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Abstract: The main objective of this study is to bridge the gap between regional- and city-scale climate
simulations, with the focus given to the thermal environment. A dynamic-statistical downscaling
methodology for defining daily maximum (Tmax) and minimum (Tmin) temperatures is developed
based on artificial neural networks (ANNs) and multiple linear regression models (MLRs). The
approach involves the use of simulations from two EURO-CORDEX regional climate models (RCMs)
(at approximately 12 km × 12 km) that are further downscaled to a finer resolution (1 km × 1 km). A
feature selection methodology is applied to select the optimum subset of parameters for training the
machine learning models. The downscaling methodology is initially applied to two RCMs, driven
by the ERA-Interim reanalysis (2008–2011) and high-resolution urban climate model simulations
(UrbClims). The performance of the relationships is validated and found to successfully simulate
the spatiotemporal distribution of Tmax and Tmin over Athens. Finally, the relationships that were
extracted by the models are further used to quantify changes for Tmax and Tmin in high resolution,
between the historical period (1971–2000) and mid-century (2041–2071) climate projections for two
different representative concentration pathways (RCP4.5 and RCP8.5). Based on the results, both
mean Tmax and Tmin are estimated to increase by 1.7 ◦C and 1.5 ◦C for RCP4.5 and 2.3 ◦C and 2.1 ◦C
for RCP8.5, respectively, with distinct spatiotemporal patterns over the study area.

Keywords: climate models; dynamic-statistical downscaling; artificial neural networks; temperature;
urban environment

1. Introduction

Long-term observational records provide ample evidence of an increase in the mean
global air temperature due to anthropogenic climate change [1]. Additionally, in recent
years an unusual frequent number of record-shattering temperature extremes, often accom-
panied by heat-related mortality [2], have been observed. These extreme weather events
are projected to increase in intensity and recurrence [3,4], becoming up to seven times more
probable within the next 30 years [5]. The impact of excessive heat is expected to be more
severe in urban areas as it adds to the existing warming from the urban heat island (UHI)
effect [6]. The lack of appropriate frameworks and high-quality data is a crucial aspect that
limits climate-informed decision-making. The urban environment is characterized by high
heterogeneity with different types of land use. High-frequency and complex transitions of
urban characteristics (e.g., building height, imperviousness density, canyon aspect ratio)
pose the need for high-resolution data in order to define the intra-urban vulnerability to
climate change and, subsequently, to introduce spatially focused adaptation and mitiga-
tion measures. For instance, although urban flooding is an inevitable natural hazard [7],
climate information can provide the required level of scientific evidence for drafting flood
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adaptation/mitigation measures that can lead to efficient management. Furthermore, high
ambient temperatures and heat waves cause adverse impacts on human health [8]; how-
ever, their intra-urban variability introduces different magnitudes of exposure and, hence,
the lack of high-resolution data leads to insufficient public decision measures. Moreover,
excessive urban heat influences the energy demand of buildings (increased for cooling and
decreased for heating) [9]. Thus, solutions such as building renovations and retrofitting
can contribute to reducing energy consumption through energy efficiency upgrades, but
without data at a finer resolution, their prioritization would not be optimum.

Hence, cities are characterized as hotspots of climate change impacts and risks and
the proposed methodology can contribute to limiting the uncertainties related to the intra-
urban variability of air temperature. Improved high-resolution climate projections for
the urban thermal environment are of great relevance, taking into account the need for
developing adaptation measures.

Global circulation models (GCMs) simulate the Earth’s climate via mathematical
equations that describe atmospheric, oceanic, and biotic processes, interactions, and their
feedbacks [10]. GCMs provide future climate scenarios at a coarse spatial and temporal
resolution, and, therefore, their results are inadequate for use in climate impact models. As
a consequence, the need for higher-resolution data that can be used for regional and local
studies led to the development of different downscaling methods [11]. There are mainly
two downscaling approaches, the “dynamic” and the “statistical”.

The first approach relies on the use of a regional climate model (RCM), which is nested
within a GCM and covers a limited spatial domain. The reduction of the simulated area
allows the introduction of more detailed descriptions of physical processes and surface
topography and, hence, generates more realistic climate information [12]. Since the RCM is
driven by the GCM output, its overall quality is directly related to the biases of the latter one
(Storch and Chen, 2001). A single RCM will probably not provide “accurate” results and,
thus, projects that utilize various RCMs driven by multiple GCMs from the Coupled Model
Intercomparison Project Phases have been developed to produce multi-model ensembles
of regional-scale projections. The EURO-CORDEX framework oversees the design and
coordination of ongoing ensembles of climate projections for the region of Europe at a
spatial resolution of 0.11◦ (EUR-11) and 0.44◦ (EUR-44) [13].

