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Abstract: The assessment of the effect of the electricity price on energy production is important when
studying the profitability and benefits of energy systems. The demand and price of electricity depends
upon societal and economic development, but it is subject to a seasonal, weather-dependent variability,
and possibly to long-term variation under climate change. Here, we developed a methodology
to model the energy demand and electricity price in response to gross domestic product (GDP),
temperatures, and random factors, usable for the purpose of cost/benefit analysis of production
systems. The method was applied to the case study of the Italian electricity market, showing
acceptable capacity of modelling recently observed price fluctuations. Then, we gathered climate
projections until 2100 from three global climate models of the IPCC AR5, under RCP2.6, RCP4.5, and
RCP8.5, and we produced future scenarios of price fluctuations for two reference decades, half-century
2040-2049, and end-of-century 2090-2099. Our scenarios displayed a potential for the reduction of
energy demand in winter, and an increase in summer and spring, and for the similarly-changing
electricity price throughout the 21st century. We discuss the application of our model with the
specific aim of the projection of future hydropower production, as controlled by climate, hydrology,
demand, and price constraints, with examples from recent studies. Our results provide a tool for
modelling the behaviour of energy systems based upon knowledge of external factors, usable for
further investigation of energy systems, such as hydropower, and others, taking into account the key
variables affecting energy production and energy price.
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1. Introduction

Energy demand and pricing are affected by climate change, and production is thereby impacted. A
most sensitive sector is hydropower. Recently, the effect of climate change on hydrological regimes [1,2],
and on the related production of hydroelectric energy, especially from high altitude water bodies and
reservoirs, has been the subject of several studies [3].

A most important issue is the change of the price and demand for electricity, the latter being
visibly influenced by meteorological changes, as recently evidenced, e.g., by Gaudard [4] under the
umbrella of the project “Assessing Climate impacts on the Quantity and quality of Water”, AQWA [5].
In fact, at the European level, hydropower is still one of the main renewable energy sources, accounting
for ca. 15% of total capacity, i.e., about 141 GW [6]. The average net energy produced by European
hydroelectric plants is nearby 569 TWh yearly. At the country level, Russia is first in Europe, and fifth
in the world rankings with 52 GW, second is Norway with 31 GW, and France follows with 25 GW.
Italy, with an installed capacity of 22.5 GW of hydropower, is fourth in Europe, and 11th worldwide. In
Italy hydroelectric plants, 3700 units, achieved a total production of 42.4 TWh, ca. 14% of the country’s
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production. Most such plants are small, and have marginal influence. In fact, in 2015, 77% of Italian
hydropower was produced by plants with power >10 MW, covering merely 17% of the total [7].

However, hydropower energy depends largely upon meteorological conditions and, therefore,
productivity can have significant variations seasonally, and from year to year. Climate conditions
influence (i) the hydrological cycle, (ii) the energy demand, and (iii) the electricity price, the latter
two especially depending upon temperature. These three factors influence hydroelectric production
because energy managers need to manage water storages, so as to cover periods of peaking electricity
prices resulting from high energy demand, to reach the goal of maximum profit.

The average annual temperatures in Italy grew by +1.7 °C since the end of the 17th century, but
the most relevant contribution to this increase was recorded in the latest 50 years, with an increase
of about +1.4 °C [8]. Additionally, in a study carried by ISPRA (Higher Institute for Environmental
Protection and Research of Italy) [9], based upon 140 meteorological stations, the average temperature
decreased in Italy during 1961-1981, with a subsequent increase until 2008, for a net increase of ca.
+1°C.

Given the impact of climate upon the energy market as examined here, one needs to investigate
the present and potential future effect of climate, and climate change, on energy systems. One can do
so by applying models of the energy market explicitly depending upon weather variables.

Several models aimed at estimating the electricity prices were recently introduced in Europe in
the wake of the liberalization of the energy market at the end of the 1990s. Such liberalization brought
to the country-wise definition of the free market as indicated by Weron [10]. In Italy the Legislative
Decree 79/99, also called Decreto Bersani, allowed such liberalization.

As indicated, e.g., by Weron [10], in the available literature there are various types of models for
estimating electricity prices [11], and some categories can be highlighted, however, arbitrarily, and
prone to some overlapping.

A first category is given by multi-agent models. Agents are defined as entities able to reproduce
the behaviour of (parts of) the system, pending specific tuning [12]. Such models are flexible in
studying the interactions between various components, but they require strong functional assumptions,
possibly limiting the field of application. In parametric models, the progress of the system is described
via some operators (e.g., black-box type), that accounts for different responses against different inputs,
and need parameters’ tuning against data. Given the large number of parameters required for the
depiction of complex systems, more compact models have been developed, such as the supply curve,
described by Kanamura and Ohashi [13], linking the energy demand to the energy price, with use of
functions previously calibrated, e.g., on a daily basis.

