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Abstract: The increasing demand for high-fidelity simulations of compressible turbulence on complex
geometries poses a number of challenges for numerical schemes, and plenty of high-order methods
have been developed. The high-order methods may encounter spurious oscillations or even blow
up for strongly compressible flows, and a number of approaches have been developed, such as
slope limiters and artificial viscosity models. In the family of artificial viscosity, which measures
smoothness using the modal coefficients, the averaged modal decay (MDA) model employs all of the
modes instead of only the highest mode as in the highest modal decay (MDH) model, which tends to
underestimate the smoothness. However, the MDA approach requires high-order accuracy (usually
P ≥ 4) to deliver a reliable estimation of smoothness. In this work, an approach used to extend
the MDA model to lower orders, such as P2 and P3, referred to as MDAEX, was proposed, where
neighboring elements were incorporated to involve more information in the estimation process. A
further controlling of the value of artificial viscosity was also introduced. The proposed model was
applied to several typical benchmark cases and compared with other typical models. The results
show that the MDAEX model recovers the expected accuracy better than the MDA model for P2 and
P3 and captures flow structures well for shock-dominated flows.

Keywords: flux reconstruction; shock capturing; artificial viscosity

1. Introduction

Currently, there is an increasing demand for high-fidelity simulations of compressible
turbulence on complex geometries, which poses a number of challenges for numerical
schemes. In this context, an ideal method should be able to achieve high-order accuracy
for broadband solutions on unstructured meshes while retaining a good efficiency for
modern computer hardware. High-order finite difference methods are well-known for their
good accuracy and efficiency, but require block-structured grids of high quality, which is a
challenging task for complex geometries [1]. Finite volume methods are naturally adapted
for unstructured grids, but require extensive stencils for high-order accuracy [2]. In the last
few decades, plenty of high-order methods, including discontinuous Galerkin (DG) [3],
spectral difference (SD) [4] and flux reconstruction (FR) [5] or correction procedure via
reconstruction (CPR) [6] methods, have been developed.

Despite the superior accuracy with smooth flows, the high-order methods tend to
generate spurious oscillations or even blow up for strongly compressible flows. Various
methods have been developed to address this issue [7], such as slope limiters, weighted
essentially non-oscillatory (WENO) limiters and artificial viscosity models. Slope limiters
rely on an indicator to identify troubled cells where the linear mode is limited, and discard
components of higher order [8]. A major problem with slope limiters is their detrimental
effect on the high-order accuracy [9,10]. For WENO limiters, troubled cells are identified
first as well [11]. Instead of limiting the linear mode, WENO reconstruction is conducted
for point-wise values or modal coefficients in troubled cells. In [12,13], only cell averages
were used for reconstruction, requiring a large stencil for high orders. To relieve this issue,
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Hermite WENO (HWENO) limiters [14–16] were introduced, which use both cell averages
and derivatives for reconstruction, reducing the size of the stencil. The rationale behind
the HWENO limiter is that more information in the immediate neighborhood is involved,
deriving a compact stencil. Zhong et al. [17] and Zhu et al. [18] proposed reconstructing the
entire polynomials, i.e., the polynomials on each troubled cell and its immediate neighbors
are used directly. The consequent method is compact and accurate. However, it is difficult
to extend this method to higher order cases (typically higher than third order) due to the
stability issue of extrapolation.

Another promising family of approaches for shock capturing is artificial viscosity models.
In the context of finite difference methods, Cook et al. [19,20] proposed an artificial viscosity
model based on high-order derivatives of dilation. After that, a number of improvements
were made in order to apply the artificial viscosity model for wider use, such as supersonic
reacting flows [21] and preparation for large eddy simulation with shocks [22,23]. Further-
more, this strategy was extended to the spectral volume method [24] and DG [25]. Note that
computing higher-order derivatives is complex and expensive, especially for unstructured
grids. Another strategy is to determine the amount of the added artificial viscosity by the
entropy production [26,27]. Furthermore, Chaudhuri et al. [28] extended the method to
viscous flows by reducing artificial dissipation in the viscous region. A third approach
proposes the use of the decay rate of the modal coefficients to measure smoothness [29].
This method originates from the analogy to the Fourier expansion, i.e., the Pth mode scales
as 1/P2 for a continuous function. Note that, in [29], only the highest mode was employed
to estimate the smoothness, and the smoothness tended to be underestimated. In order
to involve more information about the modal decay, an averaged modal decay model
is presented to employ all of the modes (except the first mode, which indicates the cell
average) to estimate the decay rate [30]. This approach is referred to as the MDA model.
However, it has been recognized that modal decay approaches require high-order accuracy
(usually P ≥ 4) to deliver a reliable estimation of smoothness, which limits the scope of the
effective application of this approach. For low orders, such as P2 or P3, the MDA model
often behaves as overly dissipative.

