enables
space engineers to develop on-board autonomous systems for MSS. The Multi-Satellite
Cooperative Autonomous Task Planning (MSCATP) is developing in the direction of
coordination and autonomy.

Multi-satellite cooperation can make up for the deficiency of a single satellite. Accord-
ing to the method of organization, it can be divided into the centralized and the distributed
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task planning. In the centralized task planning, multiple satellites perform tasks under
the unified planning of the controller satellite. It treats MSCATP as an optimization prob-
lem; a constraint satisfiable problem (CSP) model [3], an integer model [4,5], and some
general models such as graphs are used to model the problem [6–11]. In the solution
of the centralized task planning problem, due to its NP-Hard characteristics, most are
solved by heuristic methods, such as the ant colony algorithm [12–17], the particle swarm
algorithm [18–22], and some methods based on graph theory [23–26]. These heuristic
optimization algorithms are easy to implement and can obtain near-optimal solutions in
an acceptable time. Although the centralized task planning can obtain the global optimal
solution under a certain condition, it is highly dependent on the control center. Meanwhile,
it has poor robustness and cannot provide a task planning service for an MSS when facing
the single point breakdown of the controller satellite. Therefore, some works try to adopt
the distributed task planning methods.

The distributed task planning focuses on how to design the organizational structure
of satellite cooperative control, so as to realize independent task allocation and negotiation
among multiple satellites. Hewitt systematically expounded NASA’s point of view on
Agent and proposed the idea of using Agent technology to realize the autonomy of ground
systems and spacecraft [27]. For an MSS, a new generation of satellites with on-board
autonomous planning capabilities can make full use of the individual intelligence of agents
to form a multi-agent system (MAS) and solve on-board planning problems through
multi-agent collaboration [28].

The organizational model of a multi-agent system reflects the roles, interrelationships
and authority structures of agents [29]. The hierarchical organization is the most commonly
used model [30]. In a hierarchical organization, other agents are managed by a control
center with the highest authority. Lin et al. performed job dispatch for distributed systems
using a dynamic load-balancing strategy implemented on a central controller [31]. Kennedy
adopted a two-layer scheduling method to solve the constellation joint planning problem
but caused a serious computational load on the control center [32]. Most spatial applications
use a hierarchical organization model due to its clear structure, easy control and strong
universality. However, its robustness is poor, and its high reliance on the control center
will result in high computational cost. Coalition-based organization is another commonly
used organizational model. In the coalition-based organization, each agent is completely
independent and equal, and its decision-making is based on its own favorable criteria [33].
Schetter et al. constructed a multi-satellite task negotiation and assignment method with a
hierarchical structure and divides the satellites into four different levels of agents [9]. Li et al.
proposed a multi-autonomous satellite cooperative mission planning framework based on
JADE (Java Agent Development Framework, TILAB, State of California, United States),
which consists of a single-satellite autonomous layer and a multi-satellite cooperative
layer [34]. Du et al. designed a distributed multi-dimensional multi-agent task cooperation
framework, which divided satellites into a management layer and a working layer, and
the management layer satellites were responsible for the negotiation and distribution of
observation tasks in addition to the basic functions of the working layer [10]. The advantage
of this structure is strong robustness and low computational cost, but the disadvantage
is that only considering what is beneficial to itself will affect the global revenue to a
certain extent.

To address the above respective defects in centralized and distributed structure, a
central-distributed federation architecture is proposed in this paper. In the federated
architecture, agents are organized into multiple groups with complex functions, namely
federation. The entire multi-agent system consists of several federations, each of which is
independent of each other but internally coordinated and cooperative.