Even though RCMs have a significantly finer resolution than GCMs, locally focused
studies, such as species distribution, forest growth, and ecosystem modeling studies, require
higher-resolution data [14,15]. However, local factors are not resolved by even the finest
RCMs [16] and, consequently, further downscaling is necessary to include more detailed in-
formation about coastal, orographic, and land-use features to capture local-scale processes.

As far as urban areas are concerned, their specific characteristics such as the high
heterogeneity of the surfaces in combination with their size require the performance of
high-resolution models since the detailed representation of the land cover and its physical
properties are crucial for impact studies [17]. Downscaling RCM outputs to an urban scale
provides useful information on climate change scenarios and, therefore, contributes to the
development of adaptation planning and mitigation strategies by the city planners.

The second approach includes statistical downscaling (SD) methods [18] aiming to
bridge the gap between large and local scales and establish empirical relations between
coarse-resolution predictors and smaller-scale historical observations of the climate variable
of interest (predictand). A vast number of SD techniques have been developed [19]; a
common assumption for all is that the currently observed relationships will be upheld in
the future, i.e., that a stationary statistical relationship exists. Depending on the nature of
predictors, observed or simulated, SD is divided into two further subcategories: (a) perfect
prognosis (PP) [20–22] and (b) model output statistics (MOS) [18,23,24].

Under PP, the statistical link is typically calibrated between daily quasi-observed data
from reanalysis datasets (predictors) and the simultaneously observed predictand. To
infer the statistical relationship, a suitable choice of predictors should include large-scale
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variables that account for a high proportion of the variability of the predictand and are well
presented by both reanalysis and climate models [19,25].

Conversely to PP, MOS derives local-scale climatic information linking model-simulated
features to the target variable. An important advantage of MOS is the ability to explicitly
account for model-inherent biases and errors [26]. As most simulation outputs are typically
generated with a free-running GCM or a GCM-driven RCM experiment, MOS methods are
usually limited to calibrations based on long-term distributions of the climate variables [27].
Nevertheless, using GCM outputs nudged to reanalysis [25] or reanalysis-driven historical
RCM simulations, MOS can also be applied in an event-wise context similar to that of
PP [26,28]. For both distribution-wise and event-wise cases, MOS relations are specific only
to the climate model upon which they have been established.

For urban areas, a wide range of downscaling methodologies were recently proposed
in order to derive future climatic conditions with improved detail and accuracy. Dynamical
downscaling of GCMs through nested RCMs was found to provide added value to urban
areas, especially for coastal cities; however, important urban thermal dynamic processes
are not sufficiently captured [29,30]. A full dynamical approach from the global scale down
to the urban scale [31], albeit the most physically valid and consistent methodology, is
usually not preferred, given its considerable computational cost [32].

Hence, both SD methods of PP [33,34] and MOS [35–38] are widely common for urban
areas, with the latter typically applied as a quantile mapping bias correction. Simple SD
methods largely lack, however, the ability to represent the intra-urban variability of urban
areas or to capture complex interactions [32]. Therefore, a hybrid statistical-dynamical
downscaling (SDD) scheme is increasingly being employed in order to make best use of the
respective benefits of each individual approach [17,32,39–42]. To accomplish this, a fine-
scale simulation is initially conducted for the urban area under consideration, commonly
for a relative short temporal period, the output of which is subsequently combined with
large-scale GCM or RCM projections to provide downscaled urban climatic information.

This paper aims to bridge the gap between the regional climate model resolution
(approximately 12 km) and the respective one at the local scale for improving the climate
projections of the urban thermal environment. This work proposes an easily replicable data-
driven workflow and a hybrid dynamical-statistical downscaling methodology that was
developed for the Tmax and Tmin using both linear and nonlinear machine learning methods.
Our aim is to provide a ready-to-use, high-resolution climate data product for decision
support, adaptation planning, and mitigation policies. The methodology was applied in
Athens and was used as a case study for identifying its predictive ability using both linear
and nonlinear models in an area characterized by complex topographical features.