These models may be strongly limited by the possibly very high number of samples necessary for
tuning. In addition, they lack in considering the potential for stochastic (random) fluctuations in the
energy systems, not foreseeable deterministically. To deal with such issues, stochastic models may be
used. These models derive future electricity prices using a combination of previous (past) prices, by
applying statistical methods, mostly based on regressive or self-regressive assumptions (AR, ARX,
GARCH) [14-16]. The accuracy of the forecast depends on the quality of the data available, and on the
ability to incorporate the different factors affecting the process and the forecast.

Another important category is given by computational models [17], able to consider the large
non-linearity of the system, e.g., using neural networks. These methods normally achieve good results
in the short-term, and their performance depends on the calibration data and periods. Hybrid, or
mixed, models can be also developed. As an instance, the s-MTSIM model by RSE [18] is made of two
components (stochastic/heuristic), and it is derived from the existing deterministic Medium-Terms
power system Simulator (MTSIM), originally developed by RSE SpA.

This latter model was applied, e.g., in the GridTech project, “Innovative grid-impacting
technologies enabling a clean, efficient and secure electricity system in Europe”, which was supported
by the Intelligent Energy Europe Programme (IEE). The main objective of GridTech was the performance
of an assessment of new grid-impacting technologies (e.g., solar, wind, etc.), and their implementation



Climate 2019, 7,121 30f17

into the European electricity system. This would allow a comparison of different technological options,
towards the exploitation of the full potential of future electricity production from renewable energy
sources (RES-E), with the lowest possible total energy system cost. The time window considered in the
GridTech analyses was until 2050, with special consideration of the target years 2020, 2030 and 2050,
each one under a scenario of energy demand and electricity price.

Another work of interest is the e-Highway2050 project [19], launched from a European consortium
supported by the EU Seventh Framework Programme (FP7), and devoted to develop a long-term
planning methodology for the expansion and restructuring of European electricity transmission grids
until 2050. The project consortium, involving some partners on the Italian side, is examining conditions
and solutions for the planning of the European electricity grid until 2030, 2040 and 2050, based on
energy demand forecasting for different scenarios.

An additional example is given by ClimateCost, a project with the objective to describe the impacts
and the costs of climate change in the European energy system. The consortium therein elaborated the
POLES model [20], a market-oriented model that can define the equilibrium price for several energy
sources, simulating the energy system behaviour.

Here, we propose a simplified hybrid method that can be applied in developing future projections
of electricity price and energy demand according to future scenarios of climate change. The model,
general in its nature, can be used henceforth for the benchmarking of adaptation measures for energy
production, and most notably for hydropower [21], under potentially variable climate in the future.

The manuscript is organized as follows: In the section “Case Study” we quickly describe the main
features of the Italian energy system, of interest for our work. In the section “Methods” we depict the
methodology, and in the “Data” section we describe the database used here. In the section “Results”,
we demonstrate the accuracy of our method for the Italian energy market, and we display the projected
evolution therein under climate change scenarios. In the section “Discussion”, we benchmark our
results against findings from recent studies, and we discuss the application of our model for the
specific aim of assessing hydropower production. We then draw some conclusions and outline possible
future efforts.

2. Case Study

Our method will be applied to the Italian electricity system. Such a system is made of a network,
where different activities are carried out by different subjects, within a free energy market environment.

Such activities cover production, transmission, and distribution of electricity, subject to
various technical constraints (i.e., limitations in energy distribution, node-limited grid capacity).
Non-compliance with such constraints, even when limited in time, can produce rapid system crises.
The electric power fed into the network is not traceable, so that every local imbalance falls out upon
the network through variations in voltage and frequency.

The main issues affecting proper supply are given by (i) the variability, poor elasticity and limited
predictability of demand, (ii) the absence of storage capacity, and (iii) the dynamic change of the
technical constraints, in response to real market adjustment.

Management of the electricity market is entrusted to the Gestore dei Mercati Energetici (Energy
Markets Operator, herein GME), with the mission of promoting the development of a national
competitive electricity system, according to the criteria of neutrality, transparency and objectivity. The
electricity market is particularly sensitive to these criteria.