Based on the organizational model of the MAS, satellites can jointly complete tasks
through negotiation on the basis of autonomous decision-making. Facing the realistic
scenarios of multi-satellites and multi-tasking, it is necessary to develop an effective task
allocation strategy. Based on Darwin’s theory of evolution, the genetic algorithm simu-
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lates natural selection and evolves the optimal solution of the problem through selection,
crossover, mutation and inheritance. For example, Han designed a hybrid adaptive genetic
algorithm combined with a large-neighborhood search process, in which “destroy” and
“repair” operations are performed on elite individuals to enhance local search capabilities
in each generation of the genetic algorithm [35]. In addition, other researchers improved
the genetic algorithm in fitness function, coding, crossover operator and other aspects to
solve the task planning problem [36–40]. Despite these improvements, how to develop
an effective method for MSCATP remains an open question. A genetic algorithm can be
applied to solve large-scale optimization problems. Although it can avoid the dilemma
of local optimization to a certain extent, in the face of some complex problems, a genetic
algorithm still has certain limitations, and it is difficult to accurately converge to the global
optimal solution. Simulated annealing (SA) is an annealing-inspired search method in
which a probabilistic approach is used to accept candidate solutions that can “jump” from
a local optimum [41]. Through a new hybrid technique in which a simulated annealing
process is combined with an adaptive approach to design an improved genetic algorithm,
the local search capability of GA is enhanced using SA to provide proper exploration and
exploitation of large solution spaces [42–44].

In this paper, we discuss the modeling and algorithms of MSCATP. Our work contri-
butions are as follows:

• We built a multi-satellite collaborative federation architecture based on multi-agents
for MSS, which overcomes the shortcoming that the inter-satellite resources are in-
dependent and lack cooperation, and allows the satellites to exchange information
status with each other. It combines the characteristics of centralized management and
distributed collaboration, and has high robustness and intellectual abilities.

• We develop a hybrid genetic algorithm with simulated annealing to solve MSCATP.
Specifically, the standard of accepting new solutions is improved by introducing a
simulated annealing operation, and the threshold of accepting new solutions is set,
which changes the way that the algorithm jumps out of the local optimal solution.
Meanwhile, the task sequence represented by the real-coding format can shorten the
chromosome length and improve the search speed.

• We construct a heuristic scheduling strategy to eliminate the possibility of task time
window preemption in MSCATP, which can effectively resolve task conflicts and
complete tasks as much as possible.

The organization of this paper is as follows: Section 2 presents a multi-satellite task
cooperation framework; on this basis, an autonomous task planning method is proposed.
Section 3 establishes a simulation scenario to illustrate the effectiveness of experimental
results. Section 4 discusses the advantages and disadvantages of the algorithm. Section 5
presents the summary and outlook.

2. Materials and Methods
2.1. Problem Formulation

During the satellite orbit, the payload can be imaged at the sub-satellite point trajectory
corresponding to the satellite orbit. The area that the satellite payload can observe is the
visible light region, and the time range in the visible light region is called the satellite’s
visible time window. Due to the limited visibility of the satellite, imaging can only be
performed when the satellite passes over the observation area within the visible time
window. Generally speaking, the number of observation tasks is far greater than the
number of satellites, and the single-satellite performing observation tasks cannot meet the
observation requirements for all the objects to be observed in terms of maneuverability and
imaging capabilities. Therefore, the observation results of more targets can be obtained
through the coordinated observation of multiple satellites in orbit. The increased number
of satellites makes it more difficult to manage the satellites, and how to effectively plan
tasks and manage satellite resources has become an important issue. The input and output
of multi-satellite cooperative autonomous task planning (MSCATP) are shown in Figure 1.
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Figure 1. The input and output of MSCATP.

2.2. Multi-Agent Collaborative Framework

We decompose MSCATP into two sub-problems—satellite cooperation and task plan-
ning. In this architecture, the agent represents the Earth observation satellite. It combines
the centralized task distribution capabilities of satellites with the distributed computing
capabilities of constellations, and is a central-distributed federation structure. As shown in
Figure 2a, the whole structure is a multi-layer management mode, which is divided into a
control layer, an organization layer and a working layer. The first layer is the control layer,
and the control center agent has the highest authority to manage all the agents; the second
layer is the organization layer, and the agents in the organization layer are responsible for
the formation and management of the federation in the system. When the agent of the
organization layer obtains the task from the control layer, it can assign the task to the agent
of the working layer for execution; the bottom layer is the working layer, and the agent of
the working layer is mainly responsible for task reception, execution and cooperation.

