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Abstract: A predictive understanding of interactions between vegetation and climate has been a
grand challenge in terrestrial ecology for over 200 years. Developed in recent decades, continental-
scale monitoring of climate and forest dynamics enables quantitative examination of vegetation–
climate relationships through a data-driven paradigm. Here, we apply a data-intensive approach to
investigate forest–climate interactions across the conterminous USA. We apply multivariate statistical
methods (stepwise regression, principal component analysis) including machine learning to infer
significant climatic drivers of standing forest basal area. We focus our analysis on the ecoregional
scale. For most ecoregions analyzed, both stepwise regression and random forests indicate that
factors related to precipitation are the most significant predictors of forest basal area. In almost half
of US ecoregions, precipitation of the coldest quarter is the single most important driver of basal area.
The demonstrated data-driven approach may be used to inform forest-climate envelope modeling
and the forecasting of large-scale forest dynamics under climate change scenarios. These results have
important implications for climate, biodiversity, industrial forestry, and indigenous communities in a
changing world.

Keywords: climate–vegetation interactions; data-intensive modeling; dimensionality reduction;
forest inventories; multivariate statistics; machine learning; random forests; stepwise regression

1. Introduction

Understanding the interactions between vegetation and climate is a central question
in ecology and biogeography [1,2]. The seminal work by von Humboldt and Bonpland [3]
built a foundation for quantitative analysis of climatic factors controlling vegetation at a
large scale. Climate–vegetation observations collected over the 19th century resulted in
the Köppen climate classification, developed by Köppen in 1884–1936 [4–6]. The Köppen
classification was critically evaluated, developed, modified, and improved over the next
century [7–10]. Several of its extensions are known as Köppen and Geiger [10,11] and
Trewartha classifications [12,13]. The Köppen classification is also employed in the delin-
eation of Bailey’s US ecoregions [14]. Another bioclimatic scheme, called the Holdridge
life zone system, was proposed by Holdridge in 1947 [15,16], initially for tropical regions
and later extended to boreal and temperate zones [17]. These bioclimatic classification
schemes served as a scientific basis and inspiration for modern developments, including
climate envelope models (CEMs), species distribution models (SDMs), and dynamic global
vegetation models (DGVMs), within Earth system models (ESMs), focusing on both the
understanding of vegetation formations and the prediction of climate effects across various
temporal and spatial scales [18,19].

Forested and atmospheric systems are complex adaptive systems, as they operate
at multiple scales, preserve structural unity, and demonstrate self-organizational pat-
terns [20–23]. The determination of macroscopic characteristics capable of capturing com-
plex system dynamics is a challenging problem due to their multidimensional and multi-
scale nature [24–27]. While this complexity is broadly acknowledged, atmospheric systems
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in vegetation modeling are often characterized by macroscopic mean-field approxima-
tions [18]. In particular, average temperature and precipitation are widely used as climatic
factors determining the distribution and abundance of plant communities, gradients in the
vegetation continuum, and primary productivity [1]. In a seminal work, von Humboldt
and Bonpland [3] used temperature as the primary factor and air pressure as the secondary
factor to quantify altitude-related climatic controls on vegetation. The first Köppen classifi-
cation scheme was based on the mean temperature, as precipitation was added as another
factor in an updated classification [4]. Yet, mean temperature and precipitation patterns
were insufficient for adequate climate–vegetation classification, and only the inclusion of
interseasonal changes allowed differentiation between climatic zones [5,6]. The Holdrige
system [15,16] employs three primary variables: (1) precipitation, (2) biotemperature or the
annual mean temperature adjusted to the duration of the vegetation period, and (3) poten-
tial evapotranspiration ratio. Due to the complexity of atmospheric and vegetative systems,
traditional reasoning often dictated the selection of mean temperature and precipitation as
primary climatic parameters in large-scale climate-envelope and plant-species distribution
models [19].

A data-intensive approach provides an opportunity to quantitatively evaluate relation-
ships within and across complex ecological systems through data mining and data-driven
modeling [28–30]. In particular, currently available large-scale spatially explicit climatic
data sets and continental-level individual-based forest inventories allow a data-intensive
analysis of climate–vegetation systems and data mining for possible connections between
different quantitative characteristics of climate and vegetation [19,24,26]. In this work,
we employ a data-intensive paradigm to examine the continental-scale effects of climate on
forested ecosystems. Specifically, we investigate the relationship between forest basal area
and climatic factors in the conterminous United States, for each ecological domain (Humid,
Dry, and Humid Tropical Domains) and for each ecoregion as per Bailey’s classification
scheme [14,31,32]. Our goal is to rank climatic factors by their effect on forest basal areas
across these ecoregions.

We employ a combination of two distinct approaches: (1) traditional multivariate
statistical methods (correlation analysis, principal component analysis, and stepwise re-
gression; Section 2.2.1) and (2) a recently developed machine learning approach (random
forests; Section 2.2.2). Multiple regression models in combination with multivariate statis-
tics is a commonly used statistical methodology for exploring climatic drivers of forested
ecosystems. For example, the link between forest growth rate and temperature and precipi-
tation patterns was explored in [33] using regression analysis. Stepwise linear regression
was used in [34] to describe climate effects on a tree species. Various linear regressions were
implemented to model stem basal area dynamics related to climatic factors in [35]. Random
forests is an ensemble machine learning method [36], averaging over multiple decision
trees to derive a robust classifier or regressor (Section 2.2.2). In this work, we perform
an intercomparison between stepwise multiple regression and random forests through a
data-intensive paradigm by applying both methods to infer forest–climate interactions.
While the outcomes of both methods were similar, our intercomparison reveals that random
forests is an efficient tool for data mining and modeling (see Section 3.3).

2. Materials and Methods
2.1. Data Mining

We mined two continental-scale databases: the USDA Forest Inventory and Analy-
sis (FIA) database and the WorldClim climatic database (https://www.fia.fs.fed.us/ and
https://www.worldclim.org/, last time accessed November 2020). These data sets cover
three ecological domains and 36 ecological regions across continental USA (Appendix A). The
WorldClim data set contains normals for different climatic variables computed with a spa-
tial resolution of approximately 1 km since 1950 [37]. The FIA data set includes information
on 211,949 forest plots observed over the 1968–2013 period. Figure A1 visualizes the spatial
distribution of FIA forest plots across ecoregions. Figure 1 summarizes the data used in our

https://www.fia.fs.fed.us/
https://www.worldclim.org/
https://www.worldclim.org/
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study. In this study, we characterize forested ecosystems using basal area (see [24,38,39]
for details on forest basal area computation with the FIA data set). After mining the FIA
data set, we obtained 409,868 observations of basal area across the conterminous USA. This
includes different forested plots observed at irregular time intervals due to the sampling
rotation rule implemented by the US Forest Service. To normalize the observations and to
avoid duplicate records, we selected the data snapshot for the year 2000. Specifically, we
used only one observation of every FIA forest inventory plot acquired near the year 2000.
These forest basal area measurements were linked with 19 climatic variables of three types
(temperature, precipitation, variability) using the WorldClim data set (see Figure 1).