Competition in the electricity market is introduced via the action of Borsa Elettrica, an electricity
stock market. It promotes the application of efficient equilibrium prices, allowing the sale and purchase
of electricity according to the greater economic convenience. It is organised as a real physical market,
with the definition of sales and purchases through hourly charts, according to the criterion of economic
merit. This consists of considering, for sales, the prices in increasing order and, for purchases, the
prices in decreasing order. Price definition takes place by all means as in a physical market, according
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to matching of supply and demand. Electricity offers are accepted in order of economic merit, i.e., in
order of increasing price, until their sum in terms of kWh completely meets the demand.

The kWh price of the last accepted bidder, i.e., the one with the highest price, is attributed to
all offers, and according to European Directive 2009/28, renewable energies, like hydropower, have
priority in terms of access to the market.

In so doing, in each zone of the Italian territory with given technical constraints, the equilibrium
prices are defined, i.e., those that are found at the intersection of the supply and demand curves.
Subsequently, the Prezzo Unico Nazionale (PUN, National Single Price), which is the Italian electric
energy market index, is established by GME. This represents the average selling price, weighed on total
purchases, and it is a result of different auctions, in which GME covers the expected energy demand
hour by hour, with offers by various operators. The auction accepts, first, the cheapest energy offers,
and then the most expensive to cover the needs of that particular hour, and the price applied to all the
operators is that of the most expensive source selected.

As a mere example, we could hypothesize to have a market made of three operators, each one
producing 1 MWh of energy, each one with a different price, say of 10, 20 and 30 €/MWh, and a total
energy demand of the market of 2 MWh. In this case, the chosen operators would be those pricing
energy at 10 and 20 €/ MWh, i.e., the most advantageous. The price at which the energy would be paid,
i.e.,, PUN, is 20 €/MWh, that is, from the most expensive source selected.

In this work the PUN, which is defined for each hour of every day on the basis of the match
between supply and demand, is also called the Electricity Price, given that a homogenous price
distribution is met, in practice, in the whole Italian territory.

3. Methods

3.1. Energy Demand Model

Electricity prices are strongly dependent on the energy demand. Thus, projections of future
electricity price require a model of such demand. Energy demand is also influenced by meteorological
variables, most notably temperature, influencing heating (winter) and cooling (summer) needs. In
some previous works (e.g., Shourav [22]) the influence of precipitation was also considered, but the
correlation with energy demand was weak.

In the field of energy study, the dependence on the mean daily temperature can be described by
defining two variables, namely Heating Degree Day (HDD), and Cooling Degree Day (CDD) ([23-25]).
These factors describe the heating and cooling need, occurring when the temperature deviates from
thresholds, defined as Ty and ¢, respectively”

HDD(d) = min((T(d) —tx),0)
{ CDD(d) = max((T(d) - ), 0) W

where T(d) (°C) is the average daily temperature at day d. Another input of the energy demand model
is the annual gross domestic product GDPy, given that a large base request of energy comes from
industrial users.

Accordingly, one can hypothesize that the demand on a specific year y, and a specific day d can be
modelled using a power law, expressed in a log-log form as:

4
In(Dq), = aIn(GDPy) + B In(HDDg + 1) +y In(CDDy +1) + Z 5 + £q @)
i=1

where Dg (GWh) is the daily energy demand, &, 3, and y are tuning parameters, §; are tuning factors
for Saturdays (i = 1), Sundays (i = 2), holidays (i = 3) and vacation periods (i = 4), including the
Christmas holiday period, Easter period and August central weeks. The term ¢4 is a random Gaussian
error, accounting for random factors. This equation does not account for change in energy policies, or
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different behaviour of consumers (e.g., large use of domestic power systems, solar panels, etc.), but
only includes the impact of climate on demand.

3.2. Electricity Price Model

The electricity price model is hybrid, and it mixes a parametric model, and a probabilistic one to
model hourly energy price at time t as:

P(t) = 8O+ — gBBX(H) — G (1) 3)

Here, P(t) (€EMWh™) is the hourly price. G(t) is the parametric, i.e., deterministic part of the
model, and x(t) is the probabilistic part.

