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Abstract: In many countries, urban heat island (UHI) effects come along with urbanization in
metropolitan areas. They have relevant adverse effects on the health and wellbeing of citizens.
Singapore is strongly affected by UHI. In this study, we assess Singaporeans’ willingness to pay
(WTP) for UHI mitigation by implementing a contingent valuation analysis. Specifically, we employ a
double-bounded dichotomous survey design on a representative sample of 1822 online respondents.
We find that Singaporeans are willing to sacrifice on average 0.43% of their annual income to mitigate
UHI. The total WTP for mitigation strategies among Singapore citizens and permanent residents
is estimated at SGD$783.08 million per year, the equivalent of USD$563.80 per year. Our findings
suggest that there is a positive and significant relationship between the size of UHI effects and the
citizens’ WTP. People living in the region with the highest intensity of UHI are willing to pay 3.09 times
more than those living in the region with the lowest UHI intensity. Furthermore, demographic
and socio-economic characteristics are significant determinants of Singaporeans’ WTP. The WTP
increases with income and education but decreases with age. Students, men, and people with
children are willing to pay more. Additional analyses show that the level of UHI awareness, positive
attitudes towards UHI mitigation strategies as well as preferences for outdoor activities are positively
correlated with the WTP. Our findings suggest that citizens are aware of the impacts of UHI and
support UHI mitigation measures to be financed by their taxes. Policy interventions to promote
UHI-related education and disseminating UHI-related information might increase the support of
UHI mitigation policies.

Keywords: urban heat island (UHI) effects; double-bounded contingent valuation method; willingness
to pay; UHI awareness and attitudes; UHI exposure; spatial analysis

1. Introduction

The urban heat island (UHI) effect in metropolitan areas means that certain areas of cities are
significantly warmer than the surrounding areas [1–3]. Higher levels of anthropogenic heat, reduced
urban vegetation, and very dense settlement structures without wind corridors are identified as
important reasons for the UHI effect. Besides, the UHI effect seems to be related to urban haze pollution
(i.e., smog and particle [PM2.5] pollution). UHI is closely related to the city size, population density,
energy consumption, and building density and it is reported to cause serious impacts on a population’s
health and wellbeing [4–10]. It lowers workers’ productivity, hereby causing negative economic
consequences [11]. The UHI effect seems to raise energy consumption due to a higher usage of air
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conditioning [12–17]. This may result in increased electricity consumption from fossil fuels and hence
in a deteriorated air quality and in increased greenhouse gas emissions [18–20].

Singapore underwent a rapid development over the past few decades and the UHI effect is one
of the accumulated consequences caused by the urbanization [21]. The fast pace of urbanization
diminished the density of forested coverage in Singapore. From the original lowland tropical rainforest
that covered the island almost entirely in 1819, only 0.28% of the 712 km2 forested area remained by
2012 [21], decreasing even more to 0.23% by 2015—which is the lowest amount of originally forested
areas left intact among Southeast Asian countries [21,22]. The current UHI effect is remarkably big.
Temperature differences peak approximately six hours after sunset with a maximum of 7 ◦C difference
observed at the Central Business District (CBD) compared with the Natural Reservoir area (baseline)
located at the north of the island at the same time [23]. In Singapore, the size of the UHI effect varies
between areas, depending on the geographical and urban characteristics of the areas. More vegetation
increases moisture and evotranspiration, hence decreasing air temperatures. In the same line, the
effects of the sea breeze, of rainfall, and of building height to street width matter for the size of the UHI
effect in a specific area [24].

Singapore aims at mitigating the UHI effect to increase the population’s wellbeing [25,26]. A
catalogue with eighty mitigation strategies has been compiled [27]. Some of the strategies have
already been implemented or are esteemed to be beneficial in any case [27]. Various studies have
assessed and demonstrated the effectiveness of different strategies for mitigating the UHI effect in
Singapore, including green roofs, green facades and greenery [28,29], vertical greenery [30,31], and
green pavement [30].

While the Singaporean government has been implementing UHI mitigation strategies across
the entire country, the magnitude of positive impacts on the population’s well-being resulting from
such investments remains unclear. Furthermore, it is an open question how much of the taxes they
pay, Singaporeans would be willing to invest into UHI mitigating measures and on which factors the
respective amounts depend. An informed decision making would require that citizens are able to
assess the (net) benefits of the respective measures. Increasing citizens’ awareness of UHI related costs
and benefits could be a first step [32]. In addition, policy-makers should take into account the public
assessment and the public acceptance of UHI mitigation measures [33,34].

Willingness to pay (WTP) refers to the maximum willingness to pay for a good or service. UHI
mitigation could be such a good. In this paper, we elicit the citizens’ WTP for UHI mitigation measures.
Based on this, we can indicate the degree to which citizens are willing to contribute to obtaining
benefits from the respective measures. Theoretically, the WTP corresponds to the perceived wellbeing
when urban heat is mitigated and outdoor thermal comfort is improved as a consequence. At the same
time, the WTP represents the level of damage citizens perceive if heat is not mitigated.

In this paper, we use a multidisciplinary approach to assess and explain Singaporeans’ WTP for
UHI mitigation. On the one side, we refer to the contingent valuation method (CVM) that is widely
used to valuate non-market goods like, for instance, UHI mitigation [35]. This method is a specific
application of the stated preference (SP) methodology, relying on direct questioning of people to
elicit their WTP for a particular good or a service. On the other side, we use a weather research and
forecasting (WRF) model, specifically the multilayer urban canopy model (MLUCM), to quantify the
UHI effect in different parts of Singapore. By combining these two approaches, we will be able to
analyze the relationship between citizens’ WTP for UHI mitigation and several explanatory factors,
including the UHI intensity in different residential parts of Singapore. Two recent studies use such
spatial analyses to relate the effects of UHI to either residents’ electricity consumption [36]; residents’
income at the neighborhood scale [37] and population vulnerability to heat-related health risks due
to heat exposure [38]. Both studies emphasize that spatial analyses are relevant in order to take into
account the intra-urban UHI variability and its respective impacts on the well-being of a population.

The principal aims of this paper are hence to explore: (1) the WTP of Singaporeans and permanent
residents in Singapore for the implementation of UHI mitigation strategies; and (2) the key determinants
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of the elicited WTP, i.e., demographic and socio-economic factors, knowledge and information, attitudes,
relevance of being outdoors according to the prevalent lifestyles, as well the UHI intensity in different
residential regions.

The remainder of this paper is structured as follows. Section 2 explains the research methods;
Section 3 describes the contingent valuation model; Section 4 evaluates the results; Section 5 presents
a discussion of the results and Section 6 concludes with policy recommendations and directions for
future research.

2. Research Methods

In this study, we use a multidisciplinary approach. On the one side, we use the contingent
valuation method (CVM), which is widely used in economics to measure the WTP. In our case, we
measure Singaporeans’ and permanent residents’ WTP for UHI mitigation. On the other side, we rely
on weather models to assess the UHI intensity in different parts of Singapore. The UHI intensity is
defined in [39] as the temperature difference between urban and rural places (or areas). These two
methods are applied first separately and then combined through a spatial analysis.