2. Materials and Methods
2.1. Data

In this study, two EURO-CORDEX RCM simulations were used (Table 1). The data
were extracted from the Centre for Environmental Data Analysis (CEDA) database (https:
//esgf-index1.ceda.ac.uk/search/esgf-ceda/ (accessed on 3 April 2022)) that covers the
European domain (EUR-11 product) with a horizontal spatial resolution of 0.11◦ × 0.11◦

(approximately 12 km × 12 km over Europe). The data were divided into three subperiods,
1971–2000 (historical), 2008–2012 (evaluation), and 2041–2070 (future). For the historical and
future subperiods, the RCMs were driven by CNRM-CERFACS-CNRM-CM5 GCM, and for
the evaluation period by reanalysis-driven (ECMWF-ERAINT) output. Daily simulations
under two different representative concentration pathway (RCP) scenarios (RCP4.5 and
RCP8.5) were selected.

https://esgf-index1.ceda.ac.uk/search/esgf-ceda/
https://esgf-index1.ceda.ac.uk/search/esgf-ceda/
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Table 1. List of EURO-CORDEX RCM simulations and driving experiments for each studied period.

Period RCMs Experiment

Historical (1971–2000) ALADIN63, RACMO22E CNRM-CERFACS-CNRM-CM5
Evaluation (2008–2012) ALADIN63, RACMO22E ECMWF-ERAINT

Future (2041–2070) ALADIN63, RACMO22E CNRM-CERFACS-CNRM-CM5

Multiple climate variables were extracted from the EURO-CORDEX simulations that
include critical parameters of the urban thermal environment such as air and surface tem-
perature, air and soil humidity, atmospheric pressure, longwave and shortwave radiation,
and heat fluxes. In this study, the downscaling predictands were provided in high spatial
resolution from urban climate model (UrbClim) simulations. UrbClim solves a set of sim-
plified prognostic flow equations for the atmospheric boundary layer and contains detailed
urban surface physics [43]. The Copernicus Climate Change Service provides hourly Urb-
Clim simulations for 100 European cities at a spatial resolution of 100 m × 100 m (https:
//cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview (ac-
cessed on 3 April 2022)). From the available meteorological parameters, the air temperature
at the height of 2 m above the surface was selected for the 2008–2012 (statistical downscal-
ing; 2008–2011 for training and 2012 for validation) and 2016–2017 (UrbClim assessment)
periods. The study area (the wider Athens urban area) was defined from the simulated
UrbClim domain (Figure 1).
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Figure 1. Study area and locations of the meteorological stations.

The suitability of the UrbClim model was evaluated for multiple European cities such
as Toulouse (France), Ghent and Antwerp (Belgium), and Bilbao (Spain) [43], and in Athens
(Greece) for a heatwave episode [44]. Hence, to gain useful insights about the limitations
and errors of the urban model, it was evaluated against station-based observations provided
by the National Observatory of Athens (https://meteosearch.meteo.gr/ (accessed on

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://meteosearch.meteo.gr/
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3 April 2022)) [45] for a two-year period (2016–2017). Representative stations were selected
according to the following criteria: (a) their spatial extent covers the study area, and (b) the
sites are characterized by various land-use types. Their geographical location is provided
in Table 2 and in Figure 1.

Table 2. Representative meteorological stations and characteristics.

Meteorological Station Land-Use Type Latitude (◦) Longitude (◦)

1. Alimos Coastal 37.9175 23.7107
2. Kantza Low-Density Urban 37.9793 23.8656
3. Kifissia High percentage of vegetation 38.0661 23.8200
4. Neos Kosmos High-Density Urban 37.9590 23.7325
5. Pallini Low-Density Urban 37.9978 23.8928
6. Patisia High-Density Urban 38.0220 23.7298
7. Faliro Coastal 37.9294 23.6930
8. Psychiko High percentage of vegetation 38.0176 23.7806

2.2. Methodology

The applied methodology is a fully data-driven approach that can be easily replicated
in other urban areas and consists of the following steps, as illustrated in Figure 2a,b:

1. Development of a comprehensive database that consists of RCM, urban climate model
simulations and observations from a surface weather monitoring network.

2. Assessment of the urban climate model output for the selected domain.
3. Feature selection for selecting an optimum subset of predictor variables.
4. Development of statistical downscaling transfer functions using machine learning algo-

rithms (e.g., artificial neural networks (ANNs) and multiple linear regression (MLRs)).
5. Evaluation of downscaling results for the reference period.
6. Estimation of future changes in critical thermal environment climate parameters (e.g.,