On the one hand, the architecture consists of several federal structures, which is a
highly centralized multi-level management architecture; on the other hand, each federal
structure is relatively independent. Within each federated structure, agents can interact bi-
directionally for task assignment, execution and message feedback, as shown in Figure 2b.
The organization agents can communicate with each other, and the working agents can
exchange information through the organization agents, thus laying the foundation for
multi-agent cooperation. The specific cooperation architecture is shown in Figure 2.

Control Agent

Organization 
Agent

Working Agent

Federation structure

(a)

Satellite

Inter-satellite link

Federation structure

(b)

Figure 2. The central-distributed satellite cooperation federation architecture: (a) The multi-level
management mode of the federation architecture is divided into control layer, organization layer and
working layer. Each organizational agent manages a federated structure. (b) Agent in each federal
structure exchange information in both directions.

In MSCATP, the ground station uploads the task information to the control satellite,
and the organization satellite transmits the task information to each working satellite.
Each satellite quickly calculates the observation information based on its own state and
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orbit information and feeds it back to the organization satellite. The organization satellite
assigns tasks according to the feedback information, and each satellite schedules indepen-
dently and feeds the observation results back to the organization satellite to form the final
planning scheme.

2.3. Mathematical Model

Simplifying the problem to facilitate model building, this paper makes the following
assumptions for MSCATP:

1. When the task is determined to start observation, it will not be preempted or inter-
rupted by other tasks;

2. Each task can be observed at most once, regardless of periodic execution or re-
peated execution;

3. Planning is limited to a certain time frame, and subsequent task planning follows our
proposed method.

Multi-satellite cooperative autonomous task planning has been proved to be a time-
dependent NP-Hard problem with multiple constraints. Since the time window of each
task is limited, it is difficult to guarantee the successful observation of all tasks. In this
paper, our goal is to meet the user’s observation needs as much as possible, that is, to
maximize the revenue of the observation task sequence.

Based on the above analysis, we establish the mathematical model of MSCATP. A
summary of notations is presented in Table 1.

Table 1. Definitions of the notations in MSCATP.

Notations Definitions

T Observation tasks set, T = {τ1, τ2, . . . , τnt}, nt represents the number of tasks executed
S EOS resource set, S = {s1, s2, . . . , sns}, ns represents the number of satellites

TW Visible time windows set
duri Observation duration of task τi
esti The earliest observation time of task τi
lsti The latest observation time of task τi

twsijk Visible start time of task τi at the k-th time window of satellite sj
tweijk Visible end time of task τi at the k-th time window of satellite sj
stijk Observation start time of task τi at the k-th time window of satellite sj
etijk Observation end time of task τi at the k-th time window of satellite sj

γ Attitude adjustment duration
pi Priority of task τi

xijk 0–1 variable, 1 denotes task τi is observed by the k-th time window of satellite sj, while 0 not

In MSCATP, the objective is to maximize the revenue of the observation task sequence.

max ∑
i∈T

∑
j∈S

∑
k∈TW

revi · xijk. (1)

Equation (1) represents the total revenue of tasks observed by satellites, and revi is the
priority of tasks. The constraints are shown in Equations (2)–(9).

esti 6 tij, i ∈ T, j ∈ S (2)

tij + duri 6 lati, i ∈ T, j ∈ S (3)

twsijk 6 tij, i ∈ T, j ∈ S, k ∈ TW (4)

tij + duri 6 tweijk, i ∈ T, j ∈ S, k ∈ TW (5)
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tij + duri + γ 6 t(i+1)j, i ∈ T, j ∈ S (6)

∑
j∈S

∑
k∈TW

xijk 6 1, i ∈ T, j ∈ S, k ∈ TW (7)

xmjkxnjv

(
stnjv − etmjk

)(
etnjv − stmjk

)
> 0, m, n ∈ T, j ∈ S, k, v ∈ TW (8)

xijk ∈ {0, 1}. (9)

Equation (2) indicates that the actual start execution time of the task should be after the
earliest start time specified by the user. Equation (3) indicates that it should be completed
before the latest end time specified by the user. Equations (4) and (5) show that the
task should be completed within the visible time window of the satellite. Equation (6)
represents that the two tasks before and after the execution need to meet the time interval
requirements. Equation (7) gives that each task is executed at most once by a satellite
that meets the requirements. Equation (8) defines that a single satellite resource can only
complete one task at any time. Equation (9) is the value range of decision variables.

