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Abstract: A multidisciplinary design analysis and optimization process is developed at ONERA for
the design of tube and wing and blended wing–body aircraft configurations. This process is composed
of different disciplinary modules (geometry, propulsion, aerodynamics, structure, handling qualities
and flight mission), and the overall process considers different fidelity levels for these modules at
each step of the design process. This article describes the low-fidelity aerodynamic module used
during the preliminary design optimization process. Analytical formulations retained for lift and drag
components are presented in the first part. Then, the performances estimated by the aerodynamic
module on some reference configurations are compared with both numerical and experimental data,
showing a quite good agreement for both tube and wing and blended wing–body configurations not
only for global performance but also for individual drag components.

Keywords: aircraft performance; analytical method; drag evaluation; drag components; blended
wing–body

1. Introduction

Among the different options for more efficient aircraft configurations, the blended
wing–body (BWB) seems to offer a very promising reduction in emissions (CO2, NOx).
However, such a configuration needs a complete, integrated design process as all the differ-
ent disciplines (cabin arrangement, aerodynamics, structure, propulsion, flight dynamics,
etc.) strongly interact altogether [1]. In order to explore, in depth, the potential benefits of
such configurations, a multidisciplinary design analysis and optimization (MDAO) process
dedicated to blended wing–body aircraft configurations has been developed since 2015 at
ONERA [2–5]. The design workflow covers the range of tools from level 0 (L0), considering
(semi-) empirical methods, over level 1 (L1), taking into account low-level physics-based
methods, to level 2 and 3 (L2, L3), considering high-fidelity methods (Figure 1).

The modules implemented are easily exchangeable to adapt the workflow for specific
configurations or a higher level of fidelity in specific domains if different methods are
needed. This design tool evolves continually due to the enrichment of the disciplinary
modules integrated or the addition of new disciplinary modules. The last version is com-
posed of six main disciplinary modules: aircraft geometry, propulsion, aerodynamics,
structure and weight, mission and performance and, finally, handling qualities. Addition-
ally, some acoustic analysis can be performed offline of the multidisciplinary process for
the selected configurations (Figure 2). Those modules are integrated in the NASA OpenM-
DAO [6] framework to constitute the multidisciplinary design analysis and optimization
(MDAO) process.

When the main characteristics of the aircraft are not fixed, a large number of config-
urations are evaluated during the exploratory phase of the overall aircraft design (OAD)
process with a large variety of architectures and planforms. As an example, Figure 3
presents some BWB planforms evaluated for building up a multi-fidelity surrogate model
for the first pre-design optimization loop, showing a large variety of architectures to be
considered (from [4]). A first constraint for the aerodynamic module is to be able to manage
100% of these different architectures.
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Then, for each configuration, the mission module generates an aerodynamic database.
As an order of magnitude, these databases consider about 5000 aerodynamic flow condi-
tions to be computed for each planform, which makes the use of an aerodynamic disci-
plinary module with a very fast computing time and a reliable performance level predic-
tion mandatory.

Therefore, among the different numerical methods available for aerodynamic mod-
eling, the ones belonging to the “low-fidelity” family (L0 or L1) are often used for OAD
phases. For the present application, a dedicated L0 aerodynamic module based on analyti-
cal formulations derived from the theory or from the data analysis of past or present aircraft
is developed for a fast evaluation of the aerodynamic performance for standard “Tube and
Wing” (T&W), “Flying Wing” (FW) or “Blended Wing Body” (BWB) configurations for
typical subsonic cruise flight conditions. This module considers only wing planform data,
and no surface grid is needed.

The different formulations retained are described in the first part of the article. In
the second part, the results issued from the module are compared to the numerical or
experimental results of different aircraft configurations.

2. Standard Atmosphere Model

To characterize the evolution of the ambient static flow conditions throughout the
atmosphere, the aerodynamic module integrates an analytic formulation of the International
Standard Atmosphere (ISA) [7]. ISA is a mathematical model that divides the atmosphere
into several layers (troposphere, stratosphere, mesosphere, etc.) that gives the evolution
of the ambient pressure, temperature and density with the altitude. The flight altitudes
considered in the module belong to the troposphere and the stratosphere. Within each
layer or sublayer, the temperature is assumed to have a linear evolution with respect to the
altitude, the pressure is calculated by the hydrostatic balance from Equation (1), and the air
density is calculated assuming the air as a perfect gas from Equation (2):

dP
dz

= −ρg (1)

ρ =
P

RT
(2)

For the air considered as a perfect gas, there is R = 287.04 J kg−1 K−1, and the standard
gravity constant is g = 9.80665 m/s2.
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Knowing the evolution of the temperature with the altitude (Figure 4) and considering
some thermodynamic assumptions for the different layers, the integration of Equation (1)
between the two altitudes that bound the given layer leads to some analytic formulations,
as presented in Table 1.
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Table 1. Analytic standard atmosphere model used.

Layer Altitude (km) Temperature (K) Pressure (Pa)

Troposphere Z ≤ 11 T = 288.15− 6.5× Z P = 101325.0×
(

T
288.15

)5.2561

Stratosphere
11 ≤ Z ≤ 20 T = 216.65

P = 22630.6× 10−(
z−11
14.596 )

20 ≤ Z ≤ 32 T = 216.65− (Z− 20)

Finally, the air dynamic viscosity is computed using Sutherland’s relation:

µ = µ0

(
T
T0

) 3
2
(

T0 + 110.4
T + 110.4

)
(3)

where µ0 = 1.711 10−5 kg/(ms) and T0 = 273.15 K.