Tmax and Tmin) for urban impact studies.
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For the evaluation of the Tmax and Tmin UrbClim model simulations, the observed
station values were compared to the UrbClim output for the 2016–2017 period. This two-
year period was selected due to the availability of station data records. The UrbClim data
were initially upscaled to a 1 km × 1 km spatial resolution via weighted average resampling
(30 × 30 grid cells). To determine the statistical relationship between the regional and local
scale, the selected reanalysis-driven RCM output was used for the 2008–2012 period. The
RCM output was reprojected to the UrbClim coordinate system (ETRS89-extended/LAEA
Europe), using the study area subset aligned to the same 1 km × 1 km grid. An initial
subset of RCM output was selected (14 climate variables) as potential predictors and a
filter-type supervised machine learning feature selection method based on a neighborhood
component analysis (NCA) was applied to assess which variables contribute more to
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predicting the Tmax and Tmin at a local scale. Such methods are used as a pre-processing
step to reduce the number of input variables in machine learning models for both reducing
the computational cost of modeling and improving the prediction performance. In this
study, the filter supervised technique was used because (a) it is faster as it chooses the
relevant variables by computing statistical measures of the correlation between input
and output variables, and (b) selecting a subset of variables with this method makes the
model less prone to overfitting. The procedure was performed separately for Tmax and
Tmin and the selected variables were the same for both Tmax and Tmin. In Figure 3, the
aforementioned feature selection procedure is presented.
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In this study, ANN and MLR models are examined to determine and assess their
suitability for providing the relationship between the regional- and the local-scale data. In
both cases, during the training (2008–2011) for each grid cell the selected variables from
the feature selection procedure were used as inputs (regional scale) and the respective
UrbClim model as outputs, namely, Tmax and Tmin (local scale) as predictands. Regarding
ANN models, the optimum architecture (number of hidden-layer neurons) is based on an
automated trial and error procedure using the mean absolute error (MAE) performance
metric on the validation set. The Levenberg–Marquardt backpropagation algorithm was
used for training the ANN models, and for every grid cell, 40 different ANNs were
trained and tested. A single ANN was selected in each case and the overall downscaling
procedure consisted of an ensemble of 900 ANN models. Similarly, MLR models were
trained and tested for their ability to associate regional and local scales. The least-squares
algorithm was used to fit the linear model to the data and the k-fold cross-validation
technique for assessing their predictive ability. For both ANN and MLR, the procedure was
applied for each RCM independently, using simulations for 2012 as an overall validation
dataset of the downscaling procedure (i.e., the downscaling results were compared with the
respective Tmax and Tmin high-resolution fields of the UrbClim model). Upon the successful
evaluation of the overall downscaling procedure, the trained models could be used for
future projections, providing suitable results for urban impact studies.

3. Results
3.1. Evaluation of High-Resolution Urban Climate Model Simulations

Daily Tmax and Tmin were initially computed from the hourly UrbClim time series.
The nearest grid cell to each meteorological station (listed in Table 2) was used to validate
the UrbClim simulations with observations. In more detail, each meteorological station
was allocated to a single UrbClim grid cell, and based on its geographical location (latitude-
longitude coordinates) the corresponding pairs of “meteorological stations/UrbClim grid
cells” were identified. The statistical errors, including the mean absolute error (MAE), mean
absolute relative error (MARE), root mean square error (RMSE), mean bias error (BIAS),
and correlation coefficient (R), were calculated for both Tmax and Tmin and the results are
shown in Table 3. Following the results of Table 3, a good overall agreement was observed
in all cases; the MAE ranged from 0.91 ◦C to 1.74 ◦C and from 1.36 ◦C to 1.94 ◦C for Tmax
and Tmin, respectively. It should be noted that a higher accuracy was observed for Tmax as
all the statistical metrics indicated a superior performance compared to Tmin (higher R and
lower BIAS, RMSE, and MAE). The lower overall UrbClim performance was observed for
the coastal Alimos station. According to our findings, all coastal stations exhibited a lower
R value and higher MAE and RMSE values for Tmax compared to all other sites. This could
be attributed to a slight underestimation of the cooling effect of different local circulations,
such as the sea breeze. The UrbClim simulations are considered to simulate adequately
the spatiotemporal variations of Tmax and Tmin over Athens and, therefore, they could be
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used as a reference for the downscaling procedure. For greater accuracy, we evaluated the
UrbClim simulations at the spatial resolution of 100 m prior to the upscaling to 1 km.

Table 3. Statistical metrics (R, MAE, MARE, RMSE, and BIAS) between UrbClim-simulated and
-observed Tmax and Tmin values from 2016 to 2017 for selected stations.

