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Abstract: Projections of future climate change trends in four urban centers of southwest Ethiopia were
examined under a high Representative Concentration Pathways (RCP8.5) scenario for near- (2030),
mid- (2050), and long-term (2080) periods based on high-resolution (0.220) Coordinated Regional
Climate Downscaling Experiment (CORDEX) for Africa data. The multi-model ensemble projects
annual maximum and minimum temperatures increasing by 0.047 ◦C per year (R2 > 0.3) and 0.038 ◦C
per year (R2 > 0.7), respectively, with the rates increased by a factor of 10 for decadal projections
between the 2030s and 2080s. The monthly maximum temperature increase is projected to be 1.41 ◦C
and 2.82 ◦C by 2050 and 2080, respectively. In contrast, the monthly minimum temperature increase
is projected to reach +3.2 ◦C in 2080. The overall seasonal multi-model ensemble average shows an
increment in maximum temperature by +1.1 ◦C and +1.9 ◦C in 2050 and 2080, with the highest change
in the winter, followed by spring, summer, and autumn. Similarly, the future minimum temperature
is projected to increase across all seasons by 2080, with increases ranging from 0.4 ◦C (2030s) to 3.2 ◦C
(2080s). All models consistently project increasing trends in maximum and minimum temperatures,
while the majority of the models projected declining future precipitation compared to the base period
of 1971–2005. A two-tailed T-test (alpha = 0.05) shows a significant change in future temperature
patterns, but no significant changes in precipitation were identified. Changes in daily temperature
extremes were found in spring, summer, and autumn, with the largest increases in extreme heat in
winter. Therefore, our results support proactive urban planning that considers suitable adaptation
and mitigation strategies against increasing air temperatures in urban centers in southwest Ethiopia.
Future work will examine the likely changes in temperature and precipitation extremes.
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1. Introduction

Current projections of global surface warming between 1906 and 2005 fall between
a range of +0.6 to +4.0 ◦C, while projected sea level rises are within the range of 0.18 to
0.59 m by the end of the twenty-first century, as documented by the Intergovernmental
Panel on Climate Change [1]. According to [2], by the 2050s, human activities are estimated
to cause approximately 1.0 ◦C of global warming above pre-industrial levels, with a likely
range of +0.8 ◦C to +1.2 ◦C, if greenhouse gases (GHG) emissions continuously increase
at the current rate. Risks from heavy precipitation, droughts, and precipitation deficits
are projected to be higher at 2 ◦C compared to 1.5 ◦C of global warming in some regions
and globally [2,3]. By 2050, roughly two-thirds (68 percent) of the world’s population are
expected to be living in urban areas, and the global urban population is projected to add
2.5 billion urban dwellers between 2018 and 2050, with nearly 90 percent of the increase
concentrated in Asia and Africa, which will be expected to grow continuously [4].
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Recent global analyses of urban heat exposure in 13,115 urban settlements, using fine-
resolution (0.05◦) temperature data, showed that between 1983 and 2016, the total urban
heat exposure increased by 52% when compared to urban population growth alone [5].
This underscores the need to implement adaptation actions and early warning systems to
reduce harm from urban extreme heat exposure. Beyond 2040, depending on the level of
global warming, climate change will lead to numerous risks to natural and human systems,
with the level of risk increase linked to the magnitude and rate of climate change; indeed,
the projected adverse impacts and related losses and damages will escalate with every
increment in global warming, with very high confidence [6].

Assessing climate change-related risks at urban scales is challenging, especially in
areas such as southwestern Ethiopia, a region with an extremely complex terrain and local
weather variations. Over the span of 50 km, the Ethiopian climate can vary radically, transi-
tioning from hot, arid lowlands to cool, moist highland areas. In the densely populated
southern highlands of Ethiopia, most people live in middle-elevation areas. Unfortunately,
global climate change models, including both the Phase 5 and the Phase 6 Coupled Model
Intercomparison Project ensembles (CMIP5 and CMIP6), face several serious limitations in
terms of modeling local Ethiopian climate change due to (1) their coarse scale, meaning
they miss many small-scale processes in tilted orography; (2) their failure to capture many
important teleconnections [7]; and (3) CMIP5 and CMIP6 suffer from systematic Indian
Ocean sea surface temperature biases, which, in turn, impact their ability to correctly model
the seasonal progression of East African rains [8,9]. CMIP6 also poorly represent important
land–atmosphere feedbacks and the seasonal progression of rains [10]. These deficiencies
in the global models mean that, for now, the high-resolution (0.22◦) Coordinated Regional
Climate Downscaling Experiment (CORDEX) [11,12] remains one of the best resources
for evaluating future changes in local urban weather patterns in southwestern Ethiopia.
Detailed evaluation of the CORDEX simulations [13] shows that they effectively capture
the seasonal cycle of rains and teleconnections to drivers such as the El Niño–Southern
Oscillation and Indian Ocean Dipole. Here, we examine CORDEX simulations in four
cities in southwestern Ethiopia. The CORDEX simulations are forced by the Representative
Concentration Pathways (RCP), hence we describe the RCP/CMIP5 projections below.

Under the IPCC high emissions RCP 8.5 scenario, temperature increases could reach
between +3 ◦C and +6 ◦C by the end of the twenty-first century. It is likely that land
temperatures over Africa will rise faster than the global land average, with higher rates
of minimum temperature increases compared to maximum temperature [1]. Projected
rainfall changes over sub-Saharan Africa in the mid and late 21st-century are uncertain and
in regions of high or complex topography, such as the Ethiopian Highlands, downscaled
projections indicate likely increases in rainfall amounts and extreme rainfall by the end of
the 21st century [1].

RCP scenarios based on radiative forcing emission scenarios were used in the IPCC
Fifth Assessment Report rather than emissions-based modeling [1]. Each scenario is tied
to one value: the change in radiative forcing at the tropopause by 2100 relative to pre-
industrial levels. The four RCPs are numbered according to the change of radiative forcing
by 2100: +2.6, +4.5, +6.0, and +8.5 watts per square meter (W/m2) ([12,14], Table S1). All
of the three lower RCP scenarios (2.6, 4.5, and 6.0) are climate-policy scenarios [15]. At
the higher end of the range, the RCP8.5 scenario corresponds to a future where carbon
dioxide (CO2) and methane emissions continue to rise as a result of fossil fuel use, but
with significant declines in emission growth rates over the second half of the century [11].
Atmospheric carbon dioxide levels for RCP8.5 are similar to those of the Special Report
on Emission Scenario (SRES) with intensive use of fossil fuel (SRES A1FI) scenario. They
suggest a rise from current-day levels of 400 parts per million (ppm) up to 936 ppm by the
end of the twenty-first century [15]. CO2-equivalent levels, and other climate-impacting
emissions, may be more than 1200 ppm by 2100, and global temperature is projected to
increase by 3.0–5.5 ◦C by 2100 relative to the 1986–2005 average [15].
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The recent IPCC [16] report suggests global surface temperature is likely to increase
from 1.0 ◦C to 1.8 ◦C between 2081 and 2100 under the very low GHG emissions scenario
(SSP1/RCP1.9). Temperatures may increase by 2.1 ◦C to 3.5 ◦C in the intermediate sce-
nario (SSP2/RCP4.5) and by 3.3 ◦C to 5.7 ◦C under the very high GHG emissions scenario
(SSP5/RCP8.5) compared to 1850–1900. Whereas, the average annual global land pre-
cipitation is projected to increase by 0–5% under the very low GHG emissions scenario
(SSP1/RCP1.9), 1.5–8% for the intermediate GHG emissions scenario (SSP2/RCP4.5), and
likely ranges from 1–13% under the very high GHG emissions scenario (SSP5/RCP8.5).
Decreases over parts of the subtropics and limited areas in the tropics in SSP2-4.5, SSP3-7.0,
and SSP5-8.5 are very likely relative to 1995–2014 [16].