2.1. UHI Assessment

Before describing the methodology used in the UHI assessment of Singapore, we describe the
study area. The island of Singapore is located just north of equator, between 1◦09′ N to 1◦29′ N, and
103◦36′ E to 104◦25′ E, at the southern tip of Peninsula Malaysia (see Figure 1). It is considered tropical
with a typical equatorial wet climate. The mean daily temperature minima is in the range of 23–26 ◦C
and mean daily maxima between 31–34 ◦C [23]. The monthly mean temperature range is 26–28 ◦C
and the annual rainfall is ~2300 mm [23]. Singapore’s climate is characterized by the northeast and
southwest monsoon seasons, separated by two short inter-monsoon periods. The southwest monsoon
(June to September) is a relatively drier period while the Northeast monsoon season (December to
March) comes with high monthly rainfall and stronger winds [23]. The urban thermal environment is
mostly affected by the changes in the landscape, i.e., urbanization and industrialization [23].
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Our UHI assessment for different parts of Singapore follows the methodology from [24]. There
are few studies calculating the UHI intensity in tropical cities (e.g., [40–42]) using multilayer urban
canopy models. However, the cities explored with such models do not have the urban heterogeneity
that Singapore presents. [24] assessed the UHI intensity for Singapore, making this work our main
reference in this UHI assessment. The authors based their analysis on measurements from 2016 and
found out that Singapore’s canopy layer UHI intensity can reach up to ~5 ◦C in compact areas during
the nights. The local climate zone (LCZ) map of Singapore was used to consider land use data and
to explore the intra-urban variability of the urban thermal environment. The LCZ is a classification
scheme [43] that comprises 17 zones based on properties of surface structure (i.e., building and tree
height and density) and surface cover (i.e., pervious vs. impervious). Out of these 10 are urban while 7
are rural. Singapore contains all 10 LCZs according to our calculation. [24] used weather research and
forecasting (WRF) model’s multilayer urban canopy model (MLUCM) coupled with the building effect
parametrization (BEP) and building energy model (BEM). The multilayer urban canopy model using
BEP provides a detailed description of the urban environment and morphology to the WRF model,
while BEM provides the information about the anthropogenic heat exhausted from the air conditioning
systems installed in buildings. The word parameterization refers to mathematical representation of the
building’s geometry instead of the actual physical existence in the model.

Following [24], we considered an all-green scenario to evaluate Singapore’s UHI intensity (see [24]
for a full description of the all-green scenario for Singapore). This scenario is a hypothetical one,
created by replacing land use, including buildings and human activity in the area, with a scenario
with “no” buildings and “no” human activity. This was done in order to establish a rural reference site
against which measurements of UHI can be done. [44] explained that calculating the difference in 2 m
height (i.e., pedestrian level) air temperature between the existing situation and the rural scenario as
reference (i.e., urban increment) is the most suitable way to measure the UHI intensity. According to
the authors, this method is effective to avoid the effects of sea breezes, cloud impacts, and topography
in the model. This also indicates the maximum potential for a UHI reduction. Another important
advantage of using air temperature to estimate the UHI intensity (instead of other methods such as the
surface layer UHI based on surface temperature and remote sensing) is that air temperature is more
strongly coupled with heat stress. Therefore, it helps to effectively assess the spatial distribution of
heat-related risks for the urban population.

Based on this methodology, we evaluated the spatial variation of UHI intensity across Singapore.
To create reasonable sub-sections of Singapore, we used Singapore’s postal district segregation. This
segregation comprises 5 regions: (1) Central Region; (2) North Region; (3) West Region; (4) Northeast
Region, and (5) East Region. We only considered the residential areas in each of these regions. Industrial
areas (with high building surface fractions) or areas with minimal (or no) urban dwellings as well as
densely forested areas and urban parks were excluded from our analysis.

2.2. WTP Assessment

There are three commonly used methods to value non-market goods and services: hedonic pricing,
the travel costs method, and the contingent valuation method [45]. Hedonic pricing infers the value
of non-market goods from the prices of market goods (e.g., the value of nearby parkland is inferred
from prices for private houses). The travel costs method infers the value of a non-market good (e.g., a
national park) from the costs incurred by individuals travelling to obtain the good. The third method,
the contingent valuation method (CVM), is a survey-based evaluation method explicitly asking for
people’s maximum willingness to pay for environmental goods and services [46]. This method can be
considered as suitable for estimating the perceived increase in well-being created by UHI mitigation
measures and hence the value attributed to these measures or the willingness to pay for UHI reducing
measures [32,33].

In our study, we estimate Singaporeans’ and permanent residents’ willingness to pay (WTP) for
UHI mitigation in Singapore through the CVM. Theoretically, the amount of money respondents agree
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to pay for UHI mitigation is equal to the welfare they obtain from improvements of their outdoor
thermal comfort [32,33,45,47].

The CVM has received criticism since the results can be unduly influenced by the survey design
and by the way in which the respective questions are drafted [48]. We tried to minimize the potential
biases by relating our survey questions to a tangible good, i.e., to the guarantee of the implementation
of the respective mitigation measures for one year. We assumed that Singapore citizens and permanent
residents could easily relate to this.

For the WTP elicitation, we used the double-bounded dichotomous contingent valuation (DBDCV)
method, which provides very conservative WTP estimates [49]. Indeed, compared with the other
commonly used formats such as single-bounded dichotomous choice models (SBDC) or open-ended
surveys, the DBDCV method provides much more conservative WTP estimates [50]. Furthermore, this
method a high level of consistency in responses [51] as well as a high statistical efficiency [52].

In our DBDCV based survey, we asked the participants to respond “yes” or “no” if asked to
hypothetically contribute to a mandatory UHI mitigation fund. Each adult Singaporean and permanent
resident would have to pay a fixed fraction of their annual incomes to this fund, which would guarantee
that the government uses the money to implement the indicated UHI mitigation measures. The
questions were worded in a realistic and tangible way. The time frame given in the questions was one
year, i.e., potential contributions to the fund and the implementation of UHI mitigating measures were
aligned time-wise.

2.2.1. WTP Payment Vehicle

In order to make sure that respondents reveal the true payment intentions, we use a specific
payment medium. According to [53] a payment medium with a mandatory feature can effectively
reduce the free-riding and over-pledging of respondents. In our study, we used the personal income tax
as payment “vehicle” since Singaporeans and permanent residents are familiar with this medium [54].
The acceptance of this payment vehicle was tested and confirmed during our pilot study.

2.2.2. Study Design and Protocol

In our study, we implemented an online survey in Singapore between September and November,
2019. We obtained the IRB approval from ETH Zurich before the implementation of our survey (see
Supplementary Materials, survey questionnaire S1). We had 1822 respondents with valid answers,
whose WTP for UHI mitigation was elicited. Any participation was voluntary and based on an
opt-in principle. In addition to the WTP, demographic and socio-economic characteristics as well as
information about the respondents’ level of awareness of need for UHI mitigation measures, their level
of attitudes towards UHI mitigation and their outdoor preferences were collected. The purpose was to
evaluate whether, and to what extent, these attributes determine individual WTP values.

The study collected the 1822 responses from a sample of Singaporeans and permanent residents
who have lived in Singapore for at least 2 years and were older than 20 years. The sample was
representative for the Singaporean population with respect to gender, age (5 brackets), and income (15
brackets) (see Table 1 for a description of our sample in Column 1 and a comparison with Singapore’s
population in Column 2). People aged 60 years and above are underrepresented in our sample. We
incorporated income brackets options into our survey to increase the validity of the data. Hesitant
respondents may become more likely to offer a rough indication of their earnings, so that income
information for these individuals is no longer missing or reported in a false category [55].
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Table 1. Representative sample in terms of gender, age, and annual income. Comparison between the
sample and the Singapore population.