The deterministic part G(t) describes the hourly mean price, linked to the daily energy demand,
while the probabilistic component describes the high intrinsic volatility of energy demand. The G(t)
part estimates the hourly mean price from the daily mean energy demand D(t), as:

2 2
G(t) = |exp(d-t) +exp(og + a1 Dy) + exp(Z(yi lhour =i ] Z n |day = 1 4)
i=1 i=1

Here, & (h7!) is the base, time-dependent increase of price, while (xg + «1D;) describes the
connection between price and mean daily energy demand D;. The x; factoris oy = &30+ 011 -t,
representing the time-dependent response (increase/decrease) of prices, to changes in energy demand.
The term Z (vilhour = i) has 24 tuning parameters, ;, necessary to define an hourly price, i.e., the

i=1
difference between hourly, and daily mean. The terms 1; are dummy factors applied to Sundays, and

holidays. The statistical component aims at emulating the high intrinsic volatility of the system, with
an autoregressive model AR(1):
x(t) =a+b-x(t—-1) + e ()

where a, e and b are tuning parameters, €; ~ N(0, 0¢) is a random Gaussian error, and x;_ is the value
of the component at the previous step.

4. Data

Historical Data and Future Scenarios

The input data available are (i) GDP(t) data series, provided by the Organisation for Economic
Cooperation and Development (OECD), (ii) energy demand and price of electricity (PUN), provided
by GME, and (iii) a series of mean daily temperature for Italy, provided by ISPRA [23]. Temperature
data are used to assess HDD and CDD, at the national scale, as in the Equation (1). Accordingly, both
of these parameters partly lose their physical, local meaning to instead represent generally valid model
parameters, country-wise. Depending on data availability, and after a preliminary quality check, the
reference period considered in the study covers 2005-2013. Using the annual GDP and the daily HDD
and CDD, it is possible to evaluate the energy demand for each day in our period of reference, from
which the hourly energy price in that period is evaluated. This value is then used for tuning our
models in Section 5.1.

To project future energy demand, and electricity price on the Italian territory, we used data of
(i) the OECD future projection of GDP, and (ii) the future projection of mean daily temperature series
for Italy, from the IPCC (Intergovernmental Panel on Climate Change) scenarios.

Climate projections of temperature are given by different global circulation models (GCMs),
under different representative concentration pathways (RCPs), as provided by the IPCC. The three
chosen GCMs were taken from the Coupled Model Intercomparison Project release 5, CMIP5. These
models are ECHAMS6 (European Centre Hamburg Model), CCSM4 (Community Climate System
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Model), and EC-EARTH (European Consortium Earth System Model). The RCP scenarios are named
RCP2.6 (optimistic, peak in radiative forcing at 3 Wm™ or 490 ppm CO, equivalent in 2040, and then
decline to 2.6 Wm™2), RCP4.5 (cautious, stabilization without overshoot pathway to 4.5 Wm™2, or
650 ppm CO, equation, at 2070), and RCP8.5 (pessimistic, with rising radiative forcing up to 8.5 Wm™2,
or 1370 ppm CO, equation by 2100). The temperature values from the GCMs’ grids were bias corrected
monthly (i.e., by properly fixing their mean values) against historical data (2005-2013) [26], so obtaining
for each RCP and each model a series of daily temperatures until 2100, for a grand total of nine scenarios.

Feeding these climate projections into our properly-tuned models, we pursued projections of
energy demand and electricity price to assess the effect of the climate change upon the electricity system.

5. Results

5.1. Tuning of Energy Demand, and Price Model

The previously defined parametric models entail parameters that cannot be measured directly
and, therefore, a tuning procedure was carried out, via linear regression on the logarithms. The two
models were calibrated separately using observed values of the variables involved, and their accuracy
was evaluated by objective scores, namely, the determination coefficient R? and root mean square error
(RMSE). The calibration was carried out during 01/01/2005-31/12/2010. The Italian electricity market
started in April 2004, and data collected in the first period were not considered, to avoid disturbances
during stabilization of the market. The database for calibration included daily (demand), and hourly
(price) samples for six years, so the database was large enough to support linear regression with a large
number of parameters as here (eight parameters for demand against 6 X 365 = 2190 daily values, and 33
parameters for price, against 6 X 365 x 24 = 52,560 hourly values). To set up the energy demand model,
one needs first to fix the value of the temperature thresholds for cooling and heating in Equation (1), i.e.,
TH, Tc, to be chosen within a plausible range from the literature [3,23]. We thus proceeded as follows:

We chose couples of Ty, Tc from within a pre-defined range (12-20 for ¢, and 10-20 for Ty),
changing iteratively the values of 1, Tc by 1 °C steps, and for each couple we pursued a linear
regression (on the logs) procedure, to estimate the remaining model parameters in Equation (2). We
then chose the couple providing the highest value of R? (on the real values) of the regression. In so
doing, we took the models” parameters leading to the best fit of the observed demand data.

A best fit was obtained by ty; = 18 °C and 1¢ = 15 °C, giving R? = 0.867 and RMSE = 2.163 GWh.
We report in Table 1 the adaptation scores for calibration and validation (we report Rzlog, and R? for
completeness).