In this work, we propose an approach used to extend the MDA model to low orders
(i.e., P ≤ 3), where neighboring elements are incorporated to introduce more information
on the solutions. Furthermore, artificial viscosity is supposed to scale as O(h) around
discontinuities, and O(hP+1) in smooth regions. Since the MDA model is able to deliver
a specific value of the smoothness, the above scaling property is enforced in an explicit
manner. The proposed model provides an approach used to apply the MDA model to
low orders with a more reliable estimation of smoothness. This paper is organized in
the following manner. Section 2 describes the governing equations and the numerical
discretization methods used in this paper. Section 3 briefly introduces the modal-decay-
based discontinuity sensor, including the MDH model, the MDA model and the extension
of the MDA model to lower orders. Section 4 shows several benchmark test cases to
demonstrate the performance of the propose method, followed by some conclusions in
Section 5.

2. Numerical Methods
2.1. Governing Equations

The conservation law is given as

∂q
∂t

+∇ · f −∇ · g = 0 , (1)

where q is the state variables, f is the convective flux and g is the viscous flux. In this paper,
g provides artificial diffusion for the purpose of stabilizing shocks, and takes the Laplacian
form given by

g = µw , w = ∇q , (2)
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where µ is the coefficient of artificial viscosity, which will be described in more detail below.

2.2. Flux Reconstruction Method

The conservation law is discretized by the high-order flux reconstruction (FR) scheme.
Considering a one-dimensional case for simplicity, first, the computational domain Ω is
divided into non-overlapping elements Ωh. A degree P polynomial defined on a set of
N = P + 1 points (solution points, SPs) is used to represent the solution and the flux in the
element. In this paper, the SPs were located at the Legendre–Gauss points. By adopting Np
solution points, the 1-D Lagrange basis polynomial of Np − 1 degree is

li(x) =
Np

∏
j=1,j 6=i

(
x− xj

xi − xj

)
, i = 1, ..., Np . (3)

Once given the values at the SPs, the solution q in the element Ωh is approximated by
qh, which is defined by:

qh(x) =
Np

∑
i=1

qh(xi) · li(x) , (4)

where qh(xi) is the value of the solution at SP located by xi. The flux polynomial f (x)
of order P can be expressed in a similar manner. Note that qh(x) and f (x) are both
Pth-order piece-wise continuous polynomials and might not be continuous across the
interfaces between the elements. The solution polynomial is then extrapolated to the
interfaces, forming left and right interface states qL and qR on each element. Then, the
common numerical flux f ∗ can be calculated from f (qL) and f (qR) on the interface via
an approximate Riemann solver such as the Roe method [31] for the inviscid flux and the
CDG [32] method for the viscous flux.

In the FR approach, the discontinuous polynomial of flux is then made continuous by
introducing correction functions, which are given by:

∆ f (x) = [ f ∗L − f (−1)]gL(x) + [ f ∗R − f (1)]gR(x) , (5)

where f ∗L and f ∗R denote the common interface fluxes on left and right interfaces, f (−1)
and f (1) are extrapolated states of the flux polynomial f (x) on left and right interfaces and
gL(x) and gR(x) are left and right correction functions that are order P + 1 polynomials
and satisfy boundary conditions:

gL(−1) = 1 , gL(1) = 0 , (6)

gR(−1) = 0 , gR(1) = 1 . (7)

Then the corrected continuous flux f C is given by

f C(x) = f (x) + ∆ f (x) . (8)

Finally, the divergence of the continuous flux is calculated at the solution points to
update the solution. In this paper, the left and right Radau polynomials were chosen as
correction functions gL and gR, respectively, which recover the standard DG scheme [5].
The strong stability preserving five-stage fourth-order Runge–Kutta (SSPRK54) [33] was
adopted for explicit time integration in the numerical experiments in this paper.
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3. Shock-Capturing Model
3.1. Modal-Decay-Based Discontinuity Sensor

To help understand the mechanism of the modal-decay-based discontinuity sensor,
the continuous Fourier expansion of q(r), r ∈ [−1, 1] is introduced as

qh(r) =
N

∑
m=−N

q̈m exp(iπmr) , (9)

If q(r) ∈ Cτ and is periodic, we have [7]

|q̈m| ∝
1

mτ+1 , |q̈(n)m | ∝
1

mτ+1−n . (10)

In [29], a modal decay model was proposed to relate the strength of the discontinuity
to the decay rate of the modal expansion coefficients. For this model, a truncated solution
is first introduced as

q̃h =
NP−1−1

∑
m=0

q̂m ϕm . (11)

Then, the discontinuity sensor is defined as the energy fraction contained in the highest
mode, i.e.,

S =
‖ qh − q̃h ‖2

L2

‖ qh ‖2
L2

, (12)

where ‖ · ‖L2 denotes the standard L2 norm on element K. By invoking an analogy to the
Fourier expansion, S should scale as 1/P4 if q(r) ∈ C1 and ϕm is orthonormal. In principle,
artificial viscosity is required when S > 1/P4. This model is referred to as the highest
modal decay (MDH) model due to its dependence on the highest mode only.

