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Abstract: When one is using climate simulation outputs, one critical issue to consider is the systematic
bias affecting the modelled data. The bias correction of modelled data is often used when one is using
impact models to assess the effect of climate events on human activities. However, the efficacy of
most of the currently available methods is reduced in the case of extreme events because of the limited
number of data for these low probability and high impact events. In this study, a novel bias correction
methodology is proposed, which corrects the bias of extreme events. To do so, we extended one of the
most popular bias correction techniques, i.e., quantile mapping (QM), by improving the description
of extremes through a generalised extreme value distribution (GEV) fitting. The technique was
applied to the daily mean temperature and total precipitation data from three seasonal forecasting
systems: SEAS5, System7 and GCFS2.1. The bias correction efficiency was tested over the Southern
African Development Community (SADC) region, which includes 15 Southern African countries.
The performance was verified by comparing each of the three models with a reference dataset, the
ECMWF reanalysis ERA5. The results reveal that this novel technique significantly reduces the
systematic biases in the forecasting models, yielding further improvements over the classic QM. For
both the mean temperature and total precipitation, the bias correction produces a decrease in the Root
Mean Squared Error (RMSE) and in the bias between the simulated and the reference data. After bias
correcting the data, the ensemble forecasts members that correctly predict the temperature extreme
increases. On the other hand, the number of members identifying precipitation extremes decreases
after the bias correction.

Keywords: seasonal forecast; climate services; bias correction; Africa; extreme events

1. Introduction

The raw output of regional and global climate models can be used without any further
processing to analyse long-term tendencies (e.g., decadal time scale and beyond it) and
short-term anomalies (e.g., from seasonal to decadal time scales). However, a climate model
output necessarily requires preliminary processing to remove any systematic error before
being used for climate impact studies on human activities (such as those in agriculture, en-
ergy, health, safety and infrastructure, etc.) [1,2]. Impact models often describe processes of
a different nature, yet they are closely related to climate variables, which depend on specific
critical thresholds linked to well-defined numerical values of environmental parameters.
Examples include the modelling of biological systems, including agronomic models [3]
or models for the diffusion of pests and diseases, or the modelling of landslides [4] and
flash floods [5]. Another possible application is the prediction of catastrophic events such
as the disastrous avalanche that occurred at Chamoli in the Indian Himalayas in February
2021 [6].

Bias correction algorithms are specifically designed to remove systematic model errors,
or biases, and enable direct interfacing between climate models and impact models. A
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systematic error is a known artefact of a numerical climate model, which is produced
by undefined mechanisms related to the complex nature of the model itself, such as the
interaction between the different components of a climate model, or the use of approx-
imations to model the physics of fundamental processes. Systematic errors entail, for
example, unrealistic, constant drifts of climate variables (e.g., temperature), which gen-
erally require the simple removal of the cumulated difference (delta) between the model
and observations. Another example is the misrepresentation of the statistical distribution
of the climate variables, which can be adjusted by remapping the model output to some
reference statistical distribution [5,7]. More sophisticated bias correction algorithms may
impose specific properties to the model output, such as the constraint to specific spatial
patterns [8]. Another class of bias correction methods ensures that model outputs correctly
represent the interdependence of related climate variables, such as temperature [9] and
precipitation, in order to retain physical coherence (e.g., [10,11]).

One of the key resources for the processing of climate data is the R package CSTools [12].
It includes several implementations of bias correction methods, which represent a rather
comprehensive portfolio of widely employed options. As a first example, it encompasses
the approach by Torralba et al. [13], which is aimed at correcting only the mean bias. Differ-
ent to this one, Van Schaeybroeck and Vannitsem [14] used a variance inflation technique
to correct, at the same time, the mean bias and the variance of the signal. The method by
Doblas-Reyes [15] also corrects the ensemble spread by minimising a constrained mean
squared error. With a similar idea, Van Schaeybroeck [16] minimized also the ranked
probability score. Eade et al. [17] corrected the seasonal and decadal forecasts by working
on the variance and imposing that the ratio of the predictable components is equal to
one. To conclude, Crespi et al. [18] proposed a quantile mapping method for seasonal
forecast, called B-QM, which at the same time corrects the bias and downscales the data to
a resolution that is comparable with the one of the reanalysis ERA5.

