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Abstract: Future climate projections provide an opportunity to evaluate cultivar climate classification
and preferred styles of wine production for a wine grape growing region. However, ensemble
selection must account for downscaled archive model skills and interdependence rather than be
arbitrary and subjective. Relatedly, methods for generalizing climate model choice remain uncertain,
particularly for identifying optimal ensemble subsets. In this study we consider the complete
archive of the thirty-two Coupled Model Intercomparison Project Phase 5 (CMIP5) daily Localized
Constructed Analogs (LOCA) downscaled historic datasets and their observational data that were
used for downscaling and bias corrections. We apply four model averaging methods to determine
optimal ensembles for the computation of six common climate classification indices for the Willamette
Valley (WV) American Viticultural Area (AVA). Among the four methods evaluated, elastic-net
regularization consistently performed best with identifying optimal ensemble subsets. Variation
exists among the optimal ensembles computed for each of the six bioclimatic indices. However, a
subset of approximately seven to ten climate models were consistently excluded across all six indices’
ensembles. While specific to the archive and wine region, optimal ensemble sizes were noticeably
larger than ensemble sizes commonly employed in published studies. Results are reported such
that they can be used by researchers to independently perform analyses involving any one of the six
bioclimatic indices throughout the WV AVA while using historic and future LOCA CMIP5 climate
projections. The data and methods employed herein are applicable for other wine regions.

Keywords: multi-model averaging; LOCA downscaled; CMIP5; climate projections; bioclimatic
indices; Willamette Valley; American Viticultural Area

1. Introduction

Climate is significant in determining cultivar suitability and the resulting wine profile
typical for a wine grape growing region [1–4]. Temperature and water availability are
recognized as two of the most important environmental factors influencing grapevine
growth and the subsequent quality of berries and wine [5–9]. Various indices exist to
classify viticulture climate [10], and several recent studies have evaluated the impacts
of climate change to viticulture using bioclimatic indices and downscaled future climate
projections for wine regions (see Table 1).

Quénol et al. [11] highlighted the importance of accounting for model uncertainty
when performing studies that involve the application of future climate projections. Model
simulations of the future from the Coupled Model Intercomparison Project Phase 5
(CMIP5) [12] archive are no longer necessarily considered as equally likely independent
realizations of the future climate [13–18]. The models constituting the CMIP5 archive
are now recognized as interdependent by virtue of shared codes and the use of similar
parameterization schemes and calibration methods [17,19,20]. The assumption of archive
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model independence results in a multi-model mean that is biased by the duplicative in-
formation that is contributed by the similar models. This can confound assessments of
model agreement about changes in future climate and alter the statistics of identified
correlations. Ignoring model dependence can result in poor accuracy and poor uncertainty
quantification. The number of effective models in the archive is conjectured to be less than
the number of simulations [17,21–24] and there is a need not only to better understand
weighting strategies that constrain projection uncertainty [15–18], but also to efficiently
and effectively generalize model choice in a manner that selects optimal ensemble subsets
for specific applications [24,25].

A common approach to uncertainty quantification of future climate projections is to
equally weight a multi-model ensemble, possibly formed by the subjective selection of a
subset of the available models, wherein weights are assigned without any consideration
of model skill [24]. While a given multi-model mean is generally considered a better
choice than any single model [24,25], it is also potentially not optimal relative to alternative
multi-model ensemble compositions and weights assignment strategies [13–18]. It has been
noted that the equal weighted multi-model mean does not necessarily quantify projection
uncertainty but rather is simply an uninformed ad hoc measure of ensemble spread [26].

It is now more commonplace to address the epistemic uncertainty associated with
model choice by applying methods that account for model skill and interdependence
wherein skill is measured by a comparison with observed data [15–17]. Weight assign-
ments are further complicated by the learned understanding that individual model skill is
dependent upon the modeling objective and study location [17]. For viticulture climate
classification of a given area using future climate projections, this implies that weight
assignments could vary by the bioclimatic index under consideration.

Sanderson et al. [17] introduced two weight assignment strategies to constrain projec-
tion uncertainty, one that accounted for model skill and another that combined the com-
puted skill with an evaluation of model independence. These two approaches have been ap-
plied in recent studies [14,15,18]. A few recent studies have also applied Bayesian model av-
eraging (BMA) to assign ensemble weights and constrain projection uncertainty [15,16,18].
BMA is attractive from the perspective that it robustly quantifies model uncertainty and
its solution implicitly accounts for model interdependence. However, it is unattractive in
that its application is highly compute intensive, and can also be technically challenging to
diagnose, relative to most other model calibration strategies [27].

Herger et al. [24] distinguished between approaches that assign continuous weights to
the entire ensemble archive with those that are focused on the identification of an ensemble
subset. They applied mixed integer quadratic programming to efficiently and flexibly find
optimal subsets while accounting for model interdependence. Yang et al. [25] used the Tay-
lor diagram [28] to rank models and subsequently combined the higher performing models
using simple averaging to find a nine member multi-model ensemble subset that best
characterized the spatiotemporal variability of temperature and precipitation over China.
In this study we apply a recent advance for regularizing linear models that is directed at
automatic variable selection [29–31] to find prediction specific optimal ensemble subsets
while simultaneously accounting for model skill and interdependence. Regularization of
the ensemble linear model is needed given the thirty-two member multi-model archive
we consider in this study and acknowledgment that there are 2n − 1 possible models that
involve subsets of n predictors [32]. If n = 32, then there are 4,294,967,295 possible models.

Specification of the selection criteria for the ensemble compositions or the ensemble
weights is not common in published studies that report on viticultural climate impact
assessments using downscaled CMIP5 ensemble subsets. The arbitrary selection and appli-
cation of a single model or ensemble subset of downscaled CMIP5 models to quantify future
climate impacts is most likely incomplete and suboptimal [24,25]. In this article we apply
a directed equal weights strategy similar in design to that performed by Yang et al. [25],
the two skill weighting strategies introduced by Sanderson et al. [17], and elastic-net regu-
larization [33] to determine for each method optimal ensemble compositions and weights
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relevant for the computation of the growing season average temperature (GST) [34], grow-
ing degree days (GDD) [1,3], Huglin’s index (HI) [35], cool night index (CI) [36], dryness
index (DI) [37], and the Géoviticulture multicriteria climate classification (GMCC) [38] viti-
cultural climate indices for a study region containing the Willamette Valley (WV) American
Viticultural Area (AVA).

Heat unit accumulation is important for suitability assessment in that each cultivar has
a minimum summed temperature requirement to reach maturity. A late-ripening cultivar
will not achieve full ripening in a cool climate and an early ripening cultivar will ripen too
quickly in a warm climate. Optimal climate suitability occurs where cultivars ripen at the
end of the growing season [8]. The most common applied heat unit accumulation index is
the Winkler index (WI), more often referred to as growing degree days (GDD) [1,3,10]. It is
the sum of the mean temperatures above a specified base for the growing season, defined
as 1 April–31 October in the northern hemisphere [1]. The Huglin index (HI) [35] is similar
in form to the GDD method but gives extra weight to the maximum temperature, includes
an adjustment factor to account for day length as a function of latitude, and as originally
defined only sums for the months April–September. Huglin and Schneider [39] classified
cultivars as a function of HI. The GST climate index is the mean of the observed maximum
and minimum daily surface air temperature values from the first of April through the
end of October (for the Northern Hemisphere). Jones [34] demonstrated broad correlation
between the GST and cultivar ripening potential across many wine regions.