The MDH model shows, in a qualitative manner, how a large value of the sensor
S indicates that a problem exists. However, it is still difficult to identify an accurate
scaling with only the highest mode given the oscillatory modal coefficients [7] and the
insufficient information. As a result, the MDH model often underestimates the smoothness.
To overcome this issue, more information in the modal expansion should be used to
determine the decay rate more accurately. This is the motivation behind the model proposed
by Klöckner et al. [30]

In order to illustrate the idea, we return to the Fourier case again. Equation (10) is
attributed to the following relation:∥∥∥∥ d

dx
exp(inx)

∥∥∥∥Lm

x∈(−π,π)

= n
∥∥exp(inx)

∥∥Lm

x∈(−π,π)
, for m ∈ [1, ∞) . (13)

A polynomial analogy is also available, given as

∥∥∥∥ d
dr

ϕm

∥∥∥∥L2

r∈(−1,1)
≤
√

3n2∥∥ϕm
∥∥L2

r∈(−1,1) . (14)

Therefore, we first assume that the modal coefficients scale as

|q̂m| ' Cm−τ . (15)

Taking the logarithm on both sides of Equation (15), we have

log|q̂m| ' log(C)− τlog(m) . (16)
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The decay rate τ is computed in a least-squared manner from the following problem:

NP−1

∑
m=1

(log|q̂m| − (log(C)− τlog(m)))2 . (17)

Note that the cell average is not included when determining the decay rate by
Equation (17). Therefore, when the solution is constant with slight oscillations, the sensor
would sense the oscillations and yield a decay rate of nearly zero. This is clearly unde-
sirable as it would produce an overly large dissipation. To address this issue, a baseline
modal decay needs to be introduced. Furthermore, the estimation method assumes that the
modal coefficients decay monotonously, which is usually not the case. A skyline procedure
is required to fix this. The detailed algorithm can be found in Algorithm 1. Since the
smoothness is measured in an averaged sense, the model is called the averaged modal
decay (MDA) model. The expected decay rate τ for different situations is given as

τ =


1, q is discontinuous ,

2, q ∈ C0 \ C1 ,

3, q ∈ C1 \ C2 .

(18)

Algorithm 1: Discontinuity sensor of MDA

1: function SensorMDA(qh(r, t))
2: Fix with baseline modal decay:
3: Construct a perfect modal decay as:

bm =
m−P√

∑NP−1
m=1 m−2P

, m = 1, ..., NP − 1.

4: Modify the modal coefficients q̂m as:
|q̂m|2 ← |q̂m|2 +

∥∥qh
∥∥2

L2
K
|bm|2, m = 1, ..., NP − 1.

5: Fix with skyline procedure:
6: Ensure the modal coefficients q̂m to be monotone as:

q̂m ← maxn=min(m,NP−2),...,NP−1 |q̂n|, m = 1, 2, ..., NP − 1.
7: Least-squared procedure:
8: Compute the decay rate τ in a least-squared manner from the following
problem:

∑NP−1
m=1 (log|q̂m| − (log(C)− τlog(m)))2.

9: return τ
10: end function

3.2. Extension to Arbitrary Orders

The MDA sensor relies on the available information in the polynomial expansion.
Therefore, when the polynomial order is low, the estimation procedure tends to be inaccu-
rate. For example, when the solution is nearly constant, the decay rate is close to P, where
the smoothness tends to be underestimated for P < 4. In order to improve the accuracy of
the estimated decay rate, information from the neighboring cells should be involved.

Assume that the approximate solutions for the current element and its left and right
neighbors are denoted as qh(r, t), qL(r, t) and qR(r, t), respectively. Then, we have

qex(r, t) = γLqL(r, t) + γqh(r, t) + γRqR(r, t) , (19)

where the weighted coefficients γL, γ, γR are given as

γL =

{
1, r ≤ −r∗.

0, r > −r∗.
γR =

{
1, r ≥ r∗.