Figure 1. General data overview: FIA and WorldClim data sets. Ecoregions are colored depending on
the domain: blue—Humid Domain, yellow—Dry Domain, pink—Tropical Domain. Bioclimatic charac-
terisics colors: yellow—temperature related, blue—precipitation related, violet—variability related.

2.2. Data Analysis and Software

Our primary goal was to reveal large-scale climatic drivers of forest basal area
dynamics. We employed stepwise linear regression and a machine learning approach
known as random forests (Section 3.2, [36]) with climatic factors as the independent
variables. In concert with stepwise regression, we applied traditional multivariate sta-
tistical techniques, correlation analysis (Section 3.1.1), and principal component analy-
sis (Section 3.1.2). We employed multivariate traditional statistical and recent machine
learning approaches to analyze the (a) conterminous USA, (b) Humid, Dry, and Humid
Tropical Domains, and (c) 36 US ecoregions (Figure 1 and Appendix A). We used the open-
source R language for statistical computing (www.r-project.org), packages FactoMineR
(http://factominer.free.fr/) and factoextra (https://rpkgs.datanovia.com/factoextra/index.
html) to conduct and visualize the principal component analysis (PCA), and the popular
Python library scitkit-learn (scikit-learn.org) to run the random forests analysis. Origi-
nal software used in this study is freely available at the following GitHub repository:
Olia8848/US-forest-dynamics-vs-climate.

www.r-project.org
http://factominer.free.fr/
https://rpkgs.datanovia.com/factoextra/index.html
https://rpkgs.datanovia.com/factoextra/index.html
scikit-learn.org


Climate 2021, 9, 108 4 of 19

2.2.1. Stepwise Linear Regression

We employed stepwise multiple regression to develop predictive models and to
rank climatic factors with respect to their linear connection with forest basal area. We
built stepwise regression models sequentially by adding climatic factors one-by-one and
re-evaluating model parameters at every step.
Step 1. Simple linear regression

At the first step, we built a collection of simple linear regression models for all climatic
variables in a focal ecoregion and chose the ‘best’ model with the highest coefficient of
determination R2.

Let us consider an ecoregion with n forest inventory plots. Let ~y = (y1, y2, . . . , yn) be
the vector of basal area observations at n forest plot locations. We compute WorldClim
values for all k = 19 climatic variables at these n locations. Let ~cj = (cj

1, cj
2, ..., cj

n) be
the vector of values of a climatic characteristic cj, j = 1 . . . 19. We build a simple linear
regression model of the following type: basal area ∼ single climatic characteristic for
each cj, j = 1 . . . 19:

~y = α + β · ~cj +~ε, (1)

where ~ε = (ε1, ε2, . . . , εn) is a random error vector, and α and β are the intercept and
slope, respectively.

We then select the ‘best’ model with the highest coefficient of determination R2 among
these 19 linear regression models. We consider the chosen model as the ‘best’ model per R2

and the Euclidean distance of data points from the regression line (0 ≤ R2 ≤ 1, and the
statement R2 = 1 means that all data points belong to the line). We determine the slope
and intercept of the simple linear regression model (1), and, in this case, the coefficient of
determination R2 is equal to the square of the sample Pearson correlation coefficient, ry,cj .
Therefore, at the first step, the ‘best’ model shows which climatic characteristic has the
highest correlation with forest basal area in the given ecoregion.
Step 2. Regression with two climatic factors

At the second step, we construct 18 multiple regression models with two climatic
factors, one of which is determined by the ‘best’ model at the previous step: basal area ∼ 2
climatic characteristics:

~y = α + β1 · ~c1 + β2 · ~c2 +~ε, (2)

where ~y = (y1, y2, . . . , yn) is the basal area vector, c1 is the climatic variable determined
by the ‘best’ model selected in the 1st step, ~c1 = (c1

1, c1
2, . . . , c1

n) is the vector of c1 values,
~cj = (cj

1, cj
2, . . . , cj

n) is the vector of values of other climatic characteristics cj, j = 2 . . . 19,
and~ε = (ε1, ε2, . . . , εn) is the random error vector. The model parameters are: α—intercept
term and β1, β2—regression coefficients.

As in the first step, we choose the ‘best’ model or that having the highest coefficient of
determination R2 among 18 multiple regression models. The coefficient of determination
R2 is equal to the square of the multiple correlation coefficient. This ‘best’ model defines
two climatic variables that we will use at the next regression step.
Step k. Regression with k climatic factors

Theoretically, we can continue adding new climatic variables until all 19 variables are
incorporated in the linear regression model. In the presented work, we limited the process
to the first five steps k = 5, as adding more than 5 climatic variables did not substantially
improve the goodness of fit (measured by R2). This was in agreement with the results of the
principal component analysis of our data set (see Section 3.1.2). In general, at the kth step,
we construct 19− k + 1 multiple regression models, basal area∼ k climatic characteristics:

~y = α + β1 · ~c1 + β2 · ~c2 + . . . + βk · ~ck +~ε, (3)

where ~y = (y1, y2, . . . , yn) is the basal area vector, ~c1 = (c1
1, c1

2, . . . , c1
n) is the the 1st cli-

matic variable vector, ~c2 = (c2
1, c2

2, . . . , c2
n) is the the 2nd climatic variable vector, . . . ,
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~ck = (ck
1, ck

2, . . . , ck
n) is the the kth climatic variable vector, and~ε = (ε1, ε2, . . . , εn) is the

random error vector. The model parameters are: α—intercept term and β1, β2, . . . , βk—
regression parameters.

In all 19− k+ 1 regression models (3), the first k− 1 climatic characteristics, c1, c2, . . . , ck−1,
were chosen at the previous k− 1 steps (as climatic characteristics with the maximal R2 at
their particular steps). At the current k step, we again determined the ‘best’ model (3) per
the highest coefficient of determination R2 from 19− k + 1 models. This process determines
the ‘best’ ck climatic factor. At the theoretical last step, k = 19, we will have only one
variable left to include in the model.