Percentage of Respondents 1 Percentage of Population 2

Gender

Male 49.95% (n = 910) 51.09%
Female 49.34% (n = 899) 48.90%

Prefer not to say 0.71% (n = 13)

Age distribution

20 to 29 21.34% (n = 389) 17%
30 to 39 26.39% (n = 481) 18%
40 to 49 23.86% (n = 435) 20%
50 to 59 21.45% (n = 391) 20%

60 and above 6.97% (n = 127) 25%

Gross monthly income

No income 2.36% (n = 43) 3.3%
<2000 8.6% (n = 157) 7.5%

2000 to 4999 18.01% (n = 328) 16.1%
5000 to 9999 28.54% (n = 520) 26.3%

10,000 to 13,999 16.35% (n = 298) 17.5%
14,000 and above 26.12% (n = 476) 21.9%

1 Note: 13 respondent preferred not to declare their gender; all our respondents declared age and income. 2 Source:
Data from the Department of Statistics of Singapore https://www.singstat.gov.sg/.

We decided to not conduct the survey in historically very hot months of the year (i.e., April and
May) to avoid an overestimation of WTP values due to recency and primacy effects when experiencing
seasonally high temperatures. We conducted the study therefore between September and November,
i.e., during the Southwest Monsoon season and Inter-Monsoon period. This period is just in the
middle between the warmer season (i.e., May and June) and cooler season (i.e., December and January)
in Singapore.

The survey protocol followed this structure:

1. We obtained written consent from the respondents prior to the survey. However, participants
could withdraw from the survey at any time without giving any reason, and all the data collected
from those participants were discarded.

2. Respondents’ demographic characteristics (age, gender, education, etc.), their socio-economic
attributes (income and employment), as well as information on their level of awareness of need
for UHI mitigation, level of attitudes towards UHI mitigation and outdoor preferences were
asked for in a questionnaire and collected. The demographic and socio-economic information was
used to build up citizen profiles with differing WTPs. No identifiable information was collected.
For all questions, which were deemed sensitive, we provided an, “I prefer not to answer” option
so that respondents had a way to bypass the question. This also helped to lower the number of
inaccurate or missing responses, resulting in a higher validity and accuracy of the data collected.

3. After having answered the questionnaire, a short description summarizing the UHI situation
in Singapore as well as an illustrative image of the different temperatures across Singapore
were presented to the respondents. They also received information on the meaning of UHI
and a map from Singapore showing different UHI values in different regions [24] (see Figure 2).
Specifically, we informed participants that “The urban heat island effect is the local temperature
increase due to human activity and urbanization. The image shows the current urban heat island
effect in Singapore. The brighter areas represent regions in Singapore that experience higher air
temperature due to human activity and urbanization. The regions in red experience up to 4.2 ◦C

https://www.singstat.gov.sg/
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increase in air temperature in comparison to regions in blue. For example, Orchard Road is 4.2 ◦C
hotter than the Bukit Timah Nature Reserve”.

Figure 2. Map of the Urban Heat Island(UHI) situation in Singapore presented to the respondents.
(average difference in 2-m temperature between “Control” and “AllGreen” case at 04:00 LT, April
2016—Source: Mughal et al., 2019) [24].

1. First Bid: We then asked the respondents whether (answering “YES”) or not (answering “NO”)
they would support a policy that obliges all people living permanently in Singapore to contribute
to a mitigation strategy fund during one year. They were confronted with differing specific
percentages of their incomes that they would be asked to contribute. The percentages presented in
the questionnaires varied randomly between seven possible bid-bundles previously established
as plausible in a pilot study (see Table 2). To facilitate the understanding of the corresponding
percentage values, the respondents were also presented with a numerical calculation of what this
percentage (X1) of their annual income would be in Singapore Dollars. The design of the bids
was calculated based on the WTP results from a pilot study, which we did with a representative
sample of 200 respondents in Singapore in the month before starting the main survey. The
respondents in the pilot study were exposed to the same main survey as the one presented here,
but with an open-ended contingent valuation format. We trimmed 10% off both tails of the bid
distribution and selected seven bid combinations from the remaining distribution for our main
survey. The methodology for selecting the final seven bid combinations followed the seminal
work of Cooper [56], wherein the optimal bid design is the one that minimizes the square errors.
The main objective of the pilot study was to get and use the bid distribution to create an unbiased
bid design for the main survey, following the methodology described in [56].
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Table 2. Bid design for our Double Bounded Dichotomous Contingent Valuation (DBDCV) study.

Bid Bundles

Random Number 1 2 3 4 5 6 7

First bid (X1) 0.10% 0.30% 0.50% 1.0% 1.50% 3.0% 4.50%
Second bid (Xhigh) 0.30% 0.50% 1.00% 1.50% 3.0% 4.50% 5.50%
Second bid (Xlow) 0.05% 0.10% 0.30% 0.50% 1.0% 1.50% 3.0%

2. Second bid: If a respondent answered “YES” to the first bid, the respondent was then asked
to respond to the same question again but with a higher bid value (Xhigh) (see Table 2). If a
respondent answered “NO” to the first ID, the respondent was then presented with a lower second
bid (Xlow). Hence, the two consecutive questions were presented in a decision tree with four
different outcomes. Figure 3 displays the flowchart and illustrates steps 4 and 5 of this protocol.
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and XLow were randomly varied across the questionnaires following Table 2.

Accomplishing step 5 of the protocol implies one bid-bundle with three bids values for each
respondent (i.e., X1, Xhigh and Xlow), with the bid-bundle being randomly allocated following Table 2.
Furthermore, we know the outcome from the decisions made by each respondent (i.e., “YES-YES”,
“YES-NO”, “NO-YES”, “NO-NO”, as described in Figure 3).

2.2.3. Determinants of the Willingness to Pay

In our study, we assessed the WTP for urban heat mitigation measures in Singapore. Furthermore,
we explored how the UHI intensity in Singapore’s different regions, how demographic and
socio-economic factors, the level of awareness of the necessity for UHI mitigation measures, the
level of attitudes towards mitigation measures, and outdoor preferences shape Singaporeans’ WTP for
urban heat mitigation.

Environmental awareness is defined as “knowledge about environmental problems and possible
solutions to those problems” [57]. Previous studies have shown that people with rich environmental



Climate 2020, 8, 82 9 of 26

awareness are more inclined to exhibit pro-environmental attitudes, while a lack of environmental
awareness limits people’s pro-environmental attitudes [58–61]. In Canada, [61] found that 60% of their
respondents felt that their environmental attitudes were often limited by a lack of relevant awareness
of environmental effects as well as on potential mitigation strategies. People with rich environmental
awareness may also have a high level of awareness of UHI effects, its causes and its consequences, and
exhibit positive attitudes towards UHI mitigation. Recent studies conducted in Beijing, China found
that residents’ level of awareness of UHI effect is positively and significantly related to their willingness
to pay for green roofs and cool roofs, which are considered effective UHI mitigation strategies [32,33].
These studies suggest that timely information disclosure regarding urban environmental management
(e.g., mitigation strategies and implementation by the government) and pro-environmental education
might be helpful to get public support for the alleviation of UHI effects.

