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Abstract: Improvements in safety in the air and in space can be achieved through better 

ergonomics, better work environment, and other efforts of the traditional avionic 

psychology that directly affect human behaviors and performance. There is also a 

significant potential, however, for further reduction in aerospace accidents and casualties 

through better understanding the role that various uncertainties play in the planner’s and 

operator’s worlds of work, when never-perfect human, never failure-free navigation 

equipment and instrumentation, never hundred-percent-predictable response of the object 

of control (air- or space-craft), and uncertain-and-often-harsh environments contribute 

jointly to the likelihood of a mishap. By employing quantifiable and measurable  

ways of assessing the role and significance of such uncertainties and treating  

a human-in-the-loop (HITL) as a part, often the most crucial part, of a complex  

man–instrumentation–equipment–vehicle–environment system, one could improve dramatically 

the state-of-the-art in assuring aerospace operational safety. This can be done by 

predicting, quantifying and, if necessary, even specifying an adequate (low enough) 

probability of a possible accident. Nothing and nobody is perfect, of course, and the 

difference between a highly reliable object, product, performance or a mission and an 

insufficiently reliable one is “merely” in the level of the never-zero probability of failure. 
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Application of the probabilistic predictive modeling (PPM) concept provides a natural and 

an effective means for reduction of vehicular casualties. When success and safety are 

imperative, ability to predict and quantify the outcome of an HITL related mission or a 

situation is a must. This is not the current practice though. The application of the PPM 

concept can improve therefore the state-of-the-art in understanding and accounting for the 

human performance in a vehicular mission or a situation. While the traditional statistical 

human-factor-oriented approaches are based on experimentations followed by statistical 

analyses, the PPM concept is based on, and starts with, physically meaningful and flexible 

predictive modeling followed by highly focused and highly cost effective experimentations 

geared to the chosen governing model(s). The PPT concept enables one to quantify, on the 

probabilistic basis, the outcome of a particular HITL related effort, situation or a mission. 

If the predicted outcome, in terms of the most likely probability of the operational failure, 

is not favorable, then an appropriate sensitivity analysis (SA) based on the developed and 

available algorithms can be effectively conducted to improve the situation. With the 

appropriate modifications and generalizations, such a cost-effective and insightful 

approach is applicable to numerous, not even necessarily in the aerospace and vehicular 

domain, HITL related missions and situations, when a human encounters an uncertain 

environment or a hazardous off-normal situation. The suggested approach is applicable 

also when there is an incentive to quantify human’s qualifications and performance, and/or 

when there is a need to assess and possibly improve his/her role in a particular mission or a 

situation. The general PPM concepts are illustrated in this analysis by addressing several 

more or less typical aerospace HITL related problems and by providing meaningful 

numerical examples. 

Keywords: human-in-the-loop (HITL); probabilistic modeling; quantitative analysis 

 

1. Introduction 

“A pinch of probability is worth a pound of perhaps.”—James G. Thurber, American 

writer and cartoonist 

Human error contributes to about 80% of vehicular (aerospace, maritime, automotive, railroad) 

casualties and accidents (see, e.g., [1–3]). Such a large percentage of mishaps should not be attributed, 

of course, to the direct human error only. A mishap often occurs because an erroneous decision is 

made by the vehicle operator in the conditions of uncertainty as a result of his/her interactions, in 

various unpredictable and often harsh environmental conditions, with never-perfect forecasts, never 

one-hundred-percent dependable navigation instrumentation and operation equipment, and not always 

user-friendly and trustworthy information. While considerable improvements in various vehicular 

technologies and practices can be achieved through better ergonomics, better work environment, and 

other means that directly affect human behavior, there is also an opportunity for reduction in vehicular 

casualties through the application of the probabilistic predictive modeling (PPM) (see, e.g., [4]) 



Aerospace 2014, 1 103 

 

followed by an appropriate experimentation geared to a particular governing model. PPM enables one 

to gain a better understanding of the role that various uncertainties play in the planner’s and operator’s 

world of work, as well as the role of the human factor in various human-in-the-loop (HITL) related 

missions and situations [5–12]. 

By employing quantifiable and measurable ways of assessing the role of such uncertainties and by 

treating HITL as a part of the complex man–instrumentation–equipment–vehicle–environment system, 

one could improve dramatically the human performance and the vehicular mission success and safety 

by being able to predict, quantify and, if needed, even specify and thereby assure an adequate 

probability of the occurrence of a mishap. This probability cannot be high, but does not have to be 

lower than necessary either: it has to be adequate for a particular application, mission or a situation. 

There is a crucial need therefore to quantify the roles of different factors affecting the outcome of a 

HITL related mission, whose failure free outcome is imperative. It is noteworthy also that there is 

always an incentive to optimize the human and equipment performance in terms of costs and 

preparation (planning) time. No optimization is possible, of course, if the major factors affecting the 

results of interest, such as failure free operation, cost effectiveness and preparation time are not 

quantified. The PPM approach enables one to do that by using methods and approaches of applied 

probability and probabilistic risk analysis. 

The traditional statistical HITL related approaches are based on experimentation followed by 

statistical analyses. The suggested PPM concept is based, on the contrary, on the physically 

meaningful, flexible, highly focused and highly cost effective predictive modeling. Modeling is 

applied first and is followed by experimentation that is geared to a particular predictive model.  

The PPM concept proceeds from understanding that nobody and nothing is perfect and that the 

difference between a success and a failure in a particular product, effort, situation or a mission is,  

in effect, “merely” the difference in the level of the never-zero probability of failure. The PPM concept 

enables one to quantify, on the probabilistic basis, the outcome of a particular effort, and, with the 

appropriate modifications and generalizations, is applicable not only in the aerospace domain and even 

not only in the vehicular domain, but also in numerous and various HITL related situations, when a 

human encounters an extraordinary challenge requiring an application of his/her best abilities, or when 

there is an incentive to quantify his/her qualifications and performance. Suitable examples are surgery, 

forensic practices or military strategies and tactics. The PPM effort should always be geared to a 

particular mission, situation, application and acceptable adequate probability of failure. The latter is 

usually determined by the possible consequences of failure. 

One major merit of the PPM approach is that it complements the existing system-related and 

human-psychology-related efforts, and bridges the gap between the three critical bodies of knowledge 

responsible for the man–instrumentation–equipment–vehicle–environment system’s performance and 

safety: reliability engineering, vehicular technologies and human factor. 

In this overview the following HITL related topics, strategies and situations, addressed in the recent 

author’s publications, are identified, analyzed and discussed: 

(1) double-exponential probability distribution function of the human non-failure [5,10,11]; 

(2) assessment of the aerospace mission success and safety [5–7]; 

(3) some short-term predictions for the HITL related situations; 
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(4) helicopter-landing-ship (HLS) process, with an emphases on the role of the human factor 

(swiftness in decision making) and with an objective not to compromise the strength of the 

helicopter undercarriage [8,9]; 

(5) the famous “miracle-on-the-Hudson” event vs. the infamous UN-shuttle disaster [10]; 

(6) probability of the flight non-failure if one of the pilots gets incapacitated during the flight [11]; 

(7) PPM in the concept of anticipation in aviation [12–20]. 

One of the major challenges associated with the application of the PPM concept is the choice of 

suitable distributions for a particular problem of interest. Although there is no straightforward way for 

doing that, such distributions could be either based on the accumulated experience or could be 

anticipated and accepted beforehand based on the common sense and insightful intuition about the 

physics of the problem. “The intuitive mind is a sacred gift, and the rational mind is a faithful servant. 

Unfortunately, we have created a society that honors the servant and has forgotten the gift”  

(A. Einstein). Let us refer, as an example, to the helicopter landing ship (HLS) problem. The actual 

time of human reaction (decision making) is always positive, is never zero, but could not be 

unrealistically long either. In addition, shorter times of reaction are more likely than longer times.  

This means that the probability density distribution function for the human reaction (decision making) 

time should be skewed towards shorter times, and the most likely time of human reaction (maximum 

value, mode, of the probability density distribution function) should be low, but never zero.  

The simplest distribution that meets these requirements is the single-parametric Rayleigh distribution. 

That is why this distribution was selected to characterize human reaction in the HITL HLS problem.  

A more powerful and more flexible two parametric Weibull distribution could also be used, but this 

will make analytical modeling more complicated. As to the lull time in the sea condition, this time is 

most likely symmetric with respect to its mean value, and therefore the two-parametric normal 

distribution has been chosen to describe the random lull time. Although, generally, normal 

distributions cover also negative values of the considered random variable, this “shortcoming” of the 

distribution is suppressed in our analysis by choosing a large enough ratio of the mean value of lull 

time to its standard deviation. Another example is the recently suggested double-exponential 

probability distribution function for the human non-failure, when fulfilling a particular challenging 

mission in an off-normal situation. This function (addressed in the next section) could be applied in a 

number of HITL related problems and has also a clear physical meaning. This meaning, as will be 

shown, is associated with the change in the uncertainty (entropy) of the probability of human  

non-failure with the change in the level of the mental workload (MWL). 

It should be pointed out that while the PPM approach opens new perspectives for aerospace human 

psychologists and ergonomics specialists, numerous additional analyses will be necessary to make the 

recommendations and guidelines based on the PPM concept widely accepted and highly practical. 

These analyses should be geared to various practical situations, including those beyond the aerospace 

and even vehicular domain. 
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2. Double-Exponential Probability Distribution Function 

“Everyone knows that we live in the era of engineering, however, he rarely realizes  

that literally all our engineering is based on mathematics and physics” 

—Bartel Leendert van der Waerden, Dutch mathematician 

The probability ),( GFPh  of the navigator’s non-failure, when a vehicle is operated in off-normal 

(extraordinary) conditions, can be assumed to be distributed in accordance with the following  

double-exponential law of the extreme-value-distribution (EVD) type (see, e.g., [4]): 
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here 0P  is the probability of the human non-failure for the specified (normal) mental workload (MWL) 

0G  in ordinary (normal) operation conditions; 0GG ≥  is the actual (elevated, off-normal) MWL;  

0F  is the most likely (normal, specified) human capacity factor (HCF); 0FF ≥  is the actual  

(off-normal) HCF exhibited or required in the extraordinary condition. The 0P  level should be 

established beforehand, as a function of the normal 0G  and 0F  levels. In avionics this could be done by 

conducting “accelerated” testing and appropriate measurements on a flight simulator. 

By differentiation the Equation (1) with respect to the MWL G  we obtain: 
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= . At low MWL levels close to the 

normal level, the change in the relative probability P  of non-failure with the increase in the MWL is 

significant. This is not surprising though: it is easy to improve a poor performance than a good one.  
In another extreme case, when the actual MWL G  exceeds considerably the normal one ( 0GG >> ), 

we have: 
G

H

dG

Pd 2−= . This result explains the physical meaning of the Equation (1): the change in the 

probability of human non-failure with the change in the level of the MWL is proportional, for high 

MWL levels, to the underlying uncertainty (entropy of the distribution of this probability) and is 

inversely proportional to the MWL level. The right part of the last formula could be viewed as a kind 

of a coefficient of variation (COV), where the role of the uncertainty in the numerator is played by the 

entropy, rather than by the standard deviation, and the role of the stressor (MWL) in the denominator is 

played, as in the well-known statistical COV characteristic, by the MWL, rather than by the mean 

value of the random characteristic of interest. 