Other conventional techniques for adjusting climate variables include the Delta
Method [19], which corrects the model outputs using the spatial interpolation of the
anomalies. Moreover, it is worth mentioning the multiple linear regression method [20],
which performs a regression analysis using observations and climate model outputs from
the past and constructs bias-adjusted future time series using the regression parameters.
Parallel to this, an assessment of the data quality and model performance has been the
subject of recent scientific research, and new assessment techniques have been developed,
such as the CCHZ-DISO method (by Chen, Chen, Hu and Zho who observed the distance
between indices of simulation and observation) [21]. Among all of the existing methods,
one of the most popular ones is doubtlessly the quantile mapping approach [22]. Such a
method is often used for bias correcting climate data which are employed as inputs for
climate impact models. Because of its wide use, the concept behind this technique are an
optimal starting point for further elaboration.

This paper aims at responding to the needs of risk assessment studies, focusing on the
impact of extreme events, with a particular focus on applications where the climate model
output is fed into impact models with a critical dependence on a specific threshold. To this
end, we designed a novel bias correction method to consistently correct extreme events of
temperature and precipitation. Indeed, one of the limitations of bias correction methods
based on quantile mapping is that they show poor performance when they are dealing
with the tails of Cumulative Distribution Functions (CDFs) [23], where low-probability
extreme events are found. Therefore, we conceptually extend one of the classic quantile
mapping methods [1] by improving the description of the tail of the distribution. The
proposed methodology is based on fitting a parametric transformation to the quantile–
quantile relationship of observed and modelled values over the centre of the distribution.
For the tail of the distribution, the quantile–quantile relationship of the modelled data is
remapped onto the appropriate generalised extreme value (GEV) distribution.

In this paper, we focus on bias correcting seasonal forecasts, which provide infor-
mation about long-term average conditions, typically covering a timescale from one to
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six months [24]. In the framework of climate services, seasonal forecasts play a pivotal
role in measuring the potential climate impact on different sectors, such as renewable
energy [25,26], water resource management [27–29] and agriculture [30]. In particular, the
presented methodology was used to perform the bias correction of 2 m temperature and
total precipitation for the three widespread seasonal forecasting systems developed by
ECMWF, Météo-France and DWD (see Section 3 for more details). However, the proposed
approach can be seamlessly applied to any other model forecast, regardless of the timescale.

This article is organized as follows. In Section 2, we provide a description of our bias
correction methodology, explaining how it has been applied. In Section 3, we describe the
data and the study area. The results of the bias correction of temperature and precipitation
over the SADC are displayed in Section 4. Finally, the discussions and the conclusions are
presented in Sections 5 and 6, respectively.

2. Methodology

The proposed technique is the combination of two approaches: quantile mapping
(QM) and the fitting of a generalized extreme value distribution (GEV). QM is applied
to the central part of the statistical distribution, while GEV is applied to the tails of the
distribution, i.e., to the extremes. In the remainder of the section, we describe the two
components of our method in detail.

Quantile mapping assumes that the cumulative distribution function (CDF) of a
variable in the forecast and observation time series does not change in the future period [31].
When it is given a variable x, QM minimises the discrepancy between the CDF of the model
data and that of the reference data over a given calibration period. In practice, in a quantile
mapping algorithm, the model output x is mapped to an observation output y by means of
a transform function h, in such a way that their two CDFs are equivalent [32]:

y = h(x) → CDFy (y) = CDFx (x) (1)

y = CDFy
−1 (CDFx (x)) (2)

where CDF−1 is the inverse function of the CDF.
The generalised extreme value, or GEV, is a family of continuous probability distri-

butions that is often used for modelling extreme events. The GEV has three parameters:
location µ, scale σ and one shape ξ parameter. Depending on the value of the latter one,
the GEV distribution is classified as Gumbel (ξ = 0), Fréchet (ξ > 0) and Weibull (ξ < 0). The
cumulative distribution function (CDF) of the GEV distribution is the following:

CDF(x; µ; σ; ξ) = exp

{
−
[

1 + ξ

(
x− µ

σ

)]−1/ξ
}

(3)

This second component is applied to the extremes, which are defined as the values
exceeding the 95th percentile. It is worth mentioning that the same considerations apply
for negative extremes, such as, for instance, the values lower than the 5th percentile. In all
of the other cases, the data are bias corrected using the classic quantile mapping.

