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Abstract: Drought events are critical environmental threats that yield several socioeconomic impacts.
Such effects are even more relevant for South America (SA) since different activities essential for the
continent, such as agriculture and energy generation, depend highly on water resources. Thus, this
study aimed to evaluate future changes in precipitation and hydrological drought occurrence in SA
through climate projections from eight global climate models (GCMs) of CMIP6. To this end, statistical
downscaling was applied to the projections obtained using the quantile delta mapping technique,
and the method proved to be efficient in reducing systematic biases and preserving GCMs’ trends.
For the following decades, the results show considerable and statistically significant reductions in
precipitation over most of SA, especially during the austral spring, with the most intense signal under
the SSP5-8.5 forcing scenario. Furthermore, GCMs showed mixed signals about projections of the
frequency and intensity of drought events. Still, they indicated agreement regarding the increased
duration and severity of events over the continent and a substantial proportion of moderate and
severe events over most of Brazil during the 21st century. These results can be helpful for better
management of water resources by decision-makers and energy planners.
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1. Introduction

Climate change is undeniable, as is its attribution to anthropogenic greenhouse gas-
emitting activities, which have unequivocally intensified global warming, evidenced by
the 1.1 ◦C increase in global surface temperature from 2011 to 2020 relative to 1850–1900 [1].
Additionally, best estimates indicate that continued greenhouse gas emissions will cause
a 1.5 ◦C increase in the near term (2021–2040) [1]. Moreover, even if the countries fully
implement the commitments made in the Paris Agreement, global warming is expected
to exceed 2 ◦C by the end of the century [2,3]. The progressive warming will intensify
the global hydrological cycle so that compound heatwaves and droughts are projected to
become more frequent, including concurrent events in multiple locations [1].

Droughts are a natural phenomenon characterized by a continuous persistence of
precipitation deficit, which occurs in almost all climate zones, including those with high
precipitation rates, such as Amazonia [4]. Prolonged periods of drought cause innumerable
damages, such as losses in agriculture and livestock, contamination of waters, reduction of
water availability for daily consumption and water energy generation, and environmental
risks of fires [5,6]. Due to climate change and increasing temperatures, droughts are
expected to increase in frequency and duration [7,8].

Studies with climate projections indicate an increased risk of extreme droughts in
different parts of the world, depending on the seasons and drought indicators analyzed.
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For example, considering North America, studies with climate projections of phases 5 and
6 of the Coupled Model Intercomparison Project (CMIP) show an increase in the duration
and frequency of droughts in the southeast [9], central and northern [10–14] United States,
and southwestern Canada [15]. Similarly, drought events are projected to intensify in parts
of Asia [11–14,16,17], Europe [11,18], Oceania [11,13,14,18], Africa [11,14,19], and South
America [11,13,14,18,20–25].

In South America (SA), climate change effects on droughts are evident in different
sectors, such as northeastern and southeastern Brazil, Amazonia, and the continent’s
southeast. The semi-arid Northeast of Brazil is one of the historically most vulnerable
regions to droughts [26], with several events recorded since the 16th century [26–28] and
numerous socioeconomic impacts, such as damage to agricultural production and livestock,
as well as loss of human life from hunger, malnutrition, disease, migrations to urban
centers, and losses in regional and national economies [27]. Southeastern Brazil (SEB)
has also experienced some of the worst droughts in recent decades, such as in 2001 [29],
2014/2015 [30–35], 2018 [6], and most recently, in 2020/2021 [36].

Several drought events have also occurred in Amazonia, accentuating forest fires,
affecting the region’s biota, and signaling the risk of a tipping point [37–43]. Additionally,
in the last decade, other Brazilian regions have also experienced severe droughts, such as the
2019/2020 droughts in the Brazilian Pantanal and Midwest [44–46] and the 2012/2013 and
2019/2020 droughts in southern Brazil [47,48]. Another South American region affected
by droughts is Southeastern South America (SESA), which covers northern Argentina,
Paraguay, Uruguay, and southern Brazil. The 2008/2009 drought in the region was among
the most severe in the last 50 years [49,50]. Additionally, several studies have shown an
increasing trend of warm days/nights [51–54] and the occurrence of dry spells [54,55] in
the region in the last decades.

Droughts are a complex and multiform phenomenon [35,36], and different quantita-
tive indicators allow for their assessment [56]. The Standardized Precipitation Index (SPI),
developed by McKee et al. [57], quantifies the rainfall deficit or excess on different time
scales. SPI on time scales greater than six months is employed to identify and characterize
hydrological droughts that cause reduced soil moisture levels, river flows, groundwater
recharge, and reservoir levels [56,58,59]. The SPI index proves advantageous because, be-
sides allowing for evaluating drought impacts on different hydrological cycle components
(using different time scales), it requires only rainfall data as input variables in the index
computation [58]. However, as SPI does not account for the temperature component, its
analysis disregards evapotranspiration processes, which play an essential role in the hydro-
logical cycle [56,58]. Despite its limitations, several studies have employed the SPI-12 index
(SPI index on a 12-month time scale) due to its simplicity of implementation to identify
hydrological droughts in SA [6,56,58,60–66].

In this context of climate research, global climate models (GCMs) are a primary tool
for investigating climate system elements [67]. A new generation of GCMs from CMIP has
recently been available to the scientific community, comprising the sixth phase (CMIP6) of
the project’s experiment. The CMIP6-GCMs present aspects of improvement over previous
generations, such as higher spatial resolution and better parameterization schemes of the
physical and biogeochemical processes of the climate system [68]. In addition, CMIP6
models employ the Scenario Model Intercomparison Project (ScenarioMIP), which provides
climate projections based on the latest greenhouse gas emission and land use scenarios, the
Shared Socioeconomic Pathways (SSPs) [69]. SSPs characterize a more realistic socioeco-
nomic development by considering different social, economic, technological, and political
scenarios [70].

Despite their crucial role in climate research, GCMs have limitations due to their
coarse spatial resolution, which restricts their use in analyzing regional-scale processes and
impacts. In this framework, dynamical and statistical downscaling techniques address these
limitations of global models. Dynamical downscaling employs regional climate models
(RCMs) that use initial and boundary conditions provided by GCMs, while statistical



Climate 2023, 11, 166 3 of 29

downscaling determines relationships between large-scale atmospheric circulation factors
and local climate [71]. Dynamical downscaling is helpful for the analysis of local-scale
climate phenomena, but such a procedure requires high computational costs [72]. On
the other hand, statistical downscaling requires less computational effort and avoids the
propagation of systematic errors arising from GCMs [73].

Regarding SA, the literature focuses more on the dynamical approach of air temper-
ature, precipitation, and wind [74–84]. However, recent studies have also applied the
statistical method and demonstrated its competence in representing the spatial distribution
and extreme temperature and precipitation events [73,82,85–90]. Research with statistical
downscaling of precipitation projections from CMIP6 to SA showed that the quantile delta
mapping (QDM) bias correction technique, developed by Cannon et al. [91], performed well
in correcting the systematic errors in the different quantiles of the probability distributions
of the GCM raw simulations, evidencing its ability to reproduce seasonal variability and
extreme properties [90]. With the QDM technique, it is possible to use data as reanalysis to
interpolate the historical projections to the reference dataset’s spatial resolution and, from
transfer functions, apply the same correction to future predictions. The QDM method has
proved to be advantageous since it preserves the model-projected relative changes and
trends (i.e., if a model has a dry trend in a specific region, it will be kept after the spatial
disaggregation and bias correction) and corrects the systematic biases in the quantiles of
the modeled data with respect to the observations [91].

