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Abstract: Lack of suitable observational data makes bias correction of high space and time

resolution regional climate models (RCM) problematic. We present a method to construct

pseudo-observational precipitation data by merging a large scale constrained RCM reanalysis

downscaling simulation with coarse time and space resolution observations. The large scale

constraint synchronizes the inner domain solution to the driving reanalysis model, such that

the simulated weather is similar to observations on a monthly time scale. Monthly biases

for each single month are corrected to the corresponding month of the observational data,

and applied to the finer temporal resolution of the RCM. A low-pass filter is applied to the

correction factors to retain the small spatial scale information of the RCM. The method

is applied to a 12.5 km RCM simulation and proven successful in producing a reliable

pseudo-observational data set. Furthermore, the constructed data set is applied as reference in

a quantile mapping bias correction, and is proven skillful in retaining small scale information

of the RCM, while still correcting the large scale spatial bias. The proposed method allows

bias correction of high resolution model simulations without changing the fine scale spatial

features, i.e., retaining the very information required by many impact models.
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1. Introduction

Evaluation of climate models are best performed with gridded observational data sets as these better

agree with the spatial average data produced by the models [1]. However, the observational data sets

are limited in their space and time resolution due to the underlying station density. Furthermore, as

the precipitation field becomes increasingly heterogeneous with higher resolution, the assumptions and

statistical methods of the gridding procedure have a larger impact on the results. With increasing space

and time resolution of model outputs, this poses a problem for evaluation as well as bias correction

applications for regional climate models (RCMs).

Bias correction of RCM data has over the last decade evolved from simple scaling to get the mean

climatology corrected (e.g., [2]), to correcting several or all moments of the distribution (e.g., [3]). This

increase in detail put higher demands on the quality of the observational data to correctly represent the

distribution, and also regarding the length of the data set to have robust statistics for higher moments [4].

If high enough time resolution data exists, it can be tempting to simply interpolate a spatially coarser

observational data set to the high resolution of the model in order to perform the bias correction, however,

commonly used bias correction methods will then remove fine scale spatial information from the

RCM variables.

In large parts of the world, only coarse space and time resolution data are available, and only

corrections of the mean are supported. Regionally, relatively high resolution precipitation data sets are

available, e.g., the E-OBS data set over Europe (25 or 50 km and daily time step) [1], and locally even

higher resolutions, e.g., PTHBV [5] over Sweden (about 4 km and daily resolution). Even in this case,

the increasing spatial scales of RCMs now approaching a standard resolution of about 12.5 km for Europe

are less and less supported by observational data, especially with an increased interest in sub-daily time

steps. Furthermore, common for all these data sets is that the station density is not sufficient to alone

describe the spatial details, and statistical methods and assumptions are applied to describe regional

features of the precipitation field. Therefore, gridded observational data are increasingly becoming a

product of the statistical model at finer resolutions.

Weedon et al. [6] presented a simple method to construct a merged data set of model reanalysis

and observational precipitation data, known as the WATCH forcing data (WFD). They started from the

assumption that the assimilation procedure of the reanalysis makes the simulated weather at single grid

points synchronized with observations at a monthly time scale, such that similar events occur within

that timeframe. Thus, the model simulated precipitation can be corrected to have the same monthly

mean precipitation as the observed. Weedon et al. [6] calculate a simple scaling factor from the ratio

of the model and observational data for each single month to correct the reanalysis. The scaling factor

is then applied at the higher time output frequency for each month. The method allows the model to

determine temporal scales below the monthly timescale, but is constrained to observations beyond that.

This demands confidence in the model performance at the shorter timescales, thus the method is better

applicable to climatological assessments, as opposed to studies of single events.

The main advantage of the WFD is that it provides a worldwide data set at high temporal resolution,

which allows for coarser scale impact modeling also in regions of the world with sparse and coarse

data availability. In this spirit, we have extended the Weedon et al. [6] method to a constrained RCM
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simulation that is corrected towards observations. To retain fine scale spatial details of the model, a

spatial filter is applied, so that corrections are only performed at coarser spatial scales. This new high

resolution pseudo-observational data set is evaluated and applied as reference data for bias correction of

downscaling simulations with the same RCM. The paper outline is as follows: first a description of the

study region (Section 2), a presentation of the model and data used (Section 3), a methods section where

the creation of the pseudo-observations as well as the bias correction method are presented (Section 4),

followed by the results (Section 5). The paper ends with a discussion (Section 6) and conclusions

(Section 7).