The Equation (1) enables one to quantify, on the probabilistic basis, the human’s ability (capacity) 

to cope with an elevated mental overload. Using an analogy from the reliability engineering field and 

particularly with the stress–strength (demand–capacity) interference model (Figure 1), the MWL could 

be viewed as a certain demand (stress, load), while the HCF as capacity (strength) of the object.  

In the case in question it is the capacity of a human to perform the given task. It is the relative levels of 

the MWL and HCF that determine the human’s “reliability”, i.e., the likelihood of his/her non-failure 
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(success). Unlike in the well-known capacity-demand interference model, the Equation (1) combines 

the demand G and the capacity F  in the same PPM, with an intent to consider a situation of the type 

shown in Figure 2. 

Figure 1. Demand (stress/mental workload (MWL))–capacity (strength/human capacity 

factor (HCF)) interference curves. 
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Figure 2. Long-term (pilot capabilities) HCF vs. MWL (pilot workload). 

 

It should be emphasized that while the notion of the MWL has been addressed and well described in 

the human psychology literature, the idea of mental capacity is rather new. Although it is true that it 

might be difficult to establish a comprehensive list of factors that could impact the HCF and the human 

performance in a particular situation, it is also true that the MWL has to be compared to a more or less 

well-substantiated HCF. It goes without saying that MWL and HCF, as a demand and a capacity, are to 

be measured in the same units, otherwise there will not be possible to create a meaningful “pass/fail” 

model. The MWL and the HCF could be particularly dimensionless. 

Cognitive (mental) overload is central in the today’s aviation and aerospace psychology. Excessive 

MWL has been recognized for a long time as a significant cause of error in aviation and space 
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navigation. The MWL depends on the operational conditions and the mission complexity, has to do 

with the significance of the general task and is directly affected by the challenges that a navigator 

faces, when controlling the vehicle in a complex, heterogeneous, multitask, and uncertain-and-harsh 

environment. The pilot’s environment includes various concepts of situation awareness: spatial 

awareness (for instrument displays); system awareness (e.g., for keeping the pilot informed about 

actions that have been taken by automated systems); and task awareness (that has to do with the 

attention and task management). Measuring the MWL using subjective and objective measures has 

become in the today’s aerospace psychology a single key method for improving navigation safety.  

The subjective ratings are applied particularly during simulation tests. They can be, e.g., in the form of 

periodic inputs to some kind of data collection device that prompts the pilot to enter a number  

(say, between 1 and 10) to estimate the MWL every few minutes. A suitable example is heart rate 

variability. Measurement of cardiac activity has been a useful physiological technique employed for 

the assessment of MWL, both from tonic variations in heart rate and after treatment of the cardiac 

signal. Using post-flight questionnaires is yet another approach, because one would not want to 

interfere with the pilot’s work during actual flight operations. 

As to the HCF (capacity), it should consider, but might not be limited to, the relevant human 

qualities. Examples are psychological suitability for a particular task; professional experience and 

qualifications; education, both special and general; relevant capabilities and skills; level, quality and 

timeliness of training; performance sustainability (consistency, predictability); mature (realistic) and 

independent thinking; independent acting, when necessary; ability to concentrate; ability to anticipate; 

self-control and ability to act in cold blood in hazardous and even life threatening situations; ability to 

operate effectively under significant MWL and time pressure; ability to make substantiated decisions 

in a short period of time; ability to operate effectively, when necessary, in a tireless fashion, for a long 

period of time (tolerance to stress); team-player attitude, when necessary; swiftness in reaction,  

when necessary. These and other qualities are certainly of different importance in different HITL 

situations. It is clear also that different individuals possess these qualities in different degrees even 

prior to any training. HCF and the corresponding qualities and capacities could be time-dependent. 

When there is an intent to come up with suitable figures-of-merit (FOM) for the HCF for a particular 

individual, one could rank, similarly to the MWL estimates, the above and perhaps also other 

meaningful qualities on the scale from, say, one to ten, and calculate the average FOM for each 

individual and for a particular task, situation or a mission. Certification of navigators from the 

standpoint of their HCF could be considered. 

The MWL/HCF concept and its possible generalizations (say, by considering time, or  

multi-parametric MWL conditions), after the appropriate sensitivity analyses (SA) are carried out,  

can be used: 

(1) when developing guidelines for personnel training; 

(2) when choosing the appropriate flight simulation conditions; and/or 

(3) when there is a need to decide if the existing level of automation and/or the navigation 

instrumentation/equipment are adequate in extreme, but not impossible, extraordinary 

situations. If not, additional and/or more advanced instrumentation or equipment should be 

considered. Then the human participation could be minimized or even eliminated. 
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The calculated 
0

),(

P
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P

h

=  values indicate that: 

(1) at normal MWL level and/or at an extraordinarily (exceptionally) high HCF level the 

probability of human non-failure is close to 100%; 

(2) if the MWL is exceptionally high, the human will definitely fail, no matter how high his/her 

HCF is; 

(3) if the HCF is high, even a significant MWL has a small effect on the probability of non-failure, 

unless this MWL is exceptionally large (indeed, highly qualified individuals are able to cope 

better with the off-normal situations); 

(4) the probability of non-failure decreases with an increase in the MWL (especially for relatively 

low MWL levels) and increases with an increase in the HCF (especially for relatively low  

HCF levels); 

(5) for high HCFs the increase in the MWL level has a much smaller effect on the probabilities of 

non-failure than for low HCFs. 

These intuitively more or less obvious judgments are quantified by using an analysis based on the 
Equation (1) .The computed data show also that the increase in the HCF ( 0/ FF  ratio) and in the 

MWL ( 0/GG  ratio) above the 3.0 has a small effect on the probability of non-failure. This means 

particularly that the navigator does not have to be trained for an extraordinarily high MWL and to a 
relative HCF ( 0/ FF  ratio) higher than 3.0 compared to a navigator of an ordinary capacity 

(qualification). In other words, a navigator does not have to be a superman to successfully cope with a 

high level MWL, but still has to be trained to be able to cope with a MWL by a factor of three higher 

than the normal level. As has been mentioned, if the requirements for a particular level of safety are 

above the HCF for a well educated and well trained human, then the development and employment of 

the advanced equipment and instrumentation should be considered for a particular task, and the 

decision of the right way to go should be based on the evaluation, on the probabilistic basis, both the 

human and the equipment performance. 

In conclusion of this section it should be emphasized that although the suggested  

double-exponential Equation (1) has been found useful and fruitful for the evaluation of the MWL vs. 

HCF in different aerospace safety situations, other PPM approaches are also possible and might be 

quite fruiteful. As Khalil Gibran, famous Lebanese-American poet and writer, had put it, “Say not,  

‘I have found the truth’, but rather ‘I have found a truth’”. Such approaches include, but are not limited 

to, of course, to demand-capacity interference model of the type shown in Figure 1, including  

time-dependency of the distributions, as well as various long tailed probability distributions that assign 

relatively high probabilities to regions far from the modes, means or medians of the underlying 

distribution considered (see, e.g., [21]), or, more general, various fractional processes (see, e.g., [22]). 

Various EVDs, other than the Equation (1), can also be applied. This is true, particularly, for the 

widely used in reliability theory Weibull distribution, which can be applied in the HITL problems as 

well, as shown in the next section of the review. 
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3. Mission Success and Safety 

“There are truths, which are like new lands: the best way to them becomes known only 

after trying many other ways”—Denis Diderot, French philosopher, art critic, and writer 

While the Equation (1) can be used to quantify the likelihood of the human non-failure, the 

reliability of the equipment (instrumentation), which includes the performance of both the hardware 

and the software, can be characterized, e.g., by Weibull distribution, which is widely used in reliability 

engineering. As to the role of the uncertain environment, this could be considered by accounting for 

the probability of the encounter (occurrence) of a condition of the given level of severity.  

If appropriate and highly dependable equipment is used, a mission could still be successful, even if the 

MWL is significant and the HCF is not very high. 

The success (failure) of a vehicular mission could be time dependent and could have different actual 

and specified probabilities of success at different stages (segments). Let, e.g., a particular mission of 
interest consists of n  segments ( ),...,2,1 ni =  characterized by different probabilities, iq , of occurrence 

of a particular harsh environment or by other extraordinary conditions during the fulfillment of the  
i–th segment of the mission. The segments are characterized also by different durations, iT , and also 

by different predicted failure rates, e
iλ , of the equipment and instrumentation. These rates may or may 

not depend on the environmental conditions, but could be affected by aging/degradation and other 

time-dependent causes. In the simplified example below we assume that the combined input of the 

hardware and the software, as far as the failure rate of the equipment and instrumentation is concerned, 
is evaluated beforehand and is adequately reflected by the appropriate failure rate e

iλ  values. These 

values could be either determined from the vendor specifications or, preferably, should be obtained on 

the basis of the specially designed and conducted failure oriented accelerated testing (FOAT) and 

subsequent predictive modeling [14]. FOAT should be preferably geared to a particular predictive 

model, such as, e.g., multi-parametric Boltzmann–Arrhenius–Zhurkov (BAZ) model [14]. This model 

is rather general and flexible and can be successfully employed in many reliability related problems. 
The probability of the equipment non-failure at the moment it  of time during the fulfillment of the 

mission on the i–th segment, assuming that Weibull distribution is applicable, is 

( ) 
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e
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where ii Tt ≤≤0  is an arbitrary moment of time within the i–th segment, and e
iβ  is the shape 

parameter in the Weibull distribution. One could assume that the time-dependent probability of human 

non-failure can be also represented in the form: 
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of Weibull distribution, where h
iλ  is the failure rate, h

iβ  is the shape parameter and )0(h
iP  is the 

probability of the human non-failure at the initial moment of time 0=it  of the given segment.  

When ∞→it , the probability of non-failure (say, because of the human fatigue or other causes) tends 

to zero. The probability )0(h
iP  can be assumed particularly in the form of the Equation (1). 
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The probability of the mission failure at the i–th segment can be found, in an approximate analysis 

(in a more rigorous analysis conditional probabilities should be considered) as 

)()(1)( i
h

ii
e

iii tPtPtQ −=  (5)

and the overall probability of the mission failure can be determined as 
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This formula can be used also for specifying the failure rates and the HCF in such a way that the 

overall probability of failure would be adequate for the given mission. The assessments based on the 

Equation (6) can be used to choose, if possible, an alternative route, so that the set of the probabilities 

iq  of encounter of the environmental conditions of the given severity brings the overall probability of 

the mission failure to an acceptable and low enough level. 