As a form of model optimization, the statistical methodology described above allows
us to reveal which climatic characteristics explain the majority of basal area variation.
Implementing the abovementioned series of regression models, we obtain the ordered
(by its influence on basal area) set of climatic factors important for basal area.

2.2.2. Random Forests

We apply the random forests algorithm [36] to determine the climatic factors driving
basal area dynamics in the contiguous US. Random forests is a machine learning model
based on the concept of regularization through bootstrap aggregation (i.e., bagging) with
out-of-bag generalization error estimation. This allows it to average over several decision
tree models learned by training on data subsets and obtain a robust ensemble model.
The method has been widely used previously in investigating climate impact on vegeta-
tion [40–47]. For example, in [41], the authors investigate the effects of climate change
on conifer tree species distributions. A similar analysis was performed in [40], where the
impact of temperature-related bioclimatic factors on wine regions was investigated.

First, we perform data preparation. We correct for missing points and remove outliers.
Next, we apply a low-variance filter. We remove climatic characteristics having low vari-
ance as noninformative. We also apply a high-correlation filter. We delete highly correlated
climatic factors. For example, looking at the correlation plot for the conterminous USA
(Figure A1), we see that some climatic variables are highly correlated. Dropping one of two
highly correlated variables, we filter data by reducing the number of climatic parameters.

We run the algorithm for both the contiguous USA and for each ecoregion using
a random forests regressor. Using SciKit-Learn, we import the RandomForestRegressor
class from the sklearn.ensemble module to instantiate a regressor object. For each tree,
we use a default model fitness criterion of mean squared error (MSE); we will describe this
parameter later) in our objective function. We select the number of trees to generate in our
random forests using the parameter n

¯
estimators in RandomForestRegressor. Suppose that

we start with three trees: n
¯
estimators = 3.

Denote y = (y1, y2, . . . , yn) is the vector of basal area observations at n forest plot
locations, and C1, C2, . . . , C19 are the vectors of our 19 climatic characteristics (features).
We fit the random forest regressor: basal area ∼ climatic factors:

y ∼ C1, C2, ..., C19 (4)

For each tree, we take a set of m (1 ≤ m ≤ 19, where m is a hyperparameter) ran-
domly chosen (repetitions are allowed) climatic factors: (Cj1 , Cj2 , . . . , Cjm) For notational
convenience, we use (C1, C2, . . . , Cm).

In order to make our explanations more transparent, suppose m = 2. Then,
y = (y1, y2, . . . , yn), C1 = (C1

1 , C1
2 , . . . , C1

n) and C2 = (C2
1 , C2

2 , . . . , C2
n). Suppose R is the

set of the points (yi, C1
i , C2

i ), i = 1, n. We see that R contains n points, and it is a subset of
Rm+1 = R3. R is our bootstrap sample.
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Now, we can ‘grow’ a regression tree. Growing a regression tree within a random forest
is equivalent to approximating the dependence y = f (C1, C2) by a piecewise continuous
function. We use a greedy (i.e., locally optimal) algorithm in order to approximate the
relationship y = f (C1, C2) (RandomForestRegressor uses a greedy algorithm by default).

The first step in the greedy algorithm (the first tree node) is the following. In the
bootstrap sample R, we choose a feature C (C is either C1 or C2, but we simply use notation
C for convenience) and a split s of the values of C such that the error is minimized:

min
ŷ

∑
i: Ci>s

(ŷ− yi)
2 + min

ŷ
∑

i: Ci≤s
(ŷ− yi)

2, (5)

where the constant ŷ is an estimate of yi (yi is i-th coordinate of basal area y). Because we
have a finite number of data points, we only need to consider finitely many splits s. At the
first step, we split our data using the split s. This way, R is divided into two subsets: R1
and R2 (suppose R1 has more points). By construction, this division produces the most
separation between the data points.

At the second step (consecutive tree nodes), we perform the same procedure for
subset R1. We look for feature C̃ and such a split s̃ of R1, which together minimize the error
(produce the most data separation) defined in our objective function:

min
ˆ̂y

∑
j: C̃j>s̃

( ˆ̂y− ỹj)
2 + min

ˆ̂y
∑

j: C̃j≤s̃

( ˆ̂y− ỹj)
2. (6)

In practice, minimizing the errors (5) and (6), and the consecutive ones, we build a
stepwise function that approximates the basal area y. To build such a stepwise function,
we cut R into smaller and smaller subsets (choosing feature C and its split s at every step).
We perform cuts until we reach the case when we have only one point (or some small finite
number of points) in a subset Rk. This case corresponds to a leaf of the tree (a node with
no offspring).

The random forests algorithm naturally splits data into training and testing sets
through bagging and out-of-bag error estimation, similar to k-fold cross-validation. How-
ever, we explicitly constructed training and testing data sets to get a better notion of the
generalization error. We used 5% of observations as the test set with the rest of the data
serving as the training set. First, the model runs for a training set. Then, we used the testing
set in order to evaluate model generalization (accuracy, overfitting). This gives a stronger
overall picture of real-world model performance.

Random forests can optionally estimate the feature importance scores, determined by
randomly permuting each feature and calculating the corresponding change to the out-of-
bag error. The feature importance score of a climatic variable (feature) can be intuitively
understood as a measure of its significance in explaining basal area. Consider a tree in
a random forest. In an internal node of the tree, the algorithm chooses the feature that
reduces the variance of basal area. In other words, it looks for the feature that decreases the
impurity of the split. After we average a feature’s importance scores over all of the trees,
we obtain the final feature importance score. This is the percent reduction in classification
accuracy compared to an out-of-bag error with all variables left intact [36].

3. Results and Discussion
3.1. Stepwise Regression and Multivariate Statistical Analysis

We applied multivariate statistical methods (correlation and principal component
analyses), including stepwise regression, to reveal linear relationships between climatic
variables and forest basal area. The correlation analysis and principal component analysis
(PCA) allowed us to evaluate the intrinsic dimensionality of our data set and provided
necessary ground information for stepwise regression modeling.