In our study, the level of awareness of the need for UHI mitigation was measured by the responses
to the statements “The changing climate in Singapore is an urgent problem” and “Mitigation action
needs to be taken for Singapore’s changing climate.” The responses were given on a 7-point Likert
scale ranging from strong disagreement to strong agreement, which was then classified into three
ordered categories of awareness: low, middle, and high. Responses indicating “strong disagreement”
or “disagreement” with the above statements were classified as “low” awareness for UHI. Responses
between “slight disagreement” and “slight agreement” were classified as “medium” awareness and
responses of “agreement” and “strong agreement” were classified as “high” awareness.

The attitudes towards UHI mitigation were measured by using the responses to the statements
“Improving the thermal comfort of outdoor spaces in Singapore is generally useful” and “It is important
to ensure that something is done to make outdoor spaces thermally comfortable for outdoor activities
in Singapore.” The responses were made on a 7-point Likert scale, ranging from “strongly disagree”
to “strongly agree,” which were then classified into three ordered categories of attitudes towards
UHI mitigation: negative, neutral, and positive. Responses that “strongly disagreed” or “disagreed”
with the above statements were classified as “negative” attitudes, while responses between “slightly
disagree” and “slightly agree” were classified as “neutral” attitudes. Responses of “agree” and
“strongly agree” were classified as “positive” attitudes.

With respect to lifestyles, we were interested in the preferences for outdoor activities. Respondents’
preferences towards spending time outdoors was measured with a 6-item scale (e.g., it is pleasant to
spend time outdoors in Singapore) on a 7-point Likert scale with responses ranging from “strongly
disagree” to “strongly agree.” For a holistic measurement, 3 items focused on spending time outdoors
during the day and 3 items focused on spending time outdoors at night. The aggregated responses
were then classified into three ordered categories of outdoor preferences: preference to be indoors,
neutral preference, and preference to be outdoors. Responses that “strongly disagreed” or “disagreed”
with the statements mentioned above were classified as “negative” outdoor attitudes, while responses
between “slightly disagree” and “slightly agree” were classified as “neutral” attitudes. Responses of
“agree” and “strongly agree” were classified as “positive” outdoor attitudes.

3. The Theoretical Model: Double-Bounded Dichotomous Contingent Valuation (DBDCV)

As described above (Section 2.2.2), we received two binary answers from each individual i (i = 1,
. . . , N): whether he/she (1) accepts the first bid (YES or NO) and (2) accepts the second bid (YES or NO).
If the initial bid is rejected, a lower bid is presented; otherwise a higher bid will be proposed. Hence,
there are four possible outcome combinations in the respective decision tree: “YES-YES,” “NO-NO,”
YES-NO,” and “NO-YES.”

Following [62], let us call the first bid amount t1
i and the second one t2

i for each respondent i. Then,
each of the participants will be in one of the following categories:

1. If a subject answers YES to the first question and NO to the second question, we can infer that t1
i

≤WTP < t2
i .

2. If a subject answers YES to the first question and YES to the second, then t2
i ≤WTP <∞.
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3. If a subject answers NO to the first question and YES to the second, then t2
i ≤WTP < t1

i .

4. If a subject answers NO to the first and to the second question, then we have 0 < WTP < t2
i .

Now, let us define D1
i and D2

i as dichotomous variables that capture the YES-NO responses (i.e.,
YES is equal to 1, otherwise 0) to the first question (D1

i ) and to the second question (D2
i ) for a respondent

i. The probability that an individual’s answers, for example, YES to the first question and NO to the
second can then be expressed as:

Pr(D1
i = 1, D2

i = 0
∣∣∣zi) = Pr(YES, NO) (1)

where zi is a vector of explanatory variables, such as demographic or socio-economic characteristics,
etc. In order to simplify the notation, the right-hand side of the expression omits the fact that the
probability is conditional on the values of the explanatory variables. Let us further assume that it is
possible to estimate the WTP of a respondent i based on the following linear model [63,64]:

WTPi (zi, ui) = z′iβ+ ui (2)

where β is a vector of parameters; z′i is a vector with the values of the explanatory variables and u as

error term. The error term is assumed to follow a normal distribution: ui ∼ N
(
0, σ2

)
[64].

Given these assumptions, we have that the probability of each one of the four possible outcomes
is given by:

1. D1
i = 1 and D2

i = 1

Pr(YES, YES) = Pr (t1 < WTP ≥ t2) = Pr (z′iβ+ ui > t1, z′iβ+ ui ≥ t2)

Using the Bayes rule, which says that Pr (A, B) = Pr (A|B) * Pr (B), we have:

Pr(YES, YES) = Pr (z′iβ+ ui ≥ t1
∣∣∣ z′iβ+ ui ≥ t2

)
∗ Pr (z′iβ+ ui ≥ t2)

Here by definition t2 > t1 and then: Pr (z′iβ+ ui ≥ t1
∣∣∣ z′iβ+ ui ≥ t2

)
= 1, which implies:

Pr(YES, YES) = Pr (ui ≥ t2
− z′iβ)

As we assume that ui ∼ N
(
0, σ2

)
, we have that:

Pr(YES, YES) = Pr (vi ≥ t2
− z′iβ) = 1−Φ

 t2
− z′iβ

σ


where vi ∼ N(0, 1) and Φ(x) is the standard cumulative normal distribution. Therefore, by symmetry
of the normal distribution, we have:

Pr(YES, YES) = Φ
(
z′i
β

σ
−

t2

σ

)
(3)

2. D1
i = 1 and D2

i = 0

Pr(YES, NO) = Pr(t1
≤WTP < t2) = Pr

(
t1
−z′iβ
σ ≤

ui
σ <

t2
−z′iβ
σ

)
= Φ

(
t1
−z′iβ
σ

)
−Φ

(
t2
−z′iβ
σ

)
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where the last expression follows from Pr(a ≤ X < b) = F(b) − F(a) and where F(.) represents
the cumulative distribution function. Therefore, using symmetry of the normal distribution we
have that:

Pr (YES, NO) = Φ
(
z′i
β

σ
−

t1

σ

)
−Φ

(
z′i
β

σ
−

t2

σ

)
(4)

3. D1
i = 0 and D2

i = 1

Pr(NO, YES) = Pr (t2
≤WTP < t1) = Pr

(
t2
−z′iβ
σ ≤

ui
σ <

t1
−z′iβ
σ

)
= Φ

(
t2
−z′iβ
σ

)
−Φ

(
t1
−z′iβ
σ

)
Pr (NO, YES) = Φ

(
z′i
β

σ
−

t2

σ

)
−Φ

(
z′i
β

σ
−

t1

σ

)
(5)

4. D1
i = 0 and D2

i = 0

Pr(NO, NO) = Pr (t2 > WTP < t1) = Pr (z′iβ+ ui < t2) = Φ

 t2
− z′iβ

σ


Pr(NO, NO) = 1−Φ

(
z′i
β

σ
−

t2

σ

)
(6)

In order to proceed with the estimation, we construct a likelihood function with Equation (3) to (6)
to obtain estimates for β and σ using a maximum likelihood estimation. In practice, it is convenient to
work with the natural logarithm of the maximum likelihood function, called log-likelihood. Therefore,
the function that needs to be maximized in order to find the parameters of the model is:

lnL =
N∑

i=1

[
RYY

i ln
(
Φ
(
z′i

β
σ −

t2

σ

))
+ RYN

i ln
(
Φ
(
z′i

β
σ −

t1

σ

)
−Φ

(
z′i

β
σ −

t2

σ

))
+ RNY

i ln
(
Φ
(
z′i

β
σ −

t2

σ

)
−Φ

(
z′i

β
σ −

t1

σ

))
+ RNN

i ln
(
1−Φ

(
z′i

β
σ −

t2

σ

))] (7)

where RYY
i ; RNN

i ; RYN
i ; RNY

i are binary variables indicating the answers of each individual i:

RYY
i (if the responses of ith person are ‘yes-yes’ = 1; 0 otherwise)

RYN
i (if the responses of ith person are ‘yes-no’ = 1; 0 otherwise)

RNY
i (if the responses of ith person are ‘no-yes’ = 1; 0 otherwise)

RNN
i (if the responses of ith person are ‘no-no’ = 1; 0 otherwise)

The variables RYY
i ; RNN

i ; RYN
i ; RNY

i take the values of one or zero depending on the relevant
responses for each individual. Equation (7) shows that a given individual contributes to the logarithm
of the likelihood function in only one of its four parts. This approach allows us the direct estimation
of β and σ using the maximum likelihood method. The estimation of the WTP will depend also on
the values that we have for the vector z′i (i.e., the values of the explanatory variables are described in
Section 2.2.3).

4. Results

4.1. Descriptive Statistics

Table 3 displays the distribution of our survey participants over the seven bid combinations.
The number and percentage of “YES-YES” responses fall sharply as the bids increase in value. This
is accompanied by a rapid increase in the proportion of “NO-NO” responses. For example, for bid
bundle 1 (i.e., 0.10/0.30/0.05, following Table 2), the proportion of “YES-YES” responses accounted
for 21.21%, while in bid bundle 7 (i.e., 4.50/5.50/3.00) the percentage dropped significantly to 10.64%
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(p = 0.002). At the same time, the “NO-NO” responses rose significantly from 9.66% to 18.24% (p =

0.000). Overall, the “NO-NO” responses in this study accounted for 51.78% of the total sample size.

Table 3. Distribution of responses to the seven bid groups.

Bid Bundle Sample YES-YES YES-NO NO-YES NO-NO

Number Observations Freq. % Freq. % Freq. % Freq. %

1 262 92 21.51 60 17.51 19 16.67 91 9.66
2 261 79 18.44 54 15.73 27 24.07 101 10.84
3 261 58 13.48 52 15.13 14 12.04 137 14.7
4 262 56 13 51 14.84 16 13.89 139 14.81
5 259 51 11.82 50 14.54 17 14.81 141 15.13
6 260 48 11.11 43 12.46 14 12.04 155 16.63
7 257 46 10.64 33 9.79 8 6.48 170 18.24

Total 1822 430 23.5 343 18.72 115 6 934 51.78

Table 4 displays the descriptive statistics of the demographic and socio-economic characteristics of
our sample. Our sample was representative of the Singaporean and permanent resident population in
terms of age, income, and gender, with the only exception of the older adults than are under-represented
in our sample. The average annual income of our respondents was SGD $57,790.34 (USD $41,855.79),
while the average annual income of the Singaporeans and permanent residents was SGD $53,244 (USD
$38,563.01).

In relation to the rest of the demographic characteristics, our sample was more educated than the
general population, with 54.61% having a university education, attaining at least a Bachelor’s degree
(compared to 46.70% in the population). 75.08% of our sample was currently employed (compared to
67.70% in the population). 59.71% of our sample was married (compared to 60.20% in the population)
and 45.77% had at least one child.

Figure 4 shows the descriptive statistics of the participants’ awareness of need for UHI mitigation
measures, their attitudes towards UHI mitigation, and their outdoor preferences. Slightly more than
half of our respondents (53.26%) were highly aware of the need for UHI mitigation measures in
Singapore. 42.68% showed a middle level of awareness, while 4.06% had a low level of awareness.
63.69% of the persons in our sample expressed positive attitudes towards implementing UHI mitigation
measures and hence making outdoor spaces thermally comfortable. 34.17% of the people in the sample
declared to be neutral, while 2.14% indicated negative attitudes towards UHI mitigation. We observe
that 64.51% of our sample preferred to spend time outdoors. 29.3% of the sample were neutral or had
no particular preference for indoors versus outdoors activities, while 5.76% preferred to be indoors.



Climate 2020, 8, 82 13 of 26

Table 4. Descriptive statistics of sample. Demographic and socioeconomic variables.

Demographic and Socio-Economic
Characteristics Number of Respondents Percentage of Respondents (in %)

Gender Males: 910: Female 899 males 49.92: Females 49.29

Age distribution

20 to 29 389 21.34
30 to 39 481 26.39
40 to 49 435 23.86
50 to 59 391 21.45

60 and above 127 6.97

Gross monthly income

No Income 43 2.36
less_than_$1000 61 3.35

$1001–$2000 96 5.27
$2001–$3000 108 5.93
$3001–$4000 106 5.82
$4001–$5000 114 6.26
$5001–$6000 139 7.63
$6001–$7000 116 6.37
$7001–$8000 100 5.49
$8001–$9000 87 4.77

$9001–$10,000 78 4.28
$10,001–$11,000 109 5.98
$11,001–$12,000 51 2.8
$12,001–$13,000 90 4.94
$13001–$14000 48 2.63
above_$14,000 476 26.12

Education

Primary & below 27 1.48
n/o levels 209 11.47

A levels/diploma 564 30.96
bachelors 769 42.21

postgraduate 226 12.4

Employment

student 58 3.18
employed 1,368 75.08

self-employed 145 7.96
unemployed(seeking) 184 10.1

Number of Children

0 988 54.23
1 414 22.72
2 311 17.07

3 or more 100 5.69

Marital Status

single 637 34.96
married 1,088 59.71

divorced/separated 81 4.45

Note: 13 respondents preferred not to declare their gender; 27 did not declare their education level, 67 their
employment status, 16 their marital status, and 9 the number of children in their household.
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Figure 4. Descriptive statistics from our sample on the level of awareness of the need for UHI mitigation
measures, on attitudes towards UHI mitigation as well as on outdoor preferences.

4.2. UHI Assessment and WTP Estimation

4.2.1. UHI Assessment

In this subsection, we apply the methodology described in Section 2.1. to assess the UHI intensity in
Singapore. Following [24] the UHI intensity is defined as the difference between the 2 m air temperature
in the urban and in the all-green scenario. As mentioned earlier, we sorted our sample according to the
postal code of the participants into five Singaporean regions: Central Region, Northeast Region, North
Region, West Region, and East Region. This division of the territory is also used for urban planning by
the Urban Redevelopment Authority of Singapore. Over time, other governmental organizations have
also adopted the five regions in their administrative work, for example, the Department of Statistics in
the national census.

Figure 5 presents a map of Singapore which shows the UHI intensity for the five Singaporean
regions. The UHI intensities were averaged for each of the regions. As stated in Section 2.1, we
excluded any non-residential areas from the analysis (i.e., urban parks and industrial areas). The
resulting average UHI intensities are 2.2 ◦C in the Central Region; 1.6 ◦C in the North and Northeast
Region and 2.08 ◦C in the West Region. This means that the Central Region presents the highest UHI
intensity followed by the West Region (see Figure 5).
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The diurnal cycle of the ensemble (i.e., average of 2 m air temperature over 24 h for April 2016)
UHI intensity (averaged per LCZ type) for each of the regions is shown in Figure 6. During most of the
night (i.e., from 21:00 LT to 04:00 LT), the UHI intensities are smooth and stay at their daily peaks for all
the LCZs. UHI intensities for all urban areas decrease quickly from 07:00 LT to noon. No negative UHI
intensity was observed in all LCZs in the Central Region. The negative UHI refers to a Cool Island
which means that there will be some spots having cooling effect at noon.