Among the relevant urban studies conducted in other countries: In a study in Baghdad
City, Iraq, the future land-use cover change (FLUCC) modeling results from 2030 to 2050
show that there is a massive decreasing trend in agricultural land, whereas urban construc-
tion land increases at the fastest rate between 2020 and 2030 due to rapid urbanization along
with unplanned urban growth and rising population migration from rural to urban [17].
Land cover and land surface temperature relationship analyses using regression models
revealed a significant positive correlation with the built-up area while it is negatively
correlated with vegetation, waterbodies, and bare soil [18]. Similarly, in the northwest coast
of Peninsula Malaysia, Penang undergoes high-rise infrastructural development, with a
significant increase in built-up areas predicted by 2035, while other LULC decreases [19].
Another study made by [20] over the southwest Urban Centers of Ethiopia also found that
there was an observed increase of built-up in the past 60 years at the expense of agricultural
land, vegetation, and wetlands, varying across urban centers. This result might indicate a
likelihood projection for further increment in the future.

A study of the impacts of rapid urbanization on land surface temperature and urban
heat island patterns in Sylhet City, Bangladesh, revealed that the future urban expansion
simulation for 2025 and 2030 shows a 9% increase, leading to a significant increase of
moderate to high surface urban heat island intensity [21] Similarly, another study showed
that the built-up area of Wuhan City, China, has expanded, while the area of vegetation,
waterbodies, and bare land will decrease to varying degrees in 2030 and 2040, which is in
line with the expansion of the land surface temperature range and the built-up area [22].
Another study conducted in the Rajshahi district of Bangladesh indicated that the net
increase in the built-up area will be inconsistent with an increase in land surface temperature
in 2030 and 2050 from 2020 onwards, in the summer and winter seasons [23]. The model
projection for urban thermal field variance index (UTFVI) versus LULC demonstrated that
the highest urban thermal field variance index concentration in urban areas and reduction
in vegetation cover significantly increase the urban heat island effect in Cumilla City,
Bangladesh [24], with a similar finding in the built-up area of Kuwait [25] and Sylhet City,
Bangladesh [26].

Africa is highly vulnerable to the projected changes in the frequency and intensity
of climate change and its extremes due to its weak adaptive capacity [27]. In Ethiopia, a
significant warming trend is projected, with a high level of confidence [18]. Comparatively,
rainfall projections remain difficult, but most models lean towards more rainfall, with
rain expected to be heavier, while interspersed with droughts and dry stretches across
the country [28]. In particular, Ethiopia has faced frequent natural disasters (droughts
and floods) as a consequence of climate change [29,30]. A previous study has projected
long-term future changes in rainfall patterns in Ethiopia that could prevail until the end of
the twenty-first century [31]. Their multiple model’s ensembles were broadly consistent
in indicating increases in total precipitation and increases in the magnitude of one-day
maxima and five-day rainfall maxima [31]. In Kenya, Ethiopia, and Somalia, climate-related
extremes have been identified as the dominant trigger of natural disasters [32].

Ethiopia is the second-most populous country in Africa, hosting more than 109 million
people, and has a total area of 1.1 million km2, situated in the northeastern part of the
Horn of Africa [33]. Ethiopia’s urban population is projected to grow on average by 3.98%
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annually, and by 2050, about 42.1% of the total population is projected to dwell in urban
centers [34,35]. Urban growth in Ethiopia, and in many African cities, is generally charac-
terized by a lack of adequate planning or a lack of the implementation of plans, resulting in
cities that often have a shortage of the necessary infrastructure and services [36–38]. This
has contributed to fragmented urban landscape patterns along major roadways to its rural
fringes, especially in regional cities. In the past couple of decades, regional cities in Ethiopia
have grown faster than the capital city, Addis Ababa [39].

Urban areas are the major sources of GHG emissions, comprising between 40 and
70 percent [40]. In Ethiopia, the current emission contribution of cities is only 15% of the
total emission, while the rate is expected to rise to 35% in 2030 [28]. This is mainly due to
the fast-growing urban population, at a rate of 4.2% [4], which will increase the demand
for transportation and energy supply. Ethiopia has been experiencing a significant rise in
temperature in recent decades, in contrast to a decline in total annual rainfall amounts, as
well as facing recurrent extreme weather events [27].

Projected temperature and precipitation in the future have been investigated by several
climate change studies focused on different parts of the world. In East Africa, the majority
of studies have suggested that climate change could result in a decrease in the number
of consecutive wet days but an increase in the maximum consecutive number of dry
days [41–51]. The majority of existing climate studies in Ethiopia are based on simulations
from climate modeling centers or sometimes scarce ground-based meteorological station
observations [45,52,53]. The multi-model ensemble average of high-resolution regional
climate models (RCMs), driving global climate models (GCMs) within the framework of
the Coordinated Regional Climate Downscaling Experiment of Africa (CORDEX-Africa),
as documented in the Coupled Model Intercomparison Project phase 5, provide future
projections of climate suitable for analysis [54].

For this study, RCP8.5 was selected, as it is a highly prioritized emission scenario for
climate change impact studies under the CORDEX Africa framework [11,12]. The objective
of this analysis is to examine the prospect of future climate change projections for temper-
ature (minimum and maximum) and precipitation under RCP8.5, using high-resolution
(0.22◦) CORDEX Africa data in urban centers of southwest Ethiopia for the near-term (2030),
mid-term (2050), and long-term (2080) periods. This research is expected to answer how
mean precipitation and temperature could change in the future in the urban centers of
southwest Ethiopia. The results generated from this study provide additional scientific
evidence to understand the influence of future temperature and precipitation change over
the urban centers in southwest Ethiopia, specifically over Jimma, Bedelle, Bonga, and
Sokorru. The findings of this study will assist city officials, urban planners, environmental
engineers, and policymakers to prepare a sustainable future urban development plan
for urban centers, enabling them to minimize the negative consequences of unplanned
urbanization and heat-stress-related issues, thereby contributing to creating climate-smart,
liveable urban centers or cities of tomorrow. The results of this study can inform sustainable
urban development policies and strategies through the implementation of climate change
adaptation and mitigation interventions in urban areas to combat future challenges. Future
work will look more closely at changes in extreme precipitation and air temperatures in
urban centers.

2. Data and Methods
2.1. Description of the Study Area

This study was conducted in southwest Ethiopia’s urban settlements, including Jimma,
Bedelle, Bonga, and Sokorru, which lie between 7◦22′ N to 8◦45′ N and 36◦23′ E to 37◦40′ E,
representing a grid box of 1◦ × 1◦, as depicted in Figure 1. Within this region, the altitude
ranges from over 2000 m in the high plateaus to 600 m in the flat low-lying plains. Cli-
matically, southwestern Ethiopia has a temperate-type climate with annual temperature
and rainfall ranging between 14 and 20 ◦C and 1700 and 2000 mm, respectively [55]. The
study area is characterized by a mono-modal rainy season, which extends from March
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through mid-November, and also includes the location of one of the country’s rainfall
maxima [55,56]. The current city administration of the urban centers is structured from the
town level to kebeles, with decentralized functions of a municipality at the Kebele level (the
lowest administrative body in Ethiopia). The total population of Jimma City was 120,600
in 2007, which is projected to be over 265,000 by 2024 with diverse ethnic compositions in
the city; the total population of Bonga Town was 20,858 in 2007, projected to be 44,046 by
2024; the total population of Bedelle Town was 19,517 in 2007, projected to reach 40,500
in the year 2024; and Sokorru Town’s total population was 6233 in 2007, projected to be
25,617 by 2024 [56,57]. Each of the four towns included in this study has its own historical
establishment, land-use types, structural plan, or master plan to guide development, while
none of them was established in the planned way at the beginning.
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According to its 2019 revised master plan, Jimma City, the core urban region of this
study, has a total area of 100.2 km2 (10,200 hectares). In contrast, the current total areas
of Bonga, Bedelle, and Sokorru are 8846, 2878, and 300 hectares, respectively. Substantial
portions of these urban areas are green, with trees planted and conserved along road-
sides, residences, and institutions such as schools, churches, mosques, health centers,
and universities.