Given the background, this study aims to: (a) apply the QDM bias correction technique
and statistical downscaling to historical simulations and climate projections of precipitation
from a CMIP6 multi-model ensemble; (b) employ the bias-corrected estimates to present a
set of precipitation projections at intermediate resolution (50 km) in SA; and (c) employ the
bias-corrected projections and the SPI-12 index to identify the four types of hydrological
drought events (mild, moderate, severe, and extreme), and their aspects (frequency, dura-
tion, severity, intensity, and peak) in eight subdomains of SA. There is still a shortage of
studies analyzing hydrological droughts in SA with post-processed projections from the
CMIP6-GCMs, and this study intends to fill such a gap. In addition, this research can assist
decision-makers and energy planners in better future management of water resources on
the continent.

2. Materials and Methods
2.1. Study Area

The study area comprises the SA continent (Figure 1), located at latitudes 12◦ N–55◦ S.
Its extensive latitudinal coverage provides climate heterogeneity of tropical, subtropical,
and extratropical regions, as well as diverse geography that includes particular areas
such as the Andes Mountains, the Atacama Desert, the Amazon rainforest, and the semi-
arid Northeast of Brazil [92,93]. The South American monsoon system (SAMS) primarily
influences the central SA, with two well-defined seasons marked by the rainy season from
November to March and the dry season from May to September [92–94]. On the other
hand, the subtropical western portion of the continent concentrates its rainfall in the austral
winter months due to the passage of cold fronts and cutoff lows [92,93]. Still, the northern
portion of SA does not have a well-defined dry season, being strongly influenced by the
Intertropical Convergence Zone (ITCZ), with maximum rainfall in the austral autumn and
early winter [95], and being one of the wettest places in the globe [96].

The rectangles illustrated in Figure 1 indicate the subdomains selected (Table 1) to ana-
lyze hydrological drought events on the continent. We considered subdomain 8 (Patagonia)
because, in this region, the Andes have a lower height, while we did not perform analysis
for the other parts of the Cordillera due to uncertainties in the reference data [97].
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Figure 1. Illustration of the study area with elevation (m). Rectangles indicate subdomains selected for
the analysis of drought events. Source: United States Geological Survey, Earth Resources Observation
System (EROS) Center.

Table 1. Geographic coordinates of the subdomains selected for hydrological drought analysis.

Subdomain Area

1 5◦ N–5◦ S 68◦ W–74◦ W
2 2.5◦ S–10◦ S 53◦ W–63◦ W
3 4.5◦ S–11◦ S 36◦ W–45◦ W
4 11.5◦ S–19.5◦ S 40◦ W–47◦ W
5 11.5◦ S–19.5◦ S 48◦ W–57◦ W
6 20◦ S–24.5◦ S 41◦ W–53◦ W
7 25◦ S–35◦ S 48.5◦ W–58◦ W
8 30◦ S–40◦ S 65◦ W–73◦ W

2.2. CMIP6-GCMs Selection

The study employed precipitation projections from eight CMIP6-GCMs, comprehend-
ing the historical period (1995–2014) and two greenhouse gas emission scenarios (SSP2-4.5
and SSP5-8.5) in the future period (2020–2099). The SSP2-4.5 scenario denotes a moderate
emission scenario, while SSP5-8.5 considers a high greenhouse gas emission context, repre-
senting a period with little effort to mitigate climate change effects [69]. The GCMs dataset
comprises precipitation projections every three hours provided on the Earth System Grid
Federation (ESGF) platform—available online: https://esgfnode.llnl.gov/search/cmip6
(accessed on 26 January 2022).

At the early stage of this study (January 2022), we selected the models that best repre-
sented the South American climate in terms of precipitation and air temperature, which is
a response to atmospheric circulation. To choose the GCMs, we used the methodology of
Rupp et al. [98], whereby several metrics evaluate the best models based on regionally av-
eraged properties and large-scale patterns. Thus, the identification of the best-performing
models included the calculation of the following parameters with monthly data from
50 CMIP6-GCMs for different SA subdomains: (a) mean and standard deviation for each

https://esgfnode.llnl.gov/search/cmip6
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year (1995–2014); (b) spatial correlation calculated for each season (DJF, MAM, JJA, SON)
and year (1995–2014) with Pearson’s correlation coefficient; (c) mean amplitude, defined as
the difference of the variables between January and July; (d) and a linear trend, calculated
for complete time series (rather than by seasons) using the method of least squares and
angular coefficients for the indication of a positive or negative trend.

Ranking the GCMs according to their performance is not trivial, as several statistical
metrics and seasonal seasons are evaluated. Therefore, we compiled all the information
by standardizing the metrics (giving equal weight/importance to each metric) to rank the
GCMs in terms of performance according to the methodology proposed by Rupp et al. [98].
Figure 2 illustrates that the best models are on the left-hand side (values closest to zero).
We could not necessarily select the best models shown in Figure 2 due to the absence
of hourly/daily data and/or projections in the ESGF database. Thus, by concurrently
analyzing the availability of high-frequency data and projections, the best models (indicated
with red bars) were selected for this study (Table 2). Furthermore, three selected GCMs (EC-
Earth3, IPSL-CM6A-LR, and MPI-ESM1-2-LR) were previously validated and performed
well in representing the SA climate [99]. Although a good simulation of the historical
period does not determine more accurate climate projections for the same model, it ensures
more reliable future estimates since the poor ability to simulate historical climate is likely
reflected in poorer future projections [100].
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data from 50 CMIP6-GCMs for the historical period (1995–2014). Best performing models are located
on the left-hand side of the X-axis, and red bars indicate the models selected for the study.

Last, it is valid to mention that the ensemble composition included two models
(CMCC-CM2-SR5 and CMCC-ESM2) from the Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici (CMCC). Given their equal origin, there may be a higher likelihood
of shared biases or underlying assumptions, leading to correlated errors and limited
diversity within the ensemble. In this context, the “institutional democracy” approach
addresses these uncertainties by selecting one GCM from each modeling institute [101,102].
While this is an effective way to account for model dependence, it is worth noting that as
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institutes progressively copy or collaboratively develop models or components, there is no
guarantee that such an approach will continue to be efficient in future studies [103].

Table 2. Information on each CMIP6-GCM employed in the study.

Model Resolution
(◦Lat × ◦Lon) Institute Reference

CMCC-CM2-SR5 1.25 × 0.94 Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici Lovato and Peano [104]

CMCC-ESM2 1.25 × 0.94 Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici Lovato et al. [105]

EC-Earth3 0.70 × 0.70 EC-Earth Consortium Döscher et al. [106]
GFDL-ESM4 1.25 × 1.00 Geophysical Fluid Dynamics Laboratory Krasting et al. [107]

IPSL-CM6A-LR 2.50 × 1.26 Institut Pierre Simon Laplace Boucher et al. [108]
MIROC6 1.41 × 1.41 Japan Agency for Marine-Earth Science and Technology Tatebe and Watanabe [109]

MPI-ESM1-2-LR 0.94 × 0.94 Max Planck Institute for Meteorology Wieners et al. [110]
MRI-ESM2-0 1.13 × 1.13 Meteorological Research Institute Yukimoto et al. [111]

2.3. Reference Dataset

The study used precipitation analysis from the Climate Prediction Center (CPC) gauge-
based analysis of global daily precipitation [112] to validate the historical simulations of
the CMIP6-GCMs. For this, daily data from 1995 to 2014 were used, with 0.5◦ horizontal
resolution—available online: https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/
GAUGE_GLB/RT/ (accessed on 25 January 2022). CPC data proved adept at representing
average and seasonal precipitation patterns over most of SA [93] but presented uncertainties
in regions of complex topography, such as the Andes Mountains [97].