2.4. Methods
2.4.1. Algorithm Framework

The core of an evolutionary algorithm is to balance the contradiction between search
ability and development ability. Among them, the search ability is to search the whole space
to find the best possible areas, while the development ability is to focus on those individuals
with the best fitness. A genetic algorithm (GA), as an effective bionic optimization algorithm,
is widely used in various fields. If properly handled, it can obtain the optimal solution
through many iterations, but its shortcomings are also obvious, such as poor local search
ability, slow convergence speed, and stagnation of individual evolution in the later stage,
which leads to local optimization. The advantages of simulated annealing algorithm are
strong local searching ability and short running time, but the disadvantages are poor
global searching ability and being easily influenced by parameters. Therefore, combining
the advantages and disadvantages of the two algorithms, we propose a hybrid genetic
algorithm with simulated annealing (H-GASA) to solve MSCATP.

The overall idea for the H-GASA is as follows:
Step 1: Initialize a random population, randomly generate N chromosomes to form

a population;
Step 2: Evaluate the fitness of the initial population. Obtain individuals with high

fitness in the population and select excellent individuals through selection operators to
directly pass on to the next generation;

Step 3: Select individuals for crossover and mutation operations to generate new
individuals;

Step 4: Elite retention strategy. Screen the whole population, find the individuals with
high fitness and keep them directly to the next generation;

Step 5: Use a simulated annealing model to accept individuals with poor fitness with
a certain probability;

Step 6: Repeat the above steps to update the population until the predefined maximum
number of iterations is reached.

Based on the above design, the flowchart of our proposed H-GASA is shown in Figure 3.
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Figure 3. Flowchart of the H-GASA algorithm.

2.4.2. Chromosome Design

As the number of missions and satellites increases, the number of visible time windows
will obviously increase. At this time, the binary coding method will lead to the chromosome
being too long, and every bit of the chromosome needs to be checked for conflicts by using
constraints, which will lead to a too-long operation time and reduce the efficiency of the
algorithm. For this reason, this paper proposes a real coding method, as shown in Figure 4.

As shown in Figure 4, each bit of a chromosome represents an observation task.
Assuming that the total number of visible time windows for task i is ni, each time window
is numbered from 1 to ni, which corresponds to the value range of the i-th gene on the
chromosome. If the value of i-th gene is wi, one of the natural numbers from 1 to ni, this
means that the task selects the w-th time window of task i to complete the observation.
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Figure 4. Real coding format of chromosome.

2.4.3. Elite Retention Strategy

Genetic operators mainly include selection operators, crossover operators and muta-
tion operators. The selection operator can effectively improve the convergence speed of
the algorithm, and the crossover and mutation operators can expand the diversity of the
population and prevent the algorithm from converging prematurely.

The roulette method is used to select excellent individuals. Assuming that the pop-
ulation size is m, the formula for calculating the selection probability of each individual
is as shown in Equation (10). Fitness(i) represents the fitness value of the individual i.
Therefore, the greater the fitness value, the greater the probability of being selected.

p(i) =
Fitness(i)

∑m
i=0 Fitness(i)

. (10)

In order to prevent the optimal individual of the current population from being lost in
the next generation, which leads to the inability of the genetic algorithm to converge to the
global optimal solution, an elite retention strategy is adopted. All individuals are screened
after each crossover and mutation operation, and the individuals with the highest fitness
are directly copied to the next generation. The elite retention strategy plays an important
role in improving the global convergence ability of the genetic algorithm.