While temperature-based heat unit accumulation indices are most used to address
viticultural suitability [3], Tonietto and Carbonneau [38] introduced the Géoviticulture
multicriteria climate classification system (GMCC) to describe and compare the climates of
vineyards worldwide. The GMCC combines three complementary viticulture indices that
not only capture climatology but also relate well to qualitative potential and characteristics
relevant to wine production. The first index, HI, accounts for heat unit accumulation. The
second index is the cool night index (CI) which is defined as the mean of the minimum
night temperatures for the month before harvest. The third GMCC index is the dryness
index (DI). It is the aggregate vertical accounting of potential soil water availability for
April to September whose computation considers precipitation, soil evaporation, and vine
transpiration while excluding surface runoff and drainage. It functions as an indicator
of the level of presence-absence of dryness for a given area. The GMCC is applicable
at multiple spatial scales and includes a comprehensive companion database to support
worldwide climatic group comparisons, and one potential use of it is the study of the
evolution of viticultural climate as a function of climate change [38].

We consider the complete archive of thirty-two CMIP5 daily Localized Constructed
Analogs (LOCA) downscaled historic datasets [40,41] of minimum surface air tempera-
ture, maximum surface air temperature, and precipitation (https://gdo-dcp.ucllnl.org/
downscaled_cmip_projections/ accessed on 2 December 2020) and their observational data
that were used for downscaling and bias correction [42]. The method comparison provides
an opportunity to learn about their relative performance. It also reveals optimal ensemble
subset sizes for the computation of the GST, GDD, HI, CI, DI, and GMCC indices in the WV
AVA. Moreover, by considering multiple indices, we can explore whether LOCA CMIP5
ensemble compositions and weights vary by viticulture climate classification index.

The Willamette Valley is of interest not only given its recent and consistent observed
warm to hot vintages [43], but also due to the very limited previous study of climate
change impacts to viticulture in the AVA [44]. To our knowledge, this is the first study
to comprehensively evaluate a complete downscaled CMIP5 model archive to determine
optimal ensemble compositions and weights for the computation of future projections of
viticulture climate classification for a wine region. Acknowledging that this type of study is
technically challenging and infrequent [24], our results are provided in a manner such that
they can be directly used by others to reliably analyze the impacts of daily LOCA CMIP5
future climate projections to viticulture for the WV AVA.

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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Table 1. A summary of recent studies that have evaluated the impacts of climate change to viticulture using bioclimatic
indices and downscaled future climate projections.

Authors Wine Region/Study Area Bioclimatic Indices 1

Blanco-Ward et al. [45] The Portuguese Douro Demarcated Region WI, HI, CI, DI

Cabré and Nuñez [46] Argentinean provinces of Mendoza, San Juan, La
Rioja, Salta and Catamarca GST, CI, GSP, DSTmin

Cardell et al. [47] Europe Tmax, AP, GST, WI, HI, RET, WB

Irimia et al. [48] Cotnari (Romania) GST, HI

Koufos et al. [49]
Aigialia, Chalkidiki, Crete, Drama, Kavala,
Limnos, Marania, Naousa, Nemea, Pyrgos,
Rodos, Samos, Santorini, Tripoli (Greece)

GDD

Santos et al. [50] 50 protected denominations of origin and
sub-regions throughout mainland Portugal HI, DI

Sirnik [51] Valencia (Spain) and Goriška Brda (Slovenia) WI, HI, DI

Teslic et al. [52] Emilia-Romagna Tmean, HI, CI, GSl, GSed, GSst, Ptot, DI,
DSI, FFP, FF, LF

Trbic et al. [53] 3 locations in Bosnia and Herzegovina HI, CI, DI, GMCC
1 WI = Winkler index, HI = Huglin index, CI = cool night index, DI = dryness index, GST = growing season average temper-
ature, GSP = growing season average precipitation, DSTmin = monthly mean minimum temperature during the dormant season,
Tmax = maximum temperature during summer, AP = annual precipitation, RET = real evapotranspiration, WB = water balance,
GDD = growing degree days, Tmean = growing season mean temperature, GSl = growing season length, GSed = climatologically defined
end of growing season, GSst = climatologically defined start of growing season, Ptot = growing season total rainfall, DSI = dry spell index,
FFP = length of the frost-free period, FF = date of the first fall frost, LF = date of the last spring frost, and GMCC = the Géoviticulture
multicriteria climate classification index.

2. Materials and Methods
2.1. Study Region

The study region consists of 553 model-observation comparison points which cover
the 13,913 square kilometer Willamette Valley AVA which lies in the Willamette River Basin
in the northwestern part of the State of Oregon (OR) in the U.S. (Figure 1). The WV AVA
includes the entire main stem of the Willamette River, including parts of its Middle Fork
and Coastal Fork which join near Springfield, OR just south of Eugene, OR. The Willamette
River generally flows in a northly pattern to its confluence with the Columbia River in
Portland, OR. The WV AVA is bounded to its west by the Oregon Coastal Range and to its
east by the Cascade Range.

The Oregon Wine Board [54] reported for the 2019 vintage 25,197 harvested acres
of the WV AVA’s 25,452 planted acres. Total production for the WV AVA was estimated
to be 73,560 tons, which accounted for approximately 69.7% of the total wine grape pro-
duction for the State of Oregon. For the WV AVA, Pinot Noir, Pinot Gris, Chardonnay,
Pinot Blanc, and Riesling accounted for 69.3, 16.9, 7.4, 1.2, and 1.2 percent of its total
production, respectively.
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study are listed in Table S1. The observation-based 1/16° longitude-latitude gridded 
Livneh data product [41] was used to train and downscale the daily LOCA CMIP5 da-
tasets which span 25.125° N to 52.875° N and −124.625° E to −67.000° E [40,55]. In this 
study, version 1.2 of the Livneh dataset at the 553 grid locations indicated in Figure 1 
functioned as the observation dataset. It was processed and compared with its corre-
sponding LOCA CMIP5 processed model historic data counterparts [18] to compute pre-
diction specific (i.e., growing season average temperature (GST), growing degree days 
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sulting ensemble composition and weights. 
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Calculation of any one of the six viticulture climate classification indices involves one 
or more variables wherein each individual variable is a unique processed base model/ob-
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(5) and (7). The growing season average temperature, GST [34], growing degree days, 

Figure 1. The 553 model-observation data locations which cover the Willamette Valley American
Viticultural Area (AVA) used to compute prediction specific model-to-measurement misfit evalua-
tions and ensemble composition and weights assignments by comparing bioclimatic index relevant
processed daily Localized Constructed Analogs (LOCA) Coupled Model Intercomparison Project
phase 5 (CMIP5) model historic datasets [40,41] with their equivalently processed observed data
counterparts [18,42].

2.2. Time Series Data

The complete archive of Coupled Model Intercomparison Project phase 5 (CMIP5) daily
Localized Constructed Analogs (LOCA) multi-model historic (1950–2005) datasets [40,41] of
minimum surface air temperature, maximum surface air temperature, and precipitation
was collected from the Downscaled CMIP5 Climate and Hydrology Projections archive
at https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ (accessed on 2 December
2020). The 32 models and modeling groups that provided the data used in this study are
listed in Table S1. The observation-based 1/16◦ longitude-latitude gridded Livneh data
product [41] was used to train and downscale the daily LOCA CMIP5 datasets which
span 25.125◦ N to 52.875◦ N and −124.625◦ E to −67.000◦ E [40,55]. In this study, version
1.2 of the Livneh dataset at the 553 grid locations indicated in Figure 1 functioned as
the observation dataset. It was processed and compared with its corresponding LOCA
CMIP5 processed model historic data counterparts [18] to compute prediction specific
(i.e., growing season average temperature (GST), growing degree days (GDD), Huglin
index (HI), cool night index (CI), dryness index (DI), and Géoviticulture multicriteria
climate classification (GMCC)) model-to-measurement evaluations and resulting ensemble
composition and weights.