3. Aerodynamic Module

The aerodynamic module is dedicated to T&W, FW or BWB configurations in subsonic,
attached flow conditions. It does not consider flow conditions with separation, buffet,
high-lift configurations, supersonic flight and unconventional aircraft configurations, such
as multiplane or boxed wing.

In the first stage, a reference wing is built based on geometrical characteristics such as
the airfoil relative thickness, the leading-edge sweep angles, the local chord, etc., and refer-
ence geometrical parameters are then derived (reference surface, mean aerodynamic chord).
For the performance evaluation, this wing is considered “aerodynamically optimized” with
an elliptical span loading in order to have an estimation of the local lift coefficients.

In the second stage, the influence of other elements, such as the fuselage, winglets
or nacelles, are considered as drag increments. Note that the span loading of the wing
considering these elements is not computed by the module.
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The module is suited to compare different wing planforms within a preliminary design
loop. By construction, identical results will be obtained for two configurations with the
same wing planform and the same airfoil thickness spanwise evolution. The optimization
of geometrical details, such as the airfoil shape, camber or twist, is not possible with the use
of this module and has, therefore, to be considered in the next step of the design process
using more advanced L1 or L2 numerical methods.

The following chapters present the geometrical inputs used and the analytical formu-
lations considered for the estimation of the aerodynamic performance (lift and drag).

3.1. Geometrical Inputs
3.1.1. Wing

The wing planform is defined by the use of NAIRF airfoil sections of NWSEG segments
(NAIRF = NWSEG+1). By construction, the first airfoil is located at the symmetry plane
Y(1) = 0, and the last section Y(NAIRF) corresponds to the wing tip. For each wing segment,
the leading-edge sweep angle, an index (XTra) for laminar computation and the airfoil
technology factor used for wave drag calculations (“Korn factor”, see chapter 3.5) are
provided. Additionally, for each airfoil, the relative thickness (t/c) and an estimation of the
maximum lift (Cl max) are provided. Figure 5 gives an example of data for a wing defined
by five airfoil sections (or four wing segments).
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(b) Geometrical data related to airfoil sections.

It should be noted that no detailed geometrical inputs for airfoils are used (shape,
twist, camber).

Then, the wing span is divided into NDY subsections. For a given subsection, the
different geometrical characteristics are obtained by a linear interpolation of the given
parameter between two given wing sections of the segment. This allows the evolution
of the leading-edge lines XLE(Y) and YLE(Y), the chord law C(Y) and the different sweep
evolutions with wing span (ϕ0(Y), ϕ25(Y), ϕ50(Y)) to be obtained.

The reference area considered for the aerodynamic coefficient calculations is the
geometrical wing area obtained by the sum of the different trapezoid segments:

SREF = SWing = ∑i=NWSEG
i=0

[Y(i + 1)−Y(i)]× [C(i + 1) + C(i)]
2

(4)

The wing geometrical aspect ratio λ corresponds to:

λ =
(2 Y(NAIRF))

2

SWing
=

b2

SWing
(5)
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The wing taper ratio ε is:

ε =
C(NAIRF)

C (1)
(6)

Finally, the value of the aerodynamic mean chord and its location on the half-wing
can be obtained:

AMC =
2

SRe f

b/2∫
0

C2(y)dy (7)

XAMC =
2

SRe f

b/2∫
0

XLE(y)× C(y)dy (8)

YAMC =
2

SRe f

b
2∫

0

YLE(y)× C(y)dy (9)

3.1.2. Fuselage

A fuselage is modeled as a slender circular cylinder of length LFUS and a diameter
DFUS. The aerodynamic module considers the fuselage to be set on the symmetry plane but
with no consideration about its relative position to the wing. Therefore, similar performance
will be evaluated by the module for the different configurations presented in Figure 6. The
wing dihedral angle is not taken into account.
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3.1.3. Nacelles

The effect of airframe installation on performance is considered for the drag contribu-
tion only (there are no propulsion effects considered). The evaluation is therefore similar
to a “through-flow nacelle” consideration. Nacelle elements are considered as cylinders.
Single flux (NAC1 elements only) or double flux nacelles (NAC1 and NAC2 elements) can
be considered (Figure 7), but it is supposed that all the nacelles are identical in the present
version of the module.
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3.2. Formulation for Aircraft Lift
3.2.1. Estimation of Wing Maximum Lift

By construction, the aerodynamic module considers an ideal elliptic span loading,
KZ(Y), for the reference wing, which is fully defined by the load at the symmetry plane KZ0:

KZ(Y) = KZ0

√√√√1−
(

Y
b
2

)2

(10)

where:
KZ0 =

2SWING

π
(

b
2

) × CL (11)

For a given Y section, the local airfoil lift coefficient corresponds to:

Cl (Y) =
KZ(Y)
C(Y)

(12)

Wing maximum lift is considered to be reached when Cl (Y) = Cl max (Y) at one
Y section.

3.2.2. Lift Slope

The aircraft ∂CL
∂α slope (α in rad) considered is the Polhamus formulation [8], with the

effects of fuselage taken into account [9]:

∂CL
∂α

=

πλ

[
1.07

[
1 + DFUS

b

]2
]

1 +
√

1 + λ2
(

1+tan ϕ50
2−M2

4

)(1− DFUS
b

)
(13)

where ϕ50 is the mean wing sweep angle at mid-chord. For FW or BWB configurations,
DFUS is set to zero.