2.4.4. Simulated Annealing Operation

After crossover and mutation, new individuals will be produced. For those individuals
with high fitness, we choose to keep them directly, while for those individuals with poor
fitness, we accept them as new individuals of the next generation with a certain probability
through an introduced simulated annealing operation.

According to the sampling method of Metropolis in the 1950s, the most recent form
is accepted by using the quantity of change, that is, the probability, which is called the
Metropolis criterion. The new individual with poor fitness is used as the initial solution of
the simulated annealing algorithm, a random search is carried out in the constraint interval,
and its objective function is calculated. Add random disturbance to the current solution
to generate a new solution and calculate the corresponding objective function value. The
algorithm criterion stipulates that when the system changes from one state energy E1 to
another state energy E2, the probability of energy change is shown in Equation (11). T is
the simulated temperature value initially set by the algorithm.

p = exp
(
−E2− E1

T

)
. (11)
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If the new solution is better than the current solution, the new solution generated by
the change state is accepted; otherwise, the algorithm will judge whether to accept the new
solution based on the Metropolis criterion. The probability that the new solution of the
changing state is accepted is shown in Equation (12).

p =

{
1, E2 < E1

exp
(
− E2−E1

T

)
, E2 > E1.

(12)

The population size of GA is set to the number of SA adjacent solutions to reduce
the difference between parallel GA and continuous SA processes. The specific algorithm
operation is shown in Figure 3.

2.4.5. Heuristic Task Scheduling Strategy

Task conflict handling is an important part of a scheduling algorithm. When the time
window conflict occurs, the task start execution time is determined. If there is time overlap
with the current scheduled task, moving the current task back to the non-overlapping time
segment can effectively handle the task conflict.

We design a greedy task scheduling algorithm. Firstly, we sort the tasks according
to the starting imaging time and check the imaging conflict to ensure the feasibility of the
observation sequence. In this process, once the imaging is completed, the corresponding
download schedule is made, and if the download fails due to satellite resource shortage,
the task will be abandoned.

The specific steps are as follows:
Step 1: Input task set, satellite set, time window set;
Step 2: Sort all tasks by start imaging time and arrange visible time windows in order;
Step 2.1: Determine whether the visible time window range is within the time range

required by the task. If the conditions are met, go to step 2.2. Otherwise, select a new time
window and repeat step 2.1. If there is no visible time window, go to step 2;

Step 2.2: Determine the inclusive relationship between the length of the visible time
window and the execution time required by the current task. If it is satisfied, go to step 2.3.
Otherwise, go to step 2.1;

Step 2.3: Conflict processing is performed, and whether the task can be successfully
scheduled is judged according to the actual start time of the task, the latest end time of the
visible time window, and the task execution duration. If satisfied, go to step 3. Otherwise,
go to step 2.1;

Step 3: Determine the satellite to execute the task, the start time and end time of the
execution, generate the observation sequence, and go to step 2. If no task needs to be
scheduled, go to step 4;

Step 4: Output the task execution sequence.
The flowchart of the greedy task scheduling algorithm is shown in Figure 5.

Figure 5. Flowchart of the greedy task scheduling algorithm.
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3. Results

In this section, we obtain computational data through experiments to evaluate the
effectiveness of our proposed method and demonstrate that it outperforms other existing
methods. The coding environment of all algorithms is Matlab 2018a, and the simulation
scenarios, including satellite establishment, target selection and time window calculation,
are all realized by STK 11.6 simulation software. The simulation computer environment is
Intel Core i3-3220 CPU @ 3.30 GHz 3.30 GHz, 8 GB RAM.

3.1. Simulation Scenario

The Satellite Tool Kit (STK) supports the entire process of space tasks; the core capabil-
ities of STK are the generation of position and attitude data, acquisition time, and remote
sensor coverage analysis. It can be applied to scenarios such as satellites, vehicles, ground
stations, targets, and remote sensors.