R MAE (◦C) MARE RMSE (◦C) BIAS (◦C)

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin

Neos
Kosmos 0.99 0.98 1.08 1.45 0.05 0.12 1.39 1.90 −0.03 1.17

Patisia 0.98 0.95 1.41 1.94 0.07 0.19 1.72 2.55 −0.62 1.40
Alimos 0.97 0.98 1.74 1.68 0.08 0.14 2.43 2.14 1.18 1.51
Faliro 0.98 0.97 1.43 1.51 0.06 0.13 1.94 2.03 0.43 1.20

Kifissia 0.99 0.98 0.92 1.62 0.05 0.16 1.19 1.97 0.27 −1.38
Psychiko 0.99 0.97 0.91 1.36 0.05 0.17 1.18 1.78 −0.30 0.81
Kantza 0.99 0.96 1.27 1.82 0.07 0.29 1.63 2.36 −0.03 −1.13
Pallini 0.99 0.97 1.28 1.26 0.06 0.17 1.68 1.58 0.50 −0.10

3.2. Feature Selection

The optimal predictor subset of climatic variables was determined using the NCA-
based feature selection method, which assigns weights for each of the possible input
variables (after standardization). The relative percentage weights for Tmax and Tmin are
presented in Table 4 for the initial subset of 14 climatic variables.

Table 4. Relative percentage weights of contribution corresponding to each input variable to predict
Tmax and Tmin as derived from the feature selection procedure (the optimal subset of variables is
denoted in bold).

Climatic Variable Weight for Tmax (%) Weight for Tmin (%)

Evaporation 5.14% 5.39%
Relative Humidity 8.15% 7.98%
Sea-level Pressure 7.24% 6.15%
Surface Pressure 6.75% 6.90%

Downwelling Longwave Radiation 7.79% 7.53%
Downwelling Shortwave Radiation 5.13% 3.72%

Surface Temperature 7.03% 6.90%
Upwelling Latent Heat Flux 5.13% 5.38%

Downwelling Latent Heat Flux 6.51% 7.13%
Upwelling Longwave Radiation 6.66% 6.72%
Upwelling Shortwave Radiation 6.40% 6.65%

Maximum Temperature 9.62% 8.49%
Minimum Temperature 8.99% 8.91%

Soil Moisture 9.46% 12.16%

The number of input variables was reduced based on two criteria: (a) the weights of
the selected variables that had the largest relative contribution, and (b) they represented
85% of the total weight. The 11 final selected variables were common for both Tmax and
Tmin, even though they exhibit different relative contributions (i.e., weights), and are shown
in bold in Table 4.

3.3. Evaluation of Machine Learning Model Performance

The trained machine learning models that link the regional and local scales for each
grid cell of the study area were applied for evaluation of the available data during 2012.
More specifically, the values of the RCM variables were inserted in the models as predictors,
and the obtained Tmax and Tmin results were compared with the corresponding UrbClim



Climate 2022, 10, 106 8 of 17

model simulations. This process was performed separately for each RCM model and each
method (i.e., ANN and MLR).

The average annual results are presented in Figures 4–7. Moreover, for a better
comparison of the final (local) and initial (regional) scale, the temperature data of the
regional models are also presented. It should be noted that for better visualization of the
results, the temperature scale is the same for Tmax and Tmin.
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Figure 7. Annual average Tmin (in K) during 2012 for RACMO22E RCM (up left), UrbClim model
(up right), ANN (bottom left), and MLR (bottom right) downscaling of the RACMO22E simulations.

Tables 5–7 below exhibit the average seasonal and annual MAE and BIAS statistical
metrics, along with the R between the downscaling results and the UrbClim model simula-
tions for both Tmax and Tmin and methods during 2012. The BIAS metric was calculated
by subtracting the UrbClim values from the downscaling results; hence, positive values
of BIAS exhibited overestimation of the temperature from the downscaling procedure.
It should be also noted that the statistical errors were first calculated for each day and,
subsequently, aggregated to their seasonal and annual values.
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Table 5. Average seasonal and annual MAE (◦C) between the downscaling results and the UrbClim
model simulations during 2012 for Tmax and Tmin for both methods (i.e., MLR and ANN), and RCMs
(i.e., ALADIN63 and RACMO22E).

ALADIN63 RACMO22E
Tmax Tmin Tmax Tmin

ANN MLR ANN MLR ANN MLR ANN MLR

Winter 2.15 1.98 2.34 2.28 1.77 1.56 1.90 1.57
Spring 2.03 1.74 1.82 1.60 2.06 1.85 1.53 1.55

Summer 1.89 1.75 1.48 1.30 1.83 1.68 1.51 1.23
Autumn 2.34 2.00 1.92 1.76 1.69 1.50 1.40 1.21

2012 2.10 1.87 1.89 1.73 1.84 1.65 1.58 1.39

Table 6. Average seasonal and annual BIAS (◦C) between the downscaling results and the UrbClim
model simulations during 2012 for Tmax and Tmin for both methods (i.e., MLR and ANN) and RCMs
(i.e., ALADIN63 and RACMO22E).