We point out that the information in the CMIP6 tutorials does not clarify the period
of daily precipitation accumulation. Precipitation data were obtained with a frequency
of three hours, and the daily accumulation followed the recommendations of the World
Meteorological Organization (WMO) [113] to avoid errors, such as comparing data with
different periods for the daily accumulation—that is, the rainfall for a given day is accumu-
lated from 1200 Z of the previous day to 1200 Z of the day in question. However, it is worth
noting that the CMIP6 models provide the accumulations at 0130, 0430 Z until completing
24 h. Thus, the accumulation was performed from 1330 Z to 1030 Z the following day to be
as close as possible to the WMO definition. Furthermore, CPC precipitation analysis also
accounts for the daily rainfall accumulated in the 1200 to 1200 Z interval.

2.4. Bias Correction and Statistical Downscaling

One way to overcome the limitations imposed by the coarse resolution of GCMs is
through statistical downscaling methods, which establish statistical relationships between
model outputs and reference data [114]. Statistical downscaling techniques are classified
into three types—transfer function or regression models, weather generators, and weather
typing [114]—and this study used transfer functions. This method was chosen due to its
simplicity of implementation and for preserving time series trends (for more details, see
Cannon et al. [91]). This methodology is also known as Bias Correction Statistical Downscaling
(BCSD).

This study used the BCSD method to downscale the simulations and projections of
CMIP6-GCMs. Bias correction was performed by applying the QDM technique [91] to
the historical simulations (1995–2014) and by applying the transfer functions to the future
projections (2020–2099). According to Cannon et al. [91], the QDM technique preserves the
model-projected trends and relative changes (e.g., if the GCM shows a dry trend in a given
region, that trend will be maintained after bias correction) and corrects systematic biases in
the quantiles of the modeled data relative to the reference one. Moreover, compared with
the quantile mapping technique, the QDM technique has proved advantageous because it
is less susceptible to problems such as inflating relative trends in extreme values [91].

https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/
https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/
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Before bias correction, spatial disaggregation was applied to the CMIP6-GCM outputs,
and the model data were downscaled to the 0.5◦ resolution as the CPC data with bilinear
interpolation. Several studies show that bilinear interpolation provides consistent estimates
by adjusting the spatially correlated behavior of the variable [90,115–122].

After spatial disaggregation, bias correction is applied using the QDM method. This
method follows three steps [91]: First, the trend is removed from all projected individual
quantiles. Next, the detrended quantiles are bias-corrected using the quantile mapping
technique. Finally, the projected changes are superimposed on the bias-corrected outputs.
Let o and p be the observed and projected data, whereas h and f are the historical and future
periods, respectively. The definition of the non-exceedance probability of the observed
(xh,o) and projected (xh,p) historical and future (xf,p) data is accounted for as:

pf,p(t) = F
(

xf,p(t)
)

ph,p(t) = F
(

xh,p(t)
)

(1)

ph,o(t) = F(xh,o(t))

where p and F denote the non-exceedance probability associated with a specific value in
time and the cumulative distribution function (CDF), respectively. The change factor, which
associates the historical simulation outputs with those of the future period, is calculated
with Equation (2):

∆M(t) =
F−1

f,p

(
pf,p(t)

)
F−1

h,p

(
pf,p(t)

) =
xf,p(t)

F−1
h,p

(
pf,p(t)

) , (2)

where F−1 denotes the inverse CDF and ∆M(t) is the multiplicative factor of change between
the simulated quantiles of the historical and future periods. Finally, the bias correction in
the future projections is obtained by applying the multiplicative relative change ∆M(t) to
the historical values with the corrected bias, according to Equation (3):

x̂f,p(t) = ∆M(t)·F−1
h,o

(
pf,p(t)

)
, (3)

The historical period (1995–2014) was used for the training set to adjust the future
projections (2020–2099) using the QDM algorithm. This time window was chosen due to
computational resources and to follow the same reference period used by the International
Panel on Climate Change (IPCC). The Python-based package xclim [123] was used to perform
the calculations.

2.5. Test of Statistical Significance for the Difference in Climatological Mean Values

To assess whether the differences in mean climatological values in the future period
(2020–2099) of the CMIP6-GCMs are statistically significant compared with the historical
period (1995–2014), we used the Student’s t-test. This test assumes the null hypothesis (H0)
of no difference between the two datasets against the alternative hypothesis of a difference
between the two ensembles. The test was computed according to Equation (4):

t =
Xf − Xh√

s2
f

n +
s2

h
n

, (4)

where sf and sh are the standard deviation values of the future and historical datasets,
respectively, and n comprises the number of values in each set. The associated degree of
freedom v is estimated as:
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v =

(
s2

f
n +

s2
h
n

)2

s4
f

n2(n−1) +
s4

h
n2(n−1)

, (5)

The test was performed using a significance level α of 5%. Thus, when the probability
value (p-value) found was less than 5%, the null hypothesis of no difference between the
two sets was rejected in favor of the alternative hypothesis, indicating statistical evidence
of the difference between the mean values of the two periods evaluated.

2.6. Standardized Precipitation Index (SPI)

The SPI index, developed by McKee et al. [57], quantifies the rainfall deficit or excess
on different time scales, evaluating the intensity of dry and wet periods. The SPI-12 index
uses a time scale of 12 months. Besides identifying long-term rainfall patterns, SPI-12 can
also be associated with flows, reservoir levels, and groundwater anomalies, helping to
evaluate hydrological droughts [56,58]. More detailed information about the SPI calculation
can be found in Santos et al. [61] and Wilks [124].

As our results show that the SSP5-8.5 scenario presents the most significant changes,
the SPI-12 analysis was performed only under this scenario. Each bias-corrected CMIP6-
GCM calculated SPI-12, and the BSCD ensemble (the bias-corrected CMIP6 ensemble) index
was obtained by averaging the indices estimated by the individual models.

Drought starts when the SPI falls below zero and ends when it becomes positive [57].
In this work, we used the thresholds defined by McKee et al. [57] (Table 3) to select and
analyze all the drought events from mild to extreme categories. In addition, drought events
were analyzed based on five characteristics: frequency (number of drought events in a
period), duration (number of months between the first and last month of the event), severity
(absolute sum of all SPI values during the event), intensity (ratio between severity and
duration), and peak (largest absolute value of SPI recorded during the event).

Table 3. Drought events classification, adapted from McKee et al. [57].

SPI Values Drought Category

0 to −0.99 Mild drought
−1.00 to −1.49 Moderate drought
−1.50 to −1.99 Severe drought
≤−2.00 Extreme drought

3. Results and Discussion
3.1. Historical Simulations

The historical simulations (1995–2014) of precipitation obtained by the ensemble of
eight CMIP6-GCMs before (raw ensemble) and after applying statistical downscaling
(BCSD ensemble) are presented in Figure 3. Considering the austral summer (DJF), the
raw ensemble tends to overestimate precipitation over most of Brazil and the west coast
of SA (Figure 3(a5)). Contrarily, underestimates occur in northwest SA and north-central
Argentina. In addition, the overestimation of rainfall over the Andes is notable. During
summer, precipitation patterns exhibit a northwest-southeast orientation over the continent
due to the action of the South Atlantic Convergence Zone (SACZ) [93]. On average, the raw
ensemble represents the continental distribution of rainfall associated with the SACZ, but
it amplifies and shifts the core of maximum precipitation to the southeast and northeast
of SA.
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Figure 3. Seasonal climatology of precipitation (mm day−1) in the historical period (1995–2014) ob-
tained by CPC (first left column), BCSD ensemble (CMIP6 ensemble with BCSD) (second left column),
raw ensemble (CMIP6 ensemble without BCSD) (middle column), and seasonal bias (mm day−1)
between the BCSD ensemble and CPC (second right column) and between the raw ensemble and
CPC (first right column).