2.3. Viticulture Climate Indices and Processed Datasets for Prediction Specific Modeling Analyses

Calculation of any one of the six viticulture climate classification indices involves one or
more variables wherein each individual variable is a unique processed base model/ observa-
tion data product (i.e., precipitation, maximum surface air temperature, minimum surface air
temperature). The model-observation datasets developed to support the prediction specific
modeling analyses were not the specific viticultural climate indices but rather processed
datasets that support their calculation as indicated in Equations (1)–(4), (5) and (7). The

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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growing season average temperature, GST [34], growing degree days, GDD [1,3], Huglin
index, HI [35], and cool night index, CI [36], are defined in Equations (1)–(4), respectively.

GST =
1
n ∑Oct 31

Apr 1 (Tmax + Tmin)/2 = f
(
∑Oct 31

Apr 1 Tmax, ∑Oct 31
Apr 1 Tmin

)
, (1)

GDD =
Oct 31

∑
Apr 1

max
[((

Tmax + Tmin
)
/2
)
− 10, 0

]
= f
(
Tmax, Tmin

)
, (2)

HI = ∑Sep 30
Apr 1 max

[(((
Tmean − 10

)
+
(
Tmax − 10

))
/2
)
, 0
]
·K = f

(
Tmax, Tmin

)
, (3)

CI =
1
30 ∑Sep 30

Sep 1 Tmin = f(Tmin), (4)

where n = 214, Tmax and Tmin, Tmax, Tmin, Tmean, and K denote the number of days for
the northern hemisphere growing season, the maximum and minimum daily surface air
temperature data values in ◦C, the monthly means of the Tmax, the monthly means of the
Tmin, the monthly means of the mean of the Tmax and Tmin, and an adjustment factor to
account for day length as a function of latitude, respectively. In Equation (1) we see that the
GST is a function of the sums of the Tmax and Tmin for the duration of the growing season.
Equations (2) and (3) emphasize that the GDD and HI are each a function of the Tmax and
Tmin for their respective periods. The adjustment factor, K, for the calculation of the HI was
not included in the right-hand side of Equation (3) since it does not vary by climate model.
The CI is a function of the Tmin for the month of September (see Equation (4)). The dryness
index [37] is a function of the April to September monthly means of the daily precipitation
and maximum and minimum surface air temperature data,

DI = f
(

P, Tmax, Tmin
)
. (5)

It is based on the following equation calculated monthly from April to September,

W = Wo + P− Tv − Es, (6)

where W, Wo, P, Tv, and Es represent the soil water reserve in millimeters (mm) at the
end of a given month, the initial soil water reserve in mm, monthly precipitation in mm,
monthly potential transpiration in mm, and monthly direct evaporation from the soil in
mm [38]. The value for DI each year is the value of W at the end of September (See [38]
for additional details about calculation of the DI). The Géoviticulture multicriteria climate
classification (GMCC) is defined as the cross product of the HI, CI, and DI [38]; hence,

GMCC = f
(

P, Tmax, Tmin, CI
)
. (7)

Relative individual LOCA CMIP5 model performance may vary across each of a given
prediction’s respective functional variables [15,17,18,23]. For example, for computation
of the GST, an individual LOCA CMIP5 model might possess better skill relative to the
remaining members of the archive in summing daily maximum surface air temperatures
from April through October but poor skill relative to the remaining members of the
multi-model ensemble with summing the daily minimum surface air temperatures from
April through October. Recently introduced methods for evaluating climate model skill
require the consideration of each individual variable composing the prediction [15,17,18,23].
Table 2 summarizes the model/observation datasets that were developed to evaluate the
performance of LOCA CMIP5 individual and multi-model ensembles for the calculation of
the six viticulture climate classification indices throughout the WV AVA. Each processed
model-observation dataset specified in Table 2 used data from the 553 model-observation
grid locations indicated in Figure 1 for the entire 56 years (1950–2005) that define the LOCA
CMIP5 historic period.
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Table 2. Summary description of model-observation datasets that were developed for the Willamette
Valley American Viticultural Area to evaluate the performance of Localized Constructed Analogs
(LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) [40,41] ensembles to calculate six
viticulture climate classification indices during the LOCA CMIP5 defined historic period (1950–2005).

Prediction Dataset Description Model/Observation
Dataset Sizes

GST ∑Oct 31
Apr 1 Tmax, ∑Oct 31

Apr 1 Tmin 553·56·2 = 61,936
GDD a Tmax, Tmin 553·56·7·2 = 433,552

HI b Tmax, Tmin 553·566·2 = 371,616
CI 1

30 ∑
Sep 30
Sep 1 Tmin 553·56·1 = 30,968

DI b P, Tmax, Tmin 553·566·3 = 557,424
GMCC b P, Tmax, Tmin,CI 553·56·(6·3 + 1) = 588,392

Tmax and Tmin, Tmax , Tmin, and P denote the maximum and minimum daily surface air temperature, monthly
means of the Tmax , monthly means of the Tmin, and the mean monthly precipitation. a April to October. b April
to September.

2.4. Modeling Averaging Methods

Model averaging involves combining models to improve prediction accuracy and
reduce forecast uncertainty, preferably while simultaneously accounting for model skill
and interdependence [15,16,25,56]. Eyring et al. [13] expressed the need for further study
and better understanding of advanced model averaging methods for climate projections.

2.4.1. Model

The specified model is a general linear model without intercept,

M = ∑32
i=1 wi Mi, (8)

where Mi and wi represent the i-th LOCA CMIP5 model and its assigned non-negative
weight, respectively. The modeling objective is to minimize model-to-measurement misfit
for each WV AVA viticulture climate classification index directed dataset defined in Table 2
by using one of four different methodologies as they are described in Sections 2.4.2–2.4.5.

2.4.2. Skill Weighting

Sanderson et al. [23] and Sanderson et al. [17] introduced a weight assignment strategy
for developing climate multi-model ensembles that addressed the assumption regarding
CMIP5 model democracy; namely, that individual members of the CMIP5 multi-model
archive can vary in their skill by location and prediction. Computation of the root mean
squared error (RMSE) between the observations and each model, by variable, enables the
ranking of the individual ensemble members. The RMSE is given by

RMSE =

√
1
N ∑N

j=1

(
Sj −Oj

)2, (9)

where S, O, and N denote modeled data, their observed counterparts, and the number
of model-observation comparisons. The skill weight assigned to the i-th LOCA CMIP5
model [17,23] is defined as

wskill,i = Ae
−(

δi(obs)
Dq )

2

, (10)

where A, δi(obs), and Dq denote a normalizing constant such that the entire set of individual
model skill weights sums to one, the median skill for each model [15], and a parameter
called the radius of model equality [23] which determines the degree to which models
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with poor skill are down-weighted. A model’s median skill is defined as the median of its
individual relative RMSE values, E∗ [15,17,23], where

E∗ = 1 +
E− E

E
, (11)

and E and E denote, for a given prediction specific functional variable, the model’s RMSE
and the mean RMSE across all ensemble members, respectively. A small value assigned to
the radius of model equality will result in a weights assignment that favors an ensemble
subset whose members possess the best median skill values; whereas, as Dq → ∞ , com-
puted weights will approach the multi-model mean which does not account for model skill.

2.4.3. Skill and Model Interdependence Weighting

Sanderson et al. [23] and Sanderson et al. [17] augmented their skill weight assignment
strategy to also account for model similarity in attempts to develop ensemble composi-
tions and weights that further reduce CMIP5 archive redundancy by virtue of shared
parameterization schemes and training methods. As with their skill weight assignment
strategy, RMSE values calculated between each model and its respective variable specific
processed observations enables the calculation of independence weights for each LOCA
CMIP5 ensemble member. A multi-variate inter-model distance matrix, δ, is computed
as the equally weighted linear combination of normalized variable specific inter-model
distance matrices that are each composed of their RMSE distances between each pair of
models. For any two models i and j, a similarity score matrix is defined as

Sij = e−(
δij
Du )

2

, (12)

where Du is a parameter defined as the radius of similarity which specifies the distance scale
over which models should be considered similar and down-weighted for co-dependence.
We choose a value of 0.5 for Du [15,23]. In theory, for two identical models, Sij = 1. Also,
Sij → 0 as δij → ∞ . Using the similarity scores, the independence weight for the i-th
LOCA CMIP5 model is defined as

wu(i) =
(

1 + ∑n
i 6=j Sij

)−1
, (13)

where n is the total number of models [15,17,23]. A weight to assign to each individual
model that simultaneously accounts for its skill and interdependence is the product of its
skill weight and independence weight

w(i) = A·wskill,i·wu(i), (14)

normalized by A such that the sum of the w(i) across all models equals one [15,17,23].