Some modules of the MDAO process require the CL(α) curve as the input, which means
that it is necessary to know the zero-lift incidence of the aircraft α0. The aerodynamic
module is not able to determine this parameter, but it can be estimated based on preliminary
validation exercises on similar configurations. Otherwise, a value of α0 = 0◦ can be used.

3.3. Formulations for Aircraft Drag Evaluation

Among the different existing drag formulations, the one retained for the aerodynamic
module is derived from the one presented by Gur [10]:

CDTotal = CDInduced + CDFriction + CDAdd + CDWave + CDParasitic (14)

The following sections describe the formulations used for these different terms.
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3.3.1. Lift-Induced Drag

Only the wing contribution to lift-induced drag is considered with the influence of the
fuselage or winglet. The contribution of the tail surfaces to the total lift-induced drag is not
considered in the module. The standard formulation is considered for the lift-induced drag
coefficient of the reference wing:

CDInduced =
C2

L
π λ Osw

(15)

where λ is the wing geometric aspect ratio defined in Equation (5), and Osw is the Oswald
factor that characterizes the deviation from the ideal elliptic span loading. For a given
wing planform, several methods are available for the determination of the Oswald factor
(see [11] for instance). Most of them consider an Oswald factor such as:

Osw =
1

1 + δ
(16)

where δ is a parameter based on wing geometrical characteristics. The one proposed in the
aerodynamic module is based on the formulation used by Anderson [11,12]:

δAnderson =
[
0.0015 + 0.016(ε− 0.4)2

]
×
[(

λ
√

1−M2
)
− 4.5

]
(17)

leading to:

OswAnderson =
1

1 + δAnderson
(18)

However, this formulation is valid for unswept wings only, which is obviously not
suitable for BWB configurations. To take the wing sweep angle into account, Hörner [12]
proposes a simple correction:

Oswϕ = Osw(ϕ=0) × cos ϕ (19)

Some validations carried out on several CFD results analyzed by a far-field drag
decomposition tool have shown that the lift-induced drag component computed for swept
wings was surrounded by the evaluations made considering OswAnderson or Oswϕ and that
a mean value between these two formulations leads to an excellent agreement (Figure 8).
Therefore, the formulation retained in the code is simply:

OswWing =
1 + cos ϕ

2
OswAnderson (20)

When a fuselage or winglets are considered, the Oswald factor is modified, as de-
scribed by Nita [11]:

OswWing+Fuselage+WLT = OswWing × KFus × KWLT (21)

The correction factor for the fuselage is:

KFus =

(
1− 2

(
DFUS

b

)2
)

(22)

DFus is the fuselage diameter, and b is the total wing span.
The correction factor for the winglets is:

KWLT =
1

Coe fWLT

(
1 +

2 HWLT
b

)2
(23)
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where CoefWLT is a correction factor derived from works from Bourdin [13] or Delavenne [14]
to take into account the effect of the winglet cant angle on lift-induced drag:

Coe fWLT = 1.0 + 4.10−4δWLT + 1.10−5δ2
WLT − 3.10−8δ3

WLT − 5.10−10δ4
WLT (24)
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HWLT is the winglet height, b is the total reference wing span without winglets, and
δWLT is the winglet cant angle (in ◦) (see definitions in Figure 9).
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3.3.2. Friction/Form Drag

According to the methodology described in [9,10], the skin friction and pressure drag
of the different components are calculated using the following relation:

CDFriction = CF·FF·SWET
SREF

(25)

where CF is a flat plate skin friction coefficient, FF is the form factor of the component, and
SWET is the wetted area of this component.

• Friction coefficient CF

For a flat plate of length L, the friction coefficient is obtained considering the definition
of the boundary layer momentum thickness. At the end of the plate, the integrated friction
coefficient is:

CF = 2
ΘL

C(Y)
(26)

If the flow is laminar, the use of the Blasius relationships leads to:

CFLam =
1.328√

ReL
(27)
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For a turbulent flow, the friction coefficient is obtained by the compressible Schlichting
relation [9]:

CFTurb =
0.455

(log10ReL)
2.58(1 + 0.144M2)

0.65 (28)

For wings considering natural laminar flow (NLF) or hybrid laminar flow (HLF)
technologies, it is possible to have an estimation of the maximum laminar extent XLammax

for the wing sections as a function of the local Reynolds number and the ϕ25 sweep angle
(Figure 10, from [15]). This maximum laminar extent occurs for a design lift coefficient
(CLAdapt), and the change in transition location due to the modification of the pressure
gradients over the airfoil when the angle of attack changes has to be taken into account.
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angle. (a) NLF. (b) HLF.

Though the module does not consider any airfoil shape, it is therefore necessary to
consider a “suction” and a “pressure” side for the wing surfaces in order to take these
changes in transition location into account. The module uses the simplified model presented
in Figure 11.
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Figure 11. Simplified model used for transition location on wing surfaces. (a) Model for transition
change on wing suction side. (b) Model for transition change on wing pressure side.