2. Study Region

Initial setup and evaluation of the method is performed for the region of Sweden in northern Europe,

see Figure 1. The main reason for restricting the analysis to this sub-domain of the model domain (see

Section 3), is the availability of a high resolution gridded data set. Furthermore, this is a suitable region

for initial setup and evaluation of the proposed method due to varying topographic conditions, with the

Scandic mountain range along the western boundary to Norway and plains in the south (Figure 1), and

conditions with dominantly large scale precipitation systems in winter, and a fair amount of convective

small scale events in summer. The annual mean rainfall is highest along the Scandic mountain range,

and in the inland regions from the south-western coastline (Figure 1). The rest of the country receives

amounts around 600–900 mm·yr−1, with local small scale variations.
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Figure 1. Topographical map of Sweden and its near surroundings (left). Mean annual

precipitation for the period 1980–2009 from the PTHBV data set at the RCA model

resolution of about 12.5 km (right).
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3. Model and Data

Simulations over the Euro-CORDEX domain covering most of Europe at 0.11 degree (about 12.5 km)

with the RCM RCA4 (Rossby Centre Atmosphere RCM version 4) are used for developing the proposed

method. Details on an earlier version of RCA (version 3) are presented in Samuelsson et al. [7], and

new developments consist mostly of re-coding and updating with respect to surface processes. In the

standard setup, the model is run with prescribed sea surface temperatures, lateral boundary conditions

from a driving model, and greenhouse gas concentrations.

The standard method for nesting RCA in a global climate model (GCM) is by relaxing the atmospheric

variables of RCA at model levels to that of the GCM in a ten point relaxation zone at the lateral

boundaries. An alternative strategy for imposing the lateral boundary conditions is to use spectral

nudging, which has recently been introduced in the model as described in Berg et al. [8]. When active, it

imposes large scale features of the driving model on the interior domain of the RCM. This is carried out

through a Fourier decomposition of 2-d fields of temperature and horizontal winds at model levels above

the atmospheric boundary layer, and wavelengths above 800 km are constrained to the driving model.

However, only a fraction of the driving model field is imposed on the RCM, and this fraction increases

linearly with the model levels vertically from 0 at around 850 hPa to 10% at the top level at around

0.1 hPa, corresponding to e-folding times of about 10 h to 40 days [9]. More details on the spectral

nudging and the configuration for RCA4 can be found in Berg et al. [8]. With a constrained circulation,

the probability for the RCM to simulate observed precipitation time series at a given location increases,

but it is also dependent on the model to actually produce a precipitation event at the correct time and

place. Using a smaller domain imposes similar constraints on the circulation, which might be beneficial

in some cases.

A set of experiments is carried out (see Table 1). First, a set of two downscaling simulations are carried

out with ERA-Interim [10] reanalysis data at the boundaries; one (REI) with standard lateral boundary

forcing, and the other with spectral nudging (REISN). For evaluation of the impact on bias correction,

we make use of a control simulation with the EC-Earth GCM [11–13] from the CMIP5 ensemble applied

at the boundaries (ECE).

Table 1. List of model simulations, observational and merged data. The indicated time

period is that used for the analysis, not that of the complete data set.

Name RCM GCM Time Period Comment

E-OBS - - 1980–2009 Gridded @ 50 km

PTHBV - - 1980–2009 Gridded @ 4 km

PSOBS RCA4 ERA-Interim 1980–2009 Corrected to E-OBS

REI RCA4 ERA-Interim 1980–2009 Standard setup

REISN RCA4 ERA-Interim 1980–2009 Spectrally nudged

ECE RCA4 EC-Earth 1971–2000 Standard setup
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For construction of the pseudo-observational data, we make use of the E-OBS (v9.0) gridded

precipitation data set [1], which includes around 70 to 100 gauges in Sweden, depending on the time

period. It is available at both a 50 and 25 km resolution, but here we only use the former to better

explore the possibilities of the proposed method.