The presented approach has been implemented in a Python library. This choice is
motivated by the flexibility of Python, which makes it an optimal option for the develop-
ment of climate services that are to be run operationally. However, there is a very limited
availability of Python libraries performing bias correction. The most widely used one is the
bias_correction module, which was released in August 2021 (https://pypi.org/project/
bias-correction/ (accessed on 22 December 2022)). It consists of functions to remove the
biases across datasets. Implemented methods include quantile mapping, modified quantile
mapping, and scaled distribution mapping (gamma and normal corrections). This library
performs the calculation of the parameters for remapping the model data onto the obser-
vational distribution concurrently with the application of the bias correction. As a result,

https://pypi.org/project/bias-correction/
https://pypi.org/project/bias-correction/
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the library is rather computationally demanding if it is employed operationally, i.e., on a
monthly basis.

The developed Python library can be applied on an ongoing basis, which is a fun-
damental requirement for the operation of a climate service. The procedure consists of
two phases, and it is applied for each month separately (e.g., for all of the Januarys in the
time series).

In the first phase, which can be called the training phase, the parameters of two sta-
tistical distributions are computed, i.e., the one with the data that are to be bias corrected
and the one with the reference data. In our case, the data to be corrected are the seasonal
forecasts provided by ECMWF, Météo-France and DWD, respectively, while as a reference,
we use the ERA5 reanalysis. The data are divided into extremes and not extremes. We
have two types of parameters corresponding to the central part of the distribution and
the tails. As for the central part of the distribution, the parameters required are the CDF
values corresponding to a given number of quantiles. In our case, we selected 20 quantiles.
Regarding the tails, the parameters will be the three characteristics of the GEV: location µ,
scale σ and shape ξ.

The second phase entails the application of the bias correction technique by using
the parameters obtained during the training phase to correct the seasonal forecast data by
applying the inverse function of the CDF. Our bias correction method, therefore, provides
the possibility to save the parameters calculated in the training phase and to reuse them
to apply the correction. In this way, the time and calculation resources are drastically
reduced because the computation of the parameters takes place only once and then, as-
suming the stationarity of the time series, the parameters of the statistical distribution
remain unchanged.

3. Data

Three seasonal forecasting systems have been used for the analysis and correction of
their bias, namely, the ECMWF seasonal forecasting system 5 (SEAS5), the Météo-France
System7 and the DWD GCFS2.1 seasonal forecasts, which are products that are available
through the Copernicus Climate Data Store (CDS) [33]. Seasonal forecasts are ensemble
predictions, where each member of the ensemble represents an independent realisation of
the forecast. The characteristics of each model, such as the ensemble size and the horizontal
resolution, are listed in Table 1.

Table 1. The three forecasting systems in the Copernicus Climate Change Service (C3S) and their
original configurations.

Forecasting
System Name

Forecasting
Centre

Hindcast
Ensemble Size

Hindcast
Period

Horizontal
Resolution Reference

SEAS5 ECMWF 25 1981–2016 1◦ × 1◦ [34]
System 7 Météo-France 25 1993–2018 1◦ × 1◦ [35]
GCFS2.1 DWD 30 1993–2019 1◦ × 1◦ [36]

The SEAS5 seasonal forecasting system dataset includes real-time forecasts since
2017 and hindcasts in the period of 1993–2016. The difference between the forecasts and
hindcasts is that real-time forecasts consist of 51 ensemble members, i.e., independent
realisations of the forecast, while the hindcasts include 25 ensemble members. The three
datasets cover the global surface on a 1◦ × 1◦ regular grid, and the forecasted variables
are provided at a daily temporal resolution. The variables considered are the 2 m mean
temperature and the total precipitation, which were evaluated over the Southern African
Development Community (SADC) in the interval region between 0◦–40◦ S and 5◦–51◦ E
during the 1993–2020 period.

The reference data used for the bias adjustment of forecasts were derived from the fifth
generation of the ECMWF global reanalysis, ERA5 [37]. ERA5 spans the period of 1950–



Climate 2023, 11, 3 5 of 17

present with an hourly temporal resolution, and it is provided on a regular 0.25◦ × 0.25◦

grid. In this study, the reanalysis data were used as they are the best alternative to ob-
servations over the large African domain that is considered. This enables us to obtain a
more reliable assessment of the ECMWF SEAS5 forecasts and calibration methods, inde-
pendent from the heterogeneity in space and time of the in situ data availability. Moreover,
it improved the replicability of the methodology over other regions where no or scarce
observations are available.