Once the portion of laminar flow (XLam) is estimated for the considered wing section,
the global friction coefficient is obtained via the computation of the boundary layer mo-
mentum thickness at the trailing-edge through the use of a “fictitious turbulent length”
(LFict in Figure 12).
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Firstly, the momentum thickness at the transition point (ΘTr) is computed using the
Blasius relationships.

ΘTr = (XLam × C(Y))
0.664√

Re(L=XLam×C(Y))

(29)

Then, using the Michel relationships [16], the length LFict of a fully turbulent boundary
layer with the same ΘTr momentum thickness is estimated as:

LFict =

[
1

0.02208
ΘTr

(Re(L=XLam×C(Y)

XLam × C(Y)

)1/6
]1.2

(30)

Finally, ΘTE is computed as the momentum thickness of a turbulent flow that develops
over a length of LTur:

LTur = LFict + (1− XLam)× C(Y) (31)

ΘTE = 0.02208
LTur(

ReLTur

)1/6 (32)

The friction coefficient for transitional flow on one surface is finally obtained by
introducing ΘTE from Equation (32) into Equation (26).

• Form Factors FF

There are several models in the literature available for form factors (see for instance [10]
for a comparison of different formulations for FFWING or for body of revolutions). Table 2
presents the ones retained in the aerodynamic module and the corresponding SWET.

Table 2. Form factors and wetted area considered in the aerodynamic module.

Element Form Factor SWet

Wing [17] FFWING =
[
3.4004

( t
c
)
− 0.4578

( t
c
)2

+ 13.0119
( t

c
)3
]

cos2 ϕ50 + 1 2 SWING

Fuselage [9] FFFUS = 1 + 60(
LFUS
DFUS

)3 + 0.0025
(

LFUS
DFUS

)
π LFUS DFUS

Winglets [17] FFWLT = 1 + 3.52
( t

c
)

WLTcos ϕWLT 2 SWLT

Tail surfaces [17] FFTAIL = 1 + 3.52
( t

c
)

TAILcos ϕTAIL 2 STAIL

Nacelles [18] FFNAC = 1 + 0.35
(

DNAC
LNAC

)
2π DNAC LNAC
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3.3.3. Interaction Effects for Nacelles

In addition to the simple geometrical effect on the friction drag, some interaction
effects of the nacelles with a surface (wing or fuselage) are considered through the dis-
tance parameter ZNAC (Figure 13). The positive values of ZNAC are for standard nacelle
arrangements. The negative values of ZNAC are for buried nacelles. On the basis of these
geometrical characteristics, the interaction coefficient QN is defined according to the follow-
ing statement given in [9]: “For a nacelle or external store mounted directly on the fuselage or
wing, the interference factor QN is about 1.5. If the nacelle or store is mounted less than about one
diameter away, the QN factor is about 1.3. If it is mounted much beyond one diameter, the QN factor
approaches 1.0.”
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For the positive values of ZNAC, a linear evolution of QN is considered in the module:

If ZNAC > 0; QN = max(1, 1.5− 0.25
ZNAC
DFan

) (33)

For the negative values of ZNAC, the interference factor is considered at its maximum
value (i.e., 1.5), but we take into account the modification of the wetted surface of the nacelle
by imposing a minimum value of 1.0 to the factor. It leads to the following relationship:

If ZNAC < 0; QN = max

1.0, 1.5×

1−
acos

(
1 + 2 ZNAC

DFan

)
π

 (34)

Once this coefficient is evaluated, the global friction drag coefficient for the NENG
nacelles is obtained by the following relation:

CDENG = NENG ×
(
QNCDNAC1 + CDNAC2

)
(35)

where the individual friction drag coefficients for NAC1 and NAC2 are computed according
to Equation (25) with the form factor and wetted areas given in Table 2.
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3.4. Additional Drag Due to Lift

An additional profile of drag due to lift is considered for the wing. For each wing
segment, the additive drag is estimated according to the relation from [18]:

CDADD = 0.75 CDADDRe f

(
CL − CL0

CLMax − CL0

)2 √
1− (Mcosϕ25)

2 SSegment

SREF
(36)

where:

CDADDRe f
=

[
0.010 CLMax − 0.0046

(
1 + 2.75

(
t
c

)
+ 100

(
t
c

)4
)]

cos3 ϕ25 (37)

CLMax is the maximum lift coefficient of the wing estimated from Equation (12), and
CL0 is the minimum drag lift coefficient provided in the data file.

3.5. Wave Drag

For aircraft missions at transonic flight conditions, the drag increase due to compress-
ibility effects has to be considered. In the module, the estimation of this drag component
is based on the Korn equation [10]. In the original work, Korn gives an estimation of the
divergence Mach number for an airfoil as:

MDD = KA −
1
10

Cl −
(

t
c

)
(38)

The KA coefficient, referred to as the “Korn factor”, is an airfoil technology coefficient,
depending on the nature of the airfoil. It is proposed to use KA = 0.95 for “modern” super-
critical airfoils and KA = 0.87 for “conventional” airfoils. For wing segments corresponding
to a transition area with the fuselage on a BWB configuration, KA = 0.90 can be used.
However, Equation (38) is valid for 2D airfoils only. In order to have an estimation of MDD
for a wing section, the simple swept wing theory, considering a normal to the leading-edge
flow assumption, can be used:

M2D = M3D cos ϕ (39)

Cl = CL3D

1
cos2 ϕ

(40)(
t
c

)
2D

=

(
t
c

)
3D

1
cos ϕ

(41)