For evaluation of the model at higher resolution (4 km), we use the PTHBV gridded data set [5]. It is

based on around 700 gauges. This means an average density of one station per 25×25 km2, however, the

density is significantly lower in the mountainous regions in the north-west. Clearly, the high resolution

of PTHBV is a product of the statistical interpolation model.

The observational data sets are remapped by bi-linear interpolation to the model 12.5 km grid for

all purposes in this study. The difference in resolution between the original and target grids is fairly

small, and the bi-linear approximation has therefore no significant impact on the results. For the coarser

resolution E-OBS data set, there is a problem with missing data along the coastlines with the bi-linear

interpolation method. The nearest neighbor with data was therefore replicated in order to fill out the

data set.

4. Methods

4.1. Pseudo-Observational Data

The Weedon et al. [6] method requires the model to be synchronized with the observations such

that the weather during each single month is similar, here in the sense of similar precipitation systems

affecting the local regions, in the model and the observation. Reanalysis data are, through the

assimilation of observational data, largely synchronized to the atmospheric circulation. However, here

we are interested in much higher resolutions than current day reanalysis products provide, and therefore

apply RCM downscaling. In practice, most RCM downscalings of reanalysis data produce internal

variability and circulation biases for larger domains such that correlations between the RCM and the

driving reanalysis data drops significantly. Assimilation is a time consuming task, and different simpler

methods have been applied previously, such as re-initializations [14] and different versions of spectral

nudging [9]. Here we apply spectral nudging following Berg et al. [8] to constrain the large scales.

To correct the spectrally nudged downscaling simulation towards observations the number of dry days

(days with less than 1 mm·day−1 of precipitation) are first corrected by setting excessive wet days with

the least amount of precipitation in the model to zero. Then a simple scaling factor [6] is applied such

that the pseudo-observational data, PPSEUDO(n,m), becomes

PPSEUDO(n,m) = PMOD(n,m) ·

N(m)∑

k=1

POBS(k,m)

N(m)∑

k=1

PMOD(k,m)

. (1)

MOD (OBS) denotes the model (observational) data, n and m are indices of the day in the month

and the month, respectively. N(m) is the number of days in month m. This simple scaling will affect

the higher intensities within a month more than the lower ones. A scaling taking also the variance

into account could improve this, but when only monthly data are available (which is the premise
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investigated here), we are limited to scaling the mean value only. The scaling factor, i.e., the ratio in

Equation (1), will impose the spatial variability of the observational data at the monthly timescale to

the pseudo-observational data. In a gridded data set, this variability arises from statistical assumptions

about precipitation amounts related to orography, and to the often low density gauge data, with station

location often being biased to e.g., valleys. The dynamical model is more advanced in the simulation

of spatial characteristics of the precipitation field, and is consistent, e.g., when it accounts for different

flow directions which can affect orographic effects on precipitation amounts and distribution. Thus,

the statistical and dynamical methods might differ, especially for smaller scale features. It is subjective

whether one puts more trust in the statistical or the dynamical method as they are problematic to evaluate.

However, best practice is to correct the model only when substantial information shows that the model is

erroneous. Since generally no such substantial information exists for the finer spatial details, best practice

suggests not to affect the fine scales of the model. Still, the coarser scales might need to be corrected.

Thus, the pseudo-observational data should adapt large scale structures from the observations, but retain

the small scale structures from the model. This can be performed by applying a spatial filter to remove

small scale spatial features from the data sets prior to calculating the scaling factors in Equation (1).

The smoothed scaling factors will then allow the small scale features of the model to be retained in the

final product.

The spatial filter used here is a nine point spatial average which is applied to the model data for

the monthly time step, such that the actual resolution of the model and the observations become more

similar. A sensitivity study with a 16 point average was performed, however, with little actual differences

in the results.

The pseudo-observational data (PSOBS) are constructed from REISN combined with E-OBS, as

outlined above.