0, r < r∗.
γ = 1− γL − γR , (20)
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where r∗ = 2(P∗−1)
3(Pmax−1) +

1
3 , P∗ = min(Pmax, P + 1), Pmax = 5. This means that r∗|P=1 =

0.5, r∗|P≥4 = 1.
The new modal coefficients of qex are obtained by projection as

qex(r, t) =
Pex

∑
m=0

q̂ex
m ϕm(r) , (21)

and scale as
|q̂ex

m | ' Cm−τ . (22)

To evaluate the smoothness, the extended polynomial qex(r, t) is fed into Algorithm 1
instead. Note that P denotes the polynomial order for qh(r, t), qL(r, t) and qR(r, t), whereas
Pex denotes the polynomial order for qex(r, t). An example of the extended MDA sensor is
shown in Figure 1, which indicates a discontinuity in the original solution of the current
element e for low polynomial orders P (typically P ≤ 3). In such cases, τ is close to P
indicating moderate non-smoothness using the original MDA model. With the extended
MDA sensor, the discontinuity is steepened artificially and thus detected correctly with a
large enough Pex.

Figure 1. Illustration of the extended MDA sensor. The black dashed line is the original solution.
The orange solid line is the modified solution in the current element e.

3.3. Localized Nonlinear Viscosity

The scaling of the artificial viscosity in [29,30] is of O(h) as long as the model is acti-
vated, which tends to cause excessive dissipation for small fluctuations and destroy the
high-order accuracy. Therefore, it is essential for us to further decrease the artificial dissipa-
tion where the sensor is switched off. The viscosity is proposed here to be computed as

µ = µmax


1 , if τ < τ0 ,

h
P(τ−τ0)
τ1−τ0 , if τ0 ≤ τ ≤ τ1 ,

0 , otherwise.

(23)

and µmax is given by
µmax = cmax(h/P) max

x∈GK
| f ′(qh(x, t))| . (24)

This can ensure that the viscosity is O(h) around shocks, and approaches O(hP+1)
when the flow turns smooth. Theoretically, τ0 = 1, whereas, in practice, τ0 is chosen within
[1, τ1) to enhance robustness. In this paper, τ1 was fixed to 3.
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3.4. Multi-Dimensional Case

In this section, we propose a simple yet effective way to extend the above one-
dimensional model to multi-dimensional cases. The idea is illustrated in the two-dimensional
case and its extension to three-dimensions is straight-forward.

The extension to a 2D case is described (see Figure 2) as the following:

• Step 1. Extrapolate the polynomials q1, q2, q3, q4 of the four neighboring elements
(e1, e2, e3, e4) onto the current element e0.

• Step 2. Estimate a decay rate along each face of the current element using the one-
dimensional approach. Take face ν0 − ν1 as an example. The extrapolated q1, q3 are
reduced to this face to serve as the two neighboring solutions qL, qR in the 1D case.
The same approach is applied to the remaining faces.

• Step 3. Choose the smallest one of all of the decay rates to be the decay rate of the
element e0.

• Step 4. Compute the viscosity using Equation (23) .

Figure 2. Illustration of quadrilateral elements for the two-dimensional shock-capturing model.

Remark 1. In the above extension method, only q1, q3 are employed to form the neighboring
solutions for face ν0 − ν1. We note that this choice is not unique, and other approaches are
also possible.

4. Numerical Results

In the following, we tested the performance of the proposed method using both
smooth and non-smooth cases. The results were compared with other models, including
MDH, MDA and the dilation-based (DB) model [34]. Note that the proposed method was
termed as MDAEX in this work.

4.1. Convergence Tests with Smooth Problems
4.1.1. One-Dimensional Linear Transport

In this section, the one-dimensional linear transport case was conducted to test the
accuracy of the proposed model for the smooth flow. The computational domain is [0, 2]
and the exact solution is q(x, t) = sin(π(x− t)). The numerical error is evaluated at t = 4.0.
The results are given in Table 1 and compared with typical artificial viscosity models, as
well as the linear cases where no shock capturing is applied. Note that a super-convergent
(2P + 1)th order of accuracy can be observed for P1 and P2 in linear cases. It can be
observed that the original MDA model achieves a comparable accuracy only when the
polynomial order is higher than P3. The MDAEX model, on the other hand, recovers the
same accuracy to the linear case away from coarse resolution.
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Table 1. L2 errors and accuracy orders of shock-capturing models for the one-dimensional linear
transport.