Introducing Equations (39)–(41) into Equation (38), the following relation for the 3D
swept wing section is obtained:

MDD =
KA

cos ϕ
− 1

10
Cl

cos3 ϕ
− 1

cos2 ϕ

(
t
c

)
(42)

Then, the local critical Mach number MCr is estimated according to:

MCr = MDD −
(

0.1
80

) 1
3
= MDD − 0.108 (43)

Finally, for a given wing subsection, the wave drag contribution is obtained:

I f M > MCr ; CD WAVE = 20 (M−MCr)
4 Selement

SREF
(44)

The total wave drag of the wing can be found by adding the contributions of all the
NDY wing subsections.
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3.6. Parasitic Drag

Finally, an additional parasitic drag (CDPARASITIC) (due to protuberances, antenna,
probes, paint, etc.) is considered. A general formulation used in the pre-design phase is to
consider this contribution as a percentage of the total friction drag:

CDPARASITIC = XPARA × CDFRICTION (45)

For an aircraft performance estimation, XPARA = 0.025 is generally used. However,
for a validation purpose with comparisons with the CFD results or experimental data in a
wind tunnel, XPARA = 0.0 has to be used.

4. Module Validation

The following chapters present the validation of the aerodynamic model on standard
tube and wing or blended wing–body configurations. The results obtained by the module
are compared to the CFD results or experimental data in terms of overall performance and
drag components when possible.

Note that all the drag coefficients presented are expressed in drag counts.

4.1. Standard Tube and Wing Configurations
4.1.1. ONERA NOVA Configuration

The first configuration considered is the Nextgen ONERA Versatile Aircraft
(NOVA) [19] (Figure 14), which is designed with a downward winglet element and different
engine configurations.
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Figure 14. ONERA NOVA Aircraft.

The aerodynamic flow conditions for this test case are a Mach number of M = 0.82 at
an altitude of Z = 11,300 m. For this configuration, drag decompositions using the ffd72
tools [20] of a different configuration are available, which makes it possible to compare
the lift-induced drag for the clean wing and the wing equipped with the winglet with a
negative cant angle δWLT = −18◦.

The comparison with the prediction from the aerodynamic module (Figure 15) shows
a quite good prediction of this drag component, even though only four wing segments are
used for the wing definition.

NOVA is a platform used to investigate the effect of the integration of ultra-high
bypass ratio (UHBR) engines. Different engine arrangements are available (Figure 16) that
make possible a first validation of the different nacelle interference ratios on drag.

Table 3 compares the drag increase for different engine installations for the NOVA
aircraft between the CFD results and the estimation from the module. A quite good agree-
ment can be found for the different cases proving that the formulation of the interference
factor for the nacelle is realistic.
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Table 3. NOVA configuration—drag increase (drag counts) for different engine installations.

ZNAC (m) Aerodynamic Module CFD

CL = 0.50 CD ∆CD ∆CD

Ref. (No Engine) – 210 – –

Baseline +10.00 232 +22 +28

Podded +0.75 244 +34 +34

BLI −0.50 226 +16 +18

4.1.2. NASA Common Research Model (CRM)

The second configuration considered for the validation exercise is the NASA CRM
model (Figure 17), for which both experimental and numerical data are available [21–23].
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Figure 18. CRM wing—data used by the aerodynamic module.

The flow conditions considered are the ones used for the different AIAA Drag Predic-
tion Workshop (DPW) exercises: model scale, 1/10; Mach number = 0.850; and Reynolds
number = 5.36 × 106.

Note that for the CRM configuration, the reference area used for the force coefficients
is not the geometrical wing one, as considered by the module (SWing = 411.806 m2), but a
modified trapezoidal one (“Wimpress” area = 383.69 m2). For the present comparisons, the
force coefficients considered for the CRM database (from CFD or experiments) are therefore
corrected in order to deal with this difference in SREF with a factor of 0.93172.

The first validation exercise considered the effect of the fuselage on the CL(α) curve.
Figure 19 compares the CL(α) curves from the aerodynamic module, with or without a
fuselage taken into account, with the CFD results from ONERA obtained within the DPW
framework. The module considers a zero-lift incidence of α0 = −1.55◦ to improve the
comparison. A quite good agreement can be observed for the estimation of the lift slope of
the wing–fuselage arrangement by the module with the CFD data.
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Figure 19. CRM configuration—fuselage effect on the CL(α) curve. Lines—aerodynamic module;
symbols—CFD.

Regarding the overall drag estimation, Figure 20 compares the CL(CD) curves com-
puted by the module with the CFD results from ONERA [23]. The drag coefficients from the
CFD results were obtained by the ffd72 far-field analysis tool [20] that allows the elimination
of the artificial spurious drag from the numerical solution and gives the drag breakdown of
the physical components (lift-induced, viscous and wave). It can be seen that the agreement
is quite good (∆CD = 1 d.c. maximum) between the module evaluation and the CFD results
up to lift coefficients of around 0.50 (using SREF = SWING) as well as for the wing–fuselage
configuration and for the wing–fuselage–horizontal tail planes case.
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When considering the different drag components, namely, lift-induced, viscous and
wave drag, a very good agreement can also be found (Figure 21). Some discrepancies can be
observed for CL values higher than 0.50 for viscous and wave drag, but in these conditions,
a separation can be found on the wing by CFD, which is not considered in the aerodynamic
module formulations.
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Figure 21. CRM configuration—drag components. Lines—aerodynamic module; symbols—CFD.
(a) Lift-induced. (b) Wave and viscous.