4.2. Distribution Based Scaling (DBS)

The DBS method [15] is a version of the commonly used quantile mapping bias correction methods

in which meteorological variables are fitted to appropriate parametric distributions. For precipitation,

DBS separates between wet and dry days and is applied in two steps: (1) remove drizzle generated

by GCMs/RCMs to correct percentages of wet days and (2) transform the remaining precipitation to

match the observed frequency distributions. In (1) a wet-day threshold for the model is identified by

comparing the simulated daily precipitation to the observed daily precipitation sorted in an ascending

order. Model values below the threshold are removed. In (2), for each data set two gamma distributions

are fitted to the cumulative distributions of precipitation intensities below (above) the 95th percentile,

and combined into one distribution. It allows a good fit to both low and high intensities. Correction

factors are calculated separately for each season DJF (December–February), MAM (March–May), JJA

(June–August) and SON (September–November), as the distributions can have significantly different

shapes depending on the physical characteristics of the precipitation processes dominating the season.

In this study, we are focusing on the effects of the reference data on the corrections. To emphasize

these effects, we perform the analysis on the DBS calibration period, i.e., the full period, such that
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sporadic elements of the corrections on a validation period do not distract from the spatial features we

are interested in.

5. Results

5.1. Synchronizing Weather Events Using Spectral Nudging

A requirement of the proposed method is that the RCM can reproduce observed precipitation events

from observations at the correct time and place, at least within a monthly time scale. Grid point time

correlations between the model and the E-OBS data are calculated to investigate how well the model

reproduces observations.

Starting with correlations at the monthly time scale, the standard model setup (REI), with only

lateral boundary forcing, produces correlations of around 0.5 on average over Sweden for the different

seasons, with higher values in winter than summer (Table 2), due to the type of precipitation systems

present. With spectral nudging (REISN), the correlations increase significantly to around 0.8. These

are high correlations, especially considering the highly complex atmospheric interactions to produce

precipitation, which lends confidence in pursuing the construction of the pseudo-observations (PSOBS).

Because PSOBS are corrected at the monthly time scale, its correlations are per definition close to

perfect; with small deviations only due to the nine point spatial filter. Regionally, there are only small

differences in the results, and the main features consist of generally lower correlations in southern

Sweden in summer, which is probably due to stronger convective activity in this region.

Table 2. Domain average results for correlations of precipitation towards E-OBS daily and

monthly data.

Daily Monthly

Season REI REISN PSOBS REI REISN PSOBS

DJF 0.42 0.70 0.72 0.67 0.88 0.97

MAM 0.23 0.63 0.68 0.44 0.78 0.98

JJA 0.19 0.55 0.59 0.41 0.78 0.98

SON 0.34 0.67 0.70 0.61 0.85 0.98

At the daily time step, the correlations drop to well below 0.5 for REI, but remain above that value

for REISN (Table 2). The PSOBS only slightly increase the values of REISN, which is because it

retains the time series of the model at sub-monthly time scales, with only corrected magnitudes. There

are multiple reasons beyond model errors for the lower correlations at the daily timescale, e.g., we

do not take into account smaller location errors, nor have we adjusted for the different timeframe for

accumulating precipitation of the model (00:00–00:00) and the observations (06:00–06:00).
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5.2. Evaluation

As presented in Section 5.1, DJF and JJA are the seasons with the largest contrasts and we therefore

focus the presentations and evaluation to these seasons. MAM and SON were also investigated, but add

negligible additional information to the analysis.

Figure 2 shows the mean precipitation for DJF and JJA for the two observational data sets as well as

REISN and PSOBS. There are clear differences between PTHBV and E-OBS, mainly regarding the fine

scale spatial features which are lacking in E-OBS due to the lower resolution, but also on larger scales

with E-OBS having much lower amounts over the Scandic mountains to the north-west.
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Figure 2. (a–d) Winter and (e–h) Summer Seasonal mean precipitation for (a,e) PTHBV,

(b,f) E-OBS, (c,g) REISN and (d,h) PSOBS. The domain average value is given in the lower

right box in each panel.