N Linear DB MDH MDA MDAEX

L2 Error Order L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P1

10 2.85 × 10−2 5.61 × 10−1 6.79 × 10−1 6.93 × 10−1

20 3.76 × 10−3 2.92 3.55 × 10−1 0.66 5.66 × 10−1 0.26 6.70 × 10−1 0.05
40 4.77 × 10−4 2.98 1.46 × 10−1 1.28 3.16 × 10−1 0.84 4.88 × 10−1 0.46
80 5.98 × 10−5 2.99 4.70 × 10−2 1.63 1.74 × 10−1 0.86 2.58 × 10−1 0.92

160 7.49 × 10−6 3.00 1.31 × 10−2 1.84 8.79 × 10−2 0.99 7.49 × 10−6 15.07
320 9.37 × 10−7 3.00 3.39 × 10−3 1.95 4.22 × 10−2 1.06 9.37 × 10−7 3.00

P2

10 1.17 × 10−4 3.49 × 10−1 1.17 × 10−4 6.82 × 10−1 6.52 × 10−1

20 3.77 × 10−6 4.96 1.45 × 10−1 1.27 3.77 × 10−6 4.96 6.07 × 10−1 0.17 5.33 × 10−1 0.29
40 1.19 × 10−7 4.99 4.69 × 10−2 1.63 1.19 × 10−7 4.99 4.43 × 10−1 0.45 3.16 × 10−1 0.75
80 3.71 × 10−9 5.00 1.31 × 10−2 1.84 3.71 × 10−9 5.00 2.75 × 10−1 0.69 3.71 × 10−9 26.34
160 1.16 × 10−10 5.00 3.39 × 10−3 1.95 1.16 × 10−10 5.00 1.55 × 10−1 0.83 1.16 × 10−10 5.00
320 3.81 × 10−12 4.92 8.54 × 10−4 1.99 3.81 × 10−12 4.92 8.21 × 10−2 0.91 3.81 × 10−12 4.92

P3

10 2.24 × 10−6 2.16 × 10−1 2.24 × 10−6 4.83 × 10−1 2.24 × 10−6

20 1.45 × 10−7 3.95 7.59 × 10−2 1.51 1.45 × 10−7 3.95 3.23 × 10−1 0.58 1.45 × 10−7 3.95
40 9.11 × 10−9 3.99 2.25 × 10−2 1.75 9.11 × 10−9 3.99 1.91 × 10−1 0.76 9.11 × 10−9 3.99
80 5.70 × 10−10 4.00 5.96 × 10−3 1.92 5.70 × 10−10 4.00 1.05 × 10−1 0.87 5.70 × 10−10 4.00

160 3.59 × 10−11 3.99 1.51 × 10−3 1.98 3.59 × 10−11 3.99 5.48 × 10−2 0.93 3.59 × 10−11 3.99
320 2.69 × 10−12 3.74 3.80 × 10−4 1.99 2.69 × 10−12 3.74 2.81 × 10−2 0.97 2.69 × 10−12 3.74

P4

10 4.54 × 10−7 1.43 × 10−1 4.54 × 10−7 4.54 × 10−7 4.54 × 10−7

20 1.45 × 10−8 4.97 4.64 × 10−2 1.62 1.45 × 10−8 4.97 1.45 × 10−8 4.97 1.45 × 10−8 4.97
40 4.56 × 10−10 4.99 1.31 × 10−2 1.83 4.56 × 10−10 4.99 4.56 × 10−10 4.99 4.56 × 10−10 4.99
80 1.48 × 10−11 4.95 3.38 × 10−3 1.95 1.48 × 10−11 4.95 1.48 × 10−11 4.95 1.48 × 10−11 4.95

160 5.76 × 10−13 4.68 8.54 × 10−4 1.99 5.76 × 10−13 4.68 5.75 × 10−13 4.68 5.75 × 10−13 4.68

4.1.2. Two-Dimensional Isentropic Vortex Convection

The accuracy of the proposed method was further examined with the two-dimensional
isentropic vortex convection in this section. The computational domain is [−10, 10] ×
[−10, 10] with periodic boundary conditions. The center of the initial vortex was set at
(x0, y0) = (0, 0) and the vortex was convected for one period. The initial field is given
following the procedures in [35], which avoid the interruption of initial oscillation led by
periodic conditions. The results are given in Table 2, where the number N stands for the
number of cells along each edge. As can be seen, the results are similar to those in the
one-dimensional case. MDAEX is able to recover the expected accuracy for all cases given
a sufficient resolution, behaving superior to its counterpart MDA.

Table 2. L2 errors and accuracy orders of shock-capturing models for the two-dimensional isentropic
vortex convection.