Climate 2021, 9, 108 7 of 19

3.1.1. Correlation Analysis

We computed the Pearson correlation coefficient, r, between basal area and each of
the 19 climatic variables for each ecoregion. In all ecoregions, basal area was weakly
correlated with climatic variables, |r| < 0.3. At the same time, some climatic variables
strongly covaried. A correlation matrix computed for the conterminous US is shown in
Figure A2 in Appendix B. In most ecoregions, a large number of observations showed
correlation coefficients statistically significant with p-values smaller than 0.05. Ecoregion
262 (California Dry Steppe Province) had only five observations; hence, we omitted results
for this territory. Regarding Ecoregion 261 (California Dry Steppe Province), the only
climatic factors showing significant correlation with basal area are Annual Precipitation
(BIO12) and Precipitation of Wettest Month (BIO13).

Weak correlations between basal area and climatic factors are explained by high
variation in local topography, disturbance, and land-use history within ecoregions. Natural
and anthropogenic disturbances of varying magnitudes create complex patchwork mosaic
patterns across forested landscapes [24,26]. This mosaic includes a large number of forest
stands (i.e., patches) in different successional stages, leading to variation in forest basal area
and biomass values. Forest inventory plots are designed to uniformly sample the landscape,
and, therefore, they reflect some aspects of this patch mosaic [24,26,38]. In addition,
many ecoregions include several forest and soil types, with different correlations between
basal area and climatic factors for each. In the present analysis, we investigate correlations
between climatic factors and forest basal area at the ecoregion level without controlling
for the patchwork mosaic, forest type, or local topography. That low correlations are often
shown between forest basal area and climatic factors is not surprising given the importance
of local topography and land-use history, motivating future studies along these lines.

3.1.2. Principal Component Analysis

Principal component analysis (PCA) was performed on the set of 19 climatic factors
together with forest basal area. The first five principal components explained most of
the variation for all ecoregions (Figure 2), while the first three principal components
retained much of this variation. On average, for all ecoregions, three principal components
retained around 84% of the variation. On the other hand, climatic factors show low
contributions or loadings of the principal components. Maximally contributing to Principal
Component 1, climatic factors have on average contribution scores around 6%. In this
way, principal axes describe much of the data variation, while each climatic factor does not
contribute substantially to the primary principal component. PCA results are summarized
in Figure A3.

Figure 2. Percentages of explained variance in Ecoregion 332 (Great Plains Steppe Province).
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We also performed principal component analysis (PCA) on the set of 19 climatic factors
for every ecoregion without a basal area. The results were similar to the PCA with the basal
area variable. In this case, principal components retain much of the data variation (about
90% for three main principal axes), while individual climatic variables show only a small
contribution to each principal component (about 10%). We interpret this as a reflection of the
gestalt of the climate system or that the whole is greater than the mean-field approximation of
its parts (an analogy to the gestalt principle for ecosystems [14,31]).

Our PCA reveals that the system can be considered five-dimensional, while even a
three-dimensional model would provide a relatively good approximation. At the same
time, none of the climatic variables provide a large single contribution to the principal axes.
This is consistent with the results of the correlation analysis, where none of the climatic
factors demonstrated a strong correlation with the basal area. Theoretically, based on the
PCA, five synthetic variables can be extracted as principal axes and employed in regression
modeling, while unexplained variance can be considered as random noise. We considered
this research direction; however, we decided to build stepwise regression models in five
steps using the original climatic variables as independent variables. While the stepwise
regression models using original climatic variables have less predictive power than models
based on the synthetic variables determined by PCA, these models allow us to rank climatic
factors using multiple correlation coefficients as a selection criterion.

The PCA results raise questions regarding the complexity of the climate–vegetation
system. Our set of 19 climatic variables, including seasonal and interannual characteristics
(Figure 1), taken as a whole characterizes forest basal area well even in the linear modeling
framework (Figure 2). At the same time, none of these variables can explain more than
10% of the variation in any given ecoregion, which are distinct with respect to vegetation
and climate. Most of the traditional climate–vegetation theories and models are based on
easily measurable climatic factors, most notably average temperature and precipitation.
However, the PCA results indicate that none of these quantities are particularly important.
Thus, there is a possibility that we often employ climatic variables that are convenient to
measure and compute but that do not accurately represent essential climatic characteristics
for forested ecosystems.

3.1.3. Stepwise Regression

We implemented the linear stepwise regression analysis for every ecoregion with a
five-step depth. In line with the results of the correlation analysis, we observed low R2

values (less than 15%) in 28 out of 35 ecoregions with a substantial number of observations
for statistical analysis. Therefore, in these ecoregions, the stepwise regression did not reveal
substantial linear relationships between forest basal area and climatic variables based on
five regression steps. This is in the agreement with the PCA results, indicating that the first
principal axes are not closely correlated with any particular climatic variables.

Figure A4 summarizes our stepwise regression results for 11 ecoregions, with a
significantly high coefficient of determination after five steps (R2 > 13%): 242, 261, M242,
M261, M262, 313, 315, 321, 322, M331, and M341. For Ecoregion 242, we obtain that
linear regression basal area ∼Mean Temperature of Warmest Quarter gives R2 = 12.3%,
and multiple regression basal area ∼ BIO10, BIO11, BIO4, BIO6, BIO15 explains 13.1%
of basal area variation. Using the division of 19 climatic characteristics into three groups
(precipitation, temperature, variability; Figure 1), we visualize the results in Figure 3. The
map contains colored ecoregions, where the color depends on the climatic characteristic
that maximally contributes to basal area variation in the given ecoregion. The gray areas
are the locations where regressions do not capture essential basal area climate dependence
(low R2).
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Figure 3. Ecoregions 242, 261, M242, M261, M262, 313, 315, 321, 322, M331, and M341, colored
depending on which climatic characteristic maximally contributes to basal area variation in the
ecoregion (yellow—temperature-related characteristics and blue—precipitation related). Gray areas
are locations where regressions have low R2 values.

It is noticeable that the majority of these 11 ecoregions are located in desert and arid
provinces or in mountainous areas in the Pacific Northwest and Rocky Mountain regions
(Figure A4). It is not surprising that we observe the highest R2 values in Ecoregion 322
(American Semidesert and Desert Province), where three of the five most significant climatic
factors are precipitation related: Precipitation of Driest Month (BIO14), Precipitation of
Wettest Month (BIO13), and Precipitation of Wettest Quarter (BIO16). These results clearly
indicate that precipitation is a crucial factor for this territory.

The first line in Figure A4 contains climatic factors maximally contributing to basal
area variation. In Ecoregions 261, M242, M261, M262, 315, 321, 322, and M341, it is
precipitation of the extreme (driest, wettest, coldest, or warmest) quarter or month. In
Ecoregions 242 and M331, temperature of the warmest period is the most significant factor,
while in Ecoregion 313 Annual Mean Temperature (BIO1), most contributes to basal area
variation. There is a noticeable overlap between these 11 ecoregions and ecoregions where
forest gap dynamics are not a primary driver of stand succession [39].