Most LCZs except for sparsely built areas (LCZ 9) in North and Northeast Regions showed signs
of negative UHI while in the East Region negative UHI was observed in compact high rise (LCZ 1) in
addition to LCZ 9.

Figure 6 shows that the night-time UHI intensity was much higher than the day-time intensity,
with a maximum of 4.2 ◦C for the difference between night and day. The fact that our maximum UHI
intensity is smaller than in the study of [24] is due to variations in the land use assumed. We were
not contemplating industrial areas that generally presents a higher UHI. A further explanation is that
we were moving from an island-wide estimation to a regional level. A decrease in the number of
urban structures and elements results in a reduction of stored heat and therefore, less heat is released
back into the environment during the night. Our UHI intensities estimations are higher than those
reported by [65], possibly because April 2016 was a very hot period, with a record-setting maximum
temperature of 36.4 ◦C (Meteorological Service Singapore, 2017). The difference between [65] and
our analysis is also that they used a single layer urban canopy model, which is less descriptive of
urban heterogeneity as compared to the multi-layer urban canopy model we used. [65] used prescribed
anthropogenic heat profiles while in our case we focused on dynamic anthropogenic heat from the AC
systems in the buildings. The UHI intensity from our study is within the range typically found for
tropic countries (~4 ◦C), as summarized in [66].
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Figure 5. Spatial distribution of UHI intensities in Singapore. Data from April 2016 at 04:00 LT.
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4.2.2. WTP Estimation Results

After having analyzed and measured the mean UHI intensity level in the five regions of Singapore
(Section 4.2.1), we estimated the WTP of the respondents living in each region using Equation (7).
Table 5 shows the number of respondents living in each of the five regions, the respective estimated
mean WTP, the mean UHI intensity, the mean annual income of the sample in each region, and the
percentage of the mean annual income citizens are willing to pay in mean for UHI mitigation. The
mean annual income was used in Table 5 for comparison purposes, given that the personal income tax
was our payment “vehicle” in the WTP elicitation (see Section 2.2.1). Wilcoxon Mann–Whitney tests
were performed to test for differences across the regions.
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Table 5. Mean WTP, UHI intensity, and mean annual personal income per region.

(1) (2) (3) (4) (5) (6) (7) (8)

Regions
Number of

Respondents
Per Region

Estimated
Population

Per Region 1

% of
Respondents

from the
Estimated

Population

Mean WTP
Estimation

Per
Singaporean

(in SGD$)

Mean UHI
Intensity
(in ◦C)

Mean
Annual
Income

(in SGD$)

% WTP
from the

Mean
Annual
Income

Central 429 753,068 0.057 665.968 2.2 56,661.97 1.18
East 311 516,138 0.060 218.656 *** 1.31 *** 57,533.98 0.38 ***

North 245 404,038 0.061 138.748 *** 1.6 *** 57,719.01 0.24 ***
Northeast 439 752,028 0.058 84.232 *** 1.6 *** 56,471.4 0.15 ***

West 398 751,428 0.053 120.292 *** 2.08 *** 60,969.7 0.20 ***

Total 1822 3,176,700 0.29 246.51 1.758 57,790 0.43

Notes: Stars report significance level from Wilcoxon Mann–Whitney tests run on independent observations (regions)
to confirm differences with the Central Region (benchmark). * 90% significance ** 95% significance *** 99%
significance. 1 Estimations only considered Singaporeans and Permanent Residents over 20 years-old at the moment
of the survey.

From Table 5, we observe that the Northeast and Central Regions have more respondents than
other regions (439 and 429 out of our 1822 respondents). The North region has the lowest number
of respondents in our sample. However, when we calculate the percentage of respondents from the
estimated population in the respective areas (Column 4 in Table 5), we do not find any significant
differences across the regions. This means that the number of our respondents in each of the regions is
proportionally distributed across them.

Column 5 in Table 5 shows the mean WTP estimations per region. The mean WTP estimated
for the respondents in the Central region is significantly higher than the one in the Northeast Region
(p = 0.000), East Region (p = 0.000), North Region (p = 0.000), and West Region (p = 0.000). The Central
Region represents the highest WTP, while the Northeast Region shows the lowest WTP of all five
regions. The East Region has the second highest mean WTP with SIN $218,66, followed by the North
and West Region, respectively.

Column 6 in Table 5 displays the mean UHI intensity across the regions. The mean UHI intensity
is the highest in the Central Region and this difference is significant when compared with the East
Region (p = 0.000), North Region (p = 0.000), Northeast Region (p = 0.000), and West Region (p = 0.000).

In Column 7 of Table 5, we show the mean annual incomes per region and in Column 8, we
display per region the residents’ WTP as a percentage of the mean annual income. Respondents in
the Central Region are willing to pay 1.18% of their annual income on UHI mitigation. Respondents
in the East Region, North Region, Northeast Region, and West Region are willing to pay in mean a
significantly lower proportion of their mean annual income than respondents living in the Central
Region (p = 0.000 for all respective comparisons).

4.2.3. Determinants of the WTP Estimation

In this subsection, we want to explore the determinants of the WTP estimation. We used Equation
(7) to do a log-likelihood estimation of the WTP with and without the set z of explanatory variables.
In the set z of explanatory variables, we included the UHI intensity level per region as well as the
individuals’ characteristics. Willingness-to-pay estimation was performed using STATA [62]. Table 6
shows the estimation results. Column 1 indicates the results of our model without the full set of
explanatory variables. The only included “explanatory” variable is the “bid” variable representing
the value of the different bids. In Column 2, we added to the “bid” variable the “mean UHI intensity
per region” as a covariate. Column 3 presents the regression results with the “bid” variable, “mean
UHI intensity per region,” and in addition, our set of demographic and socio-economic variables.
Lastly, Column 4 presents the regression results with the same covariates as in Column 3, but with
the further addition of the “level of awareness of need for UHI mitigation measures,” the “level
of attitudes towards UHI mitigation,” and the “outdoor preferences” covariates. The aim of this



Climate 2020, 8, 82 19 of 26

analysis progressing from Column 1 to Column 4 is to assess whether the additional variables that are
considered from column to column provide additional explanatory power to the WTP estimation.

Table 6. Estimation results of the log- likelihood of a “YES” response to the bid.