2.4.4. Model Median Skill Directed Simple Model Averaging

For each prediction, the median skills computed for each model, δi(obs), were ranked
and ensembles of size one to size equal to thirty-two were constructed using simple model
averaging. This is like the approach presented by Yang et al. [25] who used skill scores
obtained from application of the Taylor diagram [28] to build multi-model ensembles using
simple model averaging.

2.4.5. Elastic-Net Regularization

In their climate model subset study, Herger et al. [24] mentioned lasso regression
from the field of machine learning as an alternative method to their approach. Zou and
Hastie [33] introduced the elastic-net penalty as a compromise between ridge [57,58] and



Climate 2021, 9, 140 9 of 23

lasso [59] regression. Given observations yi, i = 1, . . . , n, an n×m matrix of covariates X,
and an assumed linear model

yi = η0 + η1xi,1 + · · ·+ ηmxi,m, (15)

the elastic-net minimizes

1
2n ∑n

i=1 w̃i

(
yi − η0 − ηxT

i

)2
+ λ ∑m

j=1

[
1
2
(1− α)η2

j + α
∣∣ηj
∣∣], (16)

where λ is a non-negative regularization parameter that is tuned to weight the overall
strength of the penalty, α ∈ [0, 1] is specified to control the penalty term to vary from ridge
regression at α = 0 to lasso regression at α = 1, and w̃i is the weight assigned to the ith
observation [29]. Ridge regression yields smooth solutions that include all the predictors,
whereas application of lasso regression results in automatic variable selection (i.e., sparse,
much more easily interpretable solutions) [32]. The elastic-net combines the two methods.
As α increases from 0 to 1 for a fixed λ, the number of zero-valued ηj increases from 0
to the sparsity of the lasso [29]. In this study, variable selection was desired, therefore
α was specified close to 1 for numerical stability [29]. With α specified close to 1, the
elastic-net performs much like lasso regression while retaining ridge regression’s capacity
to collectively shrink the coefficients for any highly correlated covariables [29,60]. Cross
validation (CV) was employed to ensure that the minimizing value for λ was properly
located for each elastic-net application. Google Scholar reports 14,411 citations for [33].
Implementations of the elastic net exist in R, Matlab, Apache Spark, and SAS.

3. Results and Discussion

For each viticulture climate classification directed prediction (i.e., GST, GDD, HI, CI, DI,
GMCC), individual LOCA CMIP5 model RMSEs computed by variable are listed in Table 3.
Together with the specification of Dq and Du, these RMSE values can be used to indepen-
dently calculate prediction specific ensemble skill weights and independence weights.

Table 3. Localized Constructed Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) [40,41] model
root mean squared error (RMSE) values by variable, as defined in Table 2, for calculation of the growing season average
temperature (GST), growing degree days (GDD), Huglin index (HI), cool night index (CI), dryness index (DI), and the
Géoviticulture multicriteria climate classification (GMCC) throughout the Willamette Valley American Viticultural Area
during the LOCA CMIP5 defined historic period (1950–2005).

CI HI

DI

GST GDD GMCC

Model
Oct 31

∑
Apr 1

Tmax
Oct 31

∑
Apr 1

Tmin TmaxTmin CI Tmax Tmin P

ACCESS1-0 244.771 175.139 2.475 1.570 1.520 2.517 1.509 1.677
ACCESS1-3 282.841 204.605 2.631 1.505 1.672 2.689 1.504 1.574

bcc-csm1-1-m 259.278 151.427 2.614 1.354 1.294 2.606 1.341 1.601
bcc-csm1-1 238.086 183.287 2.602 1.523 1.600 2.657 1.489 1.656
CanESM2 221.319 160.250 2.469 1.386 1.531 2.487 1.354 1.686
CCSM4 260.058 178.384 2.439 1.478 1.601 2.489 1.437 1.562

CESM1-BGC 246.888 188.197 2.550 1.481 1.640 2.549 1.490 1.650
CESM1-CAM5 288.032 211.412 2.517 1.551 1.730 2.561 1.566 1.687

CMCC-CM 233.042 158.486 2.368 1.421 1.445 2.440 1.396 1.479
CMCC-CMS 266.691 166.287 2.516 1.369 1.381 2.545 1.380 1.563
CNRM-CM5 255.646 169.015 2.485 1.461 1.380 2.535 1.454 1.532

CSIRO-Mk3-6-0 250.895 184.803 2.429 1.418 1.310 2.491 1.396 1.710
EC-EARTH 236.074 175.140 2.505 1.430 1.503 2.547 1.418 1.644
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Table 3. Cont.

CI HI

DI

GST GDD GMCC

Model
Oct 31

∑
Apr 1

Tmax
Oct 31

∑
Apr 1

Tmin TmaxTmin CI Tmax Tmin P

FGOALS-g2 281.068 166.505 2.567 1.385 1.471 2.595 1.348 1.549
GFDL-CM3 320.326 183.522 2.786 1.469 1.602 2.805 1.416 1.659

GFDL-ESM2G 265.095 177.986 2.652 1.514 1.623 2.720 1.479 1.701
GFDL-ESM2M 284.170 177.658 2.625 1.489 1.561 2.640 1.448 1.796

GISS-E2-H 230.396 183.046 2.556 1.888 1.971 2.616 1.916 1.677
GISS-E2-R 239.828 225.547 2.497 1.903 2.006 2.518 1.902 1.556

HadGEM2-AO 251.507 186.377 2.558 1.623 1.721 2.612 1.568 1.717
HadGEM2-CC 252.912 198.520 2.462 1.625 1.786 2.491 1.623 1.533
HadGEM2-ES 239.594 201.824 2.454 1.672 1.785 2.461 1.675 1.579

inmcm4 263.054 165.371 2.629 1.491 1.615 2.629 1.458 1.645
IPSL-CM5A-LR 272.671 211.333 2.572 1.715 1.905 2.617 1.672 1.626
IPSL-CM5A-MR 237.304 196.434 2.502 1.776 1.908 2.538 1.752 1.567

MIROC-ESM-CHEM 277.020 195.943 2.715 1.532 1.678 2.779 1.551 1.595
MIROC-ESM 276.154 176.654 2.686 1.439 1.383 2.757 1.424 1.663

MIROC5 222.107 197.340 2.651 1.500 1.580 2.736 1.493 1.658
MPI-ESM-LR 274.320 167.181 2.610 1.443 1.386 2.655 1.394 1.654
MPI-ESM-MR 251.487 175.201 2.346 1.392 1.375 2.355 1.375 1.480
MRI-CGCM3 249.066 188.684 2.486 1.616 1.757 2.519 1.560 1.523
NorESM1-M 212.750 180.521 2.324 1.501 1.608 2.365 1.480 1.634

Figure 2 presents viticulture climate classification directed LOCA CMIP5 model rel-
ative RMSE values, E∗, and median skill values, δi(obs), also normalized such that their
means are one. Each row of Figure 2 has its own color scale wherein its minimum, mean,
and maximum are blue, white, and red, respectively. Hence, for any given row, models
color coded with shades of blue/red possess more/less skill than the ensemble mean. The
first two/third and fourth/fifth and sixth/fifth through seventh/fifth through eighth rows
of Figure 2 are the variables specific for the calculation of the GST/GDD/HI/DI/GMCC,
respectively. The ninth through fourteenth rows of Figure 2 are the computed median skill
values for calculation of the GST, GDD, HI, CI, DI, and GMCC, respectively.

