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Abstract: When using the Focused Information Criterion (FIC) for assessing and ranking candidate
models with respect to how well they do for a given estimation task, it is customary to produce
a so-called FIC plot. This plot has the different point estimates along the y-axis and the root-FIC
scores on the x-axis, these being the estimated root-mean-square scores. In this paper we address
the estimation uncertainty involved in each of the points of such a FIC plot. This needs careful
assessment of each of the estimators from the candidate models, taking also modelling bias into
account, along with the relative precision of the associated estimated mean squared error quantities.
We use confidence distributions for these tasks. This leads to fruitful CD–FIC plots, helping the
statistician to judge to what extent the seemingly best models really are better than other models,
etc. These efforts also lead to two further developments. The first is a new tool for model selection,
which we call the quantile-FIC, which helps overcome certain difficulties associated with the usual
FIC procedures, related to somewhat arbitrary schemes for handling estimated squared biases.
A particular case is the median-FIC. The second development is to form model averaged estimators
with weights determined by the relative sizes of the median- and quantile-FIC scores.

Keywords: confidence distributions; FIC plots; focused information criteria; median-FIC and
quantile-FIC; model averaging; risk functions

1. Introduction and Summary

Mrs. Jones is pregnant. She is white, 25 years old, a smoker, and of weight 60 kg before pregnancy.
What is the chance that her baby-to-come will have birthweight less than 2.50 kg (which would mean
a case of neonatal medical worry)? Figure 1 gives a Focused Information Criterion (FIC) plot, using
the Focused Information Criterion to display and rank in this case 23 = 8 estimates of this probability,
computed via eight logistic regression models, inside the class

p = P{y = 1 | x1, x2, z1, z2, z3} =
exp(β0 + β1x1 + β2x2 + γ1z1 + γ2z2 + γ3z3)

1 + exp(β0 + β1x1 + β2x2 + γ1z1 + γ2z2 + γ3z3)
,

where x1 is age, x2 is weight before pregnancy, z1 is an indicator for being a smoker, whereas z2

and z3 are indicators for belonging to certain ethnic groups. The dataset in question comprises
189 mothers and babies, with these five covariates having been recorded (along with yet others;
see Claeskens and Hjort (2008, chp. 2) for further discussion). The eight models correspond to pushing
the ‘open’ covariates z1, z2, z3 in and out of the logistic regression structure, while x1, x2 are ‘protected’
covariates. The plot shows the point estimates p̂ for the 8 different submodels on the vertical axis
and root-FIC scores on the horizontal axis. These are estimated risks, i.e., estimates of root-mean-
squared-errors. Crucially, the FIC scores do not merely assess the standard deviation of estimators,
but also take the potential biases into account, from using smaller models.

Using the FIC ranking, as summarised both in the FIC table given in Table 1 and the FIC plot,
therefore, we learn that submodels 000 and 010 are the best (where, e.g., ‘010’ indicates the model
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with z2 on board but without z1 and z3, etc.), associated with point estimates 0.282 and 0.259, whereas
submodels 100 and 011 appear to be the worst, with rather less precise point estimates 0.368 and
0.226. Again, ‘best’ and ‘worst’ means as gauged by precision of these 8 estimates of the same quantity.
Importantly, the FIC machinery, as briefly explained here, with more details in later sections, can be
used for each new woman, with different ‘best models’ for different strata of women, and it may be
used for handling different and even complicated focus parameters. In particular, if Mrs. Jones had not
been a smoker, so that her z1 = 1 would rather have been a z1 = 0, we may re-run our programmes
to produce a FIC table and a FIC plot for her, and learn that the submodel ranking is very different.
Then 111 and 101 are the best and 001 and 000 the worst; also, the p̂ estimates of her having a baby
with low birthweight are significantly smaller.
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Figure 1. Focused Information Criterion (FIC) plot for the 23 = 8 models for estimating the probability
of having a child with birthweight below 2.5 kg, for Mrs. Jones (white, age 25, 60 kg, smoker). Here, ‘101’
is the model where z1, z3 in in and z2 is out, etc.

Table 1. FIC table for Mrs. Jones: there are 23 = 8 submodels, with absence-presence of z1, z2, z3

indicated with 0 and 1 in column 2, followed by estimates p̂, estimated standard deviation, estimated
absolute bias, the root-FIC score, which is also the Pythagorean combination of the stdev and the bias,
and the model rank. The numbers are computed with formulae of Section 2.

in-or-out p̂ Stdev Bias Root-FIC Rank

1 0 0 0 0.282 0.039 0.000 0.039 1
2 1 0 0 0.368 0.055 0.061 0.082 7
3 0 1 0 0.259 0.042 0.000 0.042 2
4 0 0 1 0.267 0.048 0.000 0.048 3
5 1 1 0 0.342 0.057 0.037 0.068 5
6 1 0 1 0.351 0.056 0.045 0.072 6
7 0 1 1 0.226 0.054 0.063 0.083 8
8 1 1 1 0.303 0.060 0.000 0.060 4