N Linear DB MDH MDA MDAEX

L2 Error Order L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P1

40 4.10 × 10−3 1.70 × 10−2 1.52 × 10−2 3.25 × 10−2

80 5.51 × 10−4 2.90 5.18 × 10−3 1.71 5.28 × 10−3 1.53 2.81 × 10−2 0.21
160 6.41 × 10−5 3.10 7.98 × 10−4 2.70 6.41 × 10−5 6.36 1.83 × 10−2 0.62
320 8.95 × 10−6 2.84 1.02 × 10−4 2.96 8.95 × 10−6 2.84 5.65 × 10−3 1.69
640 1.59 × 10−6 2.49 1.29 × 10−5 2.99 1.59 × 10−6 2.49 4.48 × 10−4 3.65
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Table 2. Cont.

N Linear DB MDH MDA MDAEX

L2 Error Order L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2

20 2.45 × 10−3 1.03 × 10−2 1.83 × 10−2 3.27 × 10−2 3.30 × 10−2

40 2.24 × 10−4 3.45 1.68 × 10−3 2.62 4.99 × 10−3 1.88 3.18 × 10−2 0.04 2.86 × 10−2 0.21
80 3.18 × 10−5 2.81 1.88 × 10−4 3.16 3.18 × 10−5 7.29 2.96 × 10−2 0.10 1.41 × 10−2 1.02

160 5.97 × 10−6 2.42 1.90 × 10−5 3.31 5.97 × 10−6 2.42 2.54 × 10−2 0.22 1.59 × 10−3 3.15
320 1.10 × 10−6 2.43 1.86 × 10−6 3.35 1.10 × 10−6 2.43 1.92 × 10−2 0.40 1.10 × 10−6 10.49

P3

20 7.31 × 10−4 3.57 × 10−3 1.92 × 10−2 3.07 × 10−2 3.24 × 10−2

40 3.24 × 10−5 4.50 1.35 × 10−4 4.72 3.24 × 10−5 9.21 2.74 × 10−2 0.16 1.93 × 10−2 0.75
80 6.70 × 10−7 5.60 2.65 × 10−6 5.68 6.70 × 10−7 5.60 2.20 × 10−2 0.32 6.70 × 10−7 14.81

160 1.32 × 10−8 5.66 7.25 × 10−8 5.19 1.32 × 10−8 5.66 1.52 × 10−2 0.54 1.32 × 10−8 5.66
320 4.99 × 10−10 4.73 2.18 × 10−9 5.06 4.99 × 10−10 4.73 9.13 × 10−3 0.73 4.99 × 10−10 4.73

P4

20 1.16 × 10−4 5.51 × 10−4 1.80 × 10−2 4.69 × 10−4 8.93 × 10−3

40 1.04 × 10−6 6.80 6.89 × 10−6 6.32 1.04 × 10−6 14.07 1.04 × 10−6 8.81 1.04 × 10−6 13.06
80 6.10 × 10−8 4.10 2.11 × 10−7 5.03 6.10 × 10−8 4.10 6.10 × 10−8 4.10 6.10 × 10−8 4.10

160 2.87 × 10−9 4.41 7.57 × 10−9 4.80 2.87 × 10−9 4.41 2.87 × 10−9 4.41 2.87 × 10−9 4.41
320 1.89 × 10−10 3.93 2.89 × 10−10 4.71 1.89 × 10−10 3.93 1.89 × 10−10 3.93 1.89 × 10−10 3.93

4.2. Shock-Dominated Problems
4.2.1. Sod Problem

The computational domain of the Sod problem was chosen to be [0, 1] discretized with
100 uniform elements. The initial domain is given by

(ρ, u, p) =

{
(1, 0, 1) , x < 0.5 ,
(0.125, 0, 0.1) , x > 0.5 .

(25)

To compare dissipative features of aforementioned models, the density profiles at
t = 0.2 are presented in Figures 3–6, which show that MDAEX is able to produce reasonable
results for all accuracy orders despite slight oscillations. The development of artificial
viscosity for P2 is compared in Figure 7, where the difference is more noticeable. At this
polynomial order, MDA is completely unable to identify different structures. Furthermore,
DB is very dissipative whereas MDH is not dissipative enough. The dissipation of MDAEX
is somewhere between DB and MDH. Note that, though MDAEX pollutes less of the region
than DB, the max viscosity is larger, which helps to explain the slightly more dissipative
result in Figure 4. We believe that the feature of controlling viscosity distribution is more
important since the maximum viscosity can be adjusted by empirical parameters. This
feature may be profitable in the simulation of more complex flows, which should be
conducted in future work.
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Figure 3. Density solution for the Sod problem with 100 elements at t = 0.2, P1. (a) Overview;
(b) zoomed in results.
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Figure 4. Density solution for the Sod problem with 100 elements at t = 0.2, P2. (a) Overview;
(b) zoomed in results.
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Figure 5. Density solution for the Sod problem with 100 elements at t = 0.2, P3. (a) Overview;
(b) zoomed in results.
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Figure 6. Density solution for the Sod problem with 100 elements at t = 0.2, P4. (a) Overview;
(b) zoomed in results.
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Figure 7. Temporal history of artificial viscosity for the one-dimensional Sod problem with 100 P2
elements for t ∈ [0, 0.2]. (a) DB; (b) MDH; (c) MDA; (d) MDAEX.

