# Influence of the Projectile Rotation on the Supersonic Fluidic Element

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Flow Controlling Equations

#### 2.2. Turbulence Model

#### 2.3. Geometric Models, Boundary Conditions and Computational Grids

#### 2.4. Computing Method

#### 2.5. Numerical Method Validation

_{test}represents the resultant thrust value in the x direction measured through experiments, f

_{l}and f

_{r}represent the calculated thrust values of the left and right nozzles in the x direction, and F represents the resultant thrust of f

_{l}and f

_{r}. It can be seen that the relative error was within ±5%, which suggests that the numerical method adopted in this paper is reliable.

## 3. Results and Discussion

#### 3.1. Effect of Projectile Rotation on the External Jet Flow of a Single Supersonic Fluidic Element

#### 3.2. Effect of Projectile Rotation on the External Jet Flow of Two Supersonic Fluidic Elements

#### 3.3. Effect of Projectile Rotation on the Internal and External Flow Fields of the Supersonic Fluidic Element

^{−4}s. When the rotating speed is lower than 50 r/s, the deviation of the switching time is less than 5%, so the projectile rotation has little influence on the switching time.

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Correction Statement

## References

- Zhang, J.; Wang, Y.; Tan, J.; Zhu, G.; Liu, J. Numerical study of the switching mechanism of a jet valve using the meshless method. Adv. Mech. Eng.
**2021**, 13, 16878140211030066. [Google Scholar] [CrossRef] - Mair, M.; Bacic, M. Fluid Dynamics of a Bistable Diverter Under Ultrasonic Excitation—Part I: Performance Characteristic. J. Fluids Eng.
**2021**, 143, 071201. [Google Scholar] [CrossRef] - Mair, M.; Bacic, M.; Chakravarthy, K.; Williams, B. Fluid Dynamics of a Bistable Diverter Under Ultrasonic Excitation—Part II: Flow Visualization and Fundamental Mechanisms. J. Fluids Eng.
**2021**, 143, 071202. [Google Scholar] [CrossRef] - Schweitzer, T.; Hörmann, M.; Bühling, B.; Bobusch, B. Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing. Fluids
**2021**, 6, 171. [Google Scholar] [CrossRef] - Bühling, B.; Strangfeld, C.; Maack, S.; Schweitzer, T. Experimental analysis of the acoustic field of an ultrasonic pulse induced by a fluidic switch. J. Acoust. Soc. Am.
**2021**, 149, 2150–2158. [Google Scholar] [CrossRef] [PubMed] - Park, S.; Ko, H.; Kang, M.; Lee, Y. Characteristics of a supersonic fluidic oscillator using design of experiment. AIAA J.
**2020**, 58, 2784–2789. [Google Scholar] [CrossRef] - Lee, E.; Cha, S.; Kwon, H.; Roh, T.; Lee, H. A Numerical Study on the Characteristics of Air–Fuel Mixing Using a Fluidic Oscillator in Supersonic Flow Fields. Energies
**2019**, 12, 4758. [Google Scholar] [CrossRef] - Reisch, U.; Meuer, R. CFD-simulation of the flow through a fluidic element. Aerosp. Sci. Technol.
**2000**, 4, 111–123. [Google Scholar] [CrossRef] - Bai, Y.; Ming, X. Numerical Simulation of Wall-Attached Jet Device. J. Nanjing Univ. Aeronaut. Astronaut.
**2008**, 40, 32–36. [Google Scholar] - Roger, R.; Chan, S. Numerical Study of Fluidic Bistable Amplifiers. In Proceedings of the Aiaa Fluid Dynamics Conference & Exhibit, Orlando, FL, USA, 23–26 June 2013. [Google Scholar]
- Wang, N.; Xu, Y.; Zhang, G. Study of the Flow Structure in Supersonic Fluidic Element with Numerical Calculation Method. In Proceedings of the 2022 4th International Conference on Advances in Computer Technology, Suzhou, China, 22–24 April 2022. [Google Scholar]
- Wang, N.; Xu, Y.; Zhang, G. Computational Investigation of the Internal Flow Characteristics of Supersonic Fluidic Element. In Proceedings of the 2022 4th International Conference on Advances in Computer Technology, Suzhou, China, 22–24 April 2022. [Google Scholar]
- Murao, T.; Sudou, K. Numerical Analysis of the Behavior of the Jet in a Wall-Attachment Fluid Amplifier During the Switching Process. Trans. Soc. Instrum. Control Eng.
**2009**, 36, 364–366. [Google Scholar] [CrossRef] - Xu, Y.; Zhang, G.Q.; Wang, F. Numerical Simulation of the Viscous Flow for the Supersonic Jet Element. Adv. Mater. Res.
**2011**, 189–193, 2362–2365. [Google Scholar] - Xu, Y.; Zhang, G.Q. Influence of flow parameters on the dynamic performance for the supersonic jet element. Acta Astronaut.
**2019**, 163, 177–188. [Google Scholar] [CrossRef] - Xu, Y.; Zhang, G.Q.; Wang, F. Investigation of the unsteady flow for the supersonic jet element. Adv. Mater. Res.
**2011**, 201–203, 2178–2181. [Google Scholar] [CrossRef] - Xu, Y.; Zhang, G.Q. Switching mechanism investigation for the supersonic jet element: Deflection, attachment and adjustment stages. Acta Astronaut.
**2019**, 163, 208–224. [Google Scholar] [CrossRef] - Xu, Y.; Zhang, G.Q. Numerical investigation of switching mechanism for the supersonic jet element. Acta Astronaut.
**2017**, 136, 342–353. [Google Scholar] [CrossRef] - Yong, X. The Flow Simulation in the Fluidic Amplifier. Open Autom. Control Syst. J.
**2011**, 3, 8–12. [Google Scholar] - Yong, X.; Yang, S.; Bo, M. Three dimension numerical simulation of a jet device control channel. Chin. J. Comput. Mech.
**2002**, 19, 31–35. [Google Scholar] - Sun, N.; Wang, J.; Ma, X.; Niu, L. Influence Factors of Light-Small Supersonic Fluidic Element on Performance. J. Propuls. Technol.
**2019**, 40, 525–531. [Google Scholar] - Peng, J.M.; Yin, Q.L.; Li, G.L.; Liu, H.; Wang, W. The effect of actuator parameters on the critical flow velocity of a fluidic amplifier. Appl. Math. Model.
**2013**, 37, 7741–7751. [Google Scholar] [CrossRef] - Peng, J.M.; Zhang, Q.; Li, G.L.; Chen, J.W.; Gan, X.; He, J.F. Effect of geometric parameters of the bistable fluidic amplifier in the liquid-jet hammer on its threshold flow velocity. Comput. Fluids
**2013**, 82, 38–49. [Google Scholar] [CrossRef] - Peng, Z.; Yao, X. The Modeling and Simulation of a Kind of Jet Elements. J. Proj. Rocket. Missiles Guid.
**2009**, 29, 52–54. [Google Scholar] - Zhang, Z.B.; Wu-Ju, M.A. Simulation and Test of a Kind of Jet Element. Comput. Simul.
**2016**, 33, 76–79. [Google Scholar] - Wuju, M.; Xia, Q. The Effect of Jet Element Switch Time on Guidance Precision of Spinning Missile. J. Proj. Rocket. Missiles Guid.
**2013**, 33, 5–7. [Google Scholar] - Anderson, J.D.; Wendt, J. Computational Fluid Dynamic; McGraw-Hill: New York, NY, USA, 1995; pp. 83–88. [Google Scholar]
- Abraham, J.; Magi, V. Computations of Transient Jets: RNG k-e Model versus Standard k-e Model; Technical Report; SAE International: Warrendale, PA, USA, 1997. [Google Scholar] [CrossRef]