Let, for instance, the duration of a particular vehicular mission be 24 h, and the vehicle spends equal 
times at each of the 6 segments (so that 4=it  h at the end of each segment), the failure rates of the 

equipment and the human performance are independent of the environmental conditions and are, say,  

λ = 8 × 10−4 1/h, the shape parameter in the Weibull distribution in both cases is β = 2 (Rayleigh 

distribution is applicable), the HCF ratio 
2
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F
), the probability of 

human non-failure at ordinary conditions is 9900.00 =P , and the MWL 2
0

2 / GGi  ratios are 1, 2, 3, 4, 5, 

and occur with the probabilities iq  = 0.9530, 0.0399, 0.0050, 0.0010, 0.0006 and 0.0005, depending on 

the severity of the environmental conditions. These data indicate that about 95% of the mission time 
takes place in ordinary conditions. The calculated iP  ratios for the above six segments are 1.0000; 

0.9991; 0.9982; 0.9978; 0.9964 and 0.9955. The corresponding computed probabilities h
iP of the 

human non-failures are 0.9900; 0.9891; 0.9882; 0.9878; 0.9864 and 0.9855; the products h
i

e
i PP  of the 

equipment and the human non-failures are 0.9900; 0.9891; 0.9882; 0.9878; 0.9864; and 0.9855; and 
the products h

i
e

ii PPq  are 0.9435; 0.0395; 0.0049; 0.0010; 0.0006; and 0.0005. With these data the 

predicted probability of the mission non-failure is: 

9900.0)()(
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and the probability of its failure is therefore %101.0 ==Q . 

4. Some Short-Term Predictions 

“We see that the theory of probability is at heart only common sense reduced to 

calculations: it makes us appreciate with exactitude what reasonable minds feel by a sort 

of instincts, often without being able to account for it.”—Pierre-Simon, Marquis de Laplace, 

French mathematician and astronomer 

The solution addressed in the previous section is suitable for the design of the hardware and the 

software, for making long-term assessments and strategic decisions, and for planning a vehicular 
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mission before it commences. There are, however, extraordinary situations, when the navigator has to 

make a decision on a short-term, often on an emergency basis, during the fulfillment of a mission. 

Here are examples of some typical problems. 

• Problem #1. The probability that the particular environmental conditions will be detrimental for 

the vehicle safety is p. The probability that these conditions are detected by the available 

navigation equipment, adequately processed and delivered to the navigator in due time is p1. 

But the navigator is not perfect either, and the probability that he/she misinterprets the obtained 

information from the navigation instrumentation is p2. If this happens, the navigator can either 

launch a false alarm (take inappropriate and unnecessary corrective actions), or conclude that 

the environmental conditions are acceptable and make inappropriate go-ahead decision.  

The navigator receives n messages from the navigation equipment and instrumentation during 

his/her watch. What is the probability that at least one of the messages will be assessed incorrectly? 
• Solution. The probability that a particular message is misinterpreted is 21 )1()1( ppppP −+−= . 

Then the probability that at least one message out of n  is misinterpreted is nPQ )1(1 −−= . 

Clearly, 1→Q , when ∞→n . Thus, the outcome depends on both the equipment (instrumentation) 

performance and the human ability to correctly interpret the obtained information. The formula 
nPQ )1(1 −−=  can be used particularly to assess the effect of the human fatigue on his ability 

to interpret correctly the obtained messages. Let, for instance, 100=n  (the navigator receives 
100 messages during his watch) and 1=p : the forecast environmental conditions that the 

vehicle is expected to encounter will definitely cause an accident and should be avoided. So, 
the instrumentation did not fail, and the probability 1p  that the navigator obtained this 

information and that the information has been delivered in a timely fashion is 999.01 =p .  

Let the probability that the navigator interprets the information incorrectly is only %.101.02 ==p  

then P = 0.001 and Q = 0.0952. Thus, the probability that one message could be misinterpreted is 

as high as 9.5%. If the equipment is not performing adequately and the probability p1 is only, 

say, p1 = 0.95, then P = 0.05 and Q = 0.9941: one of the messages from the navigation 

equipment will be most certainly misinterpreted. We conclude that the performance and the 

accuracy of the instrumentation are as important as the human factor is. 

• Problem #2. The probability that the instrumentation does not fail during the time T of the 

fulfillment of a certain segment of a mission is p1. The probability that the human “does not 

fail”, i.e., receives and interprets the obtained information correctly during this time is p2. It has 

been established that a certain (non-fatal though) mishap has occurred during the time of the 

fulfillment of this segment of the mission. What is the probability that the accident has occurred 

because of the equipment failure? 

• Solution. Four hypotheses were possible before the accident actually occurred: H0 = the equipment 

did not fail and the human did not make any error; H1 = the equipment failed, but no human 

error occurred; H2 = the equipment did not fail, but the human made an error; H3 = the equipment 

failed and the human made an error. The probabilities of these hypotheses can be evaluated as: 

;)( 210 ppHP = ;)1()( 211 ppHP −= );1()( 212 ppHP −= )1)(1()( 213 ppHP −−=  (8)

Then the conditional probabilities of the event A “the accident has occurred” are: 
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Applying Bayes’ formula 
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we obtain the following expression for the probability that only the equipment failed: 
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If the equipment never fails (p1 = 1), then P = 0. On the other hand, if the equipment is very 

unreliable (p1 = 0), then P = p2: the probability that the equipment fails is equal to the 

probability that the operator did not make an error. If the probabilities p1 and p2 are equal  

(p1 = p1 = p) then 
p

p
P

+
=

1
 is the probability that either the equipment failed or the human 

made an error. For very reliable equipment and a next-to-perfect operator (human) (p = 1),  

P = 0.5: the probability that only the equipment failed is 0.5. For very unreliable equipment and 

very “imperfect” human (p = 0) we obtain P = 0: it is quite likely that both the equipment failed 

and the human made an error. 

• Problem #3. The assessed probability that a certain segment of a mission will be accomplished 

successfully, provided that the environmental conditions are favorable, is p1. This probability 

will not change even in unfavorable environmental conditions, if the navigation equipment is 

adequate and functions properly. If, however, the equipment (instrumentation) is not perfect, 
then the probability of safe fulfillment of the given segment of the mission is only 12 pp  .  

It has been established that the probability of failure-free functioning of the navigation 

equipment is p*. It is known also that in this region of the navigation space unfavorable 

conditions are observed at the given time of the year in k% of the time. What is the probability 

of the successful accomplishment of the mission in any environmental conditions? What is the 

probability that the navigator used the equipment, if it is known that the mission has been 

accomplished successfully? 

• Solution. The probability of the hypothesis H1 “the environmental conditions are favorable” is 

100
1)( 1

k
HP −= . The probability of the hypothesis H2” the environmental conditions are 

unfavorable” is 
100

)( 2

k
HP = . The conditional probability )/( 1HAP  of the event A  

“the navigation is safe” when the environmental conditions are favorable is 11 )/( pHAP = . 

The conditional probability )/( 2HAP of the event A “the navigation is safe” when the 

environmental conditions are unfavorable can be determined as 

2*1*2 )1()/( ppppHAP −+=  (12)

so that the sought probability of accident-free navigation on the given segment is 
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If it is known that the mission has been accomplished successfully despite unfavorable 

environmental conditions, then 
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Let, e.g., p1 = 1.0, p2 = 0.95, p* = 0.98, k = 80. Then P(A) =0.9992, P(A/H2) =0.7998. Thus,  

the probability of the successful accomplishment of the mission is 0.9992, and the probability 

that the navigator used the navigation instrumentation/equipment that enabled him/her to 

accomplish the mission successfully is 0.7998, otherwise the mission would have failed. 

5. Helicopter Landing Ship (HLS) 

“There is nothing more practical than a good theory.”—Kurt Zadek Lewin,  

German–American psychologist 

The helicopter-landing-ship (HLS) situation [8,9] is addressed with an emphasis on the human 

factor role in assuring the helicopter undercarriage strength. This strength should not be compromised 

as a result of the impact that helicopter experiences during its landing on the ship’s deck. The human 

factor is important from the standpoint of the operation time that affects the likelihood of safe landing. 

The operation time includes the time required for the officer-on-board and the helicopter pilot to make 

their go-ahead decisions, and the time of actual landing. It is assumed in this analysis, for the sake of 

simplicity, that both these times could be approximated by Rayleigh’s law, while the lull duration 

follows the normal law with a high ratio of the mean value to the standard deviation. Safe landing 

could be expected if the probability that it occurs during the lull time is sufficiently high.  

The probability that the helicopter undercarriage strength is not compromised can be evaluated as a 

product of the probability that landing occurs during the lull time and the probability that the relative 

velocity of the helicopter with respect to the ship’s deck at the moment of landing does not exceed the 

allowable level. This level is supposed to be determined for the helicopter-landing-ground (HLG) 

situation. The HLG is viewed as a “normal” condition, while the HLS is viewed as an off-normal 

(extraordinary) situation. The developed PPM can be used when establishing specifications for the 

helicopter undercarriage strength and when developing guidelines for personnel training. Particularly, 

the model can be of help when establishing the times to be met by the two humans involved to make 

their go-ahead decisions in due time to safely land the helicopter. 

Typically, officer-on-ship-board, using the information from the on-board surveillance systems, 

signals to the helicopter pilot, when the lull period (“wave window”) commences (Figure 3).  

The challenge is to foresee, the duration of the lull. If the random sum, T = t + θ, of the random time, t, 

needed for the officer-on-board and the helicopter pilot to make their go-ahead decisions, and the 

random time, θ, needed to actually land the helicopter, is lower, with a high enough probability, than 

the (random) duration, L, of the lull, then safe landing becomes likely. 
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Figure 3. Helicopter landing ship. 
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as suitable approximations for the times t and θ of decision making and actual landing, and the  

normal distribution 
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as an appropriate approximation for the duration, L, of the lull. In the above formulas, 0t and 0θ are the 

most likely times of decision making and landing (modes of the corresponding probability density 

distributions), respectively (in the case of a Rayleigh law these times coincide with the standard 
deviations of the random variables in question), 0l  is the most likely value (mode) of the lull time  

(in the case of normal law it coincides with the mean and the median of the distribution), and σ  is the 

standard deviation of the lull time. The ratio 
σ

0l  (“safety factor”) of the mode to the standard deviation 

should be large enough (say, larger than 4), so that the normal law could be used as a suitable 
approximation for the random variable of time that cannot be negative. The probability, *P , that the 

random sum T = t + θ of the variables t and θ exceeds a certain level, T̂ , can be found as 
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where dzexerf
x

z −=
0

22
)(

π
 is the error function. 