Finally, some experimental data are provided on the CRM website for a wing equipped
with or without through-flow nacelles. Due to their relative position with the wing surface,
nacelles are considered as out of interaction (QN = 1). It can be seen that the drag increment
found experimentally is correctly predicted by the aerodynamic module (Figure 22).
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4.1.3. CRM-NLF Configuration

The next validation exercise considers the CRM model with a modified wing with a
natural laminar flow on the upper surface. This CRM-NLF wing has been designed for tests
in the NASA NTF wind tunnel [24–26], and some experimental results are provided on
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the NASA CRM website. The data used for the CRM reference plane are modified for the
inboard wing section in order to take the wing planform change (Figure 23) into account.
Similar to the CRM reference case, the experimental data are corrected in order to take the
change in the reference wing area into account.
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Figure 23. CRM-NLF geometry used by the aerodynamic module.

The flow conditions used for the validation are similar to the NTF ones: a Mach
number of M = 0.8565 and a Reynolds number of 15×106. The NLF capabilities of the
aerodynamic module are considered for this validation exercise, but wing lower surfaces
are considered turbulent, as during the wind tunnel tests. The estimated maximum location
of the transition point on different wing sections is presented in Figure 24 at CL = 0.50
for the wind tunnel flow conditions. It can be seen that an extended natural laminar flow
is possible (around 50%) for a large portion of the wing, except for some portions of the
inboard wing, which are more limited in terms of NLF capabilities.
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Figure 24. CRM-NLF configuration—estimated maximum transition location by the module
(M = 0.8565, Re = 15 × 106, CL = 0.50).

Then, these values are considered as the XLammax parameter, as shown in Figure 11,
the location of the transition point XLam is computed for each CL considering CLAdapt = 0.50.
The comparison of the transition line estimated by the module at CL = 0.425, with infrared
pictures available on the CRM website, is presented in Figure 25. It can be seen that, though
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not exact, the laminar flow extent estimated by the module is quite realistic, especially on
the outboard wing.
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4.1.4. NLF Regional Aircraft Configuration 
The CRM-NLF configuration considered laminar flow on the upper wing only. In 

order to evaluate the performance prediction capabilities of the aerodynamic model for a 
wing in which laminar flow extents on both surfaces, we considered the AG2-NLF wing 

Figure 25. CRM-NLF configuration—transition line estimated by the module at
CL = 0.425—comparison with experimental infrared image.

Moreover, of most importance is the evaluation of the effect of this laminar flow
extent on the overall performance. Figure 26 compares the CL(α) and the CL(CD) curves
from the aerodynamic module with the experimental data. A zero-lift angle of attack of
α0 = −0.90◦ is considered to improve the comparison for the CL(α) curve. For comparison,
the performances estimated by the module in fully turbulent mode are presented in dashed
lines. It can be seen that the agreement on the drag evaluation is quite good for NLF flow
conditions around the different CL values available (between 1.5 d.c. and 3 d.c.).
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4.1.4. NLF Regional Aircraft Configuration

The CRM-NLF configuration considered laminar flow on the upper wing only. In order
to evaluate the performance prediction capabilities of the aerodynamic model for a wing in
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which laminar flow extents on both surfaces, we considered the AG2-NLF wing design by
ONERA in the framework of the Clean Sky 2 AIRGREEN2 program. The reference aircraft
considered is a 90-pax turboprop configuration with wing airfoils redesigned by ONERA
at cruise conditions for natural laminar flow capabilities [27–29]. This configuration is
referred to as AG2-NLF. Figure 27 presents the complete configuration, which considers
some winglets, an under-carriage fairing and a wing–body junction Karman that are not
modeled in the aerodynamic module. In order to take into account the effect of the Karman
on the viscous drag, the first wing section is considered a thick airfoil (t/c = 40%) with a
leading-edge sweep of 30◦ at the symmetry plane.
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As the module is used for an MDAO design process of BWB configurations, it is 

important to check if the formulations used are valid for such configurations with high 
values of leading-edge sweep angle. 

4.2.1. AVECA 

Figure 27. AG2-NLF configuration—data used by the aerodynamic module (4 wing sections).

The flow conditions are a Mach number of M = 0.52 at an altitude of Z = 6100 m
(20,000 ft). The NLF capabilities of the module are evaluated by comparison with 3D
RANS results obtained by the ONERA elsA software with integrated transition prediction
capabilities [30]. The results are presented in Figure 28. The zero-lift angles of attack
considered for the CL(α) curves are α0 = −1.7◦ for turbulent conditions and α0 = −1.96◦

for the NLF aircraft. It can be seen that the agreement on the drag evaluation is quite good
for both the turbulent and NLF flow conditions at around CL_Adapt = 0.50, with a difference
of less than 1 point in LoD.
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4.2. BWB Configurations

As the module is used for an MDAO design process of BWB configurations, it is
important to check if the formulations used are valid for such configurations with high
values of leading-edge sweep angle.
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4.2.1. AVECA

The first BWB configuration considered is one of the optimized planforms of the
AVECA project [31,32]. AVECA is a long-range BWB configuration designed by Airbus.
Several wing planforms, considering some changes in the geometrical characteristics or
different volume constraints for the passenger cabin or cargo, have been optimized by
ONERA using the adjoint method. One of the optimized configurations is selected for the
validation purpose considering only four wing segments or five wing sections (Figure 29),
which is very crude. The flow conditions are a Mach number of M = 0.850 at an altitude
of Z = 11,000 m. The results of the aerodynamic module are compared to the CFD results
post-processed with the ffd72 tool in order to obtain the drag breakdown between the
different drag components. Note that the engines were not considered for both CFD and
the module.
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Figure 30 compares the CL(α), with a zero-lift angle of attack of α0 = +0.175° to im-
prove the comparison, and the CL(CD) curves from the aerodynamic module (continuous 
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Figure 29. AVECA BWB configuration—data used by the aerodynamic module (5 wing sections).