LOCA CMIP5 model median skill values vary by model and their individual rankings
differ for each of the six viticulture climate classification indices that were considered for
the Willamette Valley AVA. The results not only emphasize that it is necessary to account
for model skill, but also, considering Equation (10), that skill weight assignments are
prediction specific [17,23]. Model median skill values, δi(obs), are a function of their related
relative RMSE values, E∗. The results presented in Figure 2 also emphasize that individual
model skill varies for each of the functional variables relevant for the calculation of the
GST, GDD, HI, CI, DI, and GMCC, respectively. For example, for calculation of the GST,
its related relative RMSE model rankings emphasize that individual models substantively
differ in their relative capacities to sum the daily (1) maximum and (2) minimum surface
air temperatures from the beginning of April to the end of October.
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Figure 2. A graphical representation of calculated viticulture climate classification specific (i.e., growing season average
temperature (GST), growing degree days (GDD), Huglin index (HI), cool night index (CI), dryness index (DI), and
the Géoviticulture multicriteria climate classification (GMCC)) Localized Constructed Analogs (LOCA) Coupled Model
Intercomparison Project phase 5 (CMIP5) [40,41] model relative root mean squared error (RMSE) and normalized median
skill values for the Willamette Valley American Viticultural Area during the LOCA CMIP5 defined historic period (1950–
2005). The color scale is shown for each row, and blues/reds represent models with more/less skill than the ensemble
mean (white).

Despite the previously mentioned observed differences with LOCA CMIP5 individ-
ual model skill for the calculation of six specific viticulture climate classification indices
throughout the WV AVA, some observed similarities also exist. A strong consistency is
observed for the rankings of model median skill values, and their related relative RMSE
values, E∗, for the GDD and HI, which is understandable given their similar functional
variable definitions (see Equations (2) and (3), and Table 2). In addition, across all six
viticulture climate classification indices, there exists a group of nine LOCA CMIP5 models
(bcc-csm1-1-m, CanESM2, CCSM4, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-
0, EC-EARTH, and MPI-ESM-MR) the median skill of which, in each case, is consistently
greater than its ensemble mean.

Figure 3 is the multi-variate inter-model distance matrix that was developed using
the RMSE values listed in Table 3 that are relevant for calculation of the GMCC viticulture
climate classification index throughout the WV AVA. Together with specification of the
radius of similarity, this matrix supports computation of model independence weights
to account for, in addition to skill, archive model interdependence by down-weighting
similar models [15,17,18,23]. Multi-variate inter-model distance matrices were also com-
puted to calculate independence weights for the five other viticulture climate classification
indices. In Figure 3, model pairs with small inter-model distances are denoted blue and
considered dependent, whereas larger pairwise inter-model distances are red and signify
independent models.



Climate 2021, 9, 140 12 of 23Climate 2021, 9, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 3. Multi-variate inter-model distance matrix [17,23] developed for calculation of the Géoviticulture multicriteria 
climate classification viticulture climate classification index for the Willamette Valley American Viticultural Area using 
the Localized Constructed Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) model archive 
[40,41] for its defined historic period (1950–2005). Red matrix entries depict pairwise independent models, whereas entries 
colored blue denote pairwise models whose datasets are closer in agreement and demonstrate more co-dependence. 

ACCESS1-0 2.04
ACCESS1-3

bcc-csm1-1-m
bcc-csm1-1
CanESM2
CCSM4

CESM1-BGC
CESM1-CAM5

CMCC-CM
CMCC-CMS
CNRM-CM5

CSIRO-Mk3-6-0
EC-EARTH
FGOALS-g2
GFDL-CM3

GFDL-ESM2G
GFDL-ESM2M

GISS-E2-H
GISS-E2-R

HadGEM2-AO 0.92
HadGEM2-CC
HadGEM2-ES

inmcm4
IPSL-CM5A-LR
IPSL-CM5A-MR

MIROC-ESM-CHEM
MIROC-ESM

MIROC5
MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3
NorESM1-M 0.21

A
CC

ES
S1
-0

A
CC

ES
S1
-3

bc
c-
cs
m
1-
1-
m

bc
c-
cs
m
1-
1

Ca
nE
SM

2

CC
SM

4

CE
SM

1-
B
G
C

CE
SM

1-
CA

M
5

C
M
CC

-C
M

CM
CC

-C
M
S

CN
RM

-C
M
5

CS
IR
O
-M

k3
-6
-0

EC
-E
A
RT

H

FG
O
A
LS

-g
2

G
FD

L-
CM

3

G
FD

L-
ES

M
2G

G
FD

L-
ES

M
2M

G
IS
S-
E2
-H

G
IS
S-
E2
-R

H
ad
G
EM

2-
A
O

H
ad
G
EM

2-
CC

H
ad
G
EM

2-
ES

in
m
cm

4

IP
SL

-C
M
5A

-L
R

IP
SL

-C
M
5A

-M
R

M
IR
O
C-
ES

M
-C
H
EM

M
IR
O
C-
ES

M

M
IR
O
C5

M
PI
-E
SM

-L
R

M
PI
-E
SM

-M
R

M
R
I-C

G
C
M
3

N
or
ES

M
1-
M

Figure 3. Multi-variate inter-model distance matrix [17,23] developed for calculation of the Géoviticulture multicriteria
climate classification viticulture climate classification index for the Willamette Valley American Viticultural Area using the
Localized Constructed Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) model archive [40,41] for
its defined historic period (1950–2005). Red matrix entries depict pairwise independent models, whereas entries colored
blue denote pairwise models whose datasets are closer in agreement and demonstrate more co-dependence.

For all six viticulture climate classification indices considered in this study, calculated
independence weights did not substantively alter results that were obtained which solely
considered model skill weighting (see Table 4). This observation agrees with results
presented by Wootten et al. [18]. Figure 4 is a plot of normalized independence weights
that were calculated for each of the six viticulture climate classification indices. The
normalized independence weights shown in Figure 4 emphasize that Equation (13) does
not sufficiently down-weight model redundancy and only provides a slight nudge to
weight the independent models more heavily. For this study, the slightly more heavily
weighted independent models in general were also the models with poor relative skill. The
skill as well as skill model interdependence weighting schemes generally produce weight
assignments that cluster together [18].
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Table 4. For the Willamette Valley American Viticultural Area (AVA) and growing season average temperature (GST),
growing degree days (GDD), Huglin index (HI), cool night index (CI), dryness index (DI), and the Géoviticulture multicriteria
climate classification (GMCC) viticulture climate classification indices, computed root mean squared error (RMSE) values
obtained by comparing climate index specific processed daily Localized Constructed Analogs (LOCA) Coupled Model
Intercomparison Project phase 5 (CMIP5) model historic datasets [40,41] with their equivalently processed observed data
counterparts [24,41] using the skill weighting, and skill and model interdependence weighting methods [17,23]. N denotes
the number of LOCA CMIP5 models defining the ensemble.