In terms of observation tasks, we use STK 11.6 software to randomly generate a certain
number (25–100) of point targets as observation tasks, which randomly distribute on the
Earth’s surface with latitude among (50° E, 150° E) and latitude among (40° S, 40° N). Each
target is associated with a priority uniformly distributed among [1,10] and corresponding
to different benefits. The time period of the scenario is (13 October 2022 00:00:00, 14 October
2022 00:00:00).

The orbital information of the satellite includes semi-major axis (a), eccentricity (e),
inclination (i), ascending node right ascension (ϕ), argument of perigee (ω), true perigee
angle (τ). The specific orbit parameters are shown in Table 2. Task information is collected
by ground stations and uploaded to the satellites, and we simulated four ground stations
in the scenario. The distribution of the ground stations and satellites in STK is shown
in Figure 6.

Table 2. Orbit paraments.

Satellite a e i ϕ ω τ

Sat_1 11,451.7584 0.1812 6.3493 308.6624 328.8153 35.1145
Sat_2 8770.6311 0.1094 47.8753 105.7602 347.3599 349.4134
Sat_3 12,163.9747 0.0970 40.0140 230.4941 51.0791 329.6647
Sat_4 11,339.1766 0.1918 32.7870 337.9213 12.8562 336.2375
Sat_5 10,771.8157 0.1515 37.1566 294.5971 141.2017 61.6272
Sat_6 10,908.3704 0.0063 13.8461 75.1243 16.6217 296.4448

. . . . . . . . . . . . . . . . . . . . .

Figure 6. Simulation scenario established through STK.
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3.2. Multi-Satellite Cooperative Autonomous Task Planning simulation Analysis

We selected 50 observation targets to conduct 10 experiments, and stipulated that the
fixed observation time of each target point was 30 s. The average results are shown in
Table 3 and Figure 7, and selected two evaluation indicators: task completion revenue and
running time.

Table 3. Typical results of MSCATP based on H-GASA.

Simulation Scene Setting Average Optimal Fitness Value

Number of Satellites Number of Targets Average Fitness Value Average Running time(s)
6 50 261 204

(a) (b)

Figure 7. Typical simulation results of MSCATP Based on H-GASA: (a) Evolution curve of the
algorithm, in which the x-coordinate is iterations, and the y-coordinate is fitness (corresponding to
the planning results). (b) Gantt chart of multi-satellite cooperative task planning results, in which
x-coordinate is times, and y-coordinate is satellite ID, each rectangle represents a task, with a number
next to it is the task ID.

As shown in the above results, H-GASA has a good effect on solving multi-satellite
collaborative autonomous task planning. The fitness value rises rapidly in the first
50 generations, indicating that the algorithm has an obvious improvement effect in the
early stage. As the number of iterations increases, the probability of the new solution
increases, and it is more inclined to generate individuals with higher fitness values, so
the individual fitness value gradually increased and stabilized, finally converging at the
300-th generation.

3.3. Analysis of Algorithm Performance
3.3.1. Different Coding Format of H-GASA

For multi-satellite multi-task scenarios, a different encoding format can usually deter-
mine the length of chromosomes and affect the efficiency of the algorithm. For our proposed
real coding format and traditional binary coding format, 10 simulation experiments were
carried out under the same conditions, and the results are shown in Table 4 and Figure 8.
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Table 4. Statistical results of different coding format in H-GASA.

Number
Optimal Fitness Value Running Time(s) Encoding length

Real-Coding
H-GASA

Binary Coding
H-GASA

Real-Coding
H-GASA

Binary Coding
H-GASA

Real-Coding
H-GASA

Binary Coding
H-GASA

1 261 258 204.5 306.23 50 146
2 244 238 210.6 315.12 50 146
3 261 256 221.4 331.66 50 146
4 273 271 218.3 327.83 50 146
5 266 266 211.5 326.23 50 146
6 248 240 202.0 303.43 50 146
7 258 255 213.6 308.68 50 146
8 254 250 222.5 334.42 50 146
9 261 255 216.3 328.80 50 146

10 254 248 208.1 312.84 50 146
Max 273 271 222.5 334.42 50 146
Min 244 238 202.0 303.43 50 146
Avg 258 253.7 212.88 319.524 50 146

(a) (b)

Figure 8. Comparison of H-GASA results based on different encoding methods: (a) Comparison of
optimal fitness values of H-GASA based on different coding methods. (b) Comparison of running
time of H-GASA based on different coding methods.