Figure 30 compares the CL(α), with a zero-lift angle of attack of α0 = +0.175◦ to improve
the comparison, and the CL(CD) curves from the aerodynamic module (continuous lines)
with the CFD results (symbols). It can be seen that the agreement on the lift slope and on
the total drag evaluation is quite good. Similarly, a very good correlation can be found
on the different drag components (lift-induced, viscous and wave) presented in Figure 31,
with a small underestimation of the viscous drag by the module.

Aerospace 2022, 9, x FOR PEER REVIEW 22 of 27 
 

 

The first BWB configuration considered is one of the optimized planforms of the 
AVECA project [31,32]. AVECA is a long-range BWB configuration designed by Airbus. 
Several wing planforms, considering some changes in the geometrical characteristics or 
different volume constraints for the passenger cabin or cargo, have been optimized by 
ONERA using the adjoint method. One of the optimized configurations is selected for 
the validation purpose considering only four wing segments or five wing sections 
(Figure 29), which is very crude. The flow conditions are a Mach number of M = 0.850 at 
an altitude of Z = 11,000 m. The results of the aerodynamic module are compared to the 
CFD results post-processed with the ffd72 tool in order to obtain the drag breakdown be-
tween the different drag components. Note that the engines were not considered for 
both CFD and the module. 

 
Figure 29. AVECA BWB configuration—data used by the aerodynamic module (5 wing sections). 

Figure 30 compares the CL(α), with a zero-lift angle of attack of α0 = +0.175° to im-
prove the comparison, and the CL(CD) curves from the aerodynamic module (continuous 
lines) with the CFD results (symbols). It can be seen that the agreement on the lift slope 
and on the total drag evaluation is quite good. Similarly, a very good correlation can be 
found on the different drag components (lift-induced, viscous and wave) presented in 
Figure 31, with a small underestimation of the viscous drag by the module. 

  
(a) (b) 

Figure 30. AVECA BWB configuration—global aerodynamic performances (M = 0.85, Re = 180 × 
106). Lines—aerodynamic module; symbols—CFD. (a) CL(α). (b) CL(CD). 

Figure 30. AVECA BWB configuration—global aerodynamic performances (M = 0.85, Re = 180 × 106).
Lines—aerodynamic module; symbols—CFD. (a) CL(α). (b) CL(CD).



Aerospace 2023, 10, 7 23 of 27
Aerospace 2022, 9, x FOR PEER REVIEW 23 of 27 
 

 

  
(a) (b) 

Figure 31. AVECA BWB configuration—drag components. Lines—aerodynamic module; sym-
bols—CFD. (a) Lift-induced. (b) Wave and viscous. 

4.2.2. NACOR-SMILE Configuration 
The second BWB configuration considered for the validation exercise is the opti-

mized SMILE planform from the CS2 NACOR program. This configuration is designed 
for a short–medium range (SMR) mission, similar to the A320 aircraft. Therefore, com-
pared to the AVECA configuration, its span is much smaller (36 m for SMILE, 80 m for 
AVECA). It should be noted that the aerodynamic module is used within the OAD-
MDAO definition phase, but the final optimization details are carried out using the CFD 
methods [33]. 

Figure 32 compares a CAD rendering of the final optimized shape with the data 
used by the aerodynamic module. Only six wing sections are considered to model the 
BWB planform. Winglet and nacelles are also considered for the performance evalua-
tions by the module. 

 

Figure 32. SMILE BWB configuration—data used by the aerodynamic module (6 wing sections). 

Figure 33 compares the CL(α), with a zero-lift angle of attack of α0 = −0.225° to im-
prove the comparison, and the CL(CD) curves from the module with the CFD results. It 
can be seen that the agreement on the lift slope and on the drag evaluation is quite good. 
Similarly, a very good correlation can be found on the different drag components (lift-
induced, viscous and wave) presented in Figure 34. 

Figure 31. AVECA BWB configuration—drag components. Lines—aerodynamic module;
symbols—CFD. (a) Lift-induced. (b) Wave and viscous.

4.2.2. NACOR-SMILE Configuration

The second BWB configuration considered for the validation exercise is the optimized
SMILE planform from the CS2 NACOR program. This configuration is designed for a
short–medium range (SMR) mission, similar to the A320 aircraft. Therefore, compared to
the AVECA configuration, its span is much smaller (36 m for SMILE, 80 m for AVECA). It
should be noted that the aerodynamic module is used within the OAD-MDAO definition
phase, but the final optimization details are carried out using the CFD methods [33].