GST GDD HI CI DI GMCC

Skill Weighting

N RMSE N RMSE N RMSE N RMSE N RMSE N RMSE

2 192.95 2 1.93 2 1.93 1 1.29 2 1.79 2 1.77
4 190.19 5 1.92 4 1.92 4 1.24 4 1.70 10 1.60

10 180.68 10 1.85 9 1.89 9 1.20 9 1.67 11 1.57
13 178.27 22 1.61 20 1.66 14 1.16 20 1.59 21 1.50
26 168.59 28 1.55 27 1.58 21 1.14 27 1.56 23 1.48
32 162.58 30 1.52 30 1.55 24 1.14 30 1.53 29 1.43
32 165.67 32 1.50 32 1.52 32 1.15 32 1.46 32 1.40
32 169.20 32 1.51 32 1.53 32 1.18 32 1.42 32 1.41
32 170.76 32 1.52 32 1.54 32 1.20 32 1.43 32 1.42

Skill and Model Interdependence Weighting

N RMSE N RMSE N RMSE N RMSE N RMSE N RMSE

2 193.03 2 1.93 2 1.93 1 1.29 1 1.79 2 1.77
3 191.09 4 1.92 3 1.92 3 1.25 6 1.73 10 1.64
6 183.59 9 1.87 8 1.91 8 1.20 12 1.71 11 1.62

10 181.50 18 1.65 18 1.75 13 1.19 19 1.65 23 1.55
24 172.79 28 1.59 27 1.67 20 1.15 21 1.62 25 1.53
32 164.74 30 1.55 30 1.61 23 1.14 28 1.60 30 1.46
32 167.06 32 1.50 32 1.53 32 1.14 32 1.53 32 1.41
32 174.76 32 1.51 32 1.53 32 1.18 32 1.42 32 1.41
32 178.34 32 1.53 32 1.56 32 1.21 32 1.43 32 1.42

Viticulture climate classification directed LOCA CMIP5 model median skill values,
δi(obs), directly computed from the RMSE values listed in Table 3 and graphically repre-
sented in Figure 2, were ranked to develop ensemble compositions of size one to thirty-two.
For each prediction of interest (i.e., GST, GDD, HI, CI, DI, and GMCC), the RMSE was
subsequently computed for each of these thirty-two model compositions using simple
model averaging (see Figure 5 for GST and Figures S1–S5 for GDD, HI, CI, DI, and GMCC,
respectively). As previously mentioned, this simple method is like the approach presented
by Yang et al. [25]; however, instead of the ranked skill scores from the Taylor diagram [28]
we used the ranked model median skills.
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Figure 4. Normalized independence weights developed for the growing season average temperature (GST), growing degree
days (GDD), Huglin index (HI), cool night index (CI), dryness index (DI), and the Géoviticulture multicriteria climate
classification (GMCC) viticulture climate classification indices throughout the Willamette Valley American Viticultural
Area using the Localized Constructed Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) model
archive [40,41] for its defined historic period (1950–2005).

Figure 5 includes a plot of the RMSEs computed using simple model averaging (SMA)
for each of the thirty-two ensemble compositions formed from the ranked median skill
values that are of relevance for the calculation of the growing season average temperature,
GST, throughout the WV AVA. This median skill directed SMA plot demonstrates a quick
drop from its single model RMSE to a minimum, associated with an ensemble subset of size
10, and subsequently rises to the ensemble mean composed of all thirty-two models. This
pattern is generally also observed in Figures S1–S5; however, the ensemble sizes associated
with the minimum RMSE for prediction of the GDD, HI, CI, DI, and GMCC are 11, 18, 12,
14, and 21, respectively.

Figure 5 and Figure S1–S5 also include results from application of the skill weighting
method [17,23], with each figure including results associated with different parameteri-
zations (i.e., values for the radius of model equality) that effectively result in ensemble
compositions of varying sizes when zero is defined for a computed weight with a value
less than 1 × 10−4 to estimate ensemble size for the given Dq value. In each figure, as
the radius of model equality is increased from its initially assigned value which yields
the most parsimonious ensemble composition considered for the skill weighting method,
RMSE values for the skill weighting ensembles drop to a minimum and subsequently rise
toward the no skill ensemble mean. For the skill weighting method, its minimum is always
composed of all 32 models (see Figures 5 and S1–S5).
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Figure 5. For the Willamette Valley American Viticultural Area (AVA) and growing season average temperature (GST),
computed root mean squared error (RMSE) values obtained by comparing GST specific processed daily Localized Con-
structed Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) model historic datasets [40,41] with
their equivalently processed observed data counterparts [18,42] using skill weighting, with various values for its radius of
model equality, Dq [17,23], model median skill directed simple model averaging (SMA), and elastic-net regularization [33].
N denotes the number of LOCA CMIP5 models defining the ensemble.

Herger et al. [24] emphasized that the skill and model interdependence weighting
methods are directed at assigning continuous weights as opposed to the identification
of optimal ensemble subsets. Results presented herein and also by Wootten et al. [18]
reinforce this observation (see Figure 5 and Figure S1–S5 and Table 4). However, it is
notable to observe that the model median skill directed simple model averaging method
generally yields lower RMSE values than those computed from the skill weighting method
for ensembles of comparable sizes (see Figure 5 and Figure S1–S5). The method also
consistently finds an optimal ensemble subset with an RMSE value less than or equal in
value to the skill weighting method minimizing RMSE that includes the complete archive
(see Figure 5 and Figure S1–S5).

While relatively straightforward methods such as skill weighting, skill weighting
including interdependence, and model median skill SMA can be proposed and applied
to assign weights for model averaging, one can instead apply optimization and inference
methods that involve a systematic and iterative search of parameter space, including im-
plementation of formal stopping/convergence criteria, to find prediction specific optimal
ensemble compositions and weights to account for skill and interdependence. For example,
Massoud et al. [15], Massoud et al. [16], and Wootten et al. [18] applied BMA [61], which
involves Markov Chain Monte Carlo sampling, and Herger et al. [24] employed mixed
integer quadratic programming for model averaging. We apply a calibration method that to
our knowledge has not previously been considered for combining multi-model climate pro-
jections; viz., the elastic-net penalty [33]. It can be readily configured to either find smooth
solutions or parsimonious models while preserving fit with the observational dataset.

Figure 5 and Figure S1–S5 further include results from applications of elastic-net
regularization configured for automatic variable selection. Each elastic-net application
was performed using the R software package ‘glmnet’ [29], employing k-fold CV with
k = 32 (i.e., leave-one-out CV), α = 0.95, and w̃i = 1 for each observation. The best
regularizing model is defined to be at the largest λ value within one standard error of the
minimum [29,60,62]. Each figure includes the minimum, identified using leave-one-out
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cross validation, and its associated best regularized solution. The best regularized solution
in each case differed only slightly from the minimizing solution. Elastic-net regularization
consistently found a minimizing optimal ensemble subset that outperformed the other
three model averaging methods considered in this study (see Figures 5 and S1–S5). From
a practical perspective, for a given prediction, application of elastic-net regularization
is less resource and time intensive to apply than the skill weighting, skill and model
interdependence weighting, and the model median skill SMA methods.

The calibrated models listed in Table 5 are prediction specific (i.e., GST, GDD, HI, CI,
DI, GMCC) weight assignments computed from cross validation directed applications of
elastic-net regularization configured for automatic variable selection. Equation (8) can be
applied using the weights listed in Table 5 to optimally compute, within the framework
presented herein, the GST, GDD, HI, CI, DI, or GMCC for the WV AVA while using
LOCA CMIP5 historical and future climate projections. For example, the Tmax and Tmin
associated with the ensemble model M defined using the weights listed in the second
column of Table 5 can be used to optimally compute the GST throughout the WV AVA
using Equation (1). The model weights listed in Table 5 are based on comparisons with
the Livneh dataset [42] for the LOCA CMIP5 defined historical period [40,41]. While
not shown, closely matching summary statistics were also obtained for each respective
viticulture climate index, for calibration and verification, from cross validation directed
elastic-net regularization fits which held back twenty-five percent of the LOCA CMIP5
historical data.