The FIC apparatus, initiated and developed in Claeskens and Hjort (2003), Hjort and Claeskens (2003a),
and Claeskens and Hjort (2008), has led to quite a rich literature; see comments at the end of this section.
FIC analyses have different forms of output, qua FIC tables (listing the best candidate models, along with
estimates and root-FIC scores, perhaps supplemented with more information) and FIC plots. The general
setup involves a selected quantity of particular interest, say µ, called the focus parameter, and various
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candidate models, say S, leading to a collection of estimators µ̂S. These carry root-mean-squared-errors
rmseS, and the root-FIC scores are estimates of these root-risks. The FIC plot displays

(FIC1/2
S , µ̂S) = (m̂se1/2

S , µ̂S) for all candidate models S, (1)

as with Figure 1.
The present paper concerns going beyond such FIC plots, investigating the precision of each

displayed point. The point estimates µ̂S carry uncertainty, as do the FIC scores. A more elaborate
version of the FIC plot can therefore display the uncertainty involved, in both the vertical and
horizontal directions. This aids the statistician in seeing whether good models are ‘clear winners’ or
not, and whether the ostensibly best estimates are genuinely more accurate than others. In various
concrete examples one also observes that a few candidate models appear to be better than the rest.
The methodology of our paper makes it possible to assess to which extent the implied differences in
FIC scores are significant. Such insights lead also to model averaging strategies with weights given
precisely to the best models for the given estimation purpose.

Our paper proceeds as follows. In Section 2 we give the required mathematical background,
involving both the basic notation necessary and the key theorems about joint convergence of classes of
candidate model based estimators. These results also drive the development of confidence distributions
for FIC scores, in Section 3. These in turn also inspire a new variant for the FIC, which we call the
quantile-FIC, where each root mean squared error quantity (rmse) is naturally estimated using an
appropriate quantile in the associated confidence distribution. A special case is the median-FIC; details
are given in Section 4. Having established such results, Section 5 then involves constructions of
median-FIC driven weights for model averaging operations, where we also give a precise large-sample
description of the implied model averaging estimators. In Section 6 we address performance and
comparison issues, studying relevant aspects of how well different strategies behave, from post-FIC to
model averaging estimators. It is in particular seen that the post-median-FIC estimators have certain
advantages over post-AIC schemes. More information concerning performance is brought forward
in Section 7, via simulation experiments, in four different setups. To display how our new CD–FIC
based methods work in a setup with considerably more candidate models at play than with the 23 = 8
models used for Mrs. Jones above, a multi-regression Poisson setup is worked through in Section 8,
involving abundance of bird species for 73 British and Irish islands. Then we sum up various salient
points in our discussion Section 9, and offer a list of concluding remarks, some pointing to further
research, in Section 10. In a separate Appendix, Section 11, we give technical details and formulae for
required quantities and ingredients for candidate models inside a general regression framework.

We end our introduction section by commenting briefly on other relevant work, first on
the FIC front and then on model averaging. Setting up FIC schemes involves finding good
approximations to mse quantities, and then constructing estimators for these. This pans out
differently in different classes of models, and sometimes requires lengthy separate efforts, depending
also on the type of focus parameter. Claeskens and Hjort (2008) cover a broad range of general
i.i.d. and regression models, using local neighbourhoods methodology. Later extensions include
Claeskens et al. (2007) for time series models, Gueuning and Claeskens (2018) for high-dimensional
setups, Hjort and Claeskens (2006) and Hjort (2008) for semiparametric and nonparametric survival
regression models, Zhang and Liang (2011) for generalised additive models, Zhang et al. (2012) for
tobit models, Ko et al. (2019) for copulae with two-stage estimation methods. Recent methodological
extensions and advances also include setups centred on a fixed wide model, with large-sample
approximations not depending on the local asymptotics methods; see Claeskens et al. (2019);
Jullum and Hjort (2017, 2019), along with Cunen et al. (2020) for linear mixed models. There is
a growing list of application domains where FIC is finding practical and context-relevant use, such
as finance and economics (Behl et al. 2012; Brownlees and Gallo 2008), peace research and political
science (Cunen et al. 2020), sociology (Zhang et al. 2012), marine science (Hermansen et al. 2016),
etc. There is similarly a rapidly expanding literature on frequentist model averaging procedures,
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as partly contrasted with Bayesian versions; perspectives for the latter are summarised in Hoeting
et al. (1999). A broad framework for frequentist averaging methods is developed in Claeskens and
Hjort (2008); Hjort and Claeskens (2003a), including precise large-sample descriptions for how such
schemes actually perform. Wang et al. (2009) give a broad review. In econometrics, Hansen (2007)
studies model averaging for least squares procedures, and Magnus et al. (2009) compare frequentist
and Bayesian averaging methods. Optimal weights are studied in Liang et al. (2011). The book
chapter Chan et al. (2020) discusses optimal averaging schemes for forecasting, touching also the
phenomenon that simpler weighting methods sometimes perform better than those involving extra
layers of estimation to get closer to envisaged optimal weights.