In this article, we focused on analysing the months of January, February and March,
which are the ones related to the rainy season in the SADC region. However, in seasonal
forecasts, predictions of the same month are provided at different starting months, and these
outputs are identified by a different “lead time”. For example, we can have the forecast of
January 2020 which is provided by the seasonal forecast initialised in December 2019: in
this case, the lead time would be one. Instead, the forecast of January 2020 initialised in July
2019 is identified by lead time six. In the remainder of the analysis, special attention was
put on the lead time. Since the results are different depending on the lead time, as forecasts
corresponding to different lead times can have diverse performances, we considered them
independently. Hence, for each month, six results will be produced, corresponding to the
six lead times.

4. Results

In this section, we evaluate the bias-corrected predictions for three forecast centres
(ECMWF, Météo-France and DWD) by comparing them against the reanalysis ERA5. More-
over, we compare the results of the bias correction obtained with standard QM to under-
stand the extent of the improvement for the extremes. A first evaluation of the performance
of the proposed bias correction method consists of comparing the extreme values of the
seasonal forecast corresponding to two percentiles, the 97th and 99th ones, with the respec-
tive values of the reanalysis ERA5. For this purpose, we show the difference between the
seasonal forecast dataset and the reference one in three situations: before applying the bias
correction (i.e., using raw data), after applying the classic Quantile Mapping approach and
after using our method (i.e., the combination of Quantile Mapping and GEV). To perform
all of these operations, we re-gridded the reanalysis data onto the same coordinates of the
seasonal forecast, which have a resolution of 1◦, using a nearest neighbours interpolation.

As an example, we show the difference between the value of temperature extremes
corresponding to the 99th percentile for the three models (SEAS5, System 7 and GCFS2.1),
and the value of the 99th percentile of ERA5. The results are displayed in Figure 1, which
refers to January and lead time one. In this figure, the columns represent the type of data:
raw data (i.e., without any correction), data bias corrected by quantile mapping and by our
proposed method.

The raw seasonal forecasts underestimate the temperature extremes corresponding to
the 99th percentile in almost the entire study area regardless of the model, as can be seen
from the left-hand side panels in Figure 1. This underestimation is more pronounced for
SEAS5. The application of quantile mapping produces a clear reduction of this discrepancy,
although a negative bias remains in the southwestern part of the SADC region (central
panels). The use of GEV fitting for the tails produces a further improvement on the final
results, as can be seen from the differences between the bias-corrected data and reanalysis
(right panels). Similar results are also found for the 97th percentile and for the other months
and lead times (not shown).

In a second step, we generalize these analysis to all of the considered month and lead
times. We use the Root Mean Squared Error (RMSE) as a metric for evaluating the overall
performance of the prediction datasets, as it measures the deviation between the predicted
and reference data. This statistical metric has been widely used, often together with other
indices such as the mean bias [38] and correlation coefficients [39] to evaluate the degree of
agreement between the observations and the forecasts. RMSE is a measure of the average
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error, weighted according to the square of the error. Being a squared quantity, RMSE puts
greater influence on the large errors than it does on the smaller errors.
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Figure 1. 2 m temperature extreme value corresponding to the difference between the 99th percentile
for the three seasonal forecast systems SEAS5 (a–c), System7 (d–f) and GCFS2.1 (g–i), and the 99th
percentile of ERA5 dat. The columns refer to the type of data: raw seasonal forecasts (a,d,g), seasonal
forecast data corrected with quantile mapping (b,e,h), and seasonal forecast data corrected with the
proposed bias correction method (c,f,i). Maps refer to January and lead time one.

For both of the variables, temperature and precipitation, we computed the RMSE
between the extremes at the 99th and 97th percentiles of the seasonal forecasts and those of
ERA5. We performed the calculation for both the raw and corrected data. The RMSE values
obtained for temperature are summarized in Figures 2–4, which show the RMSE related to
each month and lead time. Both the quantile mapping and the proposed bias correction
approaches (panels b and c in Figures 2–4, respectively) improve the performance of the
predictions, as can be seen from the reduction of the values of this metric when they are
compared to the raw forecasts (panel a in Figures 2–4). Our proposed methodology further
lowers the RMSE. As compared to standard quantile mapping, the results improve from 5%
to 30%. Moreover, the RMSE of the raw seasonal forecasts of 2 m temperature tends to vary
with the lead time, while the RMSE of bias-corrected data becomes essentially independent
of the lead time.