The underestimation of precipitation during summer over northwestern SA and
northern Brazil is also seen in other studies with CMIP6 models [125–127], as well as
with CMIP5 models [128], which are associated with a less satisfactory representation
of the Intertropical Convergence Zone (ITCZ), arising from the models’ oversensitivity
to sea surface temperature (SST) and deficiency in simulating surface wind convergence.
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Although the CMIP6 models show considerable improvement in reproducing rainfall
magnitudes over SA relative to the CMIP5 models, the simulation of ITCZ position and
intensity is still deficient, which partially justifies the negative rainfall biases over northern
Brazil and northern SA [127]. The systematic underestimation of rainfall in the Amazon
Basin is due to an insufficient representation of different processes, such as cumulus
convection, biosphere–atmosphere interactions in the forest, soil moisture, and surface
processes, as well as a low coverage of rainfall stations in the region, which influences the
analysis of the magnitude and location of precipitation [129].

In addition, GCMs tend to produce overly intense precipitation over the Central
Andes in Bolivia, Peru, Ecuador, and southwestern Colombia due to excessive modeled
convection and lack of topographic representativeness. Validating the simulations in these
areas includes many uncertainties due to the scarcity of rainfall stations in mountainous
regions [125,130]. Historical simulations of the CMIP6 ensemble without bias correction
indicate better performance in reproducing precipitation patterns in SA during winter and
spring, reiterating previous results [127].

Considering the BCSD ensemble, one notices a significant reduction of biases across
the continent, especially on the west coast of SA and northeastern Brazil. Despite a better
representation of the intensity and location of rainfall maxima associated with the SACZ,
the ensemble still overestimates precipitation at the center of the continental SACZ, which
is mainly controlled by internal climate variability and has low or negligible predictability
associated with SST variations [131,132].

Similarly, during austral autumn (Figure 3(b4)), there is a marked reduction in the
ensemble systematic biases, and the errors concentrate in northern SA, portions of northern
and northeastern Brazil, northeastern Peru, central Brazil, and western Chaco. Considering
the rainfall biases north of 10◦ S obtained by the raw ensemble (Figure 3(b3)), BCSD adjusts
the spatial distribution of rainfall, providing a simulated field analogous to the observed
one, although with the persistence of larger overestimates in the far north of Peru and
Brazil (Figure 3(b2)).

In the winter and spring seasons, the reduction in raw ensemble’s systematic errors
in most of SA is notable, mainly on the continent’s west coast and portions of Colombia
and Venezuela (Figure 3(c4,d4)). In winter, rainfall overestimates concentrate north of the
equator, partially justified by the less satisfactory representation of the ITCZ by GCMs,
while in spring, the positive precipitation bias in western Amazonia persists even after
correction. In summary, we conclude that BCSD efficiently reduces the systematic errors of
GCMs and ensures more reliable projections about future climate conditions. In general,
the biases that persist after applying the correction occur in problematic sectors for global
climate modeling, such as the tropical region and continental portion of the SACZ.

3.2. BCSD Ensemble Projections of Precipitation under the SSP2-4.5 and SSP5-8.5
Forcing Scenarios

Figures 4 and 5 present the precipitation climate projections obtained by the BCSD
ensemble under the SSP2-4.5 and SSP5-8.5 forcing scenarios, respectively. To complement
the seasonal analyses, Figure S1 in the Supplementary Material presents the mean annual
projections of precipitation change relative to the historical period for both scenarios used.
Under the SSP2-4.5 scenario, for summer and fall, BCSD ensemble projects increase by
up to 10% over much of Brazil for the coming decades. From 2080, up to 20% growth is
projected in Brazil’s southeastern and northeastern sectors. In contrast, up to 20% reductions
are projected in the extreme north of SA, with their sign diminished by the end of the
21st century.
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Figure 4. Seasonal differences of precipitation (%) between the future (2020–2039, 2040–2059, 2060–2079,
2080–2099) and historical period (1995–2014), projected by the BCSD ensemble under the SSP2-4.5
forcing scenario. Hatched areas indicate statistical significance at a 95% confidence level.

In the winter season (Figure 4(c1–c4)), the BCSD ensemble projects more expressive
reductions starting in 2040, with regions of maximum decrease (up to 50%) beginning in
2080 in the central-western and northeastern Brazil sectors. In the spring (Figure 4(d1–d4)),
the BCSD ensemble projects a significant reduction in rainfall, intensified after 2060, with
reductions above 20% in large parts of central and northeastern Brazil. The results obtained
here partially agree with those of other studies that used projections from the CMIP5
and CMIP6 models. Under the RCP4.5 forcing scenario, mean annual patterns from the
ensemble of 26 CMIP5 models indicate decreases of up to 150 mm year−1 in the far north
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of SA, decreases in annual rainfall over much of central SA, a slight increase over isolated
portions of Northeast Brazil, and larger increases over southern Brazil [133].
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Figure 5. Seasonal differences of precipitation (%) between the future (2020–2039, 2040–2059, 2060–2079,
2080–2099) and historical period (1995–2014), projected by the BCSD ensemble under the SSP5-8.5
forcing scenario. Hatched areas indicate statistical significance at a 95% confidence level.

Similarly, the CMIP5 ensemble indicates increased rainfall over southeastern SA and
reduced rainfall over Amazonia and northern SA during the summers of 2050–2080 [23].
In winter, increased precipitation is also seen over western SA, extending from Ecuador
to Argentina [23], a pattern analogous to that found here. Additionally, an ensemble
composed of 38 CMIP6-GMCs projects increased precipitation (~0.3 mm day−1) over
Brazil’s Northeast and South sectors during the summers of 2040–2059 and a reduction
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of the same magnitude over nearly all of SA during the winter [125]. For the period 2080–
2099, projections show even wetter (drier) conditions in southern Brazil (Amazonas and
northern SA) during summer and intensified rainfall reduction across the continent during
winter [125]. On the other hand, a study with the global HadGEM2-ES model nested with
the Eta regional model under the RCP4.5 forcing scenario shows a projection of increased
precipitation over most of the Amazon Basin, southern Brazil, and the northern portion
of the coastal Northeast of Brazil, as well as decreased rainfall over much of the Midwest,
Southeast, and central Northeast regions of Brazil [134]. We stress that the similarities and
differences between the results of the studies are due to factors such as different models
used, emission scenarios employed, reference periods chosen, and validation data.

Considering the SSP5-8.5 emission scenario (Figure 5), spatial patterns of projected
seasonal change in precipitation are similar to those obtained for the SSP2-4.5 scenario
but with the most intense sign of change. During summer (Figure 5(a1–a4)), an average
increase of 10% is projected over most of Brazil and Argentina, and the growth intensifies
after 2060, principally over portions of northeastern Brazil and central-southern Argentina.
The changes in fall (Figure 5(b1–b4)) are similar to the SSP2-4.5 scenario but indicate more
intense precipitation increases in the Bahia state (Brazil), southern Brazil, central-eastern
Argentina, and the central Andes.

In winter (Figure 5(c1–c4)), the BCSD ensemble projects rainfall a decrease over much
of central Brazil and Bolivia, extending into northern Argentina and southeastern, north-
eastern, and northern Brazil. From 2060 onwards, the BCSD ensemble shows up to 50%
decreases in the Midwest and coastal Northeast areas. In contrast, a substantial rainfall
increase for Brazil’s southeast and southern coasts is observed from 2080 onward. In spring
(Figure 5(d1–d4)), the projections indicate more drastic changes, with decreases of more
than 10% over most of Brazil and northern SA, with more intense reductions (up to 50%)
over the northern portion of the coastal Northeast of Brazil. During this season, projected
increases in precipitation occur in isolated regions, such as the coasts of Peru and Ecuador
and northern Chile.