2.2. Data Used and Method of Analysis

The climate modeling approach used here focuses on the uses of RCMs driven by
CMIP5 GCM simulations. These CORDEX projections provide information about tem-
perature (minimum and maximum) and precipitation in the study urban areas, in order
to provide insight into the near- (2030), mid- (2050), and long-term (2080) periods. Mod-
eled daily minimum temperature, maximum temperature, and precipitation series for the
1950–2100 periods were obtained based on the RCMs participating in CORDEX-Africa,
for both historical and projected time periods, as listed in Table 1. RCP8.5 scenarios were
selected from 1950 to 2100 for four climate station locations and downscaled to the same
climate stations, which were used for climatological simulations (Table 1). The required
observed long-term daily maximum temperature, minimum, and precipitation data of four
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stations (Jimma, Bedelle, Bonga, and Sokorru) were collected from National Meteorological
Agency (NMA) from 1952 to 2018 (Figure 1), as documented in [20].

In this research, two RCMs were used to downscale each of the three GCMs from
the CORDEX-Africa experiments, resulting in 12 total runs (see Table 1). This provides
a horizontal high resolution of 0.22◦ × 0.22◦ grid spacing (~22 km), as compared to the
0.44◦ resolution in other studies [58–60]. Our analysis used two RCMs to downscale
individual GCMs in order to avoid single GCM–RCM combinations, thereby reducing
model uncertainty [13]. The performance of the selected RCM–GCM combinations was
evaluated based on their ability to characterize the observed precipitation [61]. The selected
RCMs and GCMs also have been used by [43]. Moreover, a model that had complete outputs
for the first run of the ensemble at historical and two projections scenarios was retrieved
from the Earth Systems Grid Federation (ESGF) via https://esgf-node.llnl.gov/projects/
esgf-llnl/website; accessed on 12 February 2020. The historical simulation runs, forced
by observed changes in natural and anthropogenic atmospheric composition, covered the
period 1951–2005 for CLMcom and 1970–2005 for GERICS models, while the projected
simulations of all models covered the period 2006–2100 under the RCP8.5 scenario [62,63].
The minimum and maximum temperatures, and precipitation, were downscaled using
GCM-driven RCM CORDEX Africa, with a high resolution of 25 km for Jimma, Bedelle,
Bonga, and Sokorru towns (Table 1).

The RCPs were adopted in climate change scenario generation for the preparation of
IPCC AR5 based on four radiative-forcing scenarios [1]. In this study, RCP8.5 was used
to generate future climate change projections. This RCP is often used, as it maximizes the
projected climate change signal; indeed, [13,63,64] identified RCP8.5 as the most aggressive
scenario in assumed fossil fuel use for global climate models, which will continue to serve
as a useful tool for quantifying physical climate risk for near to midterm time horizons
relevant for policy making (Table S1). The observed time series over the reference period
(1971–2005) was used as the base period, as documented in recent climate projection studies
over Africa [43] and Europe [65].

Regional Climate Model (RCM) simulation results for the Africa CORDEX domain
were obtained from the German node of the Earth system grid federation ESGF [66]. The
two RCMs for this study are the Consortium for Small-scale Modelling—Regional Cli-
mate Model (COSMO-CLMcom) and REMO2015 (GERICS) simulation results. A detailed
description of the dynamic downscaling scheme they employ are provided by [67,68].
The two RCM simulations were driven by, and utilized, the lateral boundary conditions
from the Global Climate Models (GCMs) extracted from three different CMIP5 projections,
including HadGEM2-ES (MOHC), MPI-ESM-LR (MPI), and NorESM1(NCC). The GCMs
were, in turn, forced by the RCPs [62,63]. Both RCM models are three dimensional in
nature, with the COSMO-CLMcom model relying on limited-area non-hydrostatic atmo-
spheric modeling and thermodynamic equations to describe atmospheric compressible
airflow at a 0.44- and 0.22-degree resolution (50 km and 25 km) [69,70]. For REMO 2015,
the Physical parameterization is based on ECHAM 4.5 [61] and land surface models that
explicitly define glaciers, surface runoff, and vegetation characteristics at a resolution of
0.22 degrees (25 km) [71–73]. The use of a climate-projection modelling approach, using
the downscaled CORDEX Africa Simulations, can also be employed for small-, medium-,
and large-sized cities.

https://esgf-node.llnl.gov/projects/esgf-llnl/website
https://esgf-node.llnl.gov/projects/esgf-llnl/website
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Table 1. List of climate model simulations used in the analysis of the minimum and maximum
temperature and precipitation in the study area. Each experiment comprises one historical and one
projected scenario (RCP8.5) run, spanning the historical period 1950–2005 and the projected period
2006–2100. The horizontal resolution of all simulations is 0.22◦ in both latitude and longitude.

No. Driving GCM RCM Institution/
Country

Simulation Period Experiment
References

Historical Under RCP8.5

1 MOCH COSMO-
CLMcom

Met Office Hadley Center
(MOCH), United Kingdom

Climate Limited Area
modeling Community
(CLMcom), Germany

1950–2005 2006–2099 [73]

2 MOCH REMO 2015 Germany Climate Service
Center (GERICS) 1970–2005 2006–2099 [74,75]

3 MPI COSMO-
CLMcom

Max Planck Institute for
Meteorology (MPI), Germany

1950–2005 2006–2100 [76]

4 MPI REMO 2015 1970–2005 2006–2100 [77]

5 NCC COSMO-
CLMcom

Norwegian Climate Center
(NCC), Norway

1950–2005 2006–2100 [73]

6 NCC REMO 2015 1970–2005 2006–2100 [78,79]

2.3. Methods of Data Analysis and Presentation
2.3.1. Climate Modeling Scenarios and Projected Changes in the Twenty-First Century

We mapped the absolute changes in minimum and maximum temperature and relative
(percent) changes in precipitation in each of the three future time periods, seasonally
and annually, using monthly data simulated from the model dataset for historical and
RCP8.5 scenarios. These types of analyses were employed in order to compare differences
between the contemporary historical reference period (1971–2005) and projected changes in
areal averaged parameters in the near-term (2030), mid-term (2050), and long-term (2080).
Climate data were analyzed using dynamical and statistical downscaling tools to downscale
the station data, and Arc GIS version 10.5 to generate study area maps, interpolate data,
and analyze the data for each urban center. Additionally, Microsoft Excel statistical tools
were used for further data analysis and presentation.

In this study, the projected temperature (minimum and maximum) and precipitation
changes from CORDEX-Africa using RCM and GCM calculations for the near-term 2030
(2021–2040), mid-term 2050 (2041–2070), and long-term 2080 (2071–2100) were generated
using the reference period 1971–2005. The findings were presented for each month, season,
model, and time period as the aggregated areal average for each station by graphical
and tabular forms. The high-emission scenario, covering the entire range of radiative
forcing resulting from the plausible and best match in RCP8.5, was applied to model the
ensembles for RCP-based studies ([64], Table S1 [1,11,61,62]). The output changes of three-
time horizons were calculated for urban centers of southwest Ethiopia. The results are
shown using tables and figures, including the statistical outputs. The Delta method was
employed on the simulated climate data to compute the difference (absolute difference
for temperature and relative change (%) for precipitation) between the future period and
the baseline period, which is determined and then superimposed on the historical daily
temperature and precipitation series [80,81]. For this analysis, a relative change (%) in
precipitation is obtained by Equation (1):

∆2030s =
V2030s−Vbase

Vbase× 100
(1)

The same formula was used for the 2050 and 2080 projected precipitation.
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Whereas, for the absolute value calculation (temperature in this case), the formula
below was used.

∆2030s = V2030−Vbase (2)

The values at 2050 and 2080 were also obtained by the same formula explained in
Equation (2). Vbase is the average of all ensembles (or a specific ensemble if selected) for
each statistic for the baseline period. Likewise, V2030s is the mean of all ensembles (or a
specific ensemble) for each statistic for the 2030s, 2050s, and 2080s periods [82].