Table 1. Adaptation scores for calibration and validation of the Electricity Price Model and Energy

Demand Model.
Model Cal/Val RMSE R? R%jog
Calibration 2163 GWh 0.867 0.873
Energy Demand Model 000 2816 GWh 0.583 0.623
N Calibration 25.04 €/MWh 0.499 0.593
Electricity Price Model 'y, .- tion 34.98 €/MWh 0.063 0.173

Figure 1a reports the mean energy demand during the calibration period, as per weekly mean
values (the daily values are not reported, as they are difficult to interpret visually). Clearly from
Figure 1a and Table 1, the model of energy demand fits acceptably the observation in the calibration
phase, even capturing well enough the peak timing, albeit with some underestimation.
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Figure 1. (a) Energy demand model calibration; on the x-axis the time period of calibration, on the
y-axis the value of daily average energy demand observed and modelled. (b) Energy demand model
validation; on the x-axis the time period of validation, on the y-axis the value of daily average energy

demand observed and modelled.

Validation was pursued against data during 2011-2013, also reported in Table 1. Figure 1b shows
the weekly average values of energy demand in the validation period. We obtained scores of R =
0.583, and RMSE = 2.816 GWh, and Table 2 shows the estimated parameters for calibration of the
energy demand model.

Table 2 shows the estimated parameters for calibration of the electricity price model, with scores
R? = 0.499, and RMSE = 25.04 €/ MWh. Here, linear regression was pursued to simultaneously assess
all parameters.

Figure 2a reports the (weekly mean) electricity price, modelled and observed, for the calibration
period (again 2005-2010). In comparison with the energy demand model, the electricity price model
has lower goodness of fit indices. This likely results from inelasticity of the system, requiring for
simulation the insertion of a tool accounting for system volatility (i.e., chance, or random factors).
Figure 2b reports model performance in the validation period. Here, the model scores are quite low:
R? = 0.063, and RMSE = 34.98 €/ MWh.
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Table 2. Model parameters.

Energy Demand Electricity Price-Daily Electricity Price-Hourly
Parameter Value Parameter Value Parameter Value Parameter Value
« 0.734 A 1.0x107° Y1 -0.175 Y13 0.087
B 0.041 ag 2.536 Y2 -0.217 Y14 0.067
Y 0.059 ajo 0.037 Y3 -0.239 Y15 0.076
[0) 0.501 an —-0.001 Y4 —0.248 Y16 0.081
o 0.010 n 1.210 Y5 -0.246 Y17 0.093
51 -0.350 a —-0.003 Y6 -0.221 Y18 0.109
I —0.450 b 0.400 Y7 -0.147 Y19 0.115
53 —0.500 o 0.401 Ys —0.026 Y20 0.119
84 —0.200 Y9 0.078 Y21 0.099
05 0.300 Y10 0.123 Y22 0.055
Y11 0.132 Y23 -0.022
Y12 0.129 Y24 -0.104
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(b)

Figure 2. (a) Price model calibration; on the x-axis the time period of calibration, on the y-axis the value
of electricity price hourly observed and modelled. (b) Price model validation; on the x-axis the time
period of calibration, on the y-axis the value of electricity price hourly observed and modelled.
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In years 2011 and 2012 the price of oil exceeded the value of $100 per barrel, possibly affecting
electricity price and the performance of our model. Oil price is, in most cases, the result of political
decisions and, therefore, cannot be easily modelled (De Almeida and Silva, 2011 [27]).

5.2. Future Projections of Energy Demand and Price

First, based upon the climate projections from our GCMs and RCPs, we studied the future values
of HDD and CDD, reported in Figure 3.
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Figure 3. (a) CDD monthly projections at mid-century period 2040-2049 (left y-axis) and end-of-century
period 2090-2099 (right y-axis, values upside-down) against the control run period (2005-2013).
(b) HDD monthly projections at the mid-century period 2040-2049 (left y-axis) and the end-of-century
period 2090-2099 (right y-axis, values upside-down) against Control Run period (2005-2013).

In Figure 3a we display the average monthly CDD values during the half-century (20402049,
hereon 2045), and during the end-of-century (2090-2099, hereon 2095), compared against the control
run (CR) (2005-2013).