The results agree with those of Ruffato-Ferreira et al. [134], in which there is a trend
of increasing water scarcity, mainly in central Brazil, and a progressive increase in water
availability in the southern and southeastern Atlantic basins, favoring southern Brazil. In
addition, the São Francisco River Basin is the most vulnerable in the maximum emission
scenario, accentuating water scarcity in the Northeast of Brazil. Similarly, CMIP5 projections
indicate increases of about 100 mm year−1 by the end of the 21st century in southern Brazil
and parts of Peru, Ecuador, Colombia, and Venezuela. In comparison, areas between
southern Chile and Argentina and the far north of SA may experience reductions of up to
150 mm year−1 [133].

The higher severity of precipitation reductions in SA under the SSP5-8.5 scenario was
also obtained by CMIP5 models nested with different regional climate models [23,24,135].
Among the possible causes for the dry conditions projected for Amazonia and northern
SA is the weakening of the northeast trade winds at the end of the 21st century, inducing a
decrease in moisture transport from the ocean to the continent [23,72]. Additionally, studies
with CMIP6-GCMs under the SSP5-8.5 forcing scenario also provide projections of expres-
sive precipitation reduction over much of the continent, mainly in the Midwest, Southeast,
Northeast, and North of Brazil and northern SA, with decreases of up to 1.2 mm day−1

in the most affected regions [125,127]. On the other hand, SESA and southern Brazil will
likely experience higher rainfall volumes in the coming decades, exposing these regions
to the progressive frequency of extreme daily precipitation events and an increase in the
number of consecutive wet days [23].

Analyses of projected changes in rainfall with GCMs from CMIP3, CMIP5, and CMIP6
over Brazil show that the projected signal depends on the CMIP generation considered,
except for southern Brazil, where an increase is seen in all cases [136]. While CMIP3 projects
an increase in rainfall in northern Brazil (especially in the western portion), CMIP5 and
CMIP6 models project a reduction. In the Northeast of Brazil, the projections are also
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divergent among the CMIP generations, with CMIP5 indicating an increase in rainfall
throughout the territory. At the same time, CMIP3 and CMIP6 project an increase (reduc-
tion) in rainfall in the region’s northern (southern) sector. In the Midwest and Southeast
regions, the sign depends on the family of CMIP used, with increased precipitation pro-
jected by CMIP5 and decreased rainfall estimated by CMIP3 and CMIP6. In summary,
multi-model ensembles show that CMIP3 most accurately represents precipitation extremes
in northeastern Brazil, while CMIP5 performs best for the Midwest, and CMIP6 provides
the most accurate projections for the remaining Brazilian regions [136].

In this context of uncertainties, it is relevant to highlight some limitations of this
study. An important aspect to consider is the need to analyze potential changes in bias
and its propagation to future climates. Buser et al. [137] have demonstrated that different
assumptions about these biases (considering time-dependent model biases, which can be
either additive or multiplicative) can lead to substantially discrepant estimates of future
conditions, particularly for the summer. Similarly, Blázquez and Solman [138] verified that
models with higher warm biases and more clouds in both central Argentina and northeast
Brazil might drive the wet and warm biases in the regions, especially during the summer.
This way, the uncertainty in the intricate relationship between bias (which may not be
stationary) and mean state poses significant challenges in accurately projecting future
climate scenarios. A better comprehension of bias behavior can aid in a better interpretation
of climate change signals.

Moreover, we did not investigate the spatial aspects of systematic errors. In this respect,
Arisido et al. [139] evaluated systematic errors in coupled climate models by considering
their spatial and temporal relationships and providing estimates of the associated uncertain-
ties through posterior distributions. Their findings revealed a considerable warm bias in the
Angola–Benguela front region, and the posterior analysis showed that both the estimated
bias and its associated uncertainty changed over time.

Given the study constraints, we recommend caution for energy planning with the
projections analyzed here. More robust evaluations should also consider the vegetation
of different biomes since it plays a crucial role in the water balance and greater detail of
the projected scenarios of land use and land cover changes. Furthermore, intrinsic to the
process of climate modeling, the uncertainties and inaccuracies associated with different
models limit a greater assertiveness and require pondering in decision-making based on
the projections.

3.3. Temporal Series of the BCSD Ensemble SPI-12 Index under the SSP5-8.5 Forcing Scenario

Figure 6 shows the SPI-12 temporal series (2020–2099) and the annual precipitation
anomalies (in percent) relative to 1995–2014 provided by the BCSD ensemble under the
SSP5-8.5 emission scenario for eight SA subdomains. The SPI-12 index presented here
is obtained by averaging the indices calculated for each projection. Thus, the numbers
of hydrological drought events and classes reported here refer to the estimates obtained
from the average of all SPI-12 values projected by each model individually. Therefore, the
projections are based on the ensemble mean, biased by smoothing internal/naturally forced
variability. Additionally, Figures S2 and S3 in the Supplementary Materials present the SPI-
12 projections and the classification of hydrological drought events provided individually
by each ensemble member. In R1 (northwestern Amazonia), 31 drought episodes were
identified between 2020–2099, all belonging to the mild drought category. The longest
episode occurs from 07/2086 to 09/2088, totaling 37 months, followed by the episode from
06/2065 to 05/2068 (36 months) with a severity of 10.02. In addition, other long-lasting
drought episodes occur from 11/2044 to 08/2047 and from 08/2049 to 05/2052 (34 months
each). In general, negative (positive) precipitation anomalies accompany lower (higher)
SPI-12 values.
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For R2 (central Amazonia), 30 drought episodes were identified in the period 2020–2099,
categorized as mild droughts, and 56% of the episodes (17 cases) have a duration of 10 months
or longer. The longest episode occurs from 03/2061 to 11/2065 (57 months), with a severity
of 13.89. Other longer episodes occur from 12/2085 to 02/2089 (39 months), from 04/2039
to 08/2041 (29 months), and from 10/2073 to 12/2075 (27 months), which also indicates the
largest negative precipitation anomaly in the period (~−17%).

Although different droughts have occurred in Amazonia during El Niño-Southern
Oscillation (ENSO) events, SST anomalies in the tropical North Atlantic (TNA) also play an
important role in the region’s rainfall regime [4,37,40,140,141]. The anomalous warming
in the TNA is associated with the northward displacement of the ITCZ, changes in the
north-south divergent circulation, and weakening of the trade winds and moisture flux
from the tropical Atlantic, inducing a reduction of rainfall in the southern, northern, and
eastern sectors of Amazonia [4,37,141]. Furthermore, ENSO events are related to anomalies
in the east-west Walker circulation, with convection over the central Pacific and subsidence
over eastern and central Amazonia [4,140,141].

In general, drought events related to warm SST anomalies in the TNA show a north-
south gradient with drier (wetter) conditions in southern (northern) Amazonia, while
droughts linked to ENSO events show a southwest-northeast gradient with drier conditions
in northeastern Amazonia [141]. However, overlapping effects of both teleconnection
mechanisms also affect the region, such as the 2010 drought associated with successive
ENSO episodes during the austral summer and the warmer TNA during the austral autumn
and winter [37]. Similarly, the severe drought of 2015–2016 was associated with intense
warm anomalies in the central Pacific and TNA, with marked effects in northeastern
Amazonia [142].