REISN is, in general, in close agreement with PTHBV in winter, but overestimates amounts somewhat

compared to E-OBS. In summer, REISN is too wet, especially compared to E-OBS. REISN and PTHBV

seem to have similar fine scale features, however, a closer look in Section 5.3 will reveal some significant

differences. PSOBS has corrected large scale bias to be close to E-OBS, but retains the smaller scale

spatial features of REISN.

The probability distribution function (PDF) of daily precipitation intensities calculated from values

throughout the domain is also slightly different between the two observational data sets (Figure 3).

Clearly, E-OBS is underestimating intensities above about 20 mm·day−1 compared to PTHBV, especially

in winter, but also has a higher dry day probability in both summer and winter. The former is probably to

a large extent due to the coarser resolution of E-OBS which shifts the PDF towards lower intensities. The

dry day (days with <1 mm of precipitation) differences could be related to the statistical method used.
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Figure 3. PDF of wet day precipitation intensities for PTHBV, E-OBS, REISN and PSOBS

(symbols according to legend), for DJF (top) and JJA (bottom). The dry day probability (%)

is given in the legend.

REISN has a wet bias in that it underestimates the number of dry days by a few percentage units, and

overestimates intensities above around 20 mm·day−1, for both winter and summer and compared to both

PTHBV and E-OBS. Although PSOBS is only corrected for monthly means, the PDF is much closer to

its E-OBS reference. This is due to a fortunate coincidence: An overestimation of the monthly values

will give a scaling factor below 1, with the result that higher intensities are scaled down more than lower

intensities, thus reducing the high intensity bias of the model. The larger wet bias in summer actually

causes a reduction of the higher intensities below those of E-OBS. Although the dry days of REISN

are corrected in the method to produce PSOBS, there are still smaller deviations from E-OBS. This is

because the subsequent scaling of the data can shift precipitation amounts below the 1 mm·day−1 limit

which defines the dry day threshold.

Differences in variance between model and observational data sets have been shown to affect climate

change signals when bias correction methods include higher moments than the mean, such as quantile
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mapping does [4,16,17]. The method to create PSOBS enforces the same standard deviation at monthly

time scales, for which reason we instead investigate the standard deviation at intra-monthly timescales,

i.e., the monthly mean was first subtracted from each daily value to produce monthly anomalies

(Figure 4). PTHBV has higher standard deviation than E-OBS, which again is likely due to the difference

in original resolution. REISN has on average a little higher values than E-OBS and lower than PTHBV

in winter. However, in summer, REISN clearly overestimates the standard deviation by over 20% in a

spatial average.
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Figure 4. Same as Figure 2, but for intra monthly standard deviation (see main text).

(a–d) DJF. (e–h) JJA.

PSOBS has similar standard deviation as E-OBS, although on average a small underestimation is

found. Thus, the larger standard deviations of REISN is reduced by the method to produce PSOBS.

This can be explained by the wet bias of the model, and the related stronger reduction in higher

intensities (see Figure 3). This highlights the need for a good performance of the model to create the

pseudo-observations from.

5.3. Bias Correction

An RCA4 downscaling simulation (ECE) driven by EC-Earth at the lateral boundaries, i.e., without

spectral nudging, is bias corrected using the DBS method. Two different bias corrections are performed:

one with E-OBS and the other with PSOBS as reference data.

ECE has a wet bias compared to E-OBS for both winter and summer (Figure 5). The smaller scale

spatial details are clearly similar to REISN (Figure 2c,g), which is because the fine scale details are

determined by the RCM rather than the driving model.



Climate 2015, 3 128

E−OBS

D
JF

a

44 57

ECE

b

45

ECE~E−OBS
c

44

ECE~PSOBS

d

JJ
A

e

75 95

f

76

g

75

h

<
 2

0 28 36 44 52 60 68 76 84 92

>
 1

00

Precipitation [mm/month]

Figure 5. (a–d) Winter and (e–h) Summer Seasonal mean precipitation for (a,e) E-OBS,

(b,f) ECE, (c,g) ECE∼E-OBS and (d,h) ECE∼PSOBS. The domain average value is given

in the lower right box in each panel.