4.2.2. Shu–Osher Problem

The Shu–Osher problem is considered as a one-dimensional model of a shock/turbulence
interaction, including shocklets and fluctuations simultaneously. Consequently, shock-capturing
methods are required to suppress oscillations without causing too much dissipation for fluctua-
tions. The computational domain was set to [−5, 5] with the initial condition given by

(ρ, u, p) =

{
(3.857143, 2.629369, 10.333333) , x < −4 ,
(1.0 + 0.2sin(5x), 0, 1) , x > −4 .

(26)

The number of elements was fixed to 200 for all of the computations. The computation
was stopped at t = 1.8 and the results are shown in Figures 8–11 . In the region of entropy
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waves, MDAEX is dissipative for P1 and similar to DB and MDH for P2, with fewer
peaks of fluctuations, which is consistent with the history of viscosity shown in Figure 12.
Furthermore, as can be seen in Figure 12, MDA ceases to be effective whereas MDAEX
captures the typical structures well.
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Figure 8. Density solution for the one-dimensional Shu–Osher problem with 200 elements at t = 1.8,
P1. (a) Overview; (b) zoomed in results.
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Figure 9. Density solution for the one-dimensional Shu–Osher problem with 200 elements at t = 1.8,
P2. (a) Overview; (b) zoomed in results.
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Figure 10. Density solution for the one-dimensional Shu–Osher problem with 200 elements at t = 1.8,
P3. (a) Overview; (b) zoomed in results.
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Figure 11. Density solution for the one-dimensional Shu–Osher problem with 200 elements at t = 1.8,
P4. (a) Overview; (b) zoomed in results.
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Figure 12. Temporal history of artificial viscosity for the one-dimensional Shu–Osher problem with
200 P2 elements for t ∈ [0, 1.8]. (a) DB; (b) MDH; (c) MDA; (d) MDAEX.

4.2.3. Blast Wave Problem

The blast wave problem involves very strong shocks, providing a good test case for
shock-capturing approaches. The domain was chosen to be [0, 1] with reflecting conditions
applied on both boundaries. The initial condition is given as

(ρ, u, p) =


(1, 0, 1000) , x < 0.1 ,
(1, 0, 0.01) , 0.1 ≤ x ≤ 0.9 ,
(1, 0, 100) , x > 0.9 .

(27)

The number of elements was fixed to 300 for all of the computations. The solution
is compared at t = 0.038 in Figures 13–16. The reference solution was obtained with the
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fifth-order finite difference WENO scheme using 20,000 grid points. It can be observed that
MDAEX is able to produce reasonable results from P1 to P4. Furthermore, MDAEX is able
to capture the complicated flow structures in a sharp manner, as shown in Figure 17.
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Figure 13. Density solution for the blast wave problem with 300 elements at t = 0.038, P1.
(a) Overview; (b) zoomed in results.
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Figure 14. Density solution for the blast wave problem with 300 elements at t = 0.038, P2.
(a) Overview; (b) zoomed in results.
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Figure 15. Density solution for the blast wave problem with 300 elements at t = 0.038, P3.
(a) Overview; (b) zoomed in results.
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Figure 16. Density solution for the blast wave problem with 300 elements at t = 0.038, P4.
(a) Overview; (b) zoomed in results.
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Figure 17. Temporal history of artificial viscosity the blast wave problem with 300 P2 elements for
t ∈ [0, 0.038]. (a) DB; (b) MDH; (c) MDA; (d) MDAEX.

4.2.4. Two-Dimensional Riemann Problem

In this section, we considered a two-dimensional Riemann problem [36]. The com-
putational domain is [0, 1]× [0, 1], which is uniformly divided by quadrilateral elements.
The number of elements along each edge was fixed to 160. For this case, the initial condition
(known as Case 12) is given as

(ρ, u, v, p) =


(0.5313, 0, 0, 0.4) , 0.5 < x < 1 , 0.5 < y < 1,
(1, 0.7276, 0, 1) , 0 < x < 0.5 , 0.5 < y < 1,
(0.8, 0, 0, 1) , 0 < x < 0.5 , 0 < y < 0.5,
(1, 0, 0.7276, 1) , 0.5 < x < 1 , 0 < y < 0.5.