2.3.2. Spatial Interpolation Methods

Interpolation using Inverse Distance Weighting (IWD) was conducted to examine
nearby area changes using the climate data for the four urban centers as a reference.
This interpolation aids in understanding the future climate of the study area and its
surroundings. The study by [83] concluded that there is no simple solution to choosing
an appropriate interpolation technique because a given method is only “best” in specific
situations. A simple way to interpolate temperature and precipitation data is to assign to
every un-sampled point the value at its nearest control point using Euclidian distance. This
technique was first introduced by [84], who was interested in how to use rain-gauge records
to estimate total rainfall across nearby study regions, which is called the nearest neighbor
(NN) technique. The more sophisticated IDW interpolation is based on the assumption that
the value at an unsampled point can be approximated by a weighted average of observed
values in a search throughout a given range of closest points near stations [85]. The weights
used for averaging are a decreasing function of the distance between the sampled and
unsampled points. As documented by [86], a modified version of the IDW accounted for
the altitudinal effect on temperature of an adiabatic thermal gradient, and can be considered
based on an additional factor affecting interpolated temperatures by an orographic gradient
(lapse rate), as given in Equation (3):

Tsim
t,x =

1

∑N
i wx,i

×
N

∑
i
[

[
wx,i × Tobs

t,i − [
θtemp

100
× (zx − zi]

]
(3)

where Tsim
t,x is the temperature at the target grid point x at the time step t; 1

∑N
i wx,i

is the

inverse distance weighting interpolator based on the N available neighbors; Tobs
t,i is the

temperature at each gauging station i located in the neighborhood of the target point;
and θtemp is the orographic gradient in ◦C/100m to be estimated between 0 and 1.5. A
similar scheme was proposed for precipitation, but accounted for the altitudinal effect as
an orographic gradient within an exponential function (exp), shown by Equation (4):

Psim
t,x = 1

∑N
i wx,i

×∑N
i [
[
wx,i × Pobs

t,i × exp [ θprecip
1000 × (zx − zi]

]
wx,i =

1
(distancexi)

α

(4)

where Psim
t,x is precipitation at the target grid point x at the time step t; Pobs

t,i is precipitation
at each gauging station i located in the neighborhood of the target point; zx is the elevation
of the target point and zi the elevation of the neighboring gauge stations; α is a real
positive number, called the power parameter; and θprecip is the orographic gradient factor,
estimated to be between 0 and 1.5, within the exponential function exp, with precipitation
at an elevation of 1000 m, where a zero value means no increase at all.

2.3.3. Bias Correction

Bias corrections are necessary because climate models often exhibit systematic error
(biases), which occur as a result of limited spatial resolution, simplified physics and ther-
modynamic processes, numerical schemes, or incomplete knowledge of climate system
processes. Therefore, bias correction is applied to avoid overestimation or underestima-
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tion of the downscaled variables. In this study, model bias, model confidence, and model
performance are used as model performance indicators. Model bias is given by Equation (5):

MB =
∑N

i=1(Qsi−Qoi )

∑N
i=1 Qoi

(5)

where MB is the model bias; Qsi and Qoi are the simulated and observed temperature or
precipitation at time period i (in ◦C or mm); and N is the number of time steps over the
simulation period. Model bias measures the systematic under or over prediction of a model
for a set of predictions [87]. Model simulation values can be accepted if MB is between
−0.25 and 0.25 for climate and hydrological studies [88]. Secondly, model confidence is
expressed with the coefficient of determination in the assessment of continuous model
simulations of climate data [89]; it is calculated using Equation (6):

R2 = 1− ∑N
i=1(Qsi−Qo )

∑N
i=1 (Qoi −Qo )

2 (6)

where R2 is the model determination coefficient; Qsi is projected/simulated data; and Qo
is the mean observed value. R2 values greater than 0.5 are considered as acceptable [89],
which depends on the variable of interest. Thirdly, to understand the magnitudes of error
in the RCP data and ensemble mean of the models, we used the Root Means Square Error
(RMSE), the Mean Absolute Error (MAE), and the Relative Error (RE), as provided in
Equations (7)–(9).

RMSE =

√
∑N

i (Y′ i −Yi)2
N

(7)

MAE =
1
N

N

∑
i=1

∣∣Y′ i −Yi
∣∣ (8)

RE =
1
N ∑N

i=1(Y
′
i −Yi)

Ymean
(9)

where Y i is the observed value at time step i; Y′ i is the simulated value at time step i; Ymean
is the mean of observed values; and N is the number of observations. The bias correction
statistical test and Student’s t-test statistics were performed to check the significance, using
SPSS version 20. Please note that our goal in this study is to support urban planning and
local adaptation by producing downscaled climate change projections for urban centers.
An accurate assessment of the skill of the CORDEX simulations would require interpolation
of station observations to a 0.22-degree grid, which is not our objective here. Rather, we are
focused on developing local projections to support local decision-making.

3. Results
3.1. Bias Correction

The bias correction method was applied to examine bias or error in the simulated
climate variables for four stations observed versus the projected RCP8.5, validated using
monthly observed data from 2006 to 2018. Standard model performance statistics tests were
carried out by computing the RMSE, MAE, and RE based on the observed and multi-model
ensemble means of the four stations under the RCP8.5 scenario. The computed statistics
of the maximum and minimum temperatures as well as precipitation RCP data tests are
summarized in Table 2.
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Table 2. Computed performance statistics results based on the bias correction method and T-tests.
Asterisks (**) indicate that both the maximum and minimum temperature changes are statistically
significant at both the α = 0.01 and 0.05 significant levels.

Stations Evaluation Precipitation Maximum
Temperature

Minimum
Temperature

Observed and ensemble mean of
four stations, multi-model

projected RCP8.5

MAE 55.87 1.71 4.96
RMSE 77.25 2.08 5.03

RE −0.065 0.048 −0.492
R2 0.99 0.99 1.0
MB 0.102 0.047 −0.021

T-test at α = 0.05 and 0.01 or at 95%
and 99% confidence intervals

T 1.446 −39.082 ** −55.047 **
2-tailed significance 0.159 0.000 0.000

The analysis of monthly based bias corrected statistical results showed that a signif-
icant improvement is achieved by applying the bias correction method on RCPs, which
are therefore closer to the observed values over four station points due to the use of high-
resolution data. The analyzed values of R2 for precipitation, maximum, and minimum
temperature are >0.9, showing a strong association between the observations and simula-
tions (Table 2). The model MB values were lower, which indicates a good simulation of
observed values (Table 2). Model simulation values can be accepted if MB is between −0.25
and 0.25, as reported by [88], and the analyzed performance statistics tests show agreement
within this range.

3.2. Projections of Temperature and Precipitation

The model performance trends were analyzed using multi-model ensemble means over
four stations for maximum temperature, minimum temperature, and precipitation during
the entire period of 1950–2100, with historical (1950–2005) and the projected RCP8.5 (2006–
2100) periods. The annual trends in maximum and minimum temperatures show increases
of 0.047 ◦C and 0.038 ◦C per year, respectively, while precipitation decreased by 0.032 mm
during 1950–2100 (Figure 2a–c). The decadal changes for maximum temperature, minimum
temperatures, and precipitation show increases of 0.47 ◦C and 0.38 ◦C and a decrease
of 0.32 mm, respectively (Figure 2a–c). For minimum and maximum temperatures, the
1950–2100 linear trend explained 70% and 30% of the variance, respectively. Precipitation
changes did not exhibit any significant changes (R2 = 0), as depicted in Figure 2a–c.

The computed performance of multi-model ensemble means for maximum tempera-
ture showed that the MOCH GERICS and NCC GERICS are above the average whereas
MPI CLMcom and NCC CLMcom are below the average. The best models with the best
fit within the average model ensemble range are MOCH CLMcom and MPI GERICS
(Figure 2a). Likewise, for minimum temperature, the mean values for the models MOCH
GERICS and NCC CLMcom are above the average whereas the MPI GERICS and NCC
GERICS ensemble means are below the average. The best models with the best fit within
the average model ensemble range are MOCH CLMcom and MPI CLMcom (Figure 2b).
Regarding precipitation, models such as MPI CLMcom, MPI GERICS, NCC CLMcom, and
NCC GERICS were simulated to be above the average values. Alternatively, MOCH CLM-
com and MOCH GERICS are among the best model fits, with values within the average
(Figure 2c). Overall, the multi-model ensemble means’ trend analysis showed that tempera-
ture (minimum and maximum) increased, but the minimum temperature has increased
more than the maximum temperature. However, the precipitation trend is inconclusive:
even though most models indicate a decreasing trend, a few models project an increasing
trend in precipitation.
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Figure 2. Time series showing the model simulations and projections of climate data for the histor-
ical (1970–2005) and projected (2006–2100) periods over the southwest urban centers of Ethiopia:
(a) maximum temperature; (b) minimum temperature; (c) annual precipitation totals.
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3.3. Temperature and Precipitation Projection Change Using Models in the Study Area