(1) (2) (3) (4)

Model without
Covariates

Model with UHI
Intensity

Model with UHI
Intensity, Demographic

and Socio-Economic
Covariates

Model with UHI
Intensity, Demographic,

Socio-Economic,
Awareness, Attitudes

and Outdoor
Preferences Covariates

VARIABLES

Bid −0.159 *** (0.024) −0.161 *** (0.0243) −0.179 *** (0.0253) −0.184 *** (0.0255)

Mean UHI intensity
per region 0.318 ** (0.145) 0.312 ** (0.150) 0.346 ** (0.152)

Age: 20–35 years old Ref Ref
35 to 50 years old −0.250 (0.222) −0.303 (0.225)

Older than 51 years −0.732 *** (0.213) −0.763 *** (0.2159)

Gender: Male Ref Ref
Female −0.411 *** (0.101) −0.393 *** (0.102)

Income 0.0382 *** (0.0978) 0.0375 *** (0.0156)

Marital status:
Divorced Ref Ref

Single 0.556 ** (0.262) 0.464 ** (0.2654)
Married 0.418 * (0.249) 0.32 * (0.2527)

Education 0.106 ** (0.044) 0.0928 ** (0.0479)
Presence of children 0.558 *** (0.117) 0.541 *** (0.1187)

Employment status:
Unemployed Ref Ref

Student 0.846 ** (0.346) 0.826 ** (0.3409)
Employed −0.147 (0.153) −0.167 (0.1634)

Self-employed −0.0092 (0.226) −0.0124 (0.2293)

Level of awareness of
need for UHI

mitigation
0.263 *** (0.0975)

Level of attitudes
towards mitigation

strategies
0.210 *** (0.107)

Outdoors preferences 0.180 *** (0.0608)

Mean WTP 246.51 *** (92.077) 276.21 *** (102.01) 284.13 *** (114.67) 293.91 *** (116.08)

Constant 0.3923 *** (0.1061) −0.173 *** (0.279) −0.585 *** (0.444) −2.436 *** (0.561)
Observations 1817 1817 1790 1790

Wald statistic 43.66 *** 48.51 *** 131.9 *** 157.37 ***

Log-likelihood −1224.138 −1214.169 −1146.91 −1130.527

Notes: Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Mean WTP in SGD$.

In Column 1 from Table 6, the coefficients of the “bid” are negative and statistically significant,
which implies that the likelihood of a “YES” response decreases as the value of the bid increases. This
result is consistent with the results observed in Columns 2, 3, and 4.

Column 2 of Table 6 displays the estimation results including the average UHI intensity per region
displayed in Table 5. We observe that the coefficient for the new variable is positive and significant,
consistently with the result observed in Columns 3 and 4, suggesting that the mean UHI intensity has
a positive impact on the likelihood of saying “YES” to the bid. Since the model in Column 1 is nested
in the model underlying Column 2, we can perform a likelihood ratio test. The likelihood ratio test
involves estimating two models and comparing them. Specifically, this test is used to compare the
log-likelihoods of the two models and it tests whether a difference is statistically significant. If the
difference is statistically significant, then the less restrictive model (i.e., the one with more variables) is
said to fit the data significantly better than the more restrictive model. The log-likelihood of our models
are displayed at the bottom of Table 6. The test statistic of the likelihood ratio test comparing Column 1
and Column 2 of Table 6 is 4.87 and the associated p-value is significant (p = 0.0273). This result shows
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that adding “Mean UHI intensity per region” as a predictor variable results in a statistically significant
improvement in the model fit.

In Column 3 of Table 6, we further introduced demographic and socio-economic variables, i.e.,
gender, age and (declared) annual income, education, presence of children in the household, marital,
and employment status. Before doing so, we tested for correlation across these characteristics to avoid
any potential multicollinearity in our estimations. Our results suggested that there were no high
correlations across the demographic and socio-economic variables inserted in the model of Column
3. We see from Column 3 that females tend to respond “YES” 41.10% less often than men and that
difference is statistically significant. The coefficient of the variable “Income” is positive and significant,
which suggests that the higher the income of the respondents, the higher is the probability of a positive
response to a bid. In order to capture the probability of positive responses with respect to age, we split
our sample into three age groups “20 to 35 years old” (our benchmark), “35 to 50 years old” and “older
than 51 years old.” We observe that respondents “older than 51 years” tended to respond “YES” to the
bid significantly less often than respondents from “20 to 35 years old” and also significantly less than
the respondents between “35 to 50 years old” (coef. = −0.481; p = 0.000).

We also evaluated in Column 3 of Table 6 the role of the participants’ marital status: the coefficients
of the variables “single” and “married” are positive and significant compared to divorced participants.
However, there is no significant difference in saying “YES” to the bid between “single” and “married”
(coef. = −0.137; p = 0.301).

Furthermore, we evaluated the contribution of the respondents’ employment situation to the
probability of a “YES” response to the bid. We found the probability to be significantly higher
for students than for unemployed respondents (benchmark), but also higher for students than for
self-employed (coef. = 0.95; p = 0.050) and employed respondents (coef. = 1.13; p = 0.000). The level of
education of the respondents seems to play a significant role in eliciting positive responses to bids.
The significant influence of education on WTP has also been found in a previous study on the WTP
for UHI mitigations in Asia [32,33]. The variable “presence of children” is a binary variable which
takes the value “one” when the respondents have children living in their household and which is
zero otherwise. We observe that the coefficient of the variable “presence of children” is positive and
significant, which suggests that people with children were more likely to give a positive response to
the bid than those without children.

We also performed the likelihood ratio test to see whether the additional demographic and
socio-economic variables in Column 3 improved the fitness of the estimation compared with Column
2, in which only the “bids” and “mean UHI intensity per region” were used as covariates. The test
statistics is 15.32 and it is highly significant (p = 0.000), suggesting that the set of demographic and
socio-economic characteristics increase significantly the fitness of the estimation.

In column 4 of Table 6, we further incorporated the “awareness of the need for UHI mitigation
strategies,” the “attitudes towards UHI mitigation strategies” as well as the “outdoor preferences”
into our analysis. We tested for correlations across the variables prior to introducing them into the
model to avoid any potential multicollinearity in our estimations. Correlation tests confirmed that
there were no high correlations across the variables under evaluation (level of awareness vs. level of
attitudes: Spearman’s rho = 0.4502; p = 0.000; level of awareness vs. outdoor preferences: Spearman’s
rho = 0.1480; p = 0.000; level of attitudes vs. outdoor preferences: Spearman’s rho = 0.1996; p = 0.000).
We observe that the three coefficients for the “awareness of the need for UHI mitigation,” “attitudes
towards mitigation strategies” and “outdoor preferences” are positive and significant. This implies
that the higher the level of awareness of the need for UHI mitigation measures, the more positive the
attitudes are towards mitigation measures and the higher the preference is for spending time outdoors,
the higher is the probability of saying “YES” to the bids. We again performed the likelihood ratio test
to test whether the introduction of these three extra variables improved the model fit by comparing
the estimations from Column 3 and Column 4. The result gives a test statistic of 33.77 with a highly
significant p-value (p = 0.000). This means that, also in this case, the additional variables inserted in
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Column 4 capturing the level of awareness, the level of attitudes, and outdoor preferences increased
the fit of the model.

Overall, it turns out that the estimated average WTP is SGD $246.51 per Singaporean and per
year (95% CI [SGD $66.04; SGD $426.98]) in the estimation without covariates (Column 1). It increases
to SGD $276.21 per person and year (95% CI [SGD $53.67; SGD $498.98]) when we introduce in the
estimation the UHI intensity in the regions (Column 2). It raises to SGD $284.13 per person and year
(95% CI [SGD$ 59.37; SGD$ 508.88]) in the estimation with UHI intensity per region and demographic
and socio-economic characteristics (Column 3). The WTP increased further to SGD $293.91 per person
and year (95% CI [SGD $46.39; SGD $501.43]) in the estimation with the further addition of the level of
awareness, level of attitudes and outdoor preferences (Column 4).