(28)
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The density contours at t = 0.25 are presented in Figures 18–20. In P2, MDA behaves
as overly dissipative, whereas MDAEX is able to produce a more reasonable result, which
is similar to MDH but with less oscillation and dissipation. For P3, MDAEX is also among
the least dissipative models. Note that all models produce reasonable results for P4.
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Figure 18. Density solution for the two-dimensional Riemann problem (Case 12) with 160× 160
P2 elements at t = 0.25. Thirty-one equally spaced contours from 0.515 to 1.665. (a) DB; (b) MDH;
(c) MDA; (d) MDAEX.
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Figure 19. Density solution for the two-dimensional Riemann problem (Case 12) with 160× 160 P3
elements at t = 0.25. Thirty-one equally spaced contours from 0.515 to 1.665. (a) DB; (b) MDH; (c) MDA;
(d) MDAEX.
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Figure 20. Density solution for the two-dimensional Riemann problem (Case 12) with 160× 160
P4 elements at t = 0.25. Thirty-one equally spaced contours from 0.515 to 1.665. (a) DB; (b) MDH;
(c) MDA; (d) MDAEX.

4.2.5. Double Mach Problem

The double Mach problem is a benchmark test case for shock-capturing methods.
The computational domain is [0, 4] × [0, 1]. The left boundary was set to be the post
condition of the shock, and the right boundary was extrapolation. The initial condition
was formed by a Mach 10 shock making a 60◦ angle with the x-direction and intersecting
with the x-axis at x = 1/6. The upper boundary was prescribed to describe the motion of
the Mach 10 shock. The inviscid wall condition spanned the region 1/6 < x < 4 of the
bottom boundary, and the rest of it was set to the post-shock condition. The computation
was conducted on a grid divided by 816× 204 quadrilateral elements. Density contours at
t = 0.2 are plotted in Figures 21–23. It can be seen that DB is among the least dissipative
models in this case. MDAEX is slightly less dissipative than MDH at P2 and P3 and
similar to DB and MDA at P4. Note that the localized viscosity approach in Equation (23)
significantly reduces numerical dissipation around the switch-off point of the viscosity
model. Compared to the MDA model, the MDAEX model performs generally well among
the three modal-decay-based models, especially at P2 and P3.
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Figure 21. Density solution for the double Mach problem with 816× 204 P2 elements at t = 0.2.
Thirty-three equally spaced contours from 1.75 to 22.7. (a) DB; (b) MDH; (c) MDA; (d) MDAEX.
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Figure 22. Density solution for the double Mach problem with 816× 204 P3 elements at t = 0.2.
Thirty-three equally spaced contours from 1.75 to 22.7. (a) DB; (b) MDH; (c) MDA; (d) MDAEX.
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Figure 23. Density solution for the double Mach problem with 816× 204 P4 elements at t = 0.2.
Thirty-three equally spaced contours from 1.75 to 22.7. (a) DB; (b) MDH; (c) MDA; (d) MDAEX.

5. Conclusions

In this paper, a modal-decay-based artificial viscosity model with a flux reconstruction
method was proposed. The amount of added artificial viscosity was determined according
to the decay rate of the expansion modes. Sufficient information is critical for an accurate
estimation of the decay rate. Therefore, in order to ensure the performance of this type
of model, especially for low orders (P2 and P3), the information used to estimate the
decay rate was augmented by combining the polynomials of the current element with
its neighbors. Furthermore, in order to avoid excessive dissipation for the complex flow
region, the scaling of the artificial viscosity was modified to ensure that the viscosity is of
O(hP+1) close to the switch-off point of the model.

The proposed model (MDAEX) was applied to typical benchmark cases and compared
with other typical models, including DB, MDH and MDA. Convergence tests with smooth
flows show that MDAEX is able to recover the expected accuracy away from the coarsest
grids for all of the polynomial orders considered in this paper. For shock-dominated flows,
MDAEX was observed to capture delicate flow structures better for P ≥ 2 in terms of
both the solutions and the distribution of artificial viscosity. For the proposed test cases,
the MDAEX model serves as a more reasonable modal-decay-type model than the original
MDA model in P2 and P3-order. We note, however, that the behavior of the model for more
complicated cases requires further investigation, which constitutes our future work.
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The following abbreviations are used in this manuscript:

MDA averaged modal decay
MDH highest modal decay
MDAEX extended MDA
DB dilation-based
DG discontinuous Galerkin
SD spectral difference
FR flux reconstruction
CPR correction procedure via reconstruction
WENO weighted essentially non-oscillatory
HWENO Hermite WENO
SPs solution points
SSPRK54 strong stability preserving five-stage fourth-order Runge–Kutta
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