Figures 5–7 show the RMSE values computed, which were described previously,
but for total precipitation. As for the temperature, the bias-corrected precipitation data
show a consistent decrease in the RMSE. In this case, the application of a bias correction
methodology produces a decrease in the RMSE of one order of magnitude and sometimes,
for System 7, Météo-France (Figure 6) and GCFS2.1, DWD (Figure 7), the decrease is of
two orders of magnitude. Additionally, in this case, the proposed method further improves
the effect of standard QM by reducing the RMSE up to 50%.
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(ECMWF) compared to ERA5 reanalysis: (a) raw data, (b) data corrected with standard quantile
mapping and (c) corrected with the proposed bias correction method. The colour scale ranges from
white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense colour
corresponds to the maximum value (in this case, 4.27 K for January and lead time zero).
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Climate 2023, 11, 3 8 of 17

Climate 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

Figure 3. RMSE (in K) of the 2 m mean temperature 99th percentile value for seasonal forecast Sys-

tem 7 (Météo-France) compared to ERA5 reanalysis: (a) raw data, (b) data corrected with standard 

quantile mapping and (c) corrected with the proposed bias correction method. The colour scale 

ranges from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most 

intense colour corresponds to the maximum value. 

 

Figure 4. RMSE (in K) of the 2 m mean temperature 99th percentile value for seasonal forecast 

GCFS2.1 (DWD) compared to ERA5 reanalysis: (a) raw data, (b) data corrected with standard quan-

tile mapping and (c) corrected with the proposed bias correction method. The colour scale ranges 

from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense 

colour corresponds to the maximum value. 

Figures 5–7 show the RMSE values computed, which were described previously, but 

for total precipitation. As for the temperature, the bias-corrected precipitation data show 

a consistent decrease in the RMSE. In this case, the application of a bias correction meth-

odology produces a decrease in the RMSE of one order of magnitude and sometimes, for 

System 7, Météo-France (Figure 6) and GCFS2.1, DWD (Figure 7), the decrease is of two 

orders of magnitude. Additionally, in this case, the proposed method further improves 

the effect of standard QM by reducing the RMSE up to 50%.  

Figure 4. RMSE (in K) of the 2 m mean temperature 99th percentile value for seasonal forecast
GCFS2.1 (DWD) compared to ERA5 reanalysis: (a) raw data, (b) data corrected with standard
quantile mapping and (c) corrected with the proposed bias correction method. The colour scale
ranges from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most
intense colour corresponds to the maximum value.
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Figure 5. RMSE (m) of the total precipitation 99th percentile value for seasonal forecast SEAS5
(ECMWF) compared to ERA5 reanalysis: (a) raw data, (b) data corrected standard with quantile
mapping and (c) data corrected with the proposed bias correction method. The colour scale ranges
from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense
colour corresponds to the maximum value (in this case, 0.013 m for January and lead time six).
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Figure 6. RMSE (m) of the total precipitation 99th percentile value for seasonal forecast System 7
(Météo-France) compared to ERA5 reanalysis: (a) raw data, (b) data corrected standard with quantile
mapping and (c) data corrected with the proposed bias correction method. The colour scale ranges
from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense
colour corresponds to the maximum value.
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Figure 7. RMSE (m) of the total precipitation 99th percentile value for seasonal forecast GCFS2.1
(DWD) compared to ERA5 reanalysis: (a) raw data, (b) data corrected standard with quantile mapping
and (c) data corrected with the proposed bias correction method. The colour scale ranges from white
(RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense colour
corresponds to the maximum value.
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The next goal of our analysis was to understand the ability of bias-corrected seasonal
forecasts to identify the timing of extreme events. To this end, we analysed the percentage
of ensemble members that correctly forecasted extreme values before and after applying
the bias correction.

First, we identify the extreme events in the ERA5 reanalysis products. For each grid
point, independently, we considered any value above a specific threshold to be “extreme”
(97th or 99th percentile). Then, for each forecasting system, we computed the number of
ensemble members that overcame the threshold at least once in a time window centred on
the date of the event under consideration. As these are long-term forecasts, it makes no
sense to look at the exact date when the extreme event occurred as the seasonal forecast is
unlikely to identify the phenomenon on that specific day. For this reason, we considered a
14-day window centred on each date of the extreme events (the previous and the following
week). In this time window, we identified the maximum value of the variable and compared
it with the threshold value. If the maximum value is higher than the quantile, the threshold
is exceeded at least once, and according to our definition, that ensemble member identifies
an extreme event.