When the most likely duration 0θ  of landing is small compared to the most likely time, 0t , required 

for the officer-on-board and the helicopter pilot to make their go-ahead decisions, the Equation (17) 

yields: 



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
−=

2
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* 2

ˆ
exp

t

T
P . Thus, the probability that the total time of operation exceeds a certain time 
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duration, T̂ , depends in this case only on the most likely time, 0t , of decision making. Solving this 

relationship for the 
T

t
ˆ
0  ratio, we have: 

*

0

ln2

1
ˆ PT

t

−
= . If the acceptable probability, *P , of exceeding 

the time, T̂ , is, e.g., P = 10−4, then the total time of making the go-ahead decisions should not exceed 

0.233=23.3% of the time, T̂  (lull duration), otherwise the requirement P ≤ 10−4 will be compromised. 
Similarly, when the most likely duration, 0t , of decision making is very small compared to the most 

likely time, 0θ , of landing, then 



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
−=

2
0

2

* 2

ˆ
exp

θ
T

P . In this case the probability of exceeding time level, 

T̂ , depends only on the most likely time, 0θ , of landing. 

It is noteworthy that the single-parametric Rayleigh law is characterized by a rather large standard 

deviation and therefore might provide an over-conservative approximation. A more realistic and more 

flexible two-parametric law, such as, e.g., Weibull distribution, might be more appropriate and more 

practical as a suitable probability distribution of the random times, t and θ. Its use, however, will make 

our analysis unnecessarily more complicated, and our goal is not so much to dot all the i’s and cross all 

the t’s in the problem in question, but rather to demonstrate that the attempt to use PPM to pre-quantify 

the role of the human factor in a particular HITL situation is quite fruitful. 
When the most likely time 0t  of making the go-ahead decisions and time 0θ  of the actual landing 

are equal, the Equation (17) yields: 
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For large 
0

ˆ

t

T
 ratios 




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
≥ 3

ˆ

0t

T
 the second term in the brackets becomes large compared to unity, so that 

only this term should be considered. The calculated probabilities of exceeding a certain time level, T̂ , 

based on the Equation (18), are shown in Table 1. In the third row of this table we indicate, for the 

sake of comparison, the probabilities, P, of exceeding the given time, T̂ , when only the time 0t  or only 

the time 0θ  is different from zero, i.e., for the special case that is mostly remote from the equal time 

case 00 θ=t . Clearly, the probabilities computed for other possible combinations of the times 0t  and 

0θ  could be found between the calculated probabilities *P  and P. 

The following major conclusions can be drawn from the computed data: 

(1) the probability that the total time of operation (the time of decision making and the time of 

landing) exceeds the given time level T̂  rapidly increases with an increase in the time of 

operation and 

(2) the probability of exceeding the time level T̂  is considerably higher, when the most likely 

times of decision making and of landing are finite, and particularly are equal to each other,  

in comparison with the situation when one of these times is significantly shorter than the other, 

i.e., zero or next-to-zero. 
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Table 1. The probability *P  that the operation time exceeds a certain time level T̂  vs.  

the ratio 0/ˆ tT  of this time level to the most likely time 0t  of decision making for the case 

when the time 0t  and the most likely time 0θ  time of actual landing are the same. For the 

sake of comparison, the probability P of exceeding the time level T̂ , when either the time 

0t  or the time 0θ  are zero, is also indicated. 

0/ˆ tT  6 5 4 3 2 

P* 6.562 × 10−4 8.553 × 10−3 6.495 × 10−2 1.914 × 10−1 6.837 × 10−1 
P 1.523 × 10−8 0.373 × 10−5 0.335 × 10−3 1.111 × 10−2 1.353 × 10−1 

P*/P 4.309 × 104 2.293 × 103 1.939 × 102 1.723 × 101 5.053 

This is especially true for short operation times: the ratio P*/P of the probability P* of exceeding the 

time level T̂  in the case of 00 θ=t  to the probability P of exceeding this level in the cases 00 =t  or 

00 =θ  decreases rapidly with an increase in the time of operation. Thus, there exists a significant 

incentive for reducing the operation time. The importance of this intuitively obvious fact is 

quantitatively assessed by the Table 1 data. 

The Table 1 data can be used, particularly, to train the human for a quick reaction in the HLS 

situation. If, for instance, the expected duration of the lull is 30 s, and the specified probability of 

exceeding this time is 310−=P , then, as evident from the table data, the times for decision making and 

actual landing should not exceed 5.04 s each. Another useful information that could be drawn from the 

calculated data is whether it is possible at all to train a human to react in just a couple of seconds.  

If not, then one should decide on a broader involvement of more sophisticated, more powerful and 

more expensive equipment to do the job. If pursuing such an effort is decided upon, then developed 

PPM and extensive probabilistic SA based on this model will be needed to determine the most 

effective ways to go. 

The probability that the normally distributed lull time L is found below a certain level L̂  is 
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The probability that the lull time is exceeded can be determined by equating the times TLT == ˆˆ and 

computing the product 
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of the probability, 
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, that the time of operation exceeds a certain level, T, and the probability, 
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, that the duration of the lull is shorter than the time T. The Equation (19) considers the role 

of the sea condition (through the values of the most likely duration, 0l , of the random lull time, L, and 

its standard deviation, σ ), the role of the human factor, 0t  (the total most likely time required for the 

officer-on-ship-board and the helicopter pilot to make their go-ahead decisions for landing), and the 
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role of the most likely time, 0θ , of actual landing (which characterizes both the qualification of the 

helicopter pilot and the qualities/behavior of the flying machine) on the probability of safe landing. 
After a low enough allowable value, *

AP , of the probability, AP , is agreed upon, one could establish 

the allowable maximum most likely time, 0θ , of landing. The actual time of landing can be assessed as 

lPt ln20
* −=Δ θ , where lP  is the allowable probability that the level *tΔ  is exceeded. If, for 

instance, 0θ =10sec and 510−=lP , then 0.48* =Δt  s. 

The cumulative probability distribution function for the extreme vertical ship velocity *z   

(the probability that the vertical velocity of the ship deck at the HLS location is below a certain level 
*z ) due to her motions in heave, pitch and roll in waves can be expressed, using the extreme value 

distribution (EVD) technique. This technique leads to the following distribution: 
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Here zD  is the variance of the ship’s vertical velocity z ; 
e

t
n

τ

*
* Δ=  is the expected number of ship 

oscillations during the landing time *tΔ ; and eτ  is the effective period of the ship motions in irregular 

seas. The formula 
e

t
n

τ

*
* Δ=  reflects an assumption that a ship in irregular waves behaves as a  

narrow-band filter that enhances the oscillations whose frequencies are close to the ship’s own natural 

frequency (in still water) in heave and pitch and suppresses all the other frequencies. If the landing 

time (measured by the expected number *n  of ship oscillations) is significant, the second term in 
Equation (21) becomes small and can be omitted. If the level *z  is zero, the function )( *
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 If, however, for a finite 
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The landing velocity, V, when landing on a solid ground, is a random variable that could be 

assumed to be normally distributed: 
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where v  is the mean value of the velocity V and vD  is its variance. Then the probability distribution 

function of this velocity (i.e., the probability that the random velocity V is below a certain value v) is 





















 −+=
v

v
D

vv
erfvF

2
1

2

1
)(  (23)

The allowable level *v of the landing velocity V, assuming a large enough probability )( *vFv , can be 

found from the Equation (23) by substituting the v  value with the *v value. The cumulative 
distribution function for the relative vertical velocity *ZVVr

+= of the helicopter with respect to the 

ship’s deck can be determined as: 
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Here 
vD

v

2
=ξ  is the variable of integration; vt

v

r
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vv γγγ −=−=
2

 is the safety factor associated with 

the ship motion, which is computed as the difference between the total safety factor 
v

r
t

D

v

2
=γ ,  

when landing in rough seas on the ship’s deck, and the safety factor 
v

v
D

v

2
=γ , when landing on the 

solid ground; and 
z

r

D

D



=δ  is the ratio of the variance, rD , of the relative velocity, rV , of the helicopter 

undercarriage with respect to the ship’s deck to the variance , zD  , of the ship’s vertical velocity .z   

The Equation (24) determines the probability that the random relative velocity, rV  , of the helicopter 

undercarriage with respect to the ship’s deck remains below a certain value, .rv  When ∞→zD   

(significant ship motions) and/or 0→rD (insignificant absolute vertical velocities of the helicopter), 

the ratio 0→=
z

r

D

D



δ . This situation is unfavorable for the undercarriage strength: the probability that 

the extreme vertical velocity of the helicopter during its landing on the ship’s deck remains below a 
certain v  value is zero: 0)( =vF . 

For large enough (but not very large) *n  values (landing lasts for a rather long time),  

the Equation (24) yields: 

( )[ ]
∞

−−−−=
0

2*2 )exp(exp
1

)( ξδξγξ
π

dnvF  (25)

For very large *n  values we have: 0)( =vF . Such a situation is also unfavorable for safe landing.  

For not very large *n  values, however (landing does not take long), but large 
z

r

D

D



=δ  ratios 

(significant variance of the relative velocity, but insignificant variance of the velocity of the vertical 

ship motions), the Equation (25) yields: 
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 (26)

This formula is not (and should not be) different from the formula for the case of safe landing on a 

solid ground. For small 
z

r

D

D



=δ ratios (but still large *n values), the Equation (26) yields: 
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This formula contains a factor )exp( *n− that accounts for the finite duration of landing. When *n  is 

small (very short time of landing), the situation is not different from the case of landing on a solid 
ground. When *n  is large, the situation is certainly unfavorable: .0)( =vF  Thus, the probability that a 

certain level *v  of the relative velocity rV  of the helicopter with respect to the ship’s deck is not 

exceeded can be found as )( *vFPB = . The probability CP  that the undercarriage strength will not be 

compromised can be evaluated as a product of the probability 1 − PA that the helicopter will be able to 
land during the lull time and the probability )( *vFPB = that the relative velocity of the helicopter with 

respect to the ship’s deck will not exceed a certain allowable (specified) level *v : BAC PPP )1( −= . 

If the landing velocity, 0v , on the ground is treated as a deterministic value (if the variance vD  of 

this velocity can be considered zero) and the allowable relative velocity *v  (which is due to the 

undercarriage structure only) are known, then the condition of safe landing becomes quite simple. 

Indeed, in such a situation the Equation (26) results in the following simple formula for the extreme 

value *z  of the ship’s vertical velocity: 

( )[ ])exp(lnlnln2 *** nPnDz Dz −+−−=   (28)

and the condition of safe landing becomes 0
** vvz −≤ . 

Let the most likely times of making the go-ahead decisions and of the actual landing be the same 

and equal to t0 = θ0 = 10 s, the most likely (mean) lull time be l0 = 20 s, and the standard deviation of 

the lull time be σ = 5 s. The calculated data are shown in Table 2. As evident from the table data, the 
probability AP  that the time of operations exceeds the duration of the lull increases rapidly with the 

decrease in the ratio of the lull duration to the most likely time of either the decision making or the 

landing process, while the probability that the lull duration is below a certain value decreases with the 

decrease in the ratio of this value to the most likely lull duration. The first effect prevails, and the 

product of these two probabilities (defining the likelihood that the helicopter is not successful in 

landing on the ship’s deck during the lull time) increases with the decrease in the duration of the lull 

time almost as fast as the probability of the operation time does. It is only for very long times of 
operation that the probability lP  of exceeding a certain time limit starts to play an appreciable role.  