For conservative reasons, we consider the total average WTP from the estimation without
covariates displayed in Table 5 (i.e., SGD $246.51). As reported previously, the average annual income
of our sample is SGD $57,790.34. This means that the total average WTP represents 0.43% of the
average annual income of our respondents. and also represents the 0.41% of the Singapore GDP per
capita at the moment of the survey (with a GDP per capita of SGD $60,297.79).

Expanding the mean annual WTP value (i.e., SGD $246.51) to the 3.18 million working adults in
Singapore at the moment of the survey, Singaporeans would be willing to pay a total of SGD $783.08
million (USD $563.82 million) per year for promoting the implementation of UHI mitigation measures.
The corresponding 95% WTP interval would comprise SGD $209.78 million (USD $151.05 million) per
year at the lower limit and SGD $1.04 billion (USD $47.87 million) per year at the upper limit.

In Table 5, we displayed the estimated mean WTP per Singaporean per region (Column 5). By
expanding this WTP to the Singaporeans and permanent residents living in each of the regions (Table 5,
Column 3), we calculated the total annual mean WTP per region. The total annual mean WTP for the
Central Region represents the 63%, while for the East Region, North Region, Northeast Region, and
West Region represent the 13.37%, 6.10%, 7.03%, and 10.49%, respectively of the total annual mean
WTP of SGD $783.08 million estimated for Singapore as a whole.

5. Discussion

In this study, we sought to assess and understand the willingness to pay of Singapore citizens
and permanent residents for measures to mitigate the UHI effect in Singapore. We found that the
citizens were willing to contribute considerable amounts of their incomes towards implementing UHI
mitigation measures in their country of residence. This finding is highly interesting as it is the first of
its kind to show how much citizens value the UHI mitigation in Singapore [27].

The Singaporean government has indicated that fighting against climate change and its related
risks and impacts is one of the main priorities for the country. In its government budget for 2020,
Singapore also announced committing close to SGD $1 billion for climate change mitigation and
adaptation efforts [67]. In the context of our findings, we found that Singapore citizens are willing to
pay SGD $783.08 million (USD $563.82 million) per year for implementing UHI mitigation strategies,
which equates to about 78% of the budget committed by the government for climate change mitigation
as a whole. It is interesting to see that our WTP estimate also corresponds to about 27% of Singapore’s
Ministry for Environment and Water Resources’ SGD $2.94 billion budget and to 7.68% of Singapore’s
Ministry of Health’s SGD $10.2 billion budget for the fiscal year 2020 [67]. This underlines the strong
support among citizens for tackling climate change challenge and its health-related issues faced by
Singapore, of which UHI mitigation is an important part.

Apart from estimating the social benefits that could be derived from the implementation of
UHI mitigation strategies, which are implicitly captured by the WTP, we also aimed to analyze
the relationship between WTP estimates and UHI intensity through a spatial analysis. In terms of
policymaking, it is important to know how much people are willing to pay to implement UHI mitigation
measures in the different Singaporean regions, which present diverse UHI intensities. In our analysis,
we found that the UHI exposure of the respondents was one of the key predictors of the WTP for UHI
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mitigation measures. The WTP of citizens who lived in the region with the highest UHI intensity was
3.09 times higher than of those living in the region with the lowest UHI intensity. In particular, we
found the highest WTP among citizens living in the Central Region, which is also characterized by the
highest mean UHI intensity. Citizens in the Central Region are willing to pay 63% of the total mean
WTP of the entire Singapore. In the West region, however, where the mean UHI intensity is the second
highest, citizens reported the second lowest WTP. Indeed, citizens in the West Region are willing to
pay only 10.49% of the total annual WTP for the whole Singapore. This suggests that the exposure to
UHI, even though significant, is only one of several predictors for the UHI mitigation related WTP.

Investigations into demographic, socioeconomic, and psychological predictors showed that the
WTP differs across population groups, independently of the regions in which they live. Citizens who
are younger, better educated, have a higher income and live together with children report higher WTP
values. Men report higher WTP than women. These results are not surprising. [35] and [50] found
that childless individuals are less willing to pay for environmental goods than parents. [35] found that
men are willing to pay more than women for environmental programs. Besides, other studies suggest
(e.g., [68,69]) that since seniors are less likely to live in the more distant future than younger people,
they are less likely to profit from the implementation of environmental programs and are therefore
willing to pay less than younger people for a given future risk reduction.

In addition, we found that citizens who reported awareness of the need for UHI mitigation
measures, hold positive attitudes towards UHI mitigation and prefer outdoor settings in general
report higher WTP values. To better protect older people as one of the most vulnerable groups from
negative UHI effects and heat exposure, education might be useful and increase the overall WTP for
UHI mitigation.

Our findings suggest that the level of support for UHI mitigation measures is homogeneous across
Singapore. It differs according to the exposure to UHI, to income, gender, age, and parenthood status,
as well as to the individual’s awareness of its need and their attitudes towards UHI mitigation and
outdoor preferences. It is thus important to consider these factors when designing UHI mitigation
measures and the strategy for garnering public support for them. Considering that there is a sizeable
difference between the WTP across the different population groups, policymakers need to be sensitive
to these differences when considering if and how much to tax citizens for UHI mitigation.

While our findings have provided important first indications that the citizens and residents of
Singapore support efforts to mitigate UHI in the country, the amount of SGD $783.08 million only gives
a conservative indication that there is a general support for the respective measures in the population.
Next, it is important for policymakers, researchers, industry and also for citizens to choose specific
mitigation measures which they would support. Currently, more than eighty mitigation measures are
proposed for Singapore [27], each with varying levels of efficacy, costs, and benefits to citizens’ lives. It
is hence critical to identify the measures that are acceptable for most groups, so that the respective
sizeable investments will get sustainable funding. This is even more important since for the next
decades further urban development and hence higher UHI effects might be expected. Therefore, urban
land planning and decision-making that contemplates the UHI effects, its intensity across the country
and its impacts on the population are key to guarantee future liveability of Singapore.

6. Conclusions and Implications

In the face of the current UHI challenge in Singapore, we found that citizens and permanent
residents show considerable support for mitigation measures. Our findings suggest that citizens are
aware of the impacts of UHI and support mitigation measures to be financed by their taxes.

We conclude with the following recommendations for policymakers in Singapore and in cities
facing similar challenges related to UHI effects.

1. Singapore citizens and permanent residents express a strong willingness to pay for mitigating the
UHI effect in Singapore. This should encourage policymakers to further increase their efforts
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to address the UHI effect in Singapore and to continue improving the urban outdoor thermal
environment, particularly in those areas with a high UHI intensity.

2. Stimulating education and awareness for issues related to environmental and urban sustainability
might generate a higher public support for the implementation of UHI mitigating measures.

Finally, building on the findings and the process underlying this research, we suggest the following
to be considered in future research.

1. Further CVM-related research on mitigating the UHI effect is recommended to provide further
insights into the differences in WTP within the population. In particular, the relationship between
WTP for specific UHI mitigation measures and the vulnerability of different population groups
(for example older adults and young children) should be further explored.

2. As our study presented the mitigation measures as a bundle, we were not able to calculate the
WTP for specific mitigation measures. Nevertheless, it is important to understand how much
citizens are willing to pay for different mitigation measures. Based on such information, measures
could be ranked and implemented according to their WTP. With respect to the implementation,
the expected discounted costs for different UHI mitigation measures should also be taken into
account. Combining this information within a cost-benefit analyses would provide policymakers
with deeper insights which could guide their policy decisions.
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