Considering the occurrence of drought events in 2015–2100 relative to the 1850–2014
period under the SSP5-8.5 scenario, Wang et al. [14] found an increase in the frequency of
droughts in northern SA during the 21st century, as well as more prolonged droughts and
more than 50% increase in the extent of areas affected. On the other hand, the variability of
drought-related statistical results provided by CMIP6 models is greater in the tropics than
in other latitudinal zones, implying that GCMs need improvement in capturing drought-
causing patterns in equatorial regions [7]. Furthermore, models from CMIP5 and CMIP6
indicate divergence in rainfall projections over the area, and models from CMIP6 show
no improvement in simulating total precipitation and consecutive dry days relative to the
previous generation of CMIP [143].

In R3 (northern sector of Northeast Brazil), 31 drought episodes have been identified
in 2020–2099, all belonging to the mild drought category. About 61% of the episodes
(19 events) present a duration equal to or longer than 10 months. The longest-lasting
hydrological drought episode occurs from 11/2027 to 12/2032 (62 months), followed by the
episodes from 01/2041 to 02/2044 (38 months) and 12/2034 to 12/2037 (37 months). In R4
(central sector of Northeast Brazil), 32 hydrological drought episodes have been counted
in 2020–2099, all classified as mild droughts. About 72% of the episodes (23 cases) are
10 months or longer. Four longer-lasting episodes are obtained from 01/2035 to 12/2040
(72 months), from 11/2026 to 11/2030 (49 months), from 01/2067 to 12/2069 (36 months),
and from 12/2085 to 02/2088 (27 months). Our results corroborate previous analyses
since CMIP6 projections suggest an increase in the number of dry days in Northeast Brazil
(mainly in DJF and MAM), with an estimated increase of up to 8.0 and 14.7% in the near
(2016–2040) and far (2076–2100) future, respectively, under the SSP5-8.5 scenario [8].

Precipitation in the Northeast of Brazil is marked by interannual variability, and
drought events are attributed to ENSO and the anomalously northern position of the ITCZ,
resulting from the warmer TNA [12,37,64,141]. However, extratropical variability modes
also influence rainfall distribution in the region, as analyses from 1980–2009 concluded
that drought events in this period showed annular patterns in both hemispheres (South
Annular Mode and North Annular Mode) well configured during DJF (pre-rainy season in
the region), both in years with and without ENSO [144].
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For R5 (Midwest region of Brazil), 31 drought episodes have been identified, all
classified as mild droughts, with the most extended episode from 11/2026 to 02/2031
(52 months), followed by other long-lasting events from 02/2043 to 10/2046 (45 months),
and from 10/20635 to 11/2038 (38 months). About 61% of the drought episodes (19 cases)
are 10 months or longer. Marengo et al. [46] report no evident direct relationship between
drought events in the region and SST anomalies in the Pacific and Atlantic Oceans. While
the 2019–2020 drought was associated with anomalous warming in TNA, earlier events
occurred with simultaneous warming of the northern tropical and equatorial Pacific and
cooling of the TNA. Overall, the authors conclude that droughts in the region may be
triggered by warmer SSTs in the North Atlantic and North Pacific (which promote the
northward displacement of the ITCZ and reduce precipitation in southern Amazonia and
the Midwest), which reduce moisture transport from Amazonia to the region. However,
regional factors, such as water balance and soil moisture, influence the sector’s interannual
seasonality of droughts and floods. In this context, there is an increasing tendency in the
water deficit in deforested regions due to the expansion of agriculture and cattle ranching,
contributing to local warming and reduced precipitation [46].

In R6 (Southeast region of Brazil), 33 drought episodes have been counted in the period
2020–2099, all belonging to the mild drought category, with the longest-lasting episode
from 04/2020 to 01/2026 (70 months), followed by episodes with 61 months (from 12/2035
to 12/2040) and 23 months (11/2032 to 09/2034). Approximately 60% of projected drought
episodes are 10 months or longer. Analyses of SPI-1 and SPI-12 in the north and northwest
areas of the Rio de Janeiro state for the 1967–2013 period indicated a higher occurrence of
events in the moderately and extremely dry categories, as well as a higher frequency of
droughts in the two regions of the state during ENSO cycles in both phases of the Pacific
Decadal Oscillation [62]. Analyses of drought events in the Paraná River Basin showed that
hydrological droughts in the 1981–2021 period were the most severe and intense [33].

Furthermore, studies show that the severe drought of 2014–2015 was associated with
anomalous warming in the western tropical Pacific that initiated a wave train along the
South Pacific, which in turn resulted in anomalous anticyclonic circulation in the Southwest
Atlantic, expanding the west flank of the South Atlantic Subtropical Anticyclone (SASA) and
restricting the entry of low-pressure systems into southeastern Brazil [30,32]. Additionally,
analyses of summer droughts during 1961–2010 in the São Paulo state show a prevalence
of anomalous subsidence of the Hadley cell’s descending branch and reduced moisture
convergence anomaly associated with upper-level convergence and lower-level divergence,
inhibiting convective activity in the region [33].

In R7 (southern Brazil and Uruguay region), 29 drought episodes have been computed,
all categorized as mild droughts, of which 62% (18 episodes) have a duration of 10 months
or longer. The longest drought episode refers to the period from 01/2022 to 01/2028
(73 months), followed by cases of 41 months (12/2032 to 04/2036) and 39 months (08/2036
to 10/2039). Many of the droughts that have occurred in the region are linked to the cold
phase of ENSO (La Niña), but other factors also contribute to the onset and intensification
of droughts in the sector, such as the development of atmospheric blockings in the South
Pacific, warmer SST anomalies in the TNA occurring concurrently with La Niña, as well as
more regional and local aspects, such as reduced moisture transport to the region caused by
deforestation in Amazonia [49,50,145,146]. Attribution study infers that the rainfall deficit
occurring in the southern part of Brazil, Argentina, and Uruguay since 2019 is not only
partially induced by the action of La Niña but also caused by higher temperatures that
reduce water availability in the region, indicating that although the decrease in rainfall is
associated with natural climate variability, the consequences of drought are becoming more
severe due to increasing temperatures [146].

Finally, in R8 (western Patagonia), 40 drought episodes have identified in 2020–2099,
all classified as mild droughts, of which 52.5% (21 cases) have a duration of 10 months or
more. The longest-lasting episode occurs from 06/2050 to 07/2053 (38 months), followed by
episodes of 32 months (01/2076 to 08/2078) and 28 months (09/2066 to 12/2068). This sector
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has experienced intense droughts recently [147], substantially affecting socio-economic
activities in the region.

We emphasize that explaining the physical mechanisms associated with drought events
in different sectors of SA is not trivial, as each region responds differently to the various
teleconnection mechanisms. Such a purpose is beyond the scope of this study, and related
information can be found in the extensive literature available. For example, an overview of
the impacts of teleconnection patterns on SA is discussed by Reboita et al. [141]. Additionally,
the specificity of physical mechanisms associated with different drought events in sectors of
SA is argued in Marengo et al. [22,26–28], Marengo and Espinoza [37], and Oliveira-Júnior
et al. [62] (Northeast Brazil and Amazonia), and in Coelho et al. [32,35], Abatan et al. [33],
and Freitas et al. [56,58] (Southeast Region and Paraná Basin).

The BCSD ensemble shows that all SA subdomains analyzed are prone to drought
episodes during the 21st century. Although the ensemble projects predominantly mild
droughts due to smoothing the most extreme projections, a considerable proportion of
episodes last longer than 10 months. Additionally, the individual SPI-12 projections and
the classification of hydrological drought events identified by each GCM demonstrate that
all models project substantial proportions of moderate, severe, and extreme drought events
(see Supplementary Materials). The significant occurrence of longer hydrological drought
episodes corroborates analyses previously performed with CMIP6 models that indicate an
increase in event duration during the 21st century under the SSP5-8.5 scenario in SA and a
higher frequency of longer-lasting events [14].