We conclude therefore that in the situation in question the human factor associated with the decision 

making times plays a significant role, as far as safe landing is concerned. The developed model enables 

one to quantitatively assess this intuitively obvious role. 
Let, for instance, the number of ship oscillations during the time of landing be ,5* =n  the required 

(specified) probability of safe landing be as high as ,9999.0=DP  the variance of the vertical velocity 

of the ship due to her motions during the lull period be 030.0=zD  m/s, and the extreme value of the 

relative vertical velocity computed as the difference between the specified (allowable) velocity *v  of 
the helicopter and the actual ground landing velocity 0v , be 8.00

* =− vv  m/s. Then the level of the 

relative velocity at the moment of landing is: 

( )[ ] [ ]
smsm

xnPnDz Dz

/8.0/629.0

))5exp(9999.0lnln(5ln030.02)exp(lnlnln2 ***



 

=
=−+−−=−+−−=  (29)
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Hence, landing in this case can be permitted and is expected to be safe. 

It could be concluded the PPM approach enables one to quantify the role of the human factor, along 

with other uncertainty sources, in the HLS situation. Safe landing can be expected if the probability 

that it takes place during the lull time is sufficiently high. 

Table 2. The probability AP of safe landing vs. the ratio 0/ tT  of the normally distributed 

duration T of the lull to the most likely time 0t  of decision making or the most likely time 

0θ of actual landing, when the times 0t  and 0θ  are equal. 

0/ tT  6 5 4 3 2 

*P  6.562 × 10−4 8.553 × 10−3 6.495 × 10−2 1.914 × 10−1 6.837 × 10−1 

0/ lT  3.0 2.5 2.0 1.5 1.0 

lP  1.0 1.0 0.9999 0.9770 0.5000 

AP  6.562 × 10−4 8.553 × 10−3 6.494 × 10−2 1.870 × 10−1 3.418 × 10−1 

6. “Miracle-on-the-Hudson”: Emergency Landing and Quantitative Aftermath 

“The only real voyage of discovery consists not in seeing new landscapes, but in having 

new eyes”—Marcel Proust, French author and critic 

The PPM concept was applied [10] as a quantitative “aftermath” to the famous 2009 US Airways 

“Miracle-on-the-Hudson” successful landing (ditching), as well as to the infamous 1998 Swiss Air 

“UN-shuttle” disaster. It has been concluded that the developed formalisms, after trustworthy input 

data are obtained (using, e.g., flight simulators or Delphi method) might be applicable even beyond the 

vehicular domain in various HITL situations, when a short-term high human performance is imperative 

and therefore the ability to quantify it is highly desirable. It has been concluded also that the following 

ten factors that affect mission success and safety in various HITL situations, including emergency 

landing, should be considered: (1) human performance (capacity) factor (HCF); (2) navigation, 

information and control instrumentation (equipment) factor; (3) vehicle (object of control) factor;  

(4) environmental factor and (5–10) six interfaces between (interactions of) the above factors. All these 

factors and their interfaces are associated with uncertainties that contribute to the cumulative 

probability that a certain pre-established safety criterion for a particular anticipated casualty or a 

mishap is violated. These uncertainties are characterized by their probability distributions, safety 

criteria, consequences of possible failure and the levels of the acceptable risks. 

When adequate human performance in a particular HITL situation is imperative, ability to quantify 

the human factor is highly desirable. Such a quantification could be done particularly by comparing the 

actual or the anticipated MWL with the likely (“available”) HCF, as it is done by the double-exponential 

probability Equation (1). The MWL vs. HCF based PPM models and their modifications and 

generalizations can be helpful, after appropriate algorithms are developed and extensive SA are carried 

out, to evaluate the role that the human plays, in terms of his/her ability (capacity) to cope with a 

MWL in various situations, when human factor, equipment/instrumentation performance and uncertain 

and often harsh environments contribute jointly to the success and safety of a task or a mission. These 

models can be used also to assess the risk of a particular mission success and safety, with consideration 
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of the HITL performance; to develop guidelines for personnel selection and training; to choose the 

appropriate simulation conditions; and/or to decide if the existing levels of automation and the 

employed equipment (instrumentation) are adequate in possible off-normal situations (if not, additional 

and/or more advanced and perhaps more expensive equipment or instrumentation should be developed, 

tested and installed). 

In the “Miracle-on-the-Hudson” analysis [10] the probability distribution function Equation (1) and 

the “swiftness-in-reaction” PPM formalism described in the HLS [8,9] analysis were applied for the 

evaluation of the likelihood of a human non-failure in an emergency landing situation. We have shed 

HITL “probabilistic light” on the two well-known events: the famous 2009 “Miracle-on-the-Hudson” 

event (Figure 4) and the infamous 1998 “UN-shuttle” disaster. These two recent events were chosen to 

illustrate the substance and fruitfulness of the PPM approach in the landing on water and, more 

specifically, in a ditching situation. 

Figure 4. The “Miracle-on-the-Hudson” landing. 

 

As far as the “Miracle-on-the-Hudson” is concerned, a quantitative assessments of why such a 

“miracle” could have actually occurred, and what had been and had not been a “miracle” indeed in the 

incident in question has been addressed. It has been argued and demonstrated that the miracle was not 

so much that Captain Sullenberger managed to land the aircraft in an emergency situation, but that 

Captain Sullenberger, a pilot with an extraordinary high HCF turn out to be behind the aircraft wheel 

in a particular off-normal situation (see Table 3 and Figure 4). As to the “UN-shuttle” crash,  

it has been argued that the crash occurred because of the low HCF of the aircraft crew (despite  

their in general high qualifications and most likely adequate training) in a moderately off-normal  

situation that they encountered with. The situation was, in effect, much less demanding than the 

“Miracle-on-the-Hudson” one. 
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Table 3. Estimated Sullenberger’s HCF. 

No. Relevant Qualities 
Relative HCF 

Rating F/F0 * 
Comments 

1 
psychological suitability for 

the given task 
3.2 (1) 57-year-old former fighter pilot who had been a commercial airline 

pilot since leaving the US Air Force in 1980. He is also a safety expert 

and a glider pilot. “I was sure I could do it”, Captain Sullenberger said in 

an interview. “The entire life up to this moment was a preparation for 

this moment”. “I am not just a pilot of that flight. I am also a pilot who 

has flown for 43 years…”;  

(2) Probability of human non-failure in normal flight conditions is 

assumed to be 100%;  

(3) The formula 








−=

2
0

2

1exp
G

G
p  would have to be used to evaluate the 

probability of non-failure in the case of a pilot of ordinary skills.  

The computed numbers are shown in [10] in parentheses.  

The computed numbers show that such a pilot would definitely fail in  

the off-normal situation in question.  

  

Captain Sullenberger 

2 
professional qualifications and 

experience 
3.9 

3 
level, quality and timeliness of 

past and recent training 
2.0 

4 
mature (realistic) and 

independent thinking 
3.2 

5 
performance sustainability 

(predictability, consistency) 
3.2 

6 

ability to concentrate and act in 

cold blood (“cool demeanor”) 

in hazardous and even in life 

threatening situations 

3.3 

7 
ability to anticipate 

(“expecting the unexpected”) 
3.2 

8 
ability to operate effectively 

under pressure 
3.4 

9 
self-control in hazardous 

situations 
3.2 

10 

ability to make a substantiated 

decision in a short period of 

time (“we are going to be in 

the Hudson”) 

2.8 

 Average FOM 3.14 

* This is just an example that shows that the approach makes physical sense. Actual numbers should be 

obtained using FOAT on a simulator and confirmed by an independent approach, such as, say,  

Delphi method [12,23]. 

Based on the executed analysis, we have come up with the following ten major principles  

(“ten commandments”) that should be followed in the PPM-based HCF vs. MWL approach: 

(1) HCF is viewed as an appropriate quantitative measure of the human ability to cope with an 

elevated short-term MWL; 

(2) it is the relative levels of the MWL and HCF that determine the probability of human  

non-failure in a particular HITL situation; 

(3) such a probability cannot be low, but need not be higher than necessary either: it has to be 

adequate for a particular foreseeable application, mission or a situation; 

(4) when adequate human performance is imperative, ability to quantify it is highly desirable, 

even a must, especially if one intends to optimize and assure adequate HITL performance; 

(5) one cannot assure adequate human performance by just conducting routine today’s human 

psychology based efforts, which might provide appreciable improvements, but do not quantify 
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human behavior and performance (in addition, these efforts might be too and unnecessarily 

costly), and/or by just following the existing “best practices” that are not aimed at a particular 

situation or an application; the events of interest are certainly rare events, and “best practices”: 

might or might not be applicable; 

(6) MWLs and HCFs should consider, to an extent possible, the most likely anticipated situations; 

obviously, the MWLs are and HCFs should be different for a jet fighter pilot, for a pilot of a 

commercial aircraft, or for a helicopter pilot, and should be assessed and specified differently; 

(7) PPM is an effective means for improving the state-of-the-art in the HITL field: nobody and 

nothing is perfect, and the difference between a failed human performance and a successful 

one is ”merely” in the level of the probability of non-failure; 

(8) failure oriented accelerated testing (FOAT) on a flight simulator is viewed as an important 

constituent part of the PPM concept in various HITL situations: it is aimed at better 

understanding of the psychological and non-psychological (“physical”) factors underlying 

possible failures; it might be complemented by the Delphi effort; 

(9) extensive predictive modeling is another, in addition to the FOAT on a flight simulator, 

important constituent of the effort, and, in combination with highly focused and highly cost 

effective FOAT, is a powerful and effective means to quantify and perhaps nearly eliminate 

human failures; 

(10) consistent, comprehensive and psychologically meaningful PPM plus FOAT assessments  

can lead to the most feasible HITL qualification (certification) methodologies, practices  

and specifications. 

7. Two Men in a Cockpit: Probability of Non-Failure if One of Them Gets Incapacitated 

“I will not take up your time, dear boy, with telling you what is the matter with me.  