For each cell and timestep, we counted the number of ensemble members for which
the threshold (97th or 99th percentile) was exceeded. By dividing this number by the total
number of ensemble members, we obtained, for each event, the percentage of members
that have correctly forecasted the extremes. Finally, for each cell, we computed the average
percentage for all of the considered events. This calculation was carried out for every
month and lead time, independently.

In Figures 8–10, we show, as an example, the maps depicting the percentage of
members correctly predicting extremes in each cell of the domain. The figures refer to
January (panels a, b), February (panels c, d) and March (panels e, f), which were predicted
with lead time one. We only show the raw data (first column) and data corrected with our
bias correction method (second column).
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Figure 8. Spatial distribution of average percentage of ensemble members that correctly predict
extreme events defined as the values of 2 m mean temperature exceeding the 99th percentile: raw
data (a,c,e) and bias-corrected data (b,d,f). The maps refer to seasonal forecast SEAS5 (ECMWF).
Results are shown for the three months (row-wise) and lead time one.
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Figure 9. Spatial distribution of average percentage of ensemble members that correctly predict
extreme events defined as the values of 2 m mean temperature exceeding the 99th percentile: raw data
(a,c,e) and bias-corrected data (b,d,f). The maps refer to seasonal forecast System 7 (Météo-France).
Results are shown for the three months (row-wise) and lead time one.
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Figure 10. Spatial distribution of average percentage of ensemble members that correctly predict
extreme events defined as the values of 2 m mean temperature exceeding the 99th percentile: raw
data (a,c,e) and bias-corrected data (b,d,f). The maps refer to seasonal forecast GCFS2.1 (DWD).
Results are shown for the three months (row-wise) and lead time one.
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In general, the proposed bias correction method improves the percentage of ensemble
members predicting extreme events. For SEAS5, the percentage increases in the whole
study area after the correction. This applies also to System 7 and GCFS2.1 in most of the
domain. Some areas present a worsening of the performances after the correction.

The percentages for each month and lead time, averaged over the entire domain, are
summarised in Figures 11–13. As can be seen from the figures, the proposed bias correction
method produces a net increase in the percentage of members that are able to correctly
predict temperature extremes. The improvement is particularly drastic for SEAS5, whose
raw data present a very low percentage (under 1%). Thanks to the correction, we move to a
percentage that ranges from 16 to 23%, depending on month and lead time.

The same analysis performed on precipitation is depicted in Figure 14 for SEAS5.
System 7 and GCFS2.1 have similar behaviours (not shown). The values reveal that the
proposed method produces a lowering of the percentage of ensemble members predicting
extreme events. The lowering is larger for February and March, compared to that of
January. After the correction, the variation of the percentage with the month and lead time
is less pronounced. This might be related to the erratic nature of precipitation, especially
convective precipitations which are common in the analysed period. However, more
analyses are necessary to understand this behaviour.

Climate 2023, 11, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 11. Mean percentage of ensemble members correctly predicting 2 m mean temperature over 

the 99th percentile value for seasonal forecast SEAS5 (ECMWF): (a) raw data and (b) data corrected 

with the proposed bias correction method. The colour scale ranges from white (0%) to dark blue, 

increasing in intensity as the percentage increases. The most intense colour corresponds to the max-

imum value (in this case, 21.9% for March and lead time one). 

 

Figure 12. Mean percentage of ensemble members correctly predicting 2 m mean temperature 

over the 99th percentile value for seasonal forecast System 7 (Météo-France): (a) raw data and (b) 

data corrected with the proposed bias correction method. The colour scale ranges from white (0%) 

to dark blue, increasing in intensity as the percentage increases. The most intense colour corre-

sponds to the maximum value. 