Areal average values of each parameter computed for the study area were generated
for the historical, 2030, 2050, and 2080 time periods under the RCP8.5 scenario. Individual
model values differ both for temperature and precipitation projection. The projected
maximum temperature is likely to increase consistently throughout the near-, mid-, and
long-term periods, with the highest warming level of 30 ◦C reached in the 2080s based on
MOCH, MPI, and NCC GERICS models. The results reveal there is a higher likelihood of
heat waves in urban centers of southwest Ethiopia at the end of the twenty-first century
(Table 3). In the 2030s the six models’ projections of future maximum temperature indicate
an incremental range, from the lowest at 0.6 ◦C to the highest at 1.6 ◦C by NCC CLMcom
and MOCH CLMcom, respectively, whereas, in the 2050s, the maximum temperature is
projected to increase from the lowest at 1.5 ◦C to the highest at 3.6 ◦C by the NCC CLMcom
and MOCH CLMcom models, respectively, with reference to 1971–2005. In the long-term,
for the 2080s, the future projected maximum temperature ranges from 3 ◦C to 5.4 ◦C, with
the lowest increases generated by NCC GERICS, while the highest increases are by MOCH
CLMcom and MOCH GERICS.

Table 3. Computed results of the multi-model ensemble projections for minimum temperature (◦C),
maximum temperature (◦C), and precipitation (mm) in the future time periods, comparing historical
(1971–2005), near-term 2030 (2021–2040), mid-term 2050 (2041–2070), and long-term 2080 (2071–2100)
data under the RCP8.5 scenario over the urban centers of southwest Ethiopia. The values in bold
only indicate the smallest, and bold with * indicate the largest value within the time period.

No. Climate
Variable Period

Output from Climate Model

MOCH
CLMcom

MOCH
GERICS

MPI
CLMcom

MPI
GERICS

NCC
CLMcom

NCC
GERICS

Areal
Average of

Models

I
Tasmax

(◦C)

Historical 23.2 26.8 22.8 26.3 23.0 28.2 * 25.0

2030 24.8 28.2 24.0 27.8 23.6 29.1 * 26.3

2050 26.8 30.2 * 25.1 29.0 24.5 30.2 * 27.6

2080 28.6 32.2 * 26.9 31.3 26.3 31.2 29.4

II
Tasmin

(◦C)

Historical 15.0 13.7 14.5 13.1 15.2 * 14.0 14.3

2030 16.3 * 15.3 15.7 14.4 16.0 15.1 15.5

2050 17.9 * 17.0 16.9 16.0 16.9 16.3 16.9

2080 19.7 * 19.2 18.5 18.1 18.1 17.7 18.7

III
Precipitation
(mm/month)

Historical 115.4 97.4 154.5 164.2 * 82.2 132.9 124.4

2030 109.9 93.6 160.4 109.7 162.8 * 79.7 119.4

2050 108.2 86.3 165.3 * 110.6 152.0 77.9 116.7

2080 110.1 83.0 171.1 * 107.0 131.7 81.1 114.0

The model performance for minimum temperature throughout the three projected
future periods shows a consistent increase throughout the twenty-first century (Table 3).
The minimum temperature changes in the 2030s for the six model ranges from 0.8 to 1.6 ◦C
by NCC CLMcom and MOCH GERICS, respectively, whereas in the 2050s, the minimum
temperature increase is projected from 1.7 to 3.3 ◦C by NCC CLMcom and MOCH GERICS,
respectively, with reference to 1971–2005. In the 2080s, the long-term projections indicate a
range from 2.9 ◦C, by NCC CLMcom, to the highest at 5.5 ◦C, projected by MOCH GERICS
(Table 3).

Regarding projected precipitation among the six models, four models (MOCH CLM-
com, MOCH GERICS, MPI GERICS, and NCC GERICS) showed a decreasing trend in
future time periods. However, two models (MPI CLMcom and NCC CLMcom) projected
an increasing precipitation trend, both in magnitude and intensity, relative to the historical
period. This decrease ranges from 3.9% (MOCH GERICS) to 40% (NCC GERICS), 6.24%
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(MOCH CLMcom) to 41.2% (NCC GERICS), and 4.5% (MOCH CLMcom) to 39% (NCC
GERICS) in the 2030s, 2050s, and 2080s, respectively. The increase ranges from 3.8 to 98%,
7 to 84.9%, and 10.7 to 60.2% in the 2030s, 2050s, and 2080s, respectively, with the least
increase by MPI CLMcom and the highest by NCC CLMcom (Table 3).

3.4. Future Temperature and Precipitation Change Scenarios
3.4.1. Future Temperature Projection Change Scenarios

The analysis of monthly maximum temperature result showed that, for all months,
there are increases throughout the three time periods with reference to the base period of
1971–2005. Comparing inter monthly projected future values under the RCP8.5 scenario
of the multi-model monthly ensembles average, the highest projected future seasonal
maximum temperature is from January to May, during the base period; the highest quarterly
is from February to April; and the lowest is in July. In the 2030s, the highest future maximum
temperature is projected from February to April and the lowest in August. In the 2050s, the
highest future maximum temperature is projected from January to April and the lowest
in August, and in the 2080s the highest future maximum temperature is projected from
January to May, with the lowest in August. The season from February to April is projected
to have a high likelihood of heat waves, with the average monthly maximum temperature
ranging from 30 ◦C in the 2030s reaching nearly 34 ◦C in the 2080s, when the highest
warming occurs (Table S3). The analysis of monthly minimum temperature results for all
months increases throughout the three time periods of 2030, 2050, and 2080s. Comparing
the inter-monthly projected future values, the highest future minimum temperature is
observed in March during the base period (Table S3). In the 2030s, the highest future
minimum temperature is projected between February and May, with the highest individual
month being in April and the lowest in December. In the 2050s, the highest future minimum
temperature is projected between February and June, with the highest of all in March and
April and the lowest in December. In turn, by the 2080s, the highest minimum temperature
is projected, with the highest value to most likely occur in March and April and the lowest
in November and December. The average monthly minimum temperature projection for
the 2080s indicate an increasing trend till 2100, which is likely to induce negative impacts
on residents in urban centers of southwest Ethiopia (Table S3).

The projected monthly maximum temperature using the multi-model ensemble means
under RCP 8.5 shows a slight decrease by 0.2 ◦C in 2030, although increasing by 1.1 ◦C and
2.9 ◦C in the 2050s and 2080s, respectively (Table S5). With regard to monthly minimum
temperature, future projections, as generated from the multi-model ensemble means, show
increments of 0.1, 1.4, and 3.2 ◦C in the 2030s, 2050s, and 2080s with reference to 1971–2005
(Table S5).

The inter-seasonal projection of future maximum temperature, minimum temperature,
and precipitation were analyzed using multi-model ensemble under RCP8.5 scenarios
with reference to 1971–2005. The projected seasonal result showed the future maximum
and minimum temperature increased in the 2030s, 2050s, and 2080s periods. The highest
future maximum temperature is projected consistently to increase during the winter season
for the 2030s, 2050s, and 2080s, whereas the lowest maximum temperature will occur
in the summer season. Furthermore, the projected result shows the high likelihood of
inducing warmer extreme event occurrences, such as heat waves (≥30 ◦C to 34 ◦C), in
urban centers of the study towns (Jimma, Bedelle, Bonga, and Sokorru) during the winter
and spring seasons in the 2050s and 2080s (refer to Tables 4 and S5 and Figure 3a). In all
seasons, the minimum temperature is projected to increase in the three time periods, with
the highest increase occurring in the 2080s in winter, spring, and summer seasons, with
autumn increases being relatively low (Tables 4 and S5 and Figure 3b).