Life is brief, and you might pass away before I had finished”—Jerome K. Jerome,  

English writer and humorist, “Three Men in a Boat (to say nothing of the dog)” 

We apply the modified double-exponential Equation (1) 









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
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F
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G
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t
FQ  (30)

to a situation, when one of the two equally and highly qualified pilots becomes, for one reason or 

another, incapacitated at a certain moment of time in the flight (such a mishap is referred to as an 

accident), and, because of that, his mate has to cope with a total, say, twice-as-high, MWL [13]. It does 

not actually have to be a twice-as-high MWL, but we have chosen this number for the sake of 
simplicity. In the above formula, )(FQ  is the probability of failure of the pilot to perform his/her 

duties, t/T is the (nonrandom) ratio of the elapsed operation time, t, to the total duration, T, of the flight 

including landing (0 ≤ t ≤ T), G is the total MWL treated as a non-random variable, G0 is the most 

likely (specified) value of the MWL in the ordinary conditions, F is the HCF (treated as a random 

variable), and F0 is the most likely (specified) non-random value of this factor.  
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The Equation (30) makes physical sense. Indeed, when t = 0 (at the beginning of the flight) and/or 

when G = 0 (very low MWL) and/or when F→∞ (highly skilled, highly trained and highly effective 
operator with a high HCF), then the probability )(FQ  of the navigator’s failure is zero. When t→∞ 

(vehicle operates for a very long time) and/or G→∞ (the MWL is extremely high), while the HCF F is 
finite and might be not very high, then the probability )(FQ of the operator failure is equal to one. 

Examine a situation at the moment t of time after an aircraft took off. The flight duration is T. If the 

MWL G is evenly distributed between the two pilots, then, using the Equation (30), we write the 

probability of failure for each pilot as 
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If at this moment of time an accident occurs, and, as a result of this, one of the pilots becomes 

incapacitated, then his mate will have to cope with the entire workload G, and the probability that 

he/she fails during the remaining time (T − t) can be found as 
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From Equations (31) and (32) we have: 
4/1

12/1 )](1[1)( FQFQ −−=  (33)

If the accident occurs at the last moment t = T of the flight, and the MWL G is not very large  

(say, because the environmental conditions are favorable and the navigation equipment is adequate and 
reliable), then both the probabilities )(2/1 FQ  and )(1 FQ become zero: no casualty could possibly 

occur. If the accident occurs at the initial moment of time t = 0, then the Equations (17) and (18) yield: 
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If, in such a situation, the MWL G during the flight is high and the HCF F has a finite value, then the 
probabilities )(2/1 FQ  and )(1 FQ are equal to one: human failure will definitely occur and, hence, the 

aircraft casualty will certainly take place. If, however, the total MWL G is low, while the HCF F is 
significant, then the probabilities )(2/1 FQ  and )(1 FQ  are equal to zero: no casualty is likely to occur. 

A casualty could not possibly occur if one of the following three cases takes place: (1) none of the 

pilots fails to perform his/her duties, or if (2) the captain fails to perform his/her duties, but the first 

officer takes over completely and successfully the operation of the aircraft, or if (3) the first officer 

fails to perform his/her duties, but the captain takes over completely and successfully the operation of 
the aircraft. The probability of the first event is .)1( 2

2/1Q−  The probabilities of the second and the 

third events are the same and are .)1( 2
12/1 QQ −  The probability of an accident free navigation can be 

then evaluated as 

)2(1)1(2)1( 12/12/1
2

12/1
2

2/1 QQQQQQP −+=−+−=  (35)

The probability of a casualty is therefore 
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)2(1 2/112/1 QQQPQ −=−=  (36)

If none of the pilots fails ),0( 12/1 == QQ  then no accident could possibly occur (Q = 0). If one of the 

pilots is unable to cope even with the half of the total workload ( )12/1 =Q  then, certainly, he/she will 

not be able to cope with the total load either, so that Q = 1 as well, and the probability of a casualty 
becomes Q = 1. The probabilities 2/1Q  and Q are computed as functions of the probability 1Q  in  

Table 4. 

Table 4. Probabilities of failure at different MWL conditions. 

MWL Conditions 

Q1 0 0.0001 0.0005 0.001 0.005 0.05 0.10 0.20 0.30 
Q1/2 0 2.5 × 10−5 0.0001 0.0003 0.00125 0.01274 0.0260 0.0543 0.0853
Q 0 4.4 × 10−9 8.75 × 10−8 5.25 × 10−7 1.09 × 10−5 0.00111 0.00452 0.01877 0.0439
Q1 0.4 0.50 0.60 0.70 0.80 0.85 0.90 0.95 1.00 

Q1/2 0.1199 0.1591 0.2047 0.2599 0.3313 0.3777 0.4377 0.6239 1.00 

Q 0.0815 0.1338 0.2037 0.2963 0.4203 0.4994 0.5963 0.7961 1.00 

The following conclusions could be drawn from the computed data: (1) The probability of a 

casualty is considerably lower than the probability of an accident, i.e., the failure of one of the pilots to 

cope with the total workload, especially when the latter probability is low. If one wants to keep the 

probability of a casualty below, say, 10−5 = 0.001%, then the probability that one of the pilots cannot 

cope, if necessary, with the entire workload should be kept below 0.5%. If the latter probability is 

10%, then the probability of a casualty becomes as high as 0.45%; (2) The probability of a casualty is 

lower than the probability of failure of one of the pilots to cope with a half of the workload,  

if the probability of failure of one of the pilots to cope with a total workload is below 

,6031.0
22

1
1

31 =−=Q  and is higher than the probability of failure of one of the pilots to cope with a 

half of the workload, if the probability of failure of one of the pilots to cope with a total workload is 

higher than the above number. Certainly, there is a strong incentive to make the probability of failure 

of each pilot at ordinary conditions as low as possible. The Table 3 data enable one to quantify this 

obvious conclusion; (3) The probability that one of the pilots becomes unable to cope with the total 

workload is always higher, of course, than the probability than he/she becomes incapable to cope with 

half of the workload. This difference is especially high for low probabilities of failure. 

From Equation (32) we find 
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If the accident occurred when t/T = 0.5, and the “force majeure” MWL G is twice as high as the 

ordinary (specified) MWL G0, then 
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If, for instance, 5

1 10−=Q , then F/F0 = 3.49. Hence, the extraordinary (“force majeure”) HCF should 

be about 3.5 fold larger than the ordinary value of this factor. If one requires that the probability of 
failure is 7

1 10−=Q , then the required predicted F/F0 ratio should be as high as F/F0 = 4.10.  

In a hypothetical situation, when the accident occurs at the initial moment of time and the pilot and the 

controller decide nevertheless to continue the flight, the last formula yields: 
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For 5
1 10−=Q  and 7

1 10−=Q we obtain F/F0 = 3.59 and F/F0 = 4.18, respectively. Hence, the time of 

an accident has a relatively small effect on the increase in the “force majeure” human factor. 

In order to assess the role of the time moment, when an accident occurs, examine the following 

problem. If the casualty did not occur during the time t, what is the probability Q* that it will occur 

during the remaining time (T – t) of the flight, if the specified probability of the occurrence of the 

casualty for the entire flight is Q? Two events have to take place in order that the accident occurs 

during the time (T – t): (1) it should not occur during the time t and (2) has to occur during the time  

(T – t).The probability that the casualty occurs during the time t is Q(t/T). The probability that the 

casualty occurs during the remaining time (T – t), provided that it did not occur during the time t, is  

(1 − Q(t/T))Q*. The probability that the casualty occurs during the total time T can be found as  

Q = Q(t/T) − (1 − Q(t/T))Q*. Hence, 

T

t
Q

T

t
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*  and 

T

t
Q

Q
QQ

)1(1 *

*

−−
= . The computed Q* values 

indicate that the probability Q* that the casualty occurs during the remaining time (T – t) of the flight if 

it did not occur during the initial time t of the flight is always smaller than the specified probability Q 

of the casualty occurrence during the total flight time T, and decreases with an increase in the total 

flight time. At the last moment t = T the probability Q* is zero no matter how high the probability Q is, 

unless the latter probability is equal to one. The probability Q* increases with an increase in the 

specified probability Q. the two probabilities coincide at the initial moment of time t = 0; if one wants 

to keep the probability Q* at a sufficiently low level he/she should keep the specified probability Q 

also at a low level. 

8. Anticipation in Aviation 

“You can see a lot by observing”—Yogi Berra, American baseball player; “It is easy to see. 

It is hard to foresee”—Benjamin Franklin, American scientist and statesman 

Anticipation is an important cognitive resource for improved aeronautics safety [12–22]. Two problems 

that have to do with uncertainties in an anticipation effort in aeronautics are addressed in this analysis: 

(1) assessment of the probability that the random actual (“subjective”, “internal”,  

pilot-performance-related) anticipation time is below an also random (“objective”, “external”, 

“available”) time of the dynamic process of interest (if this is the case, it is likely that  

no-anticipation-related casualty is possible), and 
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(2) evaluation of the likelihood of success of a (random) short-term anticipation from the 

predetermined (deterministic) long-term anticipation. 

While the today’s HITL related efforts in anticipation concepts in aviation are, as a rule, statistical, 

our approach is based on the PPM. This approach can do what the routine conventional methods 

cannot: one will not be able to ever accumulate enough statistics on real or near-real disasters coming 

from “operator error” in an attempt to extract usable design guidelines. 

Plenty of insightful analyses have been conducted in the anticipation in avionics field by a number 

of outstanding cognitive engineers. Employing the traditional approach, when a cognitive engineer 

starts with an experimental effort and then tries to replicate the findings through simulation,  

Amalberti [16] has indicated particularly that no matter how valuable experimentations might be,  

it is usually next-to-impossible to isolate the role that an inadequate anticipation might play in a 

particular off-normal situation that led or could have led to a casualty, although some occurred or 

avoided accidents show that anticipation played the major role. In connection with this finding,  

we would like to emphasize that such an isolation (separation) could be done, with a greater or lesser 

success, by using PPM. It is true, of course, that even by using either the traditional approach 

(experimentation first) or our PPM approach (modeling first) it might still be impossible to correctly 

identify and consider the role of anticipation and it various aspects, but it would be a miracle, if this 

could be done by using only one of these two available approaches. The analytical PPM used in the 

analyses below is of particular importance, since it leads to close form solutions that clearly indicate 

the role of the major factors affecting the outcome in the problem of interest. In addition, analytical 

models and formalisms are highly “generalizable”, i.e., can be used for rather different cognitive 

engineering related situations, both within a particular domain of application and across various domains. 

Two anticipation related problems in aeronautics have been considered in this paper. 

One problem has to do with the duration of the anticipation effort as compared to the “available” 

time until the event of important commences. While anticipation is defined differently in different 

fields of human psychology, we proceed, following Cellier [17], from the definition that anticipation is 

“an activity consisting of evaluating the future state of a dynamic process, determining the time and 

timing of actions to undertake on the basis of a representation of the process in the future and, finally, 

mentally evaluating the possibilities of these actions”. In accordance with this definition, one has to 

assess, on the probabilistic basis, the durations of the following three time periods affecting the success 

of the anticipation effort: 

(1) time required to evaluate the future state of the dynamic process of interest (what will most 

likely happen, if I do not interfere?); 

(2) time required to determine the time when pilot’s actions should start and what kind of actions 

should be taken (when should I start acting, and what exactly should I do in view of what might 

happen if I do not act?); and 

(3) time required to determine, by mental evaluation, whether the required actions are possible  

(are the actions that I intend to undertake possible, and, if they are, will I achieve my objective?). 