ALADIN63 RACMO22E
Tmax Tmin Tmax Tmin

ANN MLR ANN MLR ANN MLR ANN MLR

Winter −0.35 −0.66 0.77 0.61 −0.53 −0.98 0.64 0.28
Spring 0.57 0.50 1.35 1.22 −0.46 −0.30 0.40 0.84

Summer −0.81 −0.67 −0.01 −0.02 −0.74 −0.92 −0.61 −0.09
Autumn −0.37 −0.22 0.17 0.11 −0.91 −0.93 −0.63 −0.17

2012 −0.24 −0.26 0.57 0.48 −0.66 −0.78 −0.05 0.22

Table 7. Average seasonal and annual R between the downscaling results and the UrbClim model
simulations during 2012 for Tmax and Tmin for both methods (i.e., MLR and ANN) and RCMs (i.e.,
ALADIN63 and RACMO22E).

ALADIN63 RACMO22E
Tmax Tmin Tmax Tmin

ANN MLR ANN MLR ANN MLR ANN MLR

Winter 0.70 0.72 0.66 0.52 0.88 0.88 0.76 0.82
Spring 0.82 0.90 0.91 0.92 0.90 0.90 0.92 0.93

Summer 0.71 0.76 0.74 0.82 0.76 0.77 0.73 0.85
Autumn 0.75 0.86 0.74 0.76 0.94 0.94 0.88 0.89

2012 0.93 0.96 0.94 0.95 0.97 0.97 0.96 0.97

Table 5 shows that both methods exhibited similar results and that the MLR model
was associated with slightly lower MAEs compared to the ANN in all cases. In general, the
RACMO22E RCM exhibited lower MAEs than the ALADIN63 RCM and Tmin had lower
MAEs compared to Tmax, except for in the winter. Regarding the seasonality of MAEs, the
method exhibited a higher predictive ability during the summer (1.58 ◦C on average) and
autumn (1.72 ◦C on average), indicating that the approach is very useful for the study of
the urban thermal environment during the summer period when most of the heatwaves
occur. The average MAE was 1.75 ◦C, which is sufficient for city-scale applications. It is
worth noting that the values of MAE in each method and RCM were lower for Tmin in the
spring, summer, and autumn, whereas this was reversed in the winter where the lower
values corresponded to Tmax.

Regarding the overall BIAS error results, Tmax was found to have a negative BIAS in
contrast with Tmin, which had mainly a positive BIAS. When focusing on seasonal BIAS,
the ALADIN63 model had the lowest BIAS errors when the MLR method was applied
from the spring to autumn, compared to the ANN method which had a lower BIAS in the
winter. For the RACMO22E model, the BIAS errors for Tmin in the spring were lower with
the ANN method; however, for the rest of the seasons, no specific pattern was evident,
neither for the ANN nor MLR methods.
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The correlation analysis results indicated that a strong correlation exists in all cases,
especially for the RACMO22E RCM. Regarding the correlation coefficient of Tmax, higher
values were found for the MLR method when the ALADIN63 RCM was used, contrary
to the RACMO22E RCM which exhibited the same high values of R regardless of the
applied methodology.

Analyzing the corresponding maps in Figures 4–7, it was observed that both RCMs
and the two methods successfully simulated the spatial patterns of temperature for the
study area as they highlight the differences between the mountainous and urban areas,
which were not distinguished at the regional scale, and approach, to a large extent, the scale
of the UrbClim model (e.g., intra-urban temperature differences). Focusing on the annual
average spatial Tmax distribution (Figures 4 and 5), it was clearly observed that for both
methods the mountainous and warmer urban areas of the western suburbs were accurately
identified. Concerning the Tmin results, for the ALADIN63 model (Figure 6), the urban and
mountainous areas’ temperature differences were well-identified; however, there was an
underestimation of the Tmin in the western part of the domain and an overestimation in
its central area for both methods. The same applies in the case of the RACMO22E model
(Figure 7).

In conclusion, the relationships extracted from the ANN and MLR methods for the
statistical downscaling of Tmax and Tmin to 1 km provided satisfactory results. This conclu-
sion emerges both from the evaluation of the statistical analysis, since the R ranged from
0.93–0.97 and the MAE from 1.39–2.10 ◦C, as well as from the interpretation of the spatial
temperature patterns over the domain under study.