**Figure 8.**Mach number contours of external jet flow field at different rotational angular velocities: (

**a**) 0 r/s, (

**b**) 5 r/s, (

**c**) 10 r/s, (

**d**) 20 r/s.

**Figure 9.**Diagram of total pressure at symmetrical axis of the jet changing with distance from nozzle exit.

**Figure 10.**Mach number contours of two parallel external jets at different rotational angular velocities: (

**a**) 0 r/s, (

**b**) 5 r/s, (

**c**) 10 r/s, (

**d**) 20 r/s.

**Figure 13.**Mach number contours of the whole flow field at different rotational angular velocities: (

**a**) 0 r/s, (

**b**) 10 r/s, (

**c**) 20 r/s, (

**d**) 50 r/s.

**Figure 14.**Total pressure contours at different rotational angular velocities: (

**a**) 0 r/s, (

**b**) 20 r/s, (

**c**) 50 r/s.

**Figure 15.**Distribution of shear stress on the right wall of supersonic fluidic element at different rotational angular velocities.

**Figure 16.**Density distribution of the right wall of the supersonic fluidic element at different rotational angular velocities.

**Figure 17.**Velocity distribution along the symmetrical axis of supersonic fluidic elements at different rotational angular velocities.

**Figure 18.**Temperature distribution along the symmetrical axis of supersonic fluidic elements at different rotational angular velocities.

**Figure 19.**Static pressure distribution of the right nozzle exit at different rotational angular velocities.

**Figure 20.**Thrust distribution along the right nozzle exit at different rotational angular velocities.

**Figure 21.**Static pressure distribution of the left nozzle exit at different rotational angular velocities.

**Figure 22.**Thrust distribution along the left nozzle exit at different rotational angular velocities.

P (MPa) | F_{test} (N) | f_{r} (N) | f_{l}(N) | F(N) |
---|---|---|---|---|

4 | 106.0 | 108.91 | 4.43 | 104.48 |

6 | 179.3 | 186.87 | 6.43 | 180.44 |

7 | 202.8 | 220.68 | 8.55 | 212.12 |

8 | 239.9 | 263.05 | 18.04 | 245.01 |

9 | 275.4 | 296.36 | 21.78 | 274.58 |

Ω (r/s) | T (ms) | E (%) |
---|---|---|

0 | 2.230 | / |

5 | 2.229 | 0.045 |

10 | 2.226 | 0.179 |

20 | 2.220 | 0.448 |

50 | 2.132 | 4.395 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, Y.; Wang, N.
Influence of the Projectile Rotation on the Supersonic Fluidic Element. *Aerospace* **2023**, *10*, 35.
https://doi.org/10.3390/aerospace10010035

**AMA Style**

Wang Y, Wang N.
Influence of the Projectile Rotation on the Supersonic Fluidic Element. *Aerospace*. 2023; 10(1):35.
https://doi.org/10.3390/aerospace10010035

**Chicago/Turabian Style**

Wang, Yufang, and Nannan Wang.
2023. "Influence of the Projectile Rotation on the Supersonic Fluidic Element" *Aerospace* 10, no. 1: 35.
https://doi.org/10.3390/aerospace10010035