Figure 11. Mean percentage of ensemble members correctly predicting 2 m mean temperature over
the 99th percentile value for seasonal forecast SEAS5 (ECMWF): (a) raw data and (b) data corrected
with the proposed bias correction method. The colour scale ranges from white (0%) to dark blue,
increasing in intensity as the percentage increases. The most intense colour corresponds to the
maximum value (in this case, 21.9% for March and lead time one).
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Figure 12. Mean percentage of ensemble members correctly predicting 2 m mean temperature over
the 99th percentile value for seasonal forecast System 7 (Météo-France): (a) raw data and (b) data
corrected with the proposed bias correction method. The colour scale ranges from white (0%) to dark
blue, increasing in intensity as the percentage increases. The most intense colour corresponds to the
maximum value.
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Figure 13. Mean percentage of ensemble members correctly predicting 2 m mean temperature over
the 99th percentile value for seasonal forecast GCFS2.1 (DWD): (a) raw data and (b) data corrected
with the proposed bias correction method. The colour scale ranges from white (0%) to dark blue,
increasing in intensity as the percentage increases. The most intense colour corresponds to the
maximum value.
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Figure 14. Mean percentage of ensemble members correctly predicting total precipitation over the
99th percentile value for seasonal forecast SEAS5 (ECMWF): (a) raw data and (b) data corrected with
the proposed bias correction method. The colour scale ranges from white (0%) to dark blue, increasing
in intensity as the percentage increases. The most intense colour corresponds to the maximum value.

5. Discussion

Extremes are the most impactful events for human activities. Hence, special attention
needs to be paid to impact modelling. This study attempts to take a step forward in this
respect by defining a new bias correction methodology that is suitable for the identification
of extreme events. Such a method extends the classic quantile mapping by improving the
description of the tail of the distribution by means of a generalized extreme value distribu-
tion (GEV) fitting. Our method outperforms quantile mapping, with a reduction of up to
50% of the RMSE of the forecasting data with respect to the reference data. Furthermore, the
presented bias correction method leads to an improvement of the ability of the ensemble
members to predict extreme temperature events.

The method showed its potential with seasonal forecasts, which play a pivotal role in
measuring the potential climate impact on different sectors. For instance, the potential of
the method to increase the percentage of ensemble members predicting droughts would
be crucial in applications for the water management sector. In the case of the climate
service presented in [27,28], the proposed method would lead to better performances and
a more accurate decision support system for the climate-informed management of water
resources in the Mediterranean areas. Another example is the application to the agricultural
sector, which has been proposed by [30]. The article shows how important it is to bias
correct seasonal forecasts data for the prediction of the productivity of the next season
through specific indices, e.g., the growing season index. The results focused mostly on
temperature as it was not possible to bias correct precipitation. Our method would be
a good candidate to complement the results of that study by extending it to outlooks of
precipitation-related indices.

Besides the application to seasonal forecasts, the proposed approach can be employed
for bias correcting reanalysis products with in situ observations. Such results might be
used for evaluating the effect of climate events on our society in retrospect. A possible
use of these bias corrected data is for assessing the potential and/or the effectiveness
of policies to mitigate the climate risk. However, as for the standard quantile mapping
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techniques, care must be taken in adopting this methodology for applications in which
spatial coherence or physical coherence between the climate variables needs to be handled
properly. Furthermore, considering the limited sampling of the tails of the distribution, the
extension of the proposed methodology to the multivariate case is not straightforward, and
this should be the object of additional development.

A possible future development is certainly the application of the technique to decadal
predictions and scenarios, which is more delicate due to the uncertainty characterising the
development of future climatic conditions. Furthermore, due to the coarse resolution of
multi-annual predictions and climate projections, the bias correction should be combined
with a downscaling process in order to improve the spatial resolution.

6. Conclusions

A novel bias correction method was developed to correct the bias in extreme tempera-
ture and rainfall events simulated by seasonal forecasts. The proposed method corrects the
bias in the entire data set by applying GEV fitting to the tails of the statistical distribution
and standard quantile mapping elsewhere. Temperature and rainfall simulations from
SEAS5, System7 and GCFS2.1 were bias corrected using both our method and quantile
mapping alone. The effectiveness of the approaches was assessed by comparison with the
reanalysis ERA5. The proposed method was observed to perform better than the quantile
mapping method did, with a reduction of 30% in the RMSE for temperature and up to 50%
for precipitation with respect to the conventional method. Additionally, the bias-corrected
temperature forecasts have a larger number of ensemble members which rightly predict
extreme values compared to that of the raw forecast. Another effect of the bias correction is
the decrease in the number of members identifying rainfall extremes. This brings up one of
the main limitations in this kind of analysis, the lack of information about extreme events,
which make it difficult to build robust statistics describing the phenomena.
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