As can be seen from the above results, the number of tasks determines that the
chromosome length of real coding is 50, while that of binary coding is the number of
visible time windows of the satellite to the target in a planning period. According to the
comparison between the optimal fitness value and the running time, it can be seen that
the genetic algorithm based on real coding is superior to the genetic algorithm based on
binary coding in terms of optimization ability and calculation speed. Among them, the
average computation time of H-GASA based on binary coding is about 1.5 times that of
H-GASA based on real coding, which indicates that the coding format has an important
impact on the performance of H-GASA algorithm. Obviously, the chromosome length has a
significant influence on the evolution process, and a shorter chromosome length can speed
up the search.

3.3.2. Comparison Results Analysis

According to the optimization goal in Section 2, we carried out experiments comparing
H-GASA and different algorithms for solving MSCATP under the same conditions. This
paper selects GA, SA and PSO for experimental comparison. They are all widely used
heuristic algorithms and are representative. The parameters of all algorithms for different
task scenarios were set as shown in Table 5. The results of several heuristic algorithms
involved in the experiment are shown in Figure 9 and the statistics for the results are shown
in Table 6.
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Table 5. The parameters of all algorithms for different scenarios.

Parameters H-GASA GA SA PSO

Targets 25/50/75/100 25/50/75/100 25/50/75/100 25/50/75/100
Population size 20/40/60/80 20/40/60/80 20/40/60/80 20/40/60/80

Crossover probability 0.8 0.8 - -
Mutation probability 0.01 0.01 - -

Temperature iterations - - 20/40/60/80 -
Acceleration constant - - - 1.457

Iterations 400/500/600/800 400/500/600/800 400/500/600/800 400/500/600/800

Table 6. Results of fitness value of comparison algorithms with different target numbers.

Scenario Optimal Fitness Value
H-GASA SA PSO GA

25-1 157 100 124 72
25-2 134 99 110 65
25-3 178 110 156 87
50-1 320 210 208 100
50-2 274 157 156 99
50-3 250 128 133 100
75-1 461 269 271 122
75-2 505 300 297 120
75-3 420 220 227 125
100-1 553 291 339 154
100-2 518 266 277 147
100-3 610 304 398 180

We have carried out three groups of task planning from 25 to 100 targets, respectively,
and the specific values of the optimal fitness values corresponding to different target
numbers are shown in Table 6. From the above results, it can be seen that the H-GASA
optimization results are much better than the existing three algorithms. When the number
of targets increases from 25 to 100, H-GASA still has a strong optimization ability and
can keep a good stability, which indicates that H-GASA still has a good computational
efficiency when it is extended to large-scale operations. The specific average evolution
curve analysis is shown in Figure 9.

According to the comparison between the optimal fitness value and the convergence
speed in Figure 9, GA has a faster convergence speed but cannot achieve the optimal
solution. PSO and SA have better optimization capabilities than GA but cannot achieve
global convergence. H-GASA has obvious advantages in terms of optimization ability and
calculation speed, and has good stability. Especially in terms of optimization ability, the
optimal fitness value obtained by H-GASA is much higher than the other three algorithms.
This is because H-GASA combines the advantages of the two algorithms and has stronger
global search and local optimization capabilities. At the same time, H-GASA can achieve
global convergence more stably than other algorithms.
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(a) (b)

(c) (d)

Figure 9. The evolutionary curves of the comparison algorithms: (a) The evolutionary curves of
25 tasks. (b) The evolutionary curves of 50 tasks. (c) The evolutionary curves of 75 tasks. (d) The
evolutionary curves of 100 tasks.

We also compared the task completion rates of several algorithms, and the results are
shown in Table 7 and Figure 10.