Bias correction of ECE with E-OBS as reference (ECE∼E-OBS) corrects the large scale features, but

also clearly shows the smoothing effect, which removes all small scales feature, from using a coarser

reference data set (Figure 5). With PSOBS as reference (ECE∼PSOBS), the large scale features are

corrected, however, the smaller scale information from the RCM are retained.

To better investigate that smaller scale information, a nine point spatial filter is applied to each

of E-OBS, ECE, ECE∼E-OBS and ECE∼PSOBS, and subtracted from the respective original data.

This removes larger scale differences between the data sets, and the small scale information emerges

(Figure 6 as example for summer). Visual inspection of the different data sets indicates that PSOBS,

ECE and ECE∼PSOBS have similar features, whereas PTHBV differs somewhat. ECE∼E-OBS lacks

features at this scale, due to the coarser original resolution of E-OBS. To better quantify the differences,

a Taylor diagram [18] is produced (Figure 6, bottom right), in which the spatial correlations and

standard deviation are directly compared with PSOBS as reference data set. PTHBV clearly differs

with correlations below 0.3 and lower spatial variance. In winter (not shown) the correlations are even

slightly negative. ECE correlates with above 0.9 with PSOBS, but has larger standard deviation due to

the wet bias. ECE∼PSOBS is close to perfectly correlated with PSOBS, i.e., the small scale information

of the two fields is almost identical. ECE∼E-OBS has close to zero correlation and standard deviation,

due to the complete lack of small scale features.
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Figure 6. Small scale features of (a) PTHBV, (b) PSOBS, (c) ECE , (d) ECE∼E-OBS and

(e) ECE∼PSOBS for summer, derived by subtracting a 9p spatial filtered field from each map

of mean values. (f) A Taylor diagram shows the spatial correlation and standard deviation

for each of the panels (a–e) with PSOBS as reference.

6. Discussion

The confidence in gridded observational data sets decrease with increasing spatial resolution, as the

data becomes more and more a product of its statistical assumptions. One might therefore have more

trust in a dynamical model, which is if not correct then at least consistent between different synoptic

situations and different variables.

The pseudo-observations opens up possibilities for correction of RCM biases at higher time

resolutions in a model consistent way. However, it is important to verify the RCM’s performance at

higher temporal resolutions as the pseudo-observations will only correct the magnitudes, and not the

time line of events. This includes errors in the timing of the diurnal cycle of precipitation, and the

method is generally not sufficiently detailed for studies of single events in the observed records.

The main limitation of the pseudo-observations is the reference RCM simulation which needs to be

sufficiently close to observations regarding monthly means. If there are large biases, the scaling factor

will significantly affect the intensity distribution as larger intensities are affected more by the scaling
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than lower ones. Also the temporal variance of the model will be affected. The reason for the bias needs

to be investigated for each case.

When observations are too sparse and unreliable, or too coarse for the intended applications, the

proposed method will create both a reference data set for impact modeling, and a reference for correcting

RCM simulations in a consistent way. The method was here set up and investigated in a region with

fairly good observational coverage at the daily time scale for reasons of evaluating the model, however,

in such a region a more efficient way to retain the fine spatial scales would be to first separate the spatial

scales and correct only the coarser scales of the model to the observational data, and then adding the

un-corrected finer scales after the bias correction step.

7. Conclusions

A pseudo-observational data set was constructed from an RCM simulation with constrained large

scale circulation to a driving reanalysis model. A scaling factor was then applied to the simulation

to correct the monthly mean for each single month towards an observational data set, however, first

introducing a spatial filter which makes sure that the fine spatial details of the model is retained after

the correction. The pseudo-observations are shown to be consistent with the RCM at finer spatial and

temporal scales, but shares large scale information as well as the intra- and inter-annual features of the

observational data set.

The proposed method allows the user to decide whether the finer scale information should be

determined by the model or the observations. For bias correction applications, this can reduce

unnecessary corrections, and retain more of the model’s own detailed features. This is especially

interesting for higher resolution model applications, where no high resolution observations are available,

or in regions where there is little trust in the observations.
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