There is spatial and temporal inter-seasonal variability for both maximum and mini-
mum temperature in urban centers of southwest Ethiopia under the RCP8.5 future projec-
tions. The seasonal maximum temperature increases during winter, with future changes
of 1.5 ◦C in the 2030s, reaching up to 4.7 ◦C in the 2080s. This is followed by spring, with
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future changes of 0.5 ◦C expected in the 2030s and 3.7 ◦C in the 2080s. During the summer
season, the maximum temperature is projected to decrease from 2 ◦C in the 2030s to 0.7 ◦C
in the 2050s, but increase in the 2080s by 1.2 ◦C, whereas in autumn, the projected value
shows a declining trend during the 2030s, by 1 ◦C, after which it increases by 0.3 ◦C and
1.9 ◦C in the 2050s and 2080s, respectively. The overall seasonal multi-model ensemble
means showed that the maximum temperature is projected to decrease by 0.2 ◦C in 2030s
and then increase by 1.1 ◦C and 1.9 ◦C in the 2050s and 2080s, respectively (Table S5). The
analyzed results of future minimum temperature projected results revealed that there is a
consistent increase in all seasons, from the lowest at 0.4 ◦C in 2030s to 3.2 ◦C in the 2080s,
with spatial and temporal changes. The winter and spring future projected minimum
temperature results show a similar trend of 0.4 ◦C, 1.4 ◦C, and 3 ◦C in the 2030s, 2050s,
and 2080s, respectively. The projected summer minimum temperature increases by 0.8 ◦C,
1.3 ◦C, and 3.0 ◦C in the 2030s, 2050s, and 2080s, respectively, with the three seasons of
winter, spring, and summer showing similar increases of 3 ◦C in the 2080s. The seasonal
minimum temperature changes were more pronounced than the maximum temperature in
all future periods.

Table 4. Computed seasonal multi-model results of the areal average of maximum, minimum
temperature (◦C), and precipitation (mm) in the future time periods, comparing to the historical base
period (1971–2005), near-term 2030s (2021–2040), mid-term 2050s (2041–2070), and long-term 2080s
(2071–2100) data under the RCP8.5 scenario over the urban centers of southwest Ethiopia. Values
in bold only indicate the smallest, and bold with * indicate the largest value within the time period.
Please note that the average temperature ≥ 30 ◦C range implies the occurrence of seasonal extreme
temperature events across time periods.

No Variables Period Winter Spring Summer Autumn Annual
Average

Standard
Deviation

(SD)

I Tasmax (◦C)

Base period 28.7 * 25.5 21.3 24.5 25.0 3.2

2030 29.9 * 27.2 22.4 25.7 26.3 3.2

2050 31.4 * 28.5 23.7 27.0 27.6 3.3

2080 33.1 * 30.3 25.6 28.6 29.4 3.2

II Tasmin (◦C)

Base period 14.6 15.2 * 14.1 13.3 14.3 1.2

2030 15.9 16.4 * 15.2 14.6 15.5 1.0

2050 17.4 17.8 * 16.5 16.0 16.9 1.1

2080 19.4 * 19.4 * 18.2 17.8 18.7 1.1

III
Precipitation
(mm/season)

Base period 86.8 534.2 610.8 * 261.2 1493 113.6

2030 64 470 500 * 238.4 1272.4 112.0

2050 61.6 460.9 483.9 * 238.3 1244.7 147.3

2080 74.3 411.5 471.7 * 246.7 1204.2 147.0
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Figure 3. Projected (a) seasonal maximum temperature, (b) seasonal minimum temperature, and
(c) seasonal precipitation under RCP8.5, as computed for the near-term (2030), mid-term (2050), and
long-term (2080) with reference to the historical base period (1971–2005).

3.4.2. Future Precipitation Projection Change Scenarios

Regarding monthly precipitation in the three future time periods, the highest precipita-
tion occurs between May and September and the lowest precipitations between November
and February under RCP8.5. The projected precipitation amount in the twenty-first century
shows a consistent decrease along with high inter-month variability. In both the near-term
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(2030s) and mid-term (2050s), the highest extreme precipitation is likely to occur in May,
whereas in the 2080s, the highest precipitation is likely to occur in the month of September
and the lowest is likely occur in January, as projected under RCP8.5 using multi-model
ensembles (Tables S3 and S5).

The projected analysis of future seasonal precipitation results showed that precipita-
tion amount decreased in all seasons except in autumn, which shows an increment in all
future periods. Under RCP8.5, future seasonal precipitation indicates a declining trend
during summer, winter, and spring, except in autumn, when the precipitation is likely
to increase (Tables 4 and S5; Figure 3c). The highest increase that is likely to occur is in
autumn, which is projected to increase as high as 52%, 52%, and 57% in the 2030s, 2050s,
and 2080s, respectively (Tables 4 and S5; Figure 3c).

3.5. Spatio-Temporal Interpolation of Temperature and Precipitation Projection Change
3.5.1. Interpolation of Maximum and Minimum Temperatures Projection Change in
Urban Centers

Interpolation of the temperatures for the urban centers of Jimma, Bedelle, Bonga,
and Sokorru and their surroundings was conducted. The projected future maximum
temperature for the four urban centers, showed a consistent increasing trend during the
three future periods with reference to 1971–2005. The highest maximum temperature is
projected over Sokoru, followed by Bedelle, and the lowest over Jimma when comparing the
outputs of the model projection for the near-, mid-, and long-term future periods, reaching
≥30 ◦C, which implies the likelihood of increased heatwaves in urban centers towards the
end of the twenty-first century under RCP8.5 with reference to 1971–2005 (Table S4 and
Figure 4—Panel 1). The projected results for future minimum temperature in the four urban
centers showed a progressive incremental change throughout the three future periods.
During the historical period, the highest minimum temperature was observed in Bedelle
while the lowest occurred in Jimma and Sokorru. In the near- (2030), mid- (2050), and
long-term (2080), the highest temperature change is projected in Bedelle, with the lowest in
Jimma and Sokorru, as depicted in Table S4 and Figure 4—Panel 2.

Both maximum and minimum temperature projections consistently showed increasing
trends with warming, which are more likely to occur in the near-, mid-, and long-term peri-
ods (Table S4 and Figure 4—Panels 1 and 2). The highest future maximum and minimum
temperature are projected to occur in Sokorru and Bedelle, whereas the lowest values are
projected in Jimma and Sokorru, respectively, with reference to 1971–2005.

3.5.2. Interpolation of Future Precipitation Projection Changes in Urban Centers

Analysis of interpolated precipitation over the Jimma, Sokorru, Bedelle, and Bonga
surface stations were considered, both to simulate historical data and to generate future
projections for the southwest urban centers and their surroundings. Thus, the projected
precipitation trends over these urban centers showed a consistent declining tendency
throughout the twenty-first century, with substantial dominance of spatial and temporal
variability. During the historical period, the highest precipitation was observed in Sokorru,
followed by Bedelle, with the lowest precipitation occurring over Bonga in the near-term
(2030). However, in Jimma, there is a slight increase in precipitation with respect to
historical values, which is followed by a declining trend in the mid- and long-term periods.
Similarly, in the mid-term (2050) and long-term (2080), the highest precipitation is projected
in Sokorru, with the lowest in Bonga as compared to their respective historical ensemble
means under RCP8.5, as depicted in Figure 4—Panel 3 and Table S4.
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4. Discussion

This study examined changes in future trends and climate projection of maximum
and minimum temperature and precipitation in the urban centers of southwest Ethiopia
using CORDEX Africa data under RCP8.5—the highest radiative forcing. Model-based
projections were generated for the near- (2030), mid- (2050), and long-term (2080) time
periods in the twenty-first century and compared with the 1971–2005 reference period,
using data from point stations Jimma, Sokorru, Bedelle, and Bonga. Performances of the
models were evaluated by employing the bias correction method in order to check the
degree of agreement between the projected and observed data (Tables 2 and S2). The use of
bias correction is deployed in most climatological projections, as documented by [90], which
used RCPs data in the Hare Watershed, Southern Rift Valley, of Ethiopia. Moreover, ref. [91]
applied this method to generate precipitation projections from regional climate models in
West Africa, while [92] applied it in hydrological studies over the Tekeze basin, Ethiopia.

Unplanned urban growth and urbanization in urban centers of southwest Ethiopia
has been observed, resulting in massive LULC change; it is also projected to increase in
the future, as documented in previous study [20]. Similar findings have been observed
in urban studies in developing countries, with projected massive LULC changes between
2020 to 2050 [17–19]. This will trigger a change in the microclimate of these urban centers
or cities.