The models listed in Table 5 for optimized computation of the GST, GDD, HI, CI, DI,
and GMCC throughout the WV AVA further reinforce statements regarding CMIP5 archive
democracy and redundancy [15–17], and the need to develop ensemble compositions
and weights assignments for a specific modeling objective and location [17]. For each
viticulture climate classification index, unique ensemble subsets with variable sizes and
weights were identified which outperform the complete archive ensemble mean in each
case. Table 6 summarizes computed correlations among the models listed in Table 5. The
optimal ensembles identified for the GST and CI viticulture climate classification indices
both demonstrate poor correlation with the remaining four indices. Strong correlations
exist among the optimal ensembles identified for computation of the GDD, HI, DI, and
GMCC indices for the WV AVA when w̃i = 1 for each observation. The general functional
definitions for the GST and the CI are each unique relative to the remaining four indices
which share common variables (see Equations (1)–(4), (6) and (7)). However, alternate
values could be assigned to the w̃i, particularly to fit the DI and GMCC which include
three and four distinct meteorological data requirements, respectively, to balance the
contributions among the functional variables that define the indices [27,63]. For example,
the final two columns of Table 5 include ensembles obtained for the DI and GMCC when
the w̃i are assigned such that model-to-measurement misfit for each individual functional
variable is equal in value at the start of the optimization [27,63]. With the w̃i assigned in
this manner to fit the DI and GMCC, computed correlations among the ensembles decrease
except for the CI and GMCC as expected (see Table 6).

Of the thirty-two models which constitute the entire LOCA CMIP5 archive, 10, 21,
21, 13, 22, and 21 of its members compose unique ensembles for optimal computation of
the GST, GDD, HI, CI, DI, and GMCC throughout the WV AVA (see Table 5) when w̃i = 1
for each observation. Across these six viticulture climate classification index ensembles,
seven LOCA CMIP5 models were consistently excluded from their compositions with a
zero valued weights assignment (CESM1-BGC, CESM1-CAM5, GFDL-CM3, GFDL-ESM2G,
GISS-E2-R, MIROC-ESM-CHEM, MPI-ESM-LR). If zero is defined for weights with a value
less than 0.02, then the number of excluded models rises to ten (and includes EC-EARTH,
IPSL-CM5A-LR, MIROC5). While unique to the WV AVA, the LOCA CMIP5 archive, and
the six indices evaluated herein, these optimal ensemble composition sizes and weights
differ relative to previously reported ensemble sizes and weights assignments which used
downscaled climate models to evaluate the impacts of climate change to viticulture [45–53].
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Table 5. Optimal weights obtained using elastic-net regularization [33] to assign when applying Localized Constructed
Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) historic and future climate projections [40,41]
to compute the growing season average temperature (GST), growing degree days (GDD), Huglin index (HI), cool night
index (CI), dryness index (DI), and the Géoviticulture multicriteria climate classification (GMCC) indices throughout the
Willamette Valley American Viticultural Area (AVA). (* indicates that each functional observation group defining the index
was balanced to be seen of equal importance at the start of the optimization).

Viticulture Climate Classification Index

Model GST GDD HI CI DI GMCC DI * GMCC *

ACCESS1-0 0 0.020 0.014 0.147 0.030 0.030 0.039 0.047
ACCESS1-3 0 0.015 0.011 0 0.023 0.018 0.053 0.047

bcc-csm1-1-m 0 0 0.013 0.264 0.023 0.030 0.028 0.044
bcc-csm1-1 0.084 0 0 0 0 0 7.59 ×10−3 0.003
CanESM2 0.173 0.090 0.095 0.090 0.080 0.084 0.040 0.044
CCSM4 0 0.034 0.013 0 0.026 0.037 0.065 0.064

CESM1-BGC 0 0 0 0 0 0 0 0
CESM1-CAM5 0 0 0 0 0 0 0 0

CMCC-CM 0.144 0.100 0.082 0.136 0.085 0.098 0.096 0.101
CMCC-CMS 0 0.038 0.047 0.025 0.051 0.054 0.049 0.051
CNRM-CM5 0.056 0.056 0.054 0.042 0.068 0.075 0.083 0.091

CSIRO-Mk3-6-0 0 0.078 0.068 0 0.059 0.060 0.037 0.037
EC-EARTH 0 0.005 0.016 0 5.39 × 10−7 3.35 × 10−6 0 0
FGOALS-g2 0 0.068 0.068 0.030 0.070 0.074 0.038 0.046
GFDL-CM3 0 0 0 0 0 0 0.010 0.004

GFDL-ESM2G 0 0 0 0 0 0 0 0
GFDL-ESM2M 0 0.019 0.022 0 0.015 0.015 0 0

GISS-E2-H 0.172 0.015 0 0 0 0 0 0
GISS-E2-R 0 0 0 0 0 0 0.011 0.001

HadGEM2-AO 0 0.011 0.011 0.031 0.009 0.006 0 0
HadGEM2-CC 0 0.030 0.023 0 0.055 0.050 0.129 0.115
HadGEM2-ES 0.089 0.055 0.067 0.021 0.071 0.070 0.072 0.068

inmcm4 0.037 0.055 0.067 0 0.043 0.041 0 0
IPSL-CM5A-LR 0 0 0 0 0.002 0 0.052 0.036
IPSL-CM5A-MR 0 0.038 0.034 0.075 0.036 0.035 0.041 0.043

MIROC-ESM-CHEM 0 0 0 0 0 0 0.014 0.009
MIROC-ESM 0.091 0.053 0.062 0.001 0.045 0.040 0 0.002

MIROC5 0.008 0 0 0 0 0 0 0
MPI-ESM-LR 0 0 0 0 0 0 0.012 0.011
MPI-ESM-MR 0 0.086 0.099 0.060 0.092 0.082 0.065 0.072
MRI-CGCM3 0 0.040 0.049 0.072 0.043 0.036 0.009 0.019
NorESM1-M 0.146 0.092 0.085 0 0.073 0.064 0.037 0.034

Non-Zero Count 10 21 21 13 22 21 22 23

Table 6. Correlations among the Localized Constructed Analogs (LOCA) Coupled Model Inter-
comparison Project phase 5 (CMIP5) [40,41] ensemble compositions and weights obtained using
elastic-net regularization [33] to compute historic and future climate projections for the growing
season average temperature (GST), growing degree days (GDD), Huglin index (HI), cool night index
(CI), dryness index (DI), and the Géoviticulture multicriteria climate classification (GMCC) indices
throughout the Willamette Valley American Viticultural Area (AVA). Values above the main diagonal
treated each individual processed observation equally. Values below the main diagonal were obtained
by balancing each functional observation group defining the index to be seen of equal importance at
the start of the optimization).

GST GDD HI CI DI GMCC

GST 1 0.518 0.456 0.083 0.394 0.408
GDD 1 0.966 0.192 0.946 0.936

HI 1 0.219 0.944 0.919
CI 1 0.311 0.361
DI 0.121 0.501 0.415 0.234 1 0.987

GMCC 0.134 0.565 0.490 0.373 0.980 1
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The data and methods employed in our study are applicable for other wine regions.
The approach outlined in this study for developing model-observation comparisons is of
value from a practical perspective in that it is potentially far easier to compute and apply a
viticulture climate classification directed optimal ensemble based on its underlying data
types than the index itself, particularly for compute intensive indices such as the dryness
index [37]. A potentially promising related research direction would be to explore updating
the cultivar specific phenological understanding associated with one or more of the easy
to compute and widely used temperature only based indices considered in this study by
leveraging a recent contribution about the modeling of grapevine phenology [64]. Further
application and evaluation of the two methods that were applied for the first time in this
study to generalize climate model choice for the WV AVA using the LOCA CMIP5 archive
(i.e., the simple model averaging method of [25] that uses the ranked model median skills
and elastic-net regularization [33]) is encouraged and would not necessarily be limited to
our study area or predictions of viticulture climate classification.