If the likelihood that the total anticipation time will be appreciably below the moment of time 

when the anticipated situation in the dynamic process is expected to commence is high,  

then there is a reason to believe that the anticipation effort will be successful. 
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Another problem addressed is the probabilistic assessment of the success of a short-term 

anticipation from the known (predetermined and deterministic) long-term anticipation. When solving 

this problem we proceed from Denecker’s [13] definition and distinction between short-term 

(“subsymbolic”) and long-term (“symbolic”) anticipations. According to Denecker, short-term 

anticipation (STA) relies on reflex loops and is “a low level action” control activity, while long-term 

anticipation (LTA) relies on the solutions based on the accumulated and analyzed knowledge of the 

situation of interest and the required adequate modus operandi. 

When assessing, on the probabilistic basis, the total anticipation time and particularly that this time 

exceeds a certain level, we assume that the times required to evaluate the state of the approaching 

dynamic process of interest, the time required to determine the moment of action and the time to 

decide what kind of actions should be undertaken could be combined into the phase 1 (evaluation 

phase) of the anticipation time, while the time required to determine, by mental evaluation, whether the 

required actions are indeed possible are viewed as the phase 2 of the anticipation time (possibility 

assessment phase). Such a breakdown seems to be justifiable, since in reality the pilot, in his/her 

cognitive evaluation of the situation, anticipates most likely concurrently his/her activities associated 

with the assessment of the significance and the attributes of the future state of the dynamic process of 

importance and the moment of time that, after the future state of the dynamic process of importance is 

established, the pilot makes the “now or never” decision. 

The time required to determine, by mental evaluation, whether the actions decided upon are indeed 

possible and will meet the objective comprises the phase 2 (possibility phase) of the anticipation 

process. If, for one reason or another, one decides on a different breakdown of the anticipation phases, 

the accepted formalism would still be applicable. Based on the accepted time breakdown, one can  

use the same formalism as in the above HLS problem. Following the HLS formalism, we use the  

following rationale. 

If the (random) sum T = t + θ of the (random) time, t, needed for the completion of the evaluation 

phase 1 of the anticipation process and the (random) time, θ, of the possibility assessment phase 2 is 

lower, with a high enough probability, than the “external”, available (random) time, L, from the 

beginning of the anticipation process to the beginning of the dynamic process of interest, then the 

anticipation process could be considered successful. The simplest physically meaningful probability 

distribution for the random times of interest is Raileigh’s law. The rationale behind such an assumption 

is the same as in the HLS problem: the times t and θ to complete the phases 1 and 2 of the anticipation 

process cannot be negative, the likelihood of zero random times t and θ is zero, and so is the likelihood 

of their very large values, and the most likely times t0 and θ0 of the random times t and θ should be 

small enough, and should be much closer to zero than to very large values. In the Equation (15),  

t0 and θ0 are the maximum values of these distributions and, hence, the most likely values of the 

random times t and θ. The mean times t  and θ


of the variables t and θ are related to the most likely 

times t0 and θ0 as 02 tt π= , 02 θπθ = . The (random) time, L, from the beginning of the 

anticipation process to the beginning of the dynamic process (event) of importance, has a different 

physical nature than the anticipation times t and θ. While the times t and θ are “subjective” times that 

have to do with the swiftness and quality of human anticipation, the random time L is an “objective” 

(“external”, “available”) time that is independent of the human anticipation. It is natural to assume that 
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the normal law Equation (16) can be used as a suitable approximation for the time, L. In the Equation (16) 

l0 is the most likely (and also the mean and the median) value of the “external” time L, and σ0 is its 

standard deviation. The ratio l0/σ0 (“safety factor”) of the mean value of the available time L to its 

standard deviation should be large enough (say, larger than 4), in order that the normal law could be 

used as an acceptable approximation for a random variable that cannot be negative, and it is the case in 

question, when this variable is time. The probability P* that the sum T = t + θ of the random variables  

t and θ (total anticipation time) exceeds a certain time duration (level) T̂  can be found as a 

convolution of the distributions Equation (15) of the random variables t and θ and is expressed by the 

Equation (17). When the time T̂ is zero, it will be always exceeded (P* = 1). When the time T̂  is 
infinitely long )ˆ( ∞→T , the probability that this time is exceeded is always zero (P* = 0). When the 

most likely duration 0θ  of the phase 2 of anticipation is very small compared to the most likely 

duration, 0t , of the phase 1, the Equation (17) yields: 







−=

2
0

2

* 2

ˆ
exp

t

T
P , i.e., the probability that the 

total anticipation time exceeds a certain time duration, T̂ , depends only on the most likely time, 0t ,  

of of the first phase. If the acceptable probability P* of exceeding the time T̂  (e.g., the duration of the 

available time, if this duration is treated as a non-random variable of the level T̂ ), is, say, 410 −=P , 

then the anticipation time should not exceed 0.2330 = 23.3% of the time T̂  (expected duration of the 

available time), otherwise the requirement 410−≤P  will be compromised. Similarly, when the most 
likely duration, 0t , of the phase 1 of anticipation effort is very small compared to the most likely time, 

0θ , of the second phase, the Equation (17) yields: 




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ˆ
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P , i.e., the probability of exceeding 

the time level T̂  depends only on the most likely time, 0θ , of the second phase of anticipation. 

When the most likely times 0t and 0θ  required to complete the two phases of the anticipation effort 

are equal, the Equation (17) results in the Equation (18). For large enough 
0

ˆ

t

T
 ratios 




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


≥ 3

ˆ

0t

T
 the second 

term in the brackets becomes large compared to unity, so that only this term should be considered.  

The calculated probabilities of exceeding a certain time level T̂  based on the Equation (17), are shown 

in Table 1. In the third row of this table we indicate, for the sake of comparison, the probabilities, 0P , 

of exceeding the given time, T̂ , when only the time 0t  or only the time 0θ  is different from zero, i.e., 

for the special case that is mostly remote from the case 00 θ=t . The probabilities computed for other 

possible combinations of the times 0t  and 0θ  could be found between the calculated probabilities P* 

and 0P . The Table 1 data should be interpreted in the problem in question as follows: the probability 

P* that the anticipation time exceeds a certain time level T̂  vs. the ratio 0/ˆ tT  of this time level to the 

most likely time 0t  of anticipation for the case when the most likely time 0t  of the first phase and the 

most likely time 0θ  of the second phase are the same. For the sake of comparison, the probability  
0P  of exceeding the time T̂ , when either the time 0t  or the time 0θ  are zero, is also indicated.  

The following two practically important conclusions could be drawn from the Table 1 data: 

(1) The probability that the total time of anticipation exceeds the given time level T̂  rapidly 

increases with an increase in the time of anticipation; 
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(2) The probability of exceeding the time level T̂  is considerably higher, when the most likely 

times of the two phases of anticipation time are finite, and particularly are equal to each other, 

in comparison with the situation when one of these times is significantly shorter than the other, 

i.e., zero or next-to-zero. This is especially true for short anticipation times: the ratio 0
*

P

P
 of the 

probability *P  of exceeding the time level T̂  in the case of 00 θ=t  to the probability 0P  of 

exceeding this level in the case 00 =t  or in the case 00 =θ  decreases rapidly with an increase 

in the duration of anticipation time. Therefore an obvious incentive exists for reducing the total 

anticipation time. The importance of this intuitively obvious fact is quantitatively assessed in 

our analysis. 

The data of the type shown in Table 1 can be used, particularly, to train the personnel for a quick 

reaction, as far as the anticipation process is concerned. If, e.g., the expected duration of the available 

time is 30 s, and the required (specified) probability of exceeding this time is 310−=P  (0.1%), then,  

as evident from the table data, the times for each of the two phases of the anticipation process should 

not exceed 5.04 s. It is advisable, of course, that these predictions are verified by simulation and by 

actual best practices. Particularly, one should obtain statistical information, from the accumulated 

experience, about the available time durations for different practical situations. Another useful 

information that could be drawn from the data of the type shown in Table 1 is whether it is possible at 

all to train a human to react (make a quick and reasonable anticipation) in just several seconds. If not, 

then one should decide on a broader involvement of more sophisticated, more powerful and more 

expensive equipment to do the job. If pursuing such an effort is decided upon, then an appropriate SA 

will be needed to determine the most promising ways to go. 

The available time L is a random normally distributed variable, and the probability that this time is 

found below a certain level L̂  can be determined using the Equation (19). The probability that the 

available time in the anticipation situation is exceeded can be determined by equating the times 

TLT == ˆˆ and computing the product AP 








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total time of anticipation exceeds a certain level, T, and the probability 







T

l

T
Pl

00 ,
σ

 that the duration of 

the available time is shorter than the time T. The Equation (19) considers the effect of the “objective” 
situation (through the values of the most likely duration, 0l , of the random available time, L, and its 

standard deviation 0σ ), the role of the human factors 0t  and 0θ  (the most likely times of the 

anticipation process phases; these times characterize the pilot qualifications) on the probability of the 
success of the anticipation process. After a low enough acceptable value *

AP of the probability AP  is 

established (agreed upon), the Equation (19) can be used to establish the allowable maximum most 
likely time 0θ  of the second phase of the anticipation process. The actual time of the second (final) 

phase of the anticipation process can be assessed by the formula lPt ln20
* −=Δ θ , where lP  is the 

allowable probability that the level *tΔ  is exceeded. If, for instance, 100 =θ  s and 510−=lP , then 

0.48* =Δt  s. 
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Let the most likely times of the two phases of the anticipation process be the same and equal to  

t0 = θ0 = 10 s, the most likely (mean) available time be l0 = 20 s, and the standard deviation of the 

available time be σ0 = 5 s. Then, using the Equations (18) and (19), and the data in Table 1 we obtain 

the data shown in Table 2. As evident from the Table 2 data, the probability PA that the total 

anticipation time exceeds the duration of the available time (failure of the anticipation process) 

increases rapidly with the decrease in the ratio of the duration of the available time to the most likely 

time of either of the two phases of the anticipation effort, while the probability that the available time 

is below a certain value, decreases with the decrease in the ratio of this value to the most likely 

duration of the available time. The first effect prevails, and the product of these two probabilities 

(defining the likelihood that the anticipation effort fails) increases with the decrease in the duration of 

the available time almost as fast as the probability of the anticipation time does. It is only for very long 

anticipation times that the probability Pl of exceeding a certain time limit starts to play an appreciable 

role. We conclude therefore that in the situation in question the human factor associated with the 

anticipation times play a significant role, as far as the success of the anticipation effort is concerned. 

The developed model enables one to quantitatively assess in the problem in question this role, along 

with other uncertainty sources. The success of the anticipation effort can be expected if the probability 

that it takes place during the available time is sufficiently high. The developed simple and easy-to-use 

formulas enable one to evaluate this probability. The model can be used particularly when developing 

guidelines for personnel training. Plenty of additional risk analyses and human psychology related 

effort will be needed, of course, to make such guidelines practical. 