All models used in this research varied in their projected performance for both tem-
perature and precipitation. The results generated for maximum and minimum temperature
using six climate models showed a consistent increase from the current to late twenty-first
century over the urban centers of southwest Ethiopia. However, model-based future pro-
jection of precipitation revealed that four models’ (MOCH CLMcom, MOCH GERICS, MPI
GERICS, and NCC GERICS) results showed a decreasing trend, whereas results from two
models indicated an increasing trend, with a small increment projected by MPI CLMcom
and the highest by NCC CLMcom, respectively, under near-, mid-, and long-term periods
(Table 3).

The multi-model ensemble mean is better than using individual models for the study,
as determined by [13], who evaluated the ability of ten regional climate models (RCMs)
from CORDEX in simulating the characteristics of rainfall patterns over eastern Africa. In
their study, ref. [13] demonstrated that the multi-model ensemble means adequately simu-
late eastern Africa rainfall for the assessment of future climate projections. The result of
the precipitation projection by models used in this study is comparable with recent studies
by [93] over Africa, while the results are still associated with very large uncertainties in
precipitation response to external radiative forcing. The results further showed a decrease
in precipitation over the Ethiopian Highlands and the Horn of Africa. The mechanisms
derived after the 1980 precipitation trends in this region are still poorly understood, poten-
tially involving complex connections with ENSO and IOD in the predictability of Ethiopian
main season precipitation, as documented by [94]; shown for the Indian Ocean, by [95];
shown for the Atlantic Ocean, by [96]; and shown for the Pacific Ocean, by [84]. These find-
ings could scientifically be justifiable because the poor performance of individual CORDEX
RCMs in East Africa was well articulated by a number of studies, notably [13,47,50,97]. We
also documented results generated from similar studies in Supplementary Table S2.

The results indicate that both maximum and minimum temperatures are projected
to increase in the urban centers of southwest Ethiopia, with a consistently increasing
trend throughout the three future periods of the twenty-first century. Future monthly
maximum temperature projection using absolute changes in the multi-model ensemble
means under RCP8.5 are projected to increase in 2050, reaching about 2.9 ◦C in the 2080s.
Whereas, the monthly minimum temperature multi-model ensemble means consistently
increased throughout projections of the twenty-first century, reaching 3.2 ◦C in the 2080s
with reference to 1971–2005 (Tables S2 and S5). Thus, the monthly, seasonal, and annual
minimum temperature changes are more pronounced and intense than the maximum
temperature during three periods of the twenty-first century in urban centers of southwest
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Ethiopia. Our current findings are comparable to the report of increasing warming that
could occur by mid-century across much of Africa, reaching between 3 ◦C and 6 ◦C by
the end of the century, as documented by the [1] under RCP8.5. This is consistent with
the recent IPCC report [16] that projected global surface temperature rising by 3.3 ◦C
to 5.7 ◦C under the very-high GHG emissions scenario SSP5/RCP8.5. The findings are
also aligned with other studies made in Ethiopia, as documented in [27] and provided in
Supplementary Table S2. The findings are also comparable with most previous studies using
other coarse-resolution models for the City of Addis Ababa, including the studies made
by [98,99], which showed that there is an increasing trend for both maximum and minimum
temperature, with minimum temperature projected to increase more than the maximum
in the near-, mid-, and long-term time periods. In addition, another study conducted in
Shashamanne town in Ethiopia under the RCP8.5 scenario using multiple models projected
increasing warming of 3 ◦C and 2.5 ◦C by 2060 for minimum and maximum temperature,
respectively ([100], Table S2). A significant T-test result set at a 95% confidence interval
showed a significant increase in minimum and maximum temperatures, with two-tailed
significance (α = 0.05, p = 0.000), as indicated in Table 2.

For future monthly precipitation projection, the results of the multi-model ensemble
projected declines of 7.5%, 2%, and 2.9% in the near-term (2030), mid-term (2050), and
long-term (2080) with reference to 1971–2005. Regarding the future seasonal precipitation,
the projected multi-model ensembles under RCP8.5 relative changes indicate a decreasing
trend in summer, winter, and spring seasons. In contrast, precipitation is projected to
increase in autumn (OND), with projected increments of 52%, 52%, and 57% in the 2030s,
2050s, and 2080s, respectively (Table S5 and S2). However, a significant T-test result set at
the 95% confidence interval showed precipitation decline as an insignificant change, with
two-tailed significance (α = 0.05, p = 0.159), as indicated in Table 2.

Our current findings showing declining precipitation are different from a study made
using other coarse-resolution models in the City of Addis Ababa, as documented by [99].
However, a similar study conducted for Shashamanne under the higher radiative forcing of
RCP8.5 indicated that precipitation is projected to decrease in the wettest months by up to
10%, but in the dry months, the median estimated increment is 10–20% by 2060, likely either
increasing or decreasing using KNMI climate explore, as documented by [100]. Our find-
ings, however, disagreed with previous global and regional climate projections [101–103].
Previous studies found that in the twenty-first century, mean precipitation is projected to
increase over the Horn of Africa from September to May but decrease over the Ethiopian
Highlands in March, April, and May (MAM). A decline in precipitation for MAM over
Ethiopia is highly agreeable with our findings. It is argued that the model’s uncertainty of
regional climate projections was due to the fact that the Ethiopian climate is highly diverse
and the regional climate is influenced by the diverse topographic characteristics as well as
the monsoon and Great Rift Valley systems, as highlighted by [45] and also summarized in
Table S2 [81,99]

The projected land-use changes have been found to have a strong effect on future
minimum temperature in Sydney, Australia, adding to the warming caused by GHGs
during winter and spring, which doubly increased due to global warming alone by 2050,
showing urbanization will impact minimum temperature, which can thus be seen as a local
climate change signal [104]. The projected urban climate for the 2070s in August revealed
that using the simulations of the Weather Research and Forecast (WRF) model with a 3-km
grid increment coupled to an urban canopy model (UCM), the ensemble average results
estimated the heat stress for future residents of Tokyo, Osaka, and Nagoya [105]. The
projected monthly average August temperatures in the 2070s are about 2.3 ◦C higher than
in the 2000s at the three urban areas and comparable to those in the record-breaking hot
summer of 2010, with uncomfortable sleeping nights in the 2070s worsening in Tokyo with
urban heat island intensity, which also happened in Osaka and Nagoya [105]. The finding
is in agreement with the minimum temperature increase, which will be more pronounced



Climate 2022, 10, 158 20 of 27

towards the end of the century, having health impacts in urban centers, even if the level of
urban growth differs.

The high-resolution regional climate model of the urban canopy model of the Tokyo
metropolitan area showed that future projections for the 2070s increases between 2 ◦C
and 4 ◦C in daytime mean Wet Bulb Global Temperature (WBGT) relative to the current
climate, and the urban scenario impacts range from −0.4 ◦C to +0.4 ◦C [90]. These findings
indicate that urban land surface changes may improve or worsen the local moist thermal
environment and that metropolitan-scale urban planning is inefficient in mitigating heat-
related health risks for mature cities such as Tokyo [106], cities in Bangladesh, and other
countries [21–26]. In addition, one study, assessing the future heat stress under six future
global warming (∆TGW) scenarios of RCP8.5 in an Asian megacity (Osaka), estimated
using a regional climate model with an urban canopy, showed that an urban “heat-stress
island” is projected in all six scenarios: ∆TGW = +0.5 ◦C to +3.0 ◦C in 0.5 ◦C steps. Under
∆TGW = +3.0 ◦C conditions, people outdoors experience “extreme” heat stress, which
could result in dangerously high increases in a human body’s core temperature [107]. The
warming in the urban core due to buildings and reduced green vegetation is similar to
urban heat increase, although findings among highly developed mega city with different
spatial and urban growth statuses may differ.