3.2. Random Forests

As an alternative approach to the linear multivariate and regression analysis, we ap-
plied the random forests (RF) algorithm [36] to infer climatic factors linked to forest basal
area. The application of RF to the conterminous United States reveals that Precipitation
of Coldest Quarter (BIO19) has the highest importance score, while Mean Temperature of
Coldest Quarter (BIO11) has secondary importance (see Figure 4 for the top five climatic
factors and their importance scores).

Figures A5 and 5 summarize the results of our RF application at the ecoregion level.
Figure A5 contains the list of main climatic characteristics together with their feature
importance scores for various ecoregions (Figure A5). Figure 5 is the visualization of these
results. We see that in Ecoregions 212, 234, 255, 261, 313, 315, 321, M221, M223, M242,
M261, M262, M313, M331, and M333, the leading climatic factor is Precipitation of Coldest
Quarter (BIO19). This correlates with results that we obtained when running RF for all of
the US. There are few ecoregions (221, Dry Steppe 331, and the southern ones 231, 232, 322,
and M231) where the most important factor is temperature related. In the other group of
ecoregions (222, 223, 242, 263, 342, M211, M332, and M341), the leading factor is variability
related (Temperature Seasonality (BIO4) or Temperature Annual Range (BIO7)). We found
that in the majority of ecoregions (22 out of 36), precipitation-related climatic factors are
most strongly correlated with forest basal area.
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Figure 4. Top five importance scores of climatic characteristics (features) based on random forests for
the conterminous USA.

Figure 5. Climatic characteristics having the highest feature importance scores according to the random forests algorithm.
Temperature, precipitation, and variability related (yellow, blue, and violet hues, correspondingly).

3.3. Stepwise Linear Regression Versus Random Forests

In this work, we applied to the same general problem two different data-intensive
methodologies: stepwise linear regression and random forests. Linear regression is able to
capture only linear relationships between variables, while random forests can theoretically
capture both linear and nonlinear relationships. The multilinear regression approach gave
us nontrivial results only for several USA ecological regions 242, 261, M242, M261, M262,
313, 315, 321, 322, M331, and M341 (Figure A4). Therefore, the intercomparison of these
two methods is restricted to these ecoregions. In Ecoregions M242, M261, and 321, both
the regression analysis and random forest reveals Precipitation of Coldest Quarter (BIO19)
as the leading bioclimatic characteristics (Figures A4 and A5). With respect to Ecoregions
242, 261, M262, and 315, both methods suggest a key climatic factor belonging to the same
group (temperature and precipitation groups), while the specific factors were different
(Figures A4 and A5). Finally, the random forests algorithm and the regression approach
give completely different key climatic characteristics in Ecoregions 313, 322, M331, and
M341 (Figures A4 and A5).
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From this analysis, we find that both methods give similar results. Random forests
appears to be a more advanced and efficient method, yet it essentially remains a ‘black-box’
approach. Random forests appears to be an effective and powerful dimension reduction
tool for large multidimensional data sets (dimension of 19 climatic characteristics in our
case). As we see in Figure A5, over all ecoregions, we have only 8 out of 19 climatic factors
as the most essential factors. At the same time, the regression approach applied to the
climatic characteristics did not substantially reduce dimensionality that can be observed in
the comparison of R2 values as PCA results (Figures A4 and 2). Overall, we conclude that
random forests is the preferred method where possible.

3.4. Summary

In the presented research, we investigate how climatic changes may affect forest basal
area in the USA. We apply various statistical and machine learning techniques in order to
infer which bioclimatic factors mostly influence basal area in US forests. We built a series
of multiple regression models based on linear regression. For some ecoregions, the models
gave good results and we found the most influential bioclimatic factors for these areas.
Precipitation-related factors turn out to be crucial for estimating basal area in the USA.
However, there are many ecoregions where this linear analysis is inconclusive.

Principal component analysis gave us an interesting result: in all ecoregions, three
main principal components described more than 80% of data variation, while each climatic
factor’s contribution to the main principal axis is low. We also used an advanced machine
learning technique—the random forest algorithm. We generated a map of the US with eco-
logical regions, which shows the climatic factor that most influences basal area. Comparing
multiple regression with random forests, we see that the latter is a more suitable tool for
data analysis of climate–forest relationships. However, random forests and multiple linear
regression give similar results: precipitation-related factors are the most important climatic
factors controlling basal area. In particular, Precipitation of Coldest Quarter (BIO19) is
shown as a key factor in the majority of US ecoregions.

3.5. Future Research

We anticipate that the application of deep learning algorithmscombined with ad-
ditional data mining may be productive. In particular, various neural-network-based
dimensionality reduction techniques could be used. One could also apply backward fea-
ture elimination or forward feature selection for each ecoregion. This may be a good
strategy, as we have relatively small data sets within an ecoregion. The other direction
would be investigating data for nonlinearities and applying projection-based dimensional-
ity reduction techniques.

4. Conclusions

We examined relationships between climate and forested ecosystems in the contiguous
United States using a data-driven paradigm. Data mining of the fForest Inventory and
Analysis and WorldClim data sets allowed us to link quantitative measurements of forested
ecosystems and climate. We employed two data analysis approaches, multivariate statistics
and machine learning to examine the multidimensional structure of the climate–forest com-
plex system and to reveal linkages between variables. PCA reveals that our system can be
considered five-dimensional; however, none of the climatic variables are tightly correlated
with principal axes. Stepwise linear regression revealed leading climatic characteristics for
11 ecoregions, located in desert and semidesert provinces, the Pacific Northwest, and the
southern Rocky Mountains. In these areas, the results obtained with the random forests
algorithm and stepwise regression were similar. However, random forests appears to be a
more versatile and powerful approach than traditional regression analysis. We anticipate
that the application of more advanced deep learning methods with additional data mining
may be useful for understanding and predicting forest–climate relationships.
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Appendix A. USA Ecological Subdivisions

Ecological regions in the conterminous United States according to the Bailey’s classification:

• 211: Northeastern Mixed Forest Province
• 212: Laurentian Mixed Forest Province
• 221: Eastern Broadleaf Forest Province
• 222: Midwest Broadleaf Forest Province
• 223: Central Interior Broadleaf Forest Province
• 231: Southeastern Mixed Forest Province
• 232: Outer Coastal Plain Mixed Forest Province
• 234: Lower Mississippi Riverine Forest Province
• 242: Pacific Lowland Mixed Forest Province
• 251: Prairie Parkland (Temperate) Province
• 255: Prairie Parkland (Subtropical) Province
• 261: California Coastal Chaparral Forest and Shrub Province
• 262: California Dry Steppe Province
• 263: California Coastal Steppe, Mixed Forest, and Redwood Forest Province
• 313: Colorado Plateau Semidesert Province
• 315: Southwest Plateau and Plains Dry Steppe and Shrub Province
• 321: Chihuahuan Semidesert Province
• 322: American Semidesert and Desert Province
• 331: Great Plains Palouse Dry Steppe Province
• 332: Great Plains Steppe Province
• 341: Intermountain semidesert and Desert Province
• 342: Intermountain semidesert Province
• 411: Everglades Province
• M211: Adirondack New England Mixed Forest and Coniferous Forest, Alpine

Meadow Province
• M221: Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province
• M223: Ozark Broadleaf Forest Meadow Province
• M231: Ouachita Mixed Forest Meadow Province
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• M242: Cascade Mixed Forest and Coniferous Forest Alpine Meadow Province
• M261: Sierran Steppe Mixed Forest and Coniferous Forest Alpine Meadow Province
• M262: California Coastal Range Open Woodland and Shrub Coniferous Forest

Meadow Province
• M313: Arizona-New Mexico Mountains Semidesert and Open Woodland Coniferous

Forest Alpine Meadow Province
• M331: Southern Rocky Mountain Steppe and Open Woodland Coniferous Forest

Alpine Meadow Province
• M332: Middle Rocky Mountain Steppe and Coniferous Forest Alpine Meadow Province
• M333: Northern Rocky Mountain Forest and Steppe Coniferous Forest Alpine

Meadow Province
• M334: Black Hills Coniferous Forest Province
• M341: Nevada-Utah Mountains Semidesert and Coniferous Forest Alpine

Meadow Province

Figure A1. Distribution of FIA forest inventory plots in different ecoregions.
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Appendix B. Supplementary Statistical Results

Figure A2. Correlations between various climatic characteristics in the USA.
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eco

variation	
retained	by	

PC1

variation	
retained	by	
PC1,PC2

variation	
retained	by	
PC1-PC3

211 34.66 65.46 76.71 BIO19 12.98 BIO11 13.35 BIO18 28.44
212 61.78 77.05 85.68 BIO15 7.85 BIO5 29.95 BIO13 23.97
221 48.62 72.03 80.65 BIO4 8.78 BIO8 15.42 BIO2 26.21
222 59.07 78.98 87.03 BIO6 8.25 BIO16 21.53 BIO8 43.07
223 53.50 73.06 81.52 BIO12 8.93 BIO5 24.31 BIO8 22.60
231 45.46 67.63 78.87 BIO11 8.70 BIO14 17.41 BIO3 18.42
232 51.91 69.27 83.75 BIO11 9.37 BIO19 26.48 BIO2 15.27
234 59.99 74.79 83.16 BIO4 8.18 BIO5 27.23 BIO15 39.78
242 47.69 79.28 87.08 BIO1 9.25 BIO16 14.07 BIO17 19.47
251 61.05 80.11 87.26 BIO6 7.99 BIO15 16.05 BIO2 34.71
255 51.98 74.80 86.47 BIO11 9.01 BIO12 20.18 BIO2 20.55
261 37.86 65.05 85.82 BIO12 11.76 BIO4 17.04 BIO1 15.74
263 48.97 81.04 88.60 BIO18 9.55 BIO4 14.70 BIO13 12.75
313 37.72 70.84 82.54 BIO10 11.39 BIO4 11.85 BIO15 22.70
315 51.19 76.60 86.39 BIO2 8.57 BIO8 11.52 BIO5 26.33
321 42.11 70.72 85.51 BIO18 10.62 BIO2 14.70 BIO6 16.62
322 49.01 75.99 86.55 BIO14 8.70 BIO15 13.99 BIO7 43.21
331 41.58 66.87 82.58 BIO17 10.00 BIO1 15.19 BIO16 24.63
332 70.28 85.14 91.19 BIO1 6.82 BIO2 26.71 BIO18 29.96
341 40.45 65.84 78.01 BIO12 9.90 BIO4 12.89 BIO2 21.78
342 37.42 65.05 78.74 BIO6 11.51 BIO12 16.21 BIO10 26.35
411 53.64 73.34 84.64 BIO6 8.89 BIO17 24.69 BIO8 23.28
M211 50.05 76.61 84.49 BIO4 8.88 BIO16 14.53 BIO8 24.50
M221 57.04 79.01 86.94 BIO19 7.91 BIO5 19.66 BIO15 22.35
M223 36.59 68.62 78.88 BIO18 10.15 BIO15 11.74 BIO6 27.54
M231 45.30 67.56 78.58 BIO17 9.91 BIO6 20.08 BIO13 26.79
M242 51.29 81.81 87.78 BIO7 8.91 BIO10 12.84 BIO15 36.19
M261 47.25 79.15 86.32 BIO11 10.02 BIO4 11.81 BIO2 33.84
M262 46.82 71.49 81.37 BIO1 9.47 BIO7 15.21 BIO3 23.42
M313 45.55 64.75 78.76 BIO5 9.94 BIO15 18.94 BIO7 18.62
M331 42.51 68.44 80.15 BIO10 10.05 BIO18 15.35 BIO6 22.95
M332 32.70 58.71 75.12 BIO11 14.02 BIO12 15.77 BIO18 18.94
M333 38.04 67.62 79.93 BIO1 12.41 BIO12 16.33 BIO3 36.99
M334 66.42 80.58 88.80 BIO12 7.17 BIO18 16.45 BIO6 16.76
M341 49.02 66.74 76.26 BIO12 9.03 BIO4 23.32 BIO15 42.25

climatic	factor	
closest	to	PC1/	
contribution

climatic	factor	
closest	to	PC2/	
contribution

climatic	factor	
closest	to	PC3/	
contribution

Figure A3. PCA results. Variations retained by principal components and climatic characteristics closest to principal components.
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Mean Temperature of Warmest Quarter (BIO10) 12.3 Precipitation of Driest Quarter (BIO17) 15.1

Mean Temperature of Coldest Quarter (BIO11) 12.4 Precipitation of Warmest Quarter (BIO18) 17.7