The probabilistic assessment of the success of short-term anticipation from the predetermined  

long-term anticipation can be carried out based on the double-exponential EVD-type probability 

distribution function given by the Equation (1). According to Denecker [13], short-term anticipation 

(STA) relies on reflex loops and is “a low level action” control activity. Long-term anticipation (LTA) 

relies on the solutions based on the accumulated and analyzed knowledge of the situation of interest 

and the required adequate modus operandi. Implementing knowledge enables one to make a long-term 

projection on a next-to-deterministic basis, i.e., with a very low risk of failure, while a short-term 

projection requires skills and ability to act swiftly and adequately in often unpredictable and 

extraordinary situations. In both cases the appropriate HCF is needed and in both cases the outcome 

depends to a great extent on the level of the MWL. In the analysis that follows we consider that the 

STA has its roots in the LTA and that the probability of the STA success depends to a great extent on 

the groundwork carried out when the LTA strategy and sequence of actions has been developed, as 

well as on the level and quality of training. “Hard in training, easy in battle”, as the Russian 

Commander-in-Chief Suvorov put it. Better LTA facilitates STA. In other words, the STA has its roots 

in the LTA and can be viewed as a deviation from the LTA, when the aircraft is operated in conditions, 

when STA is required. 

In this analysis we assume that the probability of the STA success is distributed in accordance with 

the following double-exponential law of the extreme-value-distribution (EVD) type: 
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here 0P  is the probability of success (non-failure) of the LTA effort, which is characterized by the 

MWL for the specified (normal) LTA MWL level 0GG = , and the LTA HCF 0FF = ; 0G  is the most 

likely (normal, specified, predetermined and pre-established) LTA MWL; 0GG ≥  is the STA MWL; 

0FF ≥  is the required STA HCF. The 0P  level should be established beforehand, as a function of the 

0G  level, when the HCF 0FF = . This could be done, e.g., by conducting testing, measurements and 

recordings on a flight simulator. The calculated ratios: 
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of the probability of the STA success to the probability of the LTA success are shown in Table 3.  

The following conclusions are drawn from the calculated data: 

(1) At normal MWL level )( 0GG =  and/or at an extraordinarily (exceptionally) high HCF level 

)( ∞→F the probability of the STA success is close to 100%. 

(2) The probabilities of the STA success are always lower than the probabilities of LTA success. 

This obvious fact is quantified by the calculated data. 

(3) If the MWL is exceptionally high, the STA effort will definitely fail, no matter how high 

his/her HCF is. 

(4) If the HCF is high, even a significant MWL has a small effect on the probability of the STA 

success, unless this workload is exceptionally large. 

(5) The probability of STA success decreases with an increase in the MWL (especially for 

relatively low MWL levels) and increases with an increase in the HCF (especially for relatively 

low HCF levels). This intuitively obvious fact is quantified by the calculated data. 

(6) For high HCFs the increase in the MWL level has a much smaller effect on the probabilities of 

STA success than for low HCFs. All these conclusions make physical sense, of course,  

but provide a valuable quantitative assessment of the likelihood of the STA success. 

The Table 5 data show that the increase in the 0/ FF  ratio and in the 0/ GG  ratio above the  

3.0 value has a small effect on the probability of the STA success. This means particularly that an 

exceptionally highly qualified pilot does not have to be trained for an extraordinarily high STA-related 

MWL and does not have to be trained by a factor higher than 3.0 compared to a pilot of ordinary 

capacity (skills, qualification). In other words, a pilot does not have to be a superman to successfully 

cope with a high level MWL in STA conditions, but still has to be trained in such a way that,  

when there is a need, he/she would be able to cope with a STA MWL by a factor of 3.0 higher than the 

normal level, and his/her STA HCF should be by a factor of 3.0 higher than what is expected  

of the same person in ordinary (normal) conditions. 
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Table 5. Calculated 0/),( PGFPP h=  ratios of the probability ),( GFPh  of human  

non-failure in off-normal conditions to the probability 0P  of non-failure in normal conditions. 

2
0

2 / GG  1 2 3 4 
2

0
2 / FF      

1 1 0.3679 0.1353 0.0498 
2 1 0.6922 0.4791 0.3317 
3 1 0.8734 0.7629 0.6663 
4 1 0.9514 0.9052 0.8613 
5 1 0.9819 0.9640 0.9465 
8 1 0.9991 0.9982 0.9978 

10 1 0.9999 0.9998 0.9996 

∞  1 1 1 1 
2
0

2 / GG  5 8 10 ∞ 
2

0
2 / FF      

1 0.0183 9.1188 × 10−4 1.234 × 10−4 0 
2 0.2296 0.0761 0.0365 0 
3 0.5820 o.3878 0.2958 0 
4 0.8194 0.7057 0.6389 0 
5 0.9294 0.8797 0.8480 0 
8 0.9964 0.9936 0.9918 2.5 × 10−40 

10 0.9995 0.9991 0.9989 4.4 × 10−6 

∞  1 1 1 1 

Let us elaborate on the LTA and STA MWL and HCF. Although there is no universally accepted 

definition of the MWL and how it should/could be evaluated, there is a consensus that suggests that 

MWL can be conceptualized as the interaction between the structure of systems and tasks, on the one 

hand, and the capabilities, motivation and state of the human operator, on the other. More specifically, 

MWL could be defined as the “cost” that an operator incurs as tasks are performed. Given the 

multidimensional nature of MWL, no single measurement technique can be expected to account for all 

the important aspects of it. Current research efforts in measuring MWL use psycho-physiological 

techniques, such as electroencephalographic, cardiac, ocular, and respiration measures in an attempt to 

identify and predict MWL levels. Measurement of cardiac activity has been the most popular 

physiological technique employed in the assessment of MWL, both from tonic variations in heart rate 

and after treatment of the cardiac signal. The authors of this paper intend to develop a methodology 

and to carry out experiments to measure the LTA and STA workloads. 

The HCF includes the person’s professional experience; qualifications; capabilities; skills; training; 

sustainability; ability to concentrate; ability to operate effectively, in a “tireless” fashion, under 

pressure, and, if needed, for a long period of time; ability to act as a “team-player;” swiftness of 

reaction, i.e., all the qualities that would enable him/her to cope with high MWL. In order to come up 

with suitable figures of merit (FOM) for the HCF, one could rank each of the above and other qualities 

on a scale from one to ten, and calculate the average FOM for each individual. 
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9. Future Work 

“If a man will begin with certainties, he will end with doubts; but if he will be content to 

begin with doubts, he shall end in certainties.”—Sir Francis Bacon, English philosopher 

and statesman 

Aviation psychologists do not normally measure HCF as a single, unitary quantity. They might 

estimate the navigator’s ability to handle stress, or test his/her reaction time, or ability to visually 

detect targets out the window, etc. These are all separate parameters that improve the pilot’s ability to 

handle workload. It is important, however, that all these parameters, as well as some more permanent 

factors, like the pilot’s qualifications; general professional experience and skills; performance 

sustainability; ability to concentrate; ability to make adequate and prudent decisions in conditions of 

uncertainty; etc. are also considered in a unified HCF. It is mandatory, of course, that such a unified 

HCF is measured in the same units as the MWL is, otherwise the “stress”-“strength” model could not 

be used. These units could be particularly dimensionless, but should be established for a particular 

mission or task in advance. Other, perhaps, less challenging tasks might include: 

(1) Testing to evaluate the effect of the fatigue state of the pilot on the effectiveness of his/her 

performance: there are cognitive test methodologies that can assess alertness; 

(2) Carrying out continuous mental workload (MWL) measurements using subjective and/or 

psycho-physiological measures; 

(3) Assessing the role of the aircraft type and the effectiveness of automation: more automation 

will make the pilot’s job easier, in most cases, but might not be always available or affordable; 

(4) Evaluating the role of weather conditions that might affect the MWL, and might have an 

effect on the HCF as well; 

(5) Assessing the role of the “phase of flight.” Since descent and landing are characterized by the 

highest level of MWL, the relationship (1) should be applied and verified for these conditions. 

It is the authors’ belief that it could be indeed applicable to such conditions, although we did 

not consider them specifically and directly in this paper. Particularly, complexity of the airport 

and air traffic situation might have an effect on the MWL: more complexity certainly means 

more MWL for the pilot to manage; 

(6) Categorizing the types of errors/outcomes (again, typical and possible errors, not mistakes or 

blunders: these are beyond any PRM analysis) that might occur. One should determine ahead 

of time which kind of deviations of normal conditions and what kind of errors/outcomes 

he/she is interested in. Catastrophic loss of an aircraft usually results from a series of 

failures—deviations from normal conditions that might lead to a casualty, an unrecoverable 

situation. There was probably no reported loss of a commercial aircraft because one of the 

pilots was incapacitated, and our analysis has indicated that. Indeed, such an outcome would 

be rather unlikely, unless the pilot-in-charge is very bad and the probability that he/she fails 

even in normal operation conditions is next-to-one. In this connection we would like to point 

out again that the addressed example is just an illustration of one of the possible applications 

of the basic relationship (1). This relationship might have many more applications in vehicular 

technology, and, as far as the aerospace industry is concerned, might be applicable, after 
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appropriate modification and generalization, not only to address (less critical) en-route 

situations, but landing situations as well; 

(7) Use the model to compare the performance of different pilots (MCF) for different MWL 

levels. Of course, even a significant deviation from normal conditions does not necessarily 

lead to a casualty, and our models were able to quantify this circumstance. Additional insight 

is needed, however, to correctly design and adequately interpret the results of the tests in a 

flight simulator. In this connection it would be interesting to compare the accelerated life test 

(ALT) and highly accelerated life tests (HALTs) in hardware electronics and photonics with 

what could be expected from the flight simulation tests. 

10. Conclusions 

“The truth is rarely pure and never simple”—Oscar Wilde, Irish dramatist, novelist,  

and poet, The Importance of Being Earnest 

PPM is suggested as a powerful, cost-effective and highly flexible means to characterize and to 

quantify, on the probabilistic basis, the likelihood of a human failure to perform his/her duties when 

operating an aerospace vehicle. We have shown how some PPM based formalisms could be effectively 

employed to quantify the role of the human factor in various HITL situations. The suggested models, 

after appropriate sensitivity analyses are carried out, might be used when developing guidelines for 

personnel training and/or when there is a need to decide if the existing navigation instrumentation is 

adequate in extraordinary safety-in-air-and-in-space situations, or if additional and/or more advanced 

equipment should be developed and installed. The initial numerical data based on the suggested model 

make physical sense and are in good (qualitative) agreement with the existing practice. Although the 

suggested PPM approach is powerful, promising and fruitful, further research, refinement, and validation 

would be needed, of course, before the developed models become practical and widely used. 
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