3.4. Application of the Models at Historical and Future Periods

The ensemble of each grid-cell-trained ANN and MLR models were applied both in
the historical 1971–2000 and in the future 2041–2070 periods. The application in the future
period was applied for two different scenarios: the moderate RCP4.5 and the adverse
RCP8.5. In addition, the methodology was applied separately for each RCM, initially
for Tmax and subsequently for Tmin. The RCM results and projections of the 11 selected
variables (predictors) were used to generate daily high-resolution maps of both Tmax and
Tmin for the study area. Average monthly, seasonal, and 30-year climatological period maps
were generated and compared in terms of the effect of climate change on the spatiotemporal
distribution of Tmax and Tmin in high resolution over the study area. In Figures 8–11, the
average 30-year climatological period maps are presented for Tmax and Tmin of both RCMs
upon the application of the ANN and the MLR downscaling methods. In Tables 8 and 9, the
results of the seasonal temperature differences between the reference historical and future
periods for the two RCP scenarios are presented for both the ANN and the MLR methods.

Regarding Tmax, similar increases were identified for both models per scenario. More
specifically, in the ALADIN63 model, both methods estimated that the largest increase
will be observed during the summer season (approximately 2.2 ◦C for RCP4.5 and 2.5 ◦C
for RCP8.5), and the smallest during the winter (approximately 1.5 ◦C and 2.1 ◦C for
RCP4.5 and RCP8.5, respectively). Furthermore, the increased differences between the
two scenarios for Tmax were estimated to be lower during the summer compared to the
other seasons. Regarding the transitional periods, a stronger thermal signal was identified
upon the application of both downscaling methods during the autumn as compared to
spring for both RCMs under both RCPs. Looking at the RACMO22E model in more detail,
the temperature increase was found to be approximately 1.8 ◦C for RCP4.5 and 2.55 ◦C
for RCP8.5 for the ANN downscaling method during the autumn. An overall agreement
was found for the spring, when the lowest Tmax increases were identified (1.3 ◦C for the
moderate scenario and 2 ◦C for the adverse).
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Table 8. Seasonal temperature differences for Tmax (◦C) between the historical and future periods for
both models and scenarios for the ANN and the MLR methods.

RCP4.5 RCP8.5
ALADIN63 RACMO22E ALADIN63 RACMO22E

ANN MLR ANN MLR ANN MLR ANN MLR

Winter 1.45 1.49 1.35 1.35 2.12 2.15 2.30 2.18
Spring 1.56 1.60 1.22 1.34 2.40 2.38 1.82 2.15

Summer 2.14 2.28 1.79 2.06 2.47 2.55 2.44 2.51
Autumn 1.82 1.78 1.80 1.72 2.41 2.33 2.55 2.42

Table 9. Seasonal temperature differences for Tmin (◦C) between the historical and future periods for
both models and scenarios for the ANN and the MLR methods.

RCP4.5 RCP8.5
ALADIN63 RACMO22E ALADIN63 RACMO22E

ANN MLR ANN MLR ANN MLR ANN MLR

Winter 1.08 1.25 1.15 1.23 1.58 1.86 2.13 2.06
Spring 1.21 1.32 1.09 1.23 1.91 2.07 1.88 2.05

Summer 1.76 2.03 1.85 1.89 2.20 2.37 2.48 2.39
Autumn 1.50 1.56 1.73 1.61 2.13 2.15 2.37 2.28

Regarding the seasonal variation of the average Tmin, the increase identified by each
method was also very similar. For the ALADIN63 model, it was observed that the results
obtained from the MLR method were about 0.15 ◦C higher than those from the ANNs.
Furthermore, both methods in both scenarios predicted a larger increase in the summer
of approximately 1.9 ◦C and 2.3 ◦C for RCP4.5 and RCP8.5. The smallest increase was
predicted for the winter period, about 1.2 ◦C and 1.7 ◦C for the moderate and adverse
scenarios, respectively. In the RACMO22E model, the results of the two methods were
almost identical. In any case, the largest increase corresponded to summer and the smallest
to spring. In the RCP4.5 scenario, the increase in the summer was about 1.9 ◦C and in the
spring 1.1 ◦C, whereas in RCP8.5 it was 2.4 ◦C and 2 ◦C, respectively.

Furthermore, the results showed that, in general, the increase in the average Tmin is
predicted to be smaller compared to Tmax. The only case this is reversed is in the summer
period for the RACMO22E model, for the ANN method in both scenarios, and, also, in the
spring for the RCP8.5 scenario.