3.4. Projections of Drought Parameters by the Bias-Corrected CMIP6-GCMs and BCSD Ensemble

Figures 7 and 8 show the drought parameters projected by the eight bias-corrected
CMIP6-GCMs, as well as by CPC (for the historical period only) and BCSD ensemble under
the SSP5-8.5 scenario. It is worth noting that the drought events and parameters reported
here were obtained from the individual projections yielded by each CMIP6-GCM used.
The Supplementary Materials present more information regarding the SPI-12 index and
different hydrological drought classes projected by each CMIP6-GCM.

For R1, of the 301 episodes identified by all datasets (including all GCMs and the
ensemble mean), 72% (218 cases) belong to the mild drought category, 16% (48 cases)
correspond to the moderate drought class, 9% (28 cases) are of severe drought events,
and 2% (7 cases) belong to the extreme drought category. Moreover, only three GCMs
(CMCC-CM2-SR5, CMCC-ESM2, and MPI-ESM1-2-LR) indicate a slight increase in the
average number of drought episodes in the 2020–2099 relative to the historical period,
while the IPSL-CM6A-LR model and BCSD ensemble suggest a reduction of up to 27% and
23%, respectively.

On the other hand, seven of the nine datasets show an increase in the duration of
drought episodes in 2020–2099 relative to 1996–2014. The IPSL-CM6A-LR and EC-Earth3
models indicate an increase of 47% and 32% in the duration (in months) of the events,
respectively, while the BCSD ensemble provides an average increase of 25%. Similarly,
most GCMs (and the BCSD ensemble) converge on increasing severity of drought episodes
in the 21st century, with the IPSL-CM6A-LR model and the BCSD ensemble indicating
increases of 51% and 40%, respectively. Regarding the intensity and peak parameters,
GCMs show mixed signals, and the MRI-ESM2-0 and EC-Earth3 models show 12% and
18% increases in intensity and peak, respectively. In general, in this region, all GCMs
overestimate the number of drought episodes over the historical period, and the GFDL-
ESM4 and IPSL-CM6A-LR models show the largest range of parameter estimates for the
2020–2099 period.
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Figure 7. Heatmaps of drought frequency (a) and duration (b) projected by the bias-corrected
CMIP6-GCMs and BCSD ensemble under the SSP5-8.5 scenario for eight subdomains of SA (R1–R8,
Figure 1).

In R2, of the 252 episodes identified by all datasets, 65% (163 cases) correspond to the
mild drought class, 17% (43 cases) to moderate drought events, 12% (30 cases) refer to severe
drought events, and 6% (16 cases) are of extreme drought events. Additionally, about 70%
of the datasets converge to a growing number of drought episodes in the coming decades
relative to 1996–2014, with the MPI-ESM1-2-LR and MRI-ESM2-0 models indicating an
average increase of up to 45% and 38%, respectively. In addition, half of the datasets
show an increase in drought duration in the 21st century, with the CMCC-CM2-SR5 model
providing an average increase of up to 50%. Similarly, this model projects an average
increase of 24% in the severity of drought episodes. For the intensity and peak parameters,
the GCMs show mixed signals, with the EC-Earth3 model providing an average increase
of up to 19% in the magnitude of both parameters. In general, in this region, the GCMs
perform better in representing drought episodes during the historical period, with the
CMCC-ESM2 and GFDL-ESM4 models providing the same number of episodes obtained
by CPC.

In R3, 245 drought episodes have been identified by the datasets, of which 64%
(156 cases) correspond to mild drought episodes, 23% (56 cases) are moderate droughts,
9% (21 cases) are severe drought events, and 5% (12 cases) are extreme drought events. In
this region, half of the datasets project an increase in the frequency of drought episodes
in the 2020–2099 period (relative to 1996–2014), and half show a decrease. CMCC-ESM2
model indicates an average reduction of up to 47% in the number of episodes, but the
MIROC6 model shows an average increase of up to 33%. Contrarily, only two GCMs
(GFDL-ESM4 and IPSL-CM6A-LR) provide a reduction in episode duration, while all the
others project increase during the following decades. MRI-ESM2-0 and CMCC-ESM2 yield
average increases in the duration of drought episodes of up to 44% and 100%, respectively.
The same models also provide the largest average increases in severity, corresponding to
44% and 168% (by MRI-ESM2-0 and CMCC-ESM2, respectively). As for the other regions,
the intensity and peak projections show mixed signals, with the CMCC-ESM2 model
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indicating a 44% increase in the average peak magnitude of episodes in 2020–2099, while
the EC-Earth3 model shows a 34% reduction.

Figure 8. Heatmaps of drought severity (a), intensity (b), and peak (c) projected by the bias-corrected
CMIP6-GCMs and BCSD ensemble under the SSP5-8.5 scenario for eight subdomains of SA (R1–R8,
Figure 1).
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For R4, 267 drought episodes have been identified by all datasets, of which 58%
(156 cases) are classified as mild droughts, 21% (57 cases) as moderate droughts, 11%
(29 cases) as severe droughts, and 9% (25 cases) as extreme droughts. In this sector, GCMs
show divergent projections about the frequency of drought episodes in 2020–2099. While
the IPSL-CM6A-LR model projects an average increase of up to 50% in frequency, the MPI-
ESM1-2-LR model estimates an average reduction of up to 43%. However, models converge
about the increasing duration over the coming decades, with only three GCMs projecting
reductions (CMCC-ESM2, IPSL-CM6A-LR, and MRI-ESM2-0) and the MPI-ESM1-2-LR
model indicating an average increase of up to 61%. Similarly, GCMS are more homogenous
concerning increasing severity, with the MPI-ESM1-2-LR model providing an average
increase of up to 100%. While GCMs project mixed signals about changes in intensity,
projections of peak changes are more concordant, with most models indicating an increase.
In this case, the MIROC6 model projects an average increase of up to 37% in peak episodes
over the coming decades.

In R5, all datasets total 277 drought episodes, of which 64% (176 cases) correspond
to the mild drought class, 21% (58 cases) are moderate drought events, 11% (31 cases)
are severe drought events, and 4% (12 cases) are extreme drought events. In this region,
more than half of the datasets project an increasing frequency in drought episodes in
2020–2099, with the GFDL-ESM4 model indicating an average increase of up to 63%, while
the MPI-ESM1-2-LR model projects an average reduction of up to 46%. Similarly, the same
proportion of models projects an increase in episode duration over the coming decades,
with the CMCC-ESM2 and MPI-ESM1-2-LR models providing average increases of up to
40% and 90%, respectively.

Regarding severity, only three GCMs project a reduction (EC-Earth3, MIROC6, and
GFDL-ESM4), and the MPI-ESM1-2-LR model estimates an average increase of up to
106%. For the intensity and peak parameters, the signals provided are heterogeneous,
with projections of change in intensity ranging from −32% (by EC-Earth3) to 34% (by
CMCC-CM2-SR5) and amplitude of change in peak from −17% (by MRI-ESM2-0) to 21%
(by IPSL-CM6A-LR).