Table 7. Results of task completion rate of comparison algorithms with different target numbers.

Scenario Task Completion Rate
H-GASA SA PSO GA

25 1 0.52 0.72 0.40
50 1 0.44 0.42 0.28
75 1 0.52 0.52 0.20

100 1 0.45 0.53 0.22

As we can see from Figure 10, compared with other algorithms, the task completion
rate of H-GASA is higher than other algorithms, and it has reached the final convergence.
The phenomenon of task conflict is improved by moving tasks with time window conflicts
to non-overlapping time periods, and the utilization of task time windows in the planning
period is raised. Meanwhile, it is verified that our proposed greedy task scheduling
algorithm is effective.
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Figure 10. Task completion rate of comparison algorithms.

4. Discussion

Recent research has focused on developing the satellite autonomy scheme for MSS.
On-board autonomy planning is more successful in terms of safety and efficiency than up-
loading the results to the satellite after the ground station planning. In this study, on-board
autonomous task planning is divided into two stages: multi-satellite task assignment and
single-satellite task scheduling. The results show that the planning method proposed in
this study can effectively plan all the tasks received by MSS. Specifically, this method can
coordinate multiple satellites in MSS to make autonomous on-board planning for multiple
tasks, and output the best task planning scheme according to the task information and
satellite orbit state. As discussed in this paper, the H-GASA developed in this study per-
forms better in terms of search speed and optimization ability, and has obvious advantages
in various applications. Table 6 and Figure 9 show the benefits of planning schemes in
different scenarios, which proves that this method can be widely used to support the
planning, allocation and scheduling of tasks. This suggests that on-board autonomous task
planning can be a worthwhile investment, especially in the long term.

In simulation results, the main advantages of our work are: (1) Less computation
time. In the comparative analysis of different coding formats, we improved the coding
format to shorten the average calculation time of the algorithm by 1.5 times, and improved
the search speed of the algorithm; (2) The task completion rate and planning benefits are
higher. In the benefit analysis, we compared the task completion rate and the final benefit,
and the results show that our method has a significant improvement. This is because the
algorithm can accept the poor individual solution with a certain probability, jump out of
the local optimum and reach the global optimum. Meanwhile, this study considered that
possible task conflicts caused by time window preemption will have a negative impact on
planning results. Therefore, adding a heuristic strategy in the task scheduling process can
effectively eliminate possible task time window conflicts and complete tasks as much as
possible; (3) The basic energy consumption of satellites is reduced. The method can reduce
the number of communications with the ground station, improve the utilization rate of
satellite resources, and reduce the energy consumption of the satellite.

There are several aspects of this study that need to be improved in future simulation
methods. The benefit analysis in different scenarios shows that, even in high demand
scenarios, the global optimal solution can be achieved by increasing the number of iterations
of the algorithm. However, the computational complexity of the algorithm will also increase
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significantly. Due to the low computing power of the on-board processor, in order to ensure
efficiency, it is necessary to make a trade-off between the quality of the algorithm solution
and the running time, and further improve the algorithm to balance the optimization ability
and convergence speed.

5. Conclusions

A realistic formulation of multi-satellite cooperative autonomous task planning in
the Earth observation scenario and a solution technique were proposed in this work. To
facilitate multi-satellite cooperation management, a multi-satellite task cooperation archi-
tecture based on multi-agents was formulated. The established mixed-integer optimization
problem finds the optimal planning by maximizing the revenue with the realistic satellite
load and orbit constraints. A hybrid genetic algorithm with simulated annealing has been
proposed to solve the built mathematical model. With this algorithm, a greedy task schedul-
ing algorithm was developed to solve task conflicts. Different simulation scenarios were
established to test the performance of the algorithms. From the experimental results, the
proposed algorithm is applicable to MSCATP. Moreover, through the comparison of task
completion income and task completion rate, the proposed algorithm has a better effect
than existing algorithms.

In the future, we will consider more uncertain factors, such as the need to respond in
time to change the task observation sequence in case of emergency, and it will involve the
re-planning of tasks.
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