The two indices basically reflect the increase in the temperature as projected by the GCMs, in those
periods when the temperature thresholds are exceeded. At the mid-century, a slight increase of CDD
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would occur, with largest changes in summer, June, July and August. The largest deviation from the
control period reaches approx. +2 °C, given by CCSM4 under RCP8.5 in July. Outside of the summer
period, however, no more than +1 °C is seen. At the end-of-century, different scenarios display large
potential deviations, especially RCP8.5 scenarios, which exceed +3.5 °C between June and September,
and with a maximum of +6.8 °C in July under ECHAMS6, RCP8.5. The RCP4.5 scenarios never deviate
by more than +2 °C, while RCP2.6 never exceeds +1 °C.

Figure 3b shows the average monthly HDD values at 2045, and at 2095 against CR. Considering
the mid-century period, the change is less than —2 °C (i.e., there is less need of increasing temperatures
for heating purposes), with peaks in April period for CCSM4, RCP8.5 with —1.9 °C. On the other hand,
at 2095, CPR8.5 deviates between —2 ° C and —4 °C in fall and spring, with the other scenarios varying
between -2 °C to 0 °C.

In Figure 4 we display the monthly variation in the demand for the two reference decades against
CR. To offset the increase in energy demand forced by ever increasing GDP, we only report therein the
variation of the climate-driven part.
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Figure 4. Energy demand monthly projections, climate driven share, compared against the yearly
mean, at the mid-century period 20402049 (left y-axis) and the end-of-century period 2090-2099 (right
y-axis, values upside-down) against the control run period (2005-2013).

Considering the monthly variations of energy demand, from the annual average value in
mid-century compared to the control period, it can be seen that, as a result of the decrease in HDD
values, a loss in energy demand occurs in the months of December and January, and this trend is
more visible at the end of the century. Clearly, from Figure 4, we deduce that at 2045 and 2095, the
largest increase in demand would be seen during spring to fall (June, July, and partly August when
holidays largely decrease demand, September, and even October at 2095), as given by the larger need
of energy for cooling. The largest increase is seen under RCP8.5 at 2095. Additionally, energy demand
for heating decreases during December and January, especially at the end-of-century. At the yearly
scale (not shown), little difference is seen in terms of energy demand.

Figure 5 displays monthly averaged variations of the electricity price, again here offsetting the
increase due to GDP.
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Figure 5. Electricity price monthly projections, climate driven share, compared with the yearly mean,
in the mid-century period 2040-2049 (left y-axis) and end-of-century period 2090-2099 (right y-axis,
values upside-down) against the control run period (2005-2013).

The variation of energy demand reported above leads to a decreased price in winter and fall
at 2045 and 2095 against CR. The spring period sees an increase at mid-century, with subsequent
re-alignment at the historical price at 2095. At 2045, the energy price would increase during July and
August, and even in September at 2095, again primarily under RCP8.5.

6. Discussion

6.1. Benchmark with Recent Literature

We could find some results in the available literature for benchmarking of our findings. In the
Gridtech project reported above [28], the authors defined scenarios of future electric system’s behaviour
until 2050, introducing a number of hypothesis concerning use of renewables. We compared our
scenarios of annual load (TWh), and price until 2050 against the findings of the Gridtech project, to
assess the capability of our simple model to represent future energy demand as set out using a more
complex scheme.

In the EU project Highway2050 (2018) [19] the participants set out different scenarios (at 2050)
for future schemes of the energy market, in terms of energy mix (solar, thermo, wind, nuclear, fossil,
hydro) for production, also driving energy demand. Their five scenarios for energy demand could be
used as a benchmark for our results.

Damm et al. [29] built a temperature-driven model, to account for the impact on energy demand,
given by an increase of temperature fixed at +2 °C within time windows of 30 years, centred on variable
years, as depending on different RCPs (2071-2100 for RCP2.6, 2036-2065 for RCP4.5, 2006-2055 for
RCP8.5). They used temperature data from five regional climate models (RCMs) from CMIP5, and
provided averaged results for each RCP.

We could use these results to benchmark our climate-driven variation of demand under the same
RCPs and periods. Figure 6 reports the annually observed load values in the CR period (2005-2013),
plus the observed values during 2014-2017 (the latter years were not modelled in lack of meteorological
data). Additionally, projected values until 2050 are reported for comparison, for the nine projected
scenarios, somewhat overlapping, given the large contribution as given by the GDP term (that could
not be extracted based on the available information from the two projects used for the benchmark).
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Figure 6. Annual load. Observed and projected values at 2050 for benchmarking against the results
from GridTech and e-Highway 2050 projects.