For R6, of the 324 episodes identified by the datasets, 70% (227 cases) are classified as
mild droughts, 16% (51 cases) as moderate droughts, 12% (38 cases) as severe droughts, and
2% (8 cases) as extreme droughts. In this sector, half of the ensembles project a reduction
in the frequency of drought episodes (with the EC-Earth3 model providing an average
reduction of up to 21%). Inversely, another half suggests an increase (with the CMCC-CM2-
SR5 model projecting an average increase of up to 32%). Regarding episode duration in
the 2020–2099 period, only two GCMs project a reduction (CMCC-CM2-SR5 and CMCC-
ESM2), while the MIROC6 and EC-Earth3 models provide an average increase of 29% and
37%, respectively. Likewise, only three GCMs indicate a reduction in severity (CMCC-
CM2-SR5, CMCC-ESM2, and MPI-ESM1-2-LR), while the IPSL-CM6A-LR and EC-Earth3
models project an average increase of 27% and 70%, respectively. Of the same, only the
models CMCC-CM2-SR5 and MPI-ESM1-2-LR project a reduction in the intensity of drought
episodes in 2020–2099, while the MRI-ESM2-0 model indicates an average increase of up
to 158%. Regarding the peak of identified episodes, the outputs indicate mixed signals,
with the EC-Earth3 model projecting an average increase of 26% and the MIROC6 model
providing an average reduction of up to 22%.

In R7, a total of 293 drought episodes have been obtained, with 70% (206 cases) being
mild droughts, 19% (56 cases) moderate droughts, 9% (27 cases) severe droughts, and 1%
(4 cases) extreme droughts. Regarding the frequency, only two GCMs project an increase
in the incidence (21% and 25% by the CMCC-ESM2 and MIROC6 models, respectively),
while models such as EC-Earth3 and CMCC-CM2-SR5 indicate a reduction of 25% and
40%, respectively. Contrarily, only two GCMs project a reduction in episode duration
(2% and 5% by CMCC-ESM2 and MIROC6 models, respectively), while EC-Earth3 and
CMCC-CM2-SR5 models indicate a 49% and 101% increase, respectively. Alike, most
models converge to a signal of increased severity of hydrological drought episodes in
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the region in 2020–2099, with the GFDL-ESM4, EC-Earth3, and CMCC-CM2-SR5 models
projecting average increases of 65%, 96%, and 125%, respectively. The datasets indicate
mixed signals for intensity, with decreases and increases ranging from 4% to 55% and
6% to 13%, respectively. Similarly, projections of change in episode peaks are also more
heterogeneous, with reductions and increases ranging from 0.10% to 30% and 7% to 28%,
respectively.

Finally, in R8, all datasets give a total of 331 drought episodes in 2020–2099, of which
81% (268 cases) are classified as mild droughts, 13% (43 cases) as moderate droughts, 5%
(17 cases) as severe droughts, and 1% (3 cases) as extreme droughts. Half of the outputs
project a reduction in the duration of episodes in the sector, while another indicates an
increase. As for the other regions, most GCMs converge on a signal of increasing duration of
drought episodes, with the GFDL-ESM4 model projecting an average increase of up to 34%.
Likewise, projections among the models are more concordant about the increasing severity,
with the IPSL-CMC6A-LR model providing an average increase of up to 41%. Additionally,
most GCMs project an increase in peak episodes in 2020–2099 (only the EC-Earth3 model
indicates an average reduction of up to 3%), with the BCSD ensemble providing an average
increase of up to 32%.

In summary, GCMs project mixed signals about changes in drought events’ frequency,
intensity, and peak magnitudes during the coming decades in the SA subdomains. On the
other hand, the projections are more homogeneous regarding the duration and severity of
the episodes, with most models converging to increasing magnitudes of both parameters
in all sectors evaluated. Concerning the different categories of droughts (mild, moder-
ate, severe, and extreme), results show a larger occurrence of mild droughts. However,
regions such as the northern and central Northeast, Midwest, and Southeast Brazil show
a substantial proportion (above 20%) of moderate drought events, as well as a relevant
occurrence (above 10%) of severe drought events in the Amazonia region, central Northeast,
Midwest, and Southeast Brazil (see Supplementary Materials). Based on this, we highlight
that although the BCSD ensemble provides predominantly mild drought episodes, individ-
ual analyses of the CMIP6-GCMs indicate expressive frequencies of moderate and severe
events in all the evaluated subdomains.

4. Conclusions

In this study, we applied statistical downscaling to CMIP6 precipitation projections
in SA using the CPC data as a reference to evaluate future changes in precipitation and
the occurrence of hydrological droughts on the continent. To this end, we used the QDM
technique developed by Cannon et al. [91], and the method proved effective in reducing
systematic biases and preserving the trends of GCM projections. For the coming decades,
the post-processed precipitation projections indicate reduced rainfall in sectors such as
northern SA, North, Northeast, Midwest, and Southeast Brazil and increased precipitation
in southern Brazil and SESA regions. Such changes are more prominent during the austral
spring (SON), and their signal is more robust under the SSP5-8.5 scenario, corroborating
the literature.

The SPI-12 index analysis shows considerable variability of projections among the
GCMs about drought event parameters, such as frequency, intensity, and peak. On the other
hand, concerning duration and severity, a more remarkable agreement is observed among
the GCMs regarding the intensification of both aspects in practically all the subdomains
analyzed. Considering the different categories of drought events, the results showed a
substantial frequency of moderate and severe droughts in Brazil’s Northeast, Midwest,
and Southeast. In addition, the individual CMIP6-GCMs and the BCSD ensemble project a
considerable proportion of events with a duration equal to or greater than 10 months in all
evaluated South American sectors.

Given the results, it is valid to highlight some limitations of the study. First, we point
out that although the SPI-12 analysis is easy to implement because it uses only precipitation
information, it disregards crucial aspects of the droughts related to temperature and
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evapotranspiration processes. In this context, analyses have indicated that the frequency
and duration of droughts in SA are driven mainly by climate factors such as maximum and
minimum temperatures, net surface radiation, and precipitation [148]. Thus, future studies
employing statistical downscaling should address these aspects for assessing droughts on
the continent during the 21st century.

In addition, we mention that although the statistical downscaling technique reduces
model biases, considerable systematic errors persist and may propagate into future projec-
tions. The precipitation simulation by climate models poses several challenges due to the
many processes involved, mostly parameterized, operating, and interacting at different
temporal and spatial scales. Even though the refinement of the horizontal grid improves
precipitation simulation, it does not deterministically guarantee better results. Added to
these difficulties is the uncertainty associated with data sources for validation and the
scarcity of precipitation observational networks across the continent. All these factors
constrain the assertiveness of the estimates, and their uncertainties should be pointed out
since the results are of interest to decision-makers.

Furthermore, although the study employed eight GCMs and the multi-model ensem-
ble, it is recommended that future studies use a larger number of models and forcing
scenarios to constrain the uncertainties associated with the projections. The projections
presented here have an intermediate spatial resolution of 50 km, which limits the spatial
detail of the analyses performed. In this sense, further research should consider climate
projections with a finer spatial resolution to ensure greater accuracy of the results. However,
the feasibility of such approaches demands high computational costs. Overall, despite the
uncertainties associated with GCMs, identifying hydrological drought episodes, and the
bias correction technique, the results presented here can provide valuable contributions to
decision-makers and energy planners for better managing water resources on the South
American continent for the coming decades.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cli11080166/s1, Figure S1: Mean annual differences of precipitation
(%) between the future (2020–2039, 2040–2059, 2060–2079, 2080–2099) and historical period (1995–2014),
projected by the BCSD ensemble under the SSP2-4.5 (a–d) and SSP5-8.5 (e–h) forcing scenarios. Hatched
areas indicate statistical significance at a 95% confidence level; Figure S2: Temporal series (2020–2099)
of the SPI-12 index projected by the eight CMIP6-GCMs used in the study and the BCSD ensemble
(solid black line) under the SSP5-8.5 scenario for eight SA subdomains; Figure S3: Classification of
hydrological drought events identified by each CMIP-GCM used in the study and the BCSD ensemble
for eight SA subdomains in 2020–2099 under the SSP5-8.5 scenario.
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