A study using medium-range resolution (20-km grid spacing) ensemble-based simula-
tions on the urban expansion of climate effects in California in 2100, depicted that summer
time (June–August (JJA)) warming due to urban expansion of 18–28 ◦C is greater relative
to any other season [108]. The additional high-resolution (2-km grid spacing) experiments
conducted by a coarser scale result also showed that urban-induced warming (local max-
imum warming exceeds 48 ◦C) is simulated, which can be completely offset by a range
of adaptation strategies: green roofs (highly transpiring), cool roofs (highly reflective),
and hybrid roofs (with combined biophysical properties of green and cool roofs) [92]. The
findings are similar than temperature increase projections but will differ among population
densities and adaptation climate actions due to the adaptive capacity of cities.

The future urban climates study conducted for greater Ho Chi Minh (HCM) city, a
fast-growing megacity in Southeast Asia, used the WRF model with current and future
(master plan-based) land-use data with a horizontal resolution of 1 km. These results show
the rural areas spatially averaged monthly mean air temperature in April are projected
to increase by 1.2 ◦C and 1.7 ◦C by the 2050s under the RCP4.5 and RCP8.5 scenarios,
respectively. The newly urbanized areas account for an additional warming of 0.5 ◦C under
both scenarios, up to 20–30% regarding global warming, but an additional warming by
urbanization can exceed 0.8 ◦C at night. The impact of future urbanization (0.5 ◦C) is
comparable to the difference in the temperature increases achieved under the different
RCP scenarios, which also supplement studies of the future urban climates of fast-growing
cities in developing countries [93]. The models used differ with the degree of resolution
employed by the studies.

A new parameterization of urban areas using Community Climate System Model
version 4 (CCSM4) allow for simulation of temperature in cities. The results showed
that both the daytime and nocturnal UHIs decrease in RCP8.5, but the decrease in the
daytime UHI is larger and more uniform across regions and seasons than in the nocturnal
UHI. This was caused by changes in evaporation that warm the rural surface more than
the urban one, with significant spatial and seasonal variability in the response of the
nocturnal UHI, caused mainly by changes in the rural surface [109]. Climate change
increases the number of warm nights in urban areas substantially more than in rural
areas, which provides evidence that urban and rural areas respond differently to climate
change while the unique aspects of the urban environment should be considered when
making climate change projections, particularly since the global population is becoming
increasingly urbanized [110]. The warming of future projected night findings is similar to
the findings in urban and rural outskirts.
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Future projections from present climate data are very challenging. In the discussion
by [43], the authors argued that a wet (dry) bias in the present climate does not necessarily
imply a tendency towards wetter (drier) future precipitation characteristics, making an
attempt to select the “best-performing” RCM difficult. The result does not agree with
the finding of the projected changes conducted in Ethiopia at the national level. The
precipitation amount above the 95th percentile shows a significant increase over most parts
of Ethiopia, with longer dry and shorter rainy periods projected over northern Ethiopia, as
well as higher values in the southern region. Extreme and heavy precipitation events are
likely to be more intense, especially in the summer season (June to September) throughout
the twenty-first century [109]. The differences among the model projections, which were
also documented in previous studies, did not address the local differences and degree of
model resolution used. Unlike previous studies, our study employed higher-resolution
modeling. All urban centers of southwest Ethiopia are not affected equally across spatial
and temporal time horizons due to topographic differences, the adaptive capacity of each
town, the rate of urbanization, and population dynamism. The high population increment
in urban centers of southwest Ethiopia, as projected by [57], and the high buildings in the
central business districts (CBDs) of the study towns, compounded by urban expansion
in the periphery, would induce urban heat islands. This could exacerbate climate-related
impacts, creating warmer surface temperatures further in the future. The findings are in
good agreement with other studies conducted in Addis Ababa [101,111,112] and other
developing countries’ urban centers [21–26]. Considering future climate changes, the
inclusion of future sustainable urban development is crucial and mandatory to make
livable urban centers or cities cope with inevitable climate change through increasing
adaptive capacity.

5. Conclusions

Climate change trends and future projection of temperatures and precipitation sce-
narios were examined for three future periods—near- (2030), mid- (2050), and long-term
(2080)—using CORDEX Africa, with a high resolution of 0.22◦ under RCP8.5 for southwest
urban areas in Ethiopia. The statistical test applied for bias correction in this study found
a good correlation between the projected and observed results. Our findings for annual
and decadal linear trend changes in maximum and minimum temperatures showed an
increasing trend as compared to a declining but statistically insignificant trend in precipita-
tion. The multimodal ensemble mean outperforms the results that were generated from
individual models.

Future absolute change in projected monthly maximum temperature multi-model
ensemble means under RCP8.5 is slightly decreased in the near-term (2030), followed
by an increase in the mid-term (2050), and reaching 2.9 ◦C in the long-term (2080). In
contrast, absolute change in projected monthly minimum temperature is likely to increase
throughout the twenty-first century, reaching 3.2 ◦C by the 2080s. The overall seasonal multi-
model ensemble mean absolute change results showed that the maximum temperature is
projected to increase during the second half of the twenty-first century, with the highest
warming occurring in winter, followed by spring, summer, and autumn, respectively.
Future minimum temperature projection results revealed that there is a consistent increase
in minimum temperature for all seasons. Winter, spring, and summer showed similar
projections of a 3 ◦C rise in the 2080s with reference to 1971–2005.

Future relative change in monthly projected precipitation, as generated from the
multi-model ensemble, showed that it is projected to decrease in the twenty-first century
with reference to 1971–2005. Regarding the future seasonal precipitation, the analyzed
multi-model ensembles under RCP8.5 relative changes indicate a decreasing trend during
the three seasons of winter, spring, and summer, whereas there will be an increase in
precipitation in autumn (October to December season), which is likely to enhance the
occurrence of extreme precipitation events.
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Generally, all models agree consistently on monthly, seasonal, and annual bases with
maximum and minimum temperature increase under RCP8.5, with slight variation spatially
and temporally. Projected increases in minimum temperatures are more pronounced
and intense than the maximum temperature over urban centers of southwest Ethiopia,
imposing high impacts on urban residents. From our findings, we conclude that a high
warming tendency is expected towards the end of twenty-first century. Projected monthly
precipitation amounts also showed a decreasing trend, with a small percentage change
during summer, winter, and spring seasons, whereas the precipitation increases during
autumn. With regard to precipitation trend, even if it is difficult to conclude the future
direction of change since the majority of the models agree to project a decreasing trend, few
models suggest an increasing trend with daily extreme events, which are likely to occur in
the urban centers of southwest Ethiopia. Therefore, the urban planner and city-planning
authority should monitor the rate and dimension of urban expansion to ensure sustainable
development. Moreover, policymakers could consider urban growth factors under different
land-cover scenarios in order to alleviate the negative consequence caused by unplanned
and haphazard urban development. In fact, this needs further study to monitor the impacts
of urban expansion on urban climate, as well as to take effective mitigation measures.

Unplanned urbanization in the study urban centers exacerbate the already massive
land-use/land-cover change to built-up area. Whereas, other agricultural land, vegeta-
tion, and wetlands decrease, with variation in the spatio-temporal range of change. This
leads to a likelihood of an increase in land surface temperature and urban heat island
effect in the urban core, where dense, congested high-rise buildings exist. These changes
could escalate future changing of the micro climate of the study urban centers. Our study
results enhance availability of baseline information for the use of CORDEX Africa experi-
ment data simulation for future climate projection studies at local, national, and regional
scales. Moreover, our quantitative analyses and the synthesized outputs, as generated from
CORDEX, can be used for low, medium, and large cities’ climate projection studies, as well
as to alert the need for controlling urban growth patterns. The results also provide urban
planners, urban actors, and decision makers with knowledge to ensure sustainable urban
development that would enable to curb the future inevitable climate change by proper
implementation of adaptation and mitigation climate actions ahead of time in urban centers
of southwest Ethiopia.

Our findings also showed an increasing trend in projected temperature in contrast
to ambiguity in the precipitation projection in the remaining decades of the twenty-first
century. Based on our present findings, we recommend that it is time to implement climate-
resilient urban planning that promotes adaptation and mitigation interventions in urban
centers of southwest Ethiopia. From a practical view point, proper use of downscaled
climatic data for environmental and climate action planning is generally constrained
because of the lack of high-resolution observational and model-based simulated data
of climate modelling centers and computational facilities; thus, such data need to be
established in Ethiopia. Further advanced studies are recommended to generate more
reliable and accessible future climate change projections over the study area.
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