Our model provides results that are somewhat consistent with those from the e-Highway2050
project until the half-century point (i.e., included within the boundaries of their five scenarios). The
e-Highway2050 project and our model should have a largest correspondence in term of the scenario
“Fossil and Nuclear”, highlighted in Figure 6. This scenario, as indicated by the name, considers an
energy production system that is somewhat similar to the current one where, at the European level,
large use of non-renewable sources and nuclear energy is pursued. Our model provides +3.2% at 2030
against the Fossil and Nuclear scenario, —0.5% in 2040, and —3.2% in 2050.

Conversely, the GridTech project displays annual loads comparable with our values near year
2020 (+6.9% against our model), with a subsequent large increase, much higher than our model (and
e-Highway2050). Then, at the half-century point, GridTech converges (+3%). The Gridtech project
considered different projections for the GDP until the half-century. Visibly, they assumed a larger
increase than we did until 2040. However, it is not fully clear from their report how they projected
GDP in the future. We used projections from the OEDC, which should be dependable enough for the
present exercise.

A comparison of our results against Damm et al. [29] is given in Figure 7. We report therein the
annual variation of the climate driven component of energy demand for our different scenarios, for the
same periods as set out by the authors therein. Our model visibly diverges from theirs under RCP2.6,
whereas it provides basically consistent changes under RCP4.5 and RCP8.5.

The electricity price model was benchmarked against the results of the GridTech project, the only
one available for this purpose that we could find. Figure 8 shows the annually averaged energy price
in the CR period (2005-2013), plus observed values during 2014-2017 (again not modelled due to a
lack of meteorological data). Additionally, projected values until 2050 are reported for comparison, for
the nine projected scenarios, again somewhat overlapping, given the large contribution as given by the
GDP term.

Comparing with the GridTech project, our model provides similar values at 2020, and 2030 (+3.3%
in 2020, and —5.9% in 2030, our model against GridTech). In 2050 our model delivers a much lower
price instead (—25.7%). In our understanding, this results from the underlying assumption of GridTech,
that no changes in the energy system would occur at 2050. Such assumption produces an increasing
price, in response to the inability of the system to adapt to an increase in energy demand. Our model
instead is able to react to an increase in demand, by increasing energy production (Equation (4)), and
thus decreasing the final energy price consistently. In this sense, our model is slightly more consistent
with the real-world behaviour of energy systems, being normally able to adjust the selling prices to
increased demand over the long-term.
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Figure 8. Electricity price. Observed and projected values to 2050 for benchmarking against the results

from the GridTech project.

6.2. Hydropower Price and Production Assessment

The outputs of our methodology, namely present and future projected energy demand, and price,
in response to climate, can be used as external drivers to force simulations of energy production from
specific sectors for the purpose of testing the dependability and profitability of the sector themselves,

under future climate changes.

The hydropower sector in Italy is a most critical one, as reported, and the proposed methodology
can help develop credible projections of hydropower production in the future, as constrained by
climate and hydrological conditions, demand and the market.

Indeed, expected climate change will affect, on the one hand, water availability and, on the
other hand, energy demand and price [21] and, accordingly, one needs tools for proper hydropower
regulation (i.e., reservoir management) under modified boundary conditions.
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Among others, Ravazzani et al. [3] assessed the impacts of climate change on hydropower
production of the largely regulated Toce river basin in the Italian Alps. They used simulations from two
regional climate models to force Toce hydrology, and subsequently used a model of the hydropower
system (SOdA, Simulatore ed Ottimizzatore di Aste idroelettriche, developed by the Company Enel Green
Power-Energie Rinnovabili, of Italy), to define management rules under profit maximization constraints
until 2050. They considered modified energy demand in response to temperature variations, but with a
constant energy price in the future. Under such a hypothesis of constant energy prices, the changes of
the hydrological regime expected during 2011-2050 would lead to significant changes in the reservoirs’
management policy, with anticipation of maximum storage, from August to July, and a drawdown of
stored volume in August and September, to prepare for autumn inflows. At the half-century point,
energy production would increase (+11%—+19%) in response to large precipitation increases until 2050
(+17%—+40%), with much uncertainty, however.

Gaudard et al. [4] studied the effect of modified hydropower production in Valais, Switzerland,
under reduced streamflows in response to climate change. They showed that adequate management
may mitigate losses. However, they would consider constant boundary conditions of price and
demand. Gaudard et al. [30] further discussed potential changes of revenues of hydropower energy
management throughout the century, highlighting large uncertainty in response to changes in prices.

Solaun et al. [31] analysed the effect climate change will have on the revenues and operations of
hydroelectric power plants in a long-term frame. They found, in the absence of adaptive measures,
that a decrease in the productivity is to be expected for the power plants they considered. However,
they applied a methodological decision system that they define “ceteris paribus approach”, i.e., they
considered many parameters constant in time, in particular, energy price.