Temperature Seasonality (BIO4) 12.7 Precipitation Seasonality (BIO15) 21.1

Min Temperature of Coldest Month (BIO6) 13 Mean Diurnal Range (BIO2) 22.3

Precipitation Seasonality (BIO15) 13.1 Isothermality (BIO3) 22.5

Precipitation of Coldest Quarter (BIO19) 8.7 Precipitation of Coldest Quarter (BIO19) 8.7

Mean Temperature of Wettest Quarter (BIO8) 13.9 Mean Temperature of Wettest Quarter (BIO8) 13.9

Precipitation Seasonality (BIO15) 14.7 Precipitation Seasonality (BIO15) 14.7

Min Temperature of Coldest Month (BIO6) 14.9 Min Temperature of Coldest Month (BIO6) 14.9

Isothermality (BIO3) 14.6 Isothermality (BIO3) 14.6

Precipitation of Warmest Quarter (BIO18) 15.6 Annual Mean Temperature (BIO1) 18.3

Mean Temperature of Driest Quarter (BIO9) 16.7 Precipitation of Driest Quarter (BIO17) 20.7

Mean Diurnal Range (BIO2) 16.6 Mean Diurnal Range (BIO2) 22.7

Temperature Seasonality (BIO4) 16.7 Precipitation of Coldest Quarter (BIO19) 23.4

Isothermality (BIO3) 15 Precipitation Seasonality (BIO15) 25.7

Precipitation of Driest Month (BIO14) 9.9 Precipitation of Coldest Quarter (BIO19) 22.7

Max Temperature of Warmest Month (BIO5) 12.1 Precipitation of Warmest Quarter (BIO18) 24.8

Precipitation of Warmest Quarter (BIO18) 12.8 Mean Temperature of Driest Quarter (BIO9) 25.4

Annual Precipitation (BIO12) 13.1 Mean Temperature of Coldest Quarter (BIO11) 25.5

Precipitation of Wettest Quarter (BIO16) 13.3 Precipitation of Wettest Month (BIO13) 25.5

Precipitation of Driest Month (BIO14) 36.1 Max Temperature of Warmest Month (BIO5) 25.8

Temperature Seasonality (BIO4) 41 Precipitation of Wettest Month (BIO13) 27.8

Precipitation of Wettest Month (BIO13) 41.3 Min Temperature of Coldest Month (BIO6) 27.8

Precipitation of Wettest Quarter (BIO16) 41.3 Temperature Annual Range (BIO7) 27.9

Mean Temperature of Wettest Quarter (BIO8) 44.8 Mean Temperature of Driest Quarter (BIO9) 27.7

Precipitation of Wettest Quarter (BIO16) 18.3

Precipitation of Driest Month (BIO14) 19.5

Precipitation of Driest Quarter (BIO17) 21.1

Mean Temperature of Driest Quarter (BIO9) 22.6

Precipitation of Warmest Quarter (BIO18) 22.9

242 261

315

322 M331

M341

M242

313M262

321

M261

Figure A4. R2 values (in percentage) of multiple regression models for various ecoregions. Regarding
Ecoregion 242, linear regression basal area ∼ BIO10 has R2 = 12.3%, and multiple regression basal
area ∼ BIO10, BIO11, BIO04, BIO06 and BIO15 has R2 = 13.1%.
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eco climatic	characteristic feature	importance	score
211 Precipitation	of	Warmest	Quarter	(BIO18) 0.24
212 Precipitation	of	Coldest	Quarter	(BIO19) 0.69
221 Mean	Temperature	of	Coldest	Quarter	(BIO11) 0.27
222 Temperature	Annual	Range	(BIO7) 0.38
223 Temperature	Seasonality	(BIO4) 0.43
231 Mean	Temperature	of	Wettest	Quarter	(BIO8) 0.23
232 Mean	Temperature	of	Driest	Quarter	(BIO9) 0.31
234 Precipitation	of	Coldest	Quarter	(BIO19) 0.32
242 Temperature	Seasonality	(BIO4) 0.4
251 Precipitation	of	Warmest	Quarter	(BIO18) 0.35
255 Precipitation	of	Coldest	Quarter	(BIO19) 0.33
261 Precipitation	of	Coldest	Quarter	(BIO19) 0.77
263 Temperature	Annual	Range	(BIO7) 0.53
313 Precipitation	of	Coldest	Quarter	(BIO19) 0.25
315 Precipitation	of	Coldest	Quarter	(BIO19) 0.44
321 Precipitation	of	Coldest	Quarter	(BIO19) 0.6
322 Mean	Temperature	of	Coldest	Quarter	(BIO11) 0.5
331 Mean	Temperature	of	Coldest	Quarter	(BIO11) 0.21
332 Precipitation	of	Warmest	Quarter	(BIO18) 0.57
341 Precipitation	of	Warmest	Quarter	(BIO18) 0.2
342 Temperature	Annual	Range	(BIO7) 0.31
411 Annual	Precipitation	(BIO12) 0.51
M211 Temperature	Seasonality	(BIO4) 0.59
M221 Precipitation	of	Coldest	Quarter	(BIO19) 0.48
M223 Precipitation	of	Coldest	Quarter	(BIO19) 0.5
M231 Mean	Temperature	of	Driest	Quarter	(BIO9) 0.39
M242 Precipitation	of	Coldest	Quarter	(BIO19) 0.43
M261 Precipitation	of	Coldest	Quarter	(BIO19) 0.46
M262 Precipitation	of	Coldest	Quarter	(BIO19) 0.35
M313 Precipitation	of	Coldest	Quarter	(BIO19) 0.4
M331 Precipitation	of	Coldest	Quarter	(BIO19) 0.23
M332 Temperature	Seasonality	(BIO4) 0.24
M333 Precipitation	of	Coldest	Quarter	(BIO19) 0.34
M334 Annual	Precipitation	(BIO12) 0.57
M341 Temperature	Seasonality	(BIO4) 0.3

Figure A5. Feature importance scores for various ecoregions. Scores are based on the random forests analysis and vary
from 0 to 1.
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23. Mihailović, D.T.; Mimić, G.; Arsenić, I. Climate predictions: The chaos and complexity in climate models. Adv. Meteorol. 2014,
2014, 878249. [CrossRef]

24. Strigul, N.; Florescu, I.; Welden, A.R.; Michalczewski, F. Modelling of forest stand dynamics using Markov chains. Environ.
Model. Softw. 2012, 31, 64–75. [CrossRef]