4. Discussion and Conclusions

The present study focused on the statistical downscaling of two RCMs using two
different methods, ANN and MLR. The aim was to identify the relationships between the
regional and the local scale in order to improve the climate projections of the daily Tmax
and Tmin in urban areas.

The developed models achieved a significant improvement for both the Tmax and Tmin
projections compared to those of the initial RCMs and closely approached the local-scale
spatiotemporal patterns of the UrbClim model simulations (e.g., the influence of the urban
and the mountainous areas in Tmax and Tmin that could not be distinguished in the RCM
simulations, but which stand out after downscaling the projections at 1 km).

In general, by comparing the two methods, it was observed that both the ANN and
MLR performed reasonably well and were able to adequately reproduce both the Tmax and
Tmin. The errors indicated that the two methods exhibited slight differences in accuracy. The
MLR method had lower MAE values, whereas the ANN was associated with systematically
lower BIAS. Considering the Tmax and Tmin spatial distribution, it was observed that the
MLR had more uniform temperature fields, and the influence of the RCMs seemed to be
greater. On the other hand, this effect was eliminated in the ANN.

Regarding the evaluation results of the dynamical-statistical downscaling method
(simulations for 2012), it was observed that the Tmin was better approximated by both meth-
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ods in the spring, summer, and autumn, whereas the opposite was observed for the winter
season. Moreover, the values of the statistical metrics and the differences in their spatial
distributions when compared to the UrbClim simulations (i.e., map comparison), showed
that the best results were found during the summer, followed by spring and autumn.

In addition, the application of the models for the reference historical and future periods
showed that, even though each RCM temperature projections differed, the differences that
arose between the two time periods converged to almost the same values. This agrees with
the fact that RCMs are more capable of predicting temperature change in the future than
their absolute value. The change in the average Tmax and Tmin between the two methods
was similar, and larger increases were observed for Tmax and Tmin during the summer.

In agreement with previous studies, this study concludes that there is no one single
satisfactory solution for downscaling Tmax and Tmin, since both the ANN and the MLR
methods had both advantages and disadvantages. In the present study, the two methods
were used to establish transfer functions with different levels of complexity between the
associated scales. An inherent advantage of using ANN models is their ability to model
nonlinear relationships, whereas the MLR models can be used upon training to establish
linear transfer functions. A drawback of using the ANN in the context of downscaling
climate information in the urban environment is the requirement of a representative long-
term training dataset. On the other hand, MLR methods follow a simpler training procedure
that could provide sufficient results with significantly lower demands in terms of training.
Upon availability, both approaches can be further enhanced through the use of auxiliary
variables such as urban morphological characteristics. ANNs compared to MLR models
can be used more efficiently to model extreme values through optimizing the training
process and solving the overfitting issue effectively. Therefore, the appropriate choice of
the downscaling method is related to both the complexity of the relationship between the
two scales and the availability of high-resolution urban climate information. However, it
should be noted that in the case of scarce data availability, the approach of a fully dynamical
downscaling process through cascade modeling could be the optimum solution for urban
impact studies. The choice of the appropriate method should be investigated each time
and should be based on the spatial and temporal requirements of each study.

In a future study, the selection of different predictor variables for each method and/or
each regional model could be investigated. An upper-atmospheric predictor could be used,
such as the thickness layer between 1000–500 hPa or the 500 hPa geopotential in order to
provide the models with more information from the general atmospheric circulation. In
addition, an ensemble of regional climate models could also be used which would improve
the accuracy of the estimates and reduce uncertainty. Moreover, the number of downscaling
methods could be increased by applying, for example, the delta method or weather type
classification. The overall framework could be applied to an even finer spatial resolution
and simulations with the atmospheric WRF (Weather Research and Forecasting) model
could be performed to generate and use high spatial resolution data in urban areas.

The urban climate depends on urban morphology parameters such as land cover and
building height, among others, which are not directly considered in this study but have
a direct influence on the meteorological parameters that were used for the downscaling
techniques. To this end, the results of this work are useful for the assessment of the intra-
urban spatial and temporal variability of the urban thermal environment and, therefore,
could contribute to the identification of specific areas where adaptation plans should
be prioritized.

In addition, the results are valuable for addressing urban climate change, and provide
a methodology for practically assessing the state of the urban thermal environment at a
finer scale in future climate scenarios. Accordingly, they serve as scientific evidence with
respect to the strong need for the strengthening of the adaptive capacity and resilience of
cities to climate change.
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