Figure 32 compares a CAD rendering of the final optimized shape with the data used
by the aerodynamic module. Only six wing sections are considered to model the BWB
planform. Winglet and nacelles are also considered for the performance evaluations by
the module.

Aerospace 2022, 9, x FOR PEER REVIEW 23 of 27 
 

 

  
(a) (b) 

Figure 31. AVECA BWB configuration—drag components. Lines—aerodynamic module; sym-
bols—CFD. (a) Lift-induced. (b) Wave and viscous. 

4.2.2. NACOR-SMILE Configuration 
The second BWB configuration considered for the validation exercise is the opti-

mized SMILE planform from the CS2 NACOR program. This configuration is designed 
for a short–medium range (SMR) mission, similar to the A320 aircraft. Therefore, com-
pared to the AVECA configuration, its span is much smaller (36 m for SMILE, 80 m for 
AVECA). It should be noted that the aerodynamic module is used within the OAD-
MDAO definition phase, but the final optimization details are carried out using the CFD 
methods [33]. 

Figure 32 compares a CAD rendering of the final optimized shape with the data 
used by the aerodynamic module. Only six wing sections are considered to model the 
BWB planform. Winglet and nacelles are also considered for the performance evalua-
tions by the module. 

 

Figure 32. SMILE BWB configuration—data used by the aerodynamic module (6 wing sections). 

Figure 33 compares the CL(α), with a zero-lift angle of attack of α0 = −0.225° to im-
prove the comparison, and the CL(CD) curves from the module with the CFD results. It 
can be seen that the agreement on the lift slope and on the drag evaluation is quite good. 
Similarly, a very good correlation can be found on the different drag components (lift-
induced, viscous and wave) presented in Figure 34. 

Figure 32. SMILE BWB configuration—data used by the aerodynamic module (6 wing sections).

Figure 33 compares the CL(α), with a zero-lift angle of attack of α0 = −0.225◦ to
improve the comparison, and the CL(CD) curves from the module with the CFD results.
It can be seen that the agreement on the lift slope and on the drag evaluation is quite
good. Similarly, a very good correlation can be found on the different drag components
(lift-induced, viscous and wave) presented in Figure 34.
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5. Computing Performances

The use of analytical formula allows quite fast computing times for this module, which
makes it quite useful for its use within a multi-disciplinary optimization/design process
where a large number of configurations are considered. As an example, for a complete
aircraft configuration, as the CRM case presented, the data file considers about 90 lines
only (including comments), and the computing time to obtain one complete CL(CD) curve
(~120 values) is in the order of 1 sec on a working station (DELL Precision 3630).

6. Conclusions

In the framework of a multi-disciplinary design analysis and optimization process
for BWB configurations, an analytic aerodynamic module was developed in order to
evaluate the aerodynamic lift and drag components of different wing planforms and
aircraft architectures with a fast restitution time.
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The module considered analytic formulations derived from the theory, literature or
from statistical data. Some validation exercises showed that it could be used to estimate the
aerodynamic performances of T&W and BWB configurations within an MDAO pre-design
process for subsonic cruise flight conditions with a quite satisfactory level of accuracy.
The lift slope, the total and individual drag components (lift-induced, viscous and wave)
estimated by the module were in quite good agreement with the reference data issued from
the numerical and experimental data. In addition, the effects of different elements on the
performance, such as fuselage, winglets, nacelles and tail surfaces, were well captured by
the module. Finally, the performance of the wings using laminar flow technologies (NLF or
HLF) could be estimated with a quite good level of accuracy for use in a pre-design phase.

However, it is important to note that this module cannot be used for detailed optimiza-
tion (airfoil shape, wing twist or camber, nacelle positions). For instance, the module will
estimate the same performances for two wings with similar planform and airfoil thickness
evolution with span. These fine optimization steps should be considered in the next stage
of the aircraft design process, using more advanced numerical methods once the general
architecture is defined in the preliminary phase.
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Nomenclature

b Wing span (m)
c Airfoil chord (m)
d.c. Drag count (CD × 104)
t Airfoil thickness
z Altitude (m or km)
P Pressure (Pa)
T Temperature (K)
V Velocity (m/s)
X Coordinate in the streamwise direction (m)
Y Coordinate in the spanwise direction (m)
LoD Lift over drag ratio
M Mach number
MDD Divergence Mach number
MCr Critical Mach number
N Number of components
Re Reynolds number
FF Form factor
QN Interference factor for nacelles
Osw Oswald factor
SWING Wing area (m2)
SREF Reference area (m2)

https://commonresearchmodel.larc.nasa.gov/
https://aiaa-dpw.larc.nasa.gov/
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Cl Local (airfoil) lift coefficient
CL Lift coefficient
CD Drag coefficient
KA Airfoil Korn factor
XTra Index for turbulent or laminar flow computations
XLam Laminar flow extent (%)
NDY Number of wing section subdivisions
AMC Aerodynamic mean chord (m)
Greek Symbols
α Angle of attack (◦)
δ Parameter for Oswald factor
δWLT Winglet cant angle (◦)
λ Wing aspect ratio
ρ Air density (kg/m3)
µ Dynamic viscosity (kg/(ms))
ϕ Sweep angle (◦)
ε Wing taper ratio
Subscripts
LE Leading-edge
TE Trailing-edge
FUS Fuselage
WLT Winglet
ENG Engines
NAC1 Nacelle or Fan
NAC2 Turbine
TAIL Tail surfaces
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