25. Strigul, N. Individual-based models and scaling methods for ecological forestry: Implications of tree phenotypic plasticity.
In Sustainable Forest Management; Garcia, J., Casero, J., Eds.; InTech: Rijeka, Croatia, 2012; pp. 359–384. [CrossRef]

26. Lienard, J.F.; Gravel, D.; Strigul, N.S. Data-intensive modeling of forest dynamics. Environ. Model. Softw. 2015, 67, 138–148.
[CrossRef]

27. Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling,
and impacts. Science 2000, 289, 2068–2074. [CrossRef]

28. Kelling, S.; Hochachka, W.; Fink, D.; Riedewald, M.; Caruana, R.; Ballard, G.; Hooker, G. Data-intensive Science: A New Paradigm
for Biodiversity Studies. BioScience 2009, 59, 613–620. [CrossRef]

29. Michener, W.K.; Jones, M.B. Ecoinformatics: Supporting ecology as a data-intensive science. Trends Ecol. Evol. 2012, 27, 85–93.
[CrossRef] [PubMed]

30. Hargrove, W.W.; Hoffman, F.M. Potential of multivariate quantitative methods for delineation and visualization of ecoregions.
Environ. Manag. 2004, 34, S39–S60. [CrossRef]

31. Bailey, R.G. Identifying Ecoregion Boundaries. Environ. Manag. 2004, 34, S14–S26. [CrossRef]
32. Bailey, R.G. Description of the Ecoregions of the United States, 2nd ed.; Number 1391; US Department of Agriculture, Forest Service:

Washington, DC, USA, 1995.

http://doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.1080/02723646.2015.1016384
http://dx.doi.org/10.1127/0941-2948/2010/0430
http://dx.doi.org/10.3354/cr01204
http://dx.doi.org/10.1126/science.105.2727.367
http://dx.doi.org/10.1046/j.1365-2699.1999.00329.x
http://dx.doi.org/10.1111/geb.12395
http://dx.doi.org/10.1111/gcb.13291
http://www.ncbi.nlm.nih.gov/pubmed/27113317
http://dx.doi.org/10.1007/s100219900037
http://dx.doi.org/10.1090/S0273-0979-02-00965-5
http://dx.doi.org/10.1155/2014/878249
http://dx.doi.org/10.1016/j.envsoft.2011.12.004
http://dx.doi.org/10.5772/29590
http://dx.doi.org/10.1016/j.envsoft.2015.01.010
http://dx.doi.org/10.1126/science.289.5487.2068
http://dx.doi.org/10.1525/bio.2009.59.7.12
http://dx.doi.org/10.1016/j.tree.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22240191
http://dx.doi.org/10.1007/s00267-003-1084-0
http://dx.doi.org/10.1007/s00267-003-0163-6


Climate 2021, 9, 108 19 of 19

33. Toledo, M.; Poorter, L.; Peña-Claros, M. Climate is a stronger driver of tree and forest growth rates than soil and disturbance.
J. Ecol. 2011, 99, 254–264. [CrossRef]

34. Zhang, J.; Zhou, Y.; Zhou, G.; Xiao, C. Composition and Structure of Pinus koraiensis Mixed Forest Respond to Spatial Climatic
Changes. PLoS ONE 2014, 10, e0097192. [CrossRef]

35. Khan, D.; Muneer, M.A.; Zaib-Un-Nisa. Effect of Climatic Factors on Stem Biomass and Carbon Stock of Larix gmelinii and
Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China. Adv. Meteorol. 2019, 2019, 5692574. [CrossRef]

36. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
37. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land

areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [CrossRef]
38. Liénard, J.F.; Strigul, N.S. Modelling of hardwood forest in Quebec under dynamic disturbance regimes: A time-inhomogeneous

Markov chain approach. J. Ecol. 2016, 104, 806–816. [CrossRef]
39. Liénard, J.; Florescu, I.; Strigul, N. An Appraisal of the Classic Forest Succession Paradigm with the Shade Tolerance Index.

PLoS ONE 2015, 10, e0117138. [CrossRef]
40. Gaal, M.; Moriondo, M. Modelling the impact of climate change on the Hungarian wine regions using Random Forest. Appl. Ecol.

Environ. Res. 2012, 10, 121–140. [CrossRef]
41. Garzón, M.B.; Sánchez de Dios, R. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 2008,

11, 169–178. [CrossRef]
42. Guo, F.T.; Guangyu, W. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J.

Wildland Fire 2016, 25, 505–519. [CrossRef]
43. Evans, J.S.; Murphy, M.A. Modeling Species Distribution and Change Using Random Forest. In Predictive Species and Habitat

Modeling in Landscape Ecology; Springer: Berlin, Germany, 2016; pp. 139–159.
44. Iverson, L.; Prasad, A. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random

Forest perform better than Regression Tree Analysis. In Landscape Ecology of Trees and Forests; IALE: Manchester, UK, 2004; p. 317.
45. Hashimoto, H.; Wang, W.; Melton, F.S. High-resolution mapping of daily climate variables by aggregating multiple spatial data

sets with the random forest algorithm over the conterminous United States. Int. J. Climatol. 2019, 39, 2964–2983. [CrossRef]
46. Mutanga, O.; Elhadi, A.; Azong Cho, M. High density biomass estimation for wetland vegetation using WorldView-2 imagery

and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [CrossRef]
47. Wang, L.; Zhou, X.; Zhu, X. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data.

Crop J. 2016, 4, 212–219. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2745.2010.01741.x
http://dx.doi.org/10.1371/journal.pone.0097192
http://dx.doi.org/10.1155/2019/5692574
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1111/1365-2745.12540
http://dx.doi.org/10.1371/journal.pone.0117138
http://dx.doi.org/10.15666/aeer/1002_121140
http://dx.doi.org/10.3170/2008-7-18348
http://dx.doi.org/10.1071/WF15121
http://dx.doi.org/10.1002/joc.5995
http://dx.doi.org/10.1016/j.jag.2012.03.012
http://dx.doi.org/10.1016/j.cj.2016.01.008

	Introduction
	Materials and Methods
	Data Mining
	Data Analysis and Software
	Stepwise Linear Regression
	Random Forests


	Results and Discussion
	Stepwise Regression and Multivariate Statistical Analysis
	Correlation Analysis
	Principal Component Analysis
	Stepwise Regression

	Random Forests
	Stepwise Linear Regression Versus Random Forests
	Summary
	Future Research

	Conclusions
	USA Ecological Subdivisions
	Supplementary Statistical Results
	References