The optimal ensemble subsets computed in this study for each of the six indices are
unique prediction and location specific model combinations that adhere to the principle of
parsimony by simultaneously accounting for ensemble model skill and similarity for the
LOCA CMIP5 historical period. Our approach to ensemble model selection is like other
similar studies in that it depends on historical calibration training data [18,24,25]. It is
preferable to use an optimal ensemble subset rather than its comparable no skill ensemble
mean from the perspective that the parsimonious model combination does not contain
duplicative information that can bias results and correlation statistics [23] and also in that
the ensemble mean is prone to poor model accuracy and poor model uncertainty quantifica-
tion [24]. The skill of each prediction and location specific parsimonious optimal ensemble
subset for predicting future climates is dependent upon whether the calibrated model
was overfit [24,65]. Further related study is encouraged to better understand wine region
specific model archive weighting strategies that not only select optimal ensemble subsets
for viticulture climate impact assessments but that also constrain projection uncertainty.
Although application of the elastic net identifies the best regularized solution and yields
robust estimates of model uncertainty, one potentially promising direction to explore, for
example, is to combine and compare the elastic net and Reliability Ensemble Averaging
(REA) methods [33,65]. Combining results from application of the elastic net with the REA
method would result in an REA model performance criterion that simultaneously accounts
for model skill and interdependence and an REA model convergence criterion that is less
likely to be confounded due to model replication [23].

4. Conclusions

This study was motivated by recent contributions which underscored the need for
prediction and location specific Coupled Model Intercomparison Project Phase 5 ensemble
compositions and weights that account for model skill and similarity and that address
ensemble subset selection. It was also motivated by the expressed need to further study
methods that generalize climate model choice. This study considered the complete archive
of the thirty-two Coupled Model Intercomparison Project Phase 5 Localized Constructed
Analogs downscaled daily historic datasets. It explored, for the first time, ensemble subset
selection for the optimal computation of the growing season average temperature, growing
degree days, Huglin’s index, cool night index, dryness index, and the multicriteria climate
classification indices throughout the Willamette Valley American Viticultural Area. Four
model averaging methods were evaluated including two recently introduced from the
climate science community, viz., skill weighting, and skill and model interdependence
weighting. Two additional methods, neither previously considered, that were also applied
to generalize climate model selection included model median skill directed simple model
averaging, a modification of a recently introduced approach to combine climate models,
and elastic-net regularization, a formal optimization technique that is well designed for
application to automatic variable selection problems. The scope of the method comparison
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performed in this study is limited to these four methods, the 553 model-observation data
locations which cover the WV AVA as shown in Figure 1, and the model-observation
datasets listed in Table 2. Further research of methods directed at ensemble subset selection
is encouraged.

For a given viticulture climate classification index, application of the skill as well
as skill model interdependence weighting methods involves evaluating the performance
of each indices’ individual functional variables. Application of the two climate model
weighting strategies to compute the GST, GDD, HI, CI, DI, and GMCC throughout the WV
AVA revealed that LOCA CMIP5 individual model skill varies by each indices’ defined
processed meteorological variables. Moreover, also considering independence in addition
to skill did not substantively alter ensemble compositions or weights relative to solely con-
sidering model skill. While results obtained from their application did vary as a function of
their parameterization, optimal ensembles from these two methods consistently, across all
six indices, involved the complete archive and were less optimal than those obtained from
the other two model averaging methods. Interestingly, model median skill directed SMA,
which can be directly applied following application of the skill weighting strategy, was
able to consistently compute LOCA CMIP5 ensemble subsets for each of the six viticulture
climate classification indices. The RMSE values listed in Table 3 permit researchers to
independently apply the skill weighting, skill weighting including interdependence, and
model median skill directed SMA strategies to develop ensembles to compute the GST,
GDD, HI, CI, DI, and GMCC indices throughout the WV AVA using historic and future
LOCA CMIP5 climate projections.

Of the four model averaging methods considered in this study, results obtained
from application of elastic-net regularization consistently outperformed the other three
methods with finding optimal ensemble subsets from among the complete LOCA CMIP5
model archive. Its application, much like the other three methods, is straightforward.
The LOCA CMIP5 ensemble compositions and weights did vary by viticulture climate
classification index. While specific to the archive and location, it was noteworthy to observe
that the optimal ensemble composition sizes and weights across the six viticulture climate
classification indices differed relative to ensemble sizes and weights assignments reported
in published studies that focused on climate change impacts to viticulture. The weights
listed in Table 5, derived from applications of elastic-net regularization, permit researchers
to independently develop ensembles to compute the GST, GDD, HI, CI, DI, and GMCC
throughout the WV AVA using historic and future LOCA CMIP5 climate projections.

Future projections of the bioclimatic indices considered in this study, computed using
optimal compositions and weights, enable robust, adaptive evaluations of existing and
new sites for viticulture throughout the Willamette Valley American Viticultural Area. The
climate model ensemble weights assignment strategies presented herein are transferable
to other wine regions. Further related study is encouraged, not only for ensemble subset
selection, but also to constrain forecast uncertainty. For example, while compute intensive
for some indices such as the DI and the GMCC, further related study that seeks to find
optimal ensemble subsets using the computed indices instead is also encouraged. This
would enable comparison with the results contained herein as well as provide opportunity
to find optimal ensembles across predefined sets of viticulture climate classification indices
for a given wine region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cli9090140/s1, Figure S1: For the Willamette Valley American Viticultural Area (AVA)
and growing degree days (GDD), computed root mean squared error (RMSE) values obtained by
comparing GDD specific processed daily Localized Constructed Analogs (LOCA) Coupled Model
Intercomparison Project phase 5 (CMIP5) model historic datasets [40,41] with their equivalently
processed observed data counterparts [18,42] using skill weighting, with various values for its radius
of model equality, Dq [17,23], model median skill directed simple model averaging (SMA), and
elastic-net regularization [33]. N denotes the number of LOCA CMIP5 models defining the ensemble,
Figure S2: For the Willamette Valley American Viticultural Area (AVA) and Huglin index (HI), com-
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puted root mean squared error (RMSE) values obtained by comparing HI specific processed daily
Localized Constructed Analogs (LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5)
model historic datasets [40,41] with their equivalently processed observed data counterparts [18,42]
using skill weighting, with various values for its radius of model equality, Dq [17,23], model me-
dian skill directed simple model averaging (SMA), and elastic-net regularization [33]. N denotes
the number of LOCA CMIP5 models defining the ensemble, Figure S3: For the Willamette Valley
American Viticultural Area (AVA) and cool night index (CI), computed root mean squared error
(RMSE) values obtained by comparing CI specific processed daily Localized Constructed Analogs
(LOCA) Coupled Model Intercomparison Project phase 5 (CMIP5) model historic datasets [40,41]
with their equivalently processed observed data counterparts [18,42] using skill weighting, with
various values for its radius of model equality, Dq [17,23], model median skill directed simple model
averaging (SMA), and elastic-net regularization [33]. N denotes the number of LOCA CMIP5 models
defining the ensemble, Figure S4: For the Willamette Valley American Viticultural Area (AVA) and
dryness index (DI), computed root mean squared error (RMSE) values obtained by comparing DI
specific processed daily Localized Constructed Analogs (LOCA) Coupled Model Intercomparison
Project phase 5 (CMIP5) model historic datasets [40,41] with their equivalently processed observed
data counterparts [18,42] using skill weighting, with various values for its radius of model equality,
Dq [17,23], model median skill directed simple model averaging (SMA), and elastic-net regulariza-
tion [33]. N denotes the number of LOCA CMIP5 models defining the ensemble, Figure S5: For
the Willamette Valley American Viticultural Area (AVA) and Géoviticulture multicriteria climate
classification (GMCC), computed root mean squared error (RMSE) values obtained by comparing
GMCC specific processed daily Localized Constructed Analogs (LOCA) Coupled Model Intercom-
parison Project phase 5 (CMIP5) model historic datasets [40,41] with their equivalently processed
observed data counterparts [18,42] using skill weighting, with various values for its radius of model
equality, Dq [17,23], model median skill directed simple model averaging (SMA), and elastic-net
regularization [33]. N denotes the number of LOCA CMIP5 models defining the ensemble, Table S1:
The 32 models and modeling groups that provided Coupled Model Intercomparison Project phase 5
(CMIP5) data used in this study.
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