Aili et al. ([32,33]) recently studied the hydropower system of the Mallero River, in the Northern
Italian Alps. They used the hydrological model Poly-Hydro [1], fed with IPCC climate projections under
three models and three RCPs, as here, and the SOdA production model (same as [3]), to project forward
future streamflows, and subsequently evaluate future energy production. They foresaw a stream flow
decrease at 2100 (from +1 to —25%, on average —7%), with the potential for increased flows during
fall and winter, and a large decrease in summer, with subsequent decreased energy production at the
half-century point (—2% similar for all scenarios), and end-of-century (—24%—+6%, —12% on average).

A preliminary investigation was pursued using our energy model here by Bombelli et al. [21,34].
They used Poly-Hydro to model and project forward hydrological fluxes in the complex Alta Valtellina
valley hydropower system, based on IPCC climate projections under three models and three RCPs, as
here. They included our energy price model within a hydropower management tool Poly-Power, able
to mimic optimal hydropower management under given hydrological fluxes, and given demand/price
conditions. They found that annual stream flows for hydropower production may decrease along the
century (-21-+7%, on average —5% at the half-century; —17% to —2%, average —8%, at end-of-century).
Energy production may be substantially constant under proper management (=9% to +15%, +3% on
average) at the half-century, but at the end-of-century, under the warmest (and possibly most likely,
see the Discussion in [21]) scenario RCP 8.5, a decrease of energy production would be consistently
projected (—4% on average).

Stucchi et al. [35] coupled Poly-Hydro and Poly-Power to assess future energy production and
revenues for the largely ice-fed Sabbione hydropower plant, at 2460 m asl in the Piemonte region
of Italy. They projected largely modified future stream fluxes (-22% to —3%, —10% on average at
the half-century, and —28% to —1%, average —13%, at the end-of-century), as due to reduced ice
contribution, and uncertainly changing precipitation. Power production, driven by seasonal demand
and water availability, would change (decrease) in the future (—27% to —8%, —15% on average at the
half-century, and —32% to —5%, —16% on average at the end-of-century).

Accordingly, large uncertainty dwells into projections of scenarios of hydropower production
throughout the 21st century, due to complex interaction between (i) the modified hydrological cycle in
response to changing precipitation (with a large projected variability in positive/negative direction),
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temperature (ever increasing), and availability of ice melting in the glacierized areas (decreasing),
(ii) energy demand (seasonally changing), and (iii) energy price (increasing on average, with large
seasonal dependence), also under complex plants’ regulation.

The use of constant demand, and energy prices under future scenarios of water availability, may
indeed reduce the credibility of future hydropower production scenarios.

Within such complex scenarios, the use of properly projected demand, and price conditions from
our energy price models, may help in highlighting most realistic scenarios for reservoir management,
and proper maximization until the end of the century.

The methodology proposed here is, therefore, likely to be useful, and will be exploited in the
future to generate more dependable scenarios of hydropower production and, in general, of energy
demand and price under expected climate change.

7. Conclusions

We introduced here a methodology to model the behaviour of energy demand and electricity
price, and for projecting their trends under climate change, which we applied to the Italian electricity
market. The method requires data of temperature, energy demand and electricity price in the region of
interest, and can operate without a detailed knowledge of the internal system’s components. Its results
are, however, comparable to other, more complex methods that take into account the main drivers of
the energy system. The subsequent use of climate projections, e.g., from IPCC scenarios, as shown
here, allows to build dependable projections under a what-if perspective.

Again, our projections reasonably match those from other more sophisticated methods. The
method is general enough that it can be applied ideally to any energy system, provided proper data
are available.

We developed the method with specific reference to application in the field of hydropower, most
subject to climate change as reported [21,35], and we briefly reported examples of assessment of
hydropower production under uncertain future climate change scenarios.

Present and prospective hydropower production depends upon an array of factors, including
climate and hydrology, energy demand and price, and plants” operation. Accordingly, proper
assessment of modified energy demand/price, as displayed here, may improve the modelling chain
for assessment of the hydropower potential, for management of present plants, and the design of
future ones.

Notwithstanding the focus on hydropower here, our proposed approach can be virtually applied
in several fields of energy production, whenever information of the present and future energy price,
depending upon social and climate conditions, would be needed.

The method and results here, therefore, seem of great interest for policy-makers in the field of
hydropower production (and energy, in general), for the study of future change in energy production
demand, price and profitability.
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