2. Basic Setup and the FIC

In this section we give the basic theoretical background and main results behind the FIC plot (1).
It is convenient to describe the i.i.d. setup first, and to describe a canonical limit experiment with the
required basic quantities. In Section 2.2 we then briefly explain how the apparatus can be extended also
to general regression models, where it also turns out that the limit experiment is of exactly the same
type, only with somewhat more complex mechanisms lying behind the key ingredients. Technical
details and explicit formulae for such general regression models, valid also beyond the realm of say
generalised linear models, are provided in Section 11. The key results described in this section are
behind the FIC plots and the FIC tables, such as Figure 1 and Table 1, and will also be used in later
sections to derive confidence distributions for risks.

2.1. The I.I.D. Setup

Suppose we have independent and identically distributed observations, say y1, . . . , yn.
A collection of candidate models is examined, ranging from a well-defined narrow model, parametrised
as fnarr(y, θ) with θ = (θ1, . . . , θp) of dimension p, to a wide model, parametrised as f (y, θ, γ),
with certain extra parameters γ = (γ1, . . . , γq), signifying model extensions in different directions.
The narrow model is assumed to be an inner point in the wider model, in the sense of fnarr(y, θ) being
equal to f (y, θ, γ0) for an inner parameter point γ0. There is consequently a total of 2q candidate models,
corresponding to setting γj parameters equal to or not equal to their null values γ0,j, for j = 1, . . . , q.
In the regression framework studied below this would typically correspond to taking covariates in
and out of the wide model.

Other terms could be considered here, like ‘full model’ for the wide model and ‘null model’ for
the narrow model, but we choose to stick to the ‘wide’ and ‘narrow’ labels as these have been used
rather consistently in the FIC literature, from Claeskens and Hjort (2003) onwards. Furthermore,
the alternative ‘null model’ term would risk being associated with a suggestion that the point of the
setup is to test it, against various alternatives, but this is typically not the aim of the model selection
and model averaging framework.

Assume now that a parameter µ is to be estimated, with a clear statistical interpretation across
candidate models. It may in particular be expressed as µ = µ(θ, γ) in the wide model. We may
then consider 2q different candidate estimators, say µ̂S based on the submodel S, with S a subset of
{1, . . . , q}, corresponding to the model having γj as a parameter in the model when j ∈ S but with γj
set to their null values γ0,j for j /∈ S. Carrying out maximum likelihood (ML) estimation in model S
means maximising the log-likelihood function `n,S(θ, γS) = ∑n

i=1 log f (yi, θ, γS, γ0,Sc), with γS notation
for the collection of γj with j ∈ S, and similarly for γ0,Sc with the complement set. With (θ̂S, γ̂S) the
ML estimators for submodel S, this leads to a collection of candidate estimators

µ̂S = µ(θ̂S, γ̂S, γ0,Sc) for S ∈ {1, . . . , q}.

In particular we have µ̂narr = µ(θ̂narr, γ0) and µ̂wide = µ(θ̂wide, γ̂wide), with ML estimation carried out
in respectively the narrow p-dimensional and the wide (p + q)-dimensional models.
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To understand the behaviour of all these candidate estimators, and to develop theory and methods
for comparing them, we now present a ‘master theorem’, from Hjort and Claeskens (2003a), Claeskens
and Hjort (2008, chp. 5, 6). We work inside a system of local neighbourhoods, where the real
data-generating mechanism underlying our observations is

ftrue(y) = f (y, θ0, γ0 + δ/
√

n), (2)

with some unknown δ =
√

n(γ− γ0), seen as a local model extension parameter; in particular, the true
focus parameter becomes µtrue = µ(θ0, γ0 + δ/

√
n). A few key quantities now need proper definition.

We start with the Fisher information matrix J with inverse J−1, defined for the wide model with p + q
parameters, but computed at the narrow model, i.e., at (θ0, γ0). We need to involve their blocks, so

J =

(
J00 J01

J10 J11

)
and J−1 =

(
J00 J01

J10 J11

)
, (3)

with J00 and J00 of size p× p, etc. The q× q matrix

Q = J11 = (J11 − J10 J−1
00 J01)

−1

serves a vital role. So do also

ω = J10 J−1
00

∂µ
∂θ −

∂µ
∂γ and τ2

0 = ( ∂µ
∂θ )

t J−1
00

∂µ
∂θ , (4)

with partial derivatives evaluated at the narrow model, and with these quantities varying from focus
parameter to focus parameter. Finally we need to introduce the q× q matrices

GS = πt
SQSπSQ−1, with QS = (πSQ−1πt

S)
−1.

Here, πS is the |S| × q projection matrix of zeroes and ones, such that πSu = uS, taking u = (u1, . . . , uq)t

to its subset of those uj with j ∈ S. We have Gnarr = 0 and Gwide = I, the q× q identity matrix, and note
that Tr(GS) = |S|, the number of elements in S.

The master theorems driving much of the FIC and related theory are now as follows. First,

Dn =
√

n(γ̂wide − γ0)→d D ∼ Nq(δ, Q), (5)

and, secondly,

√
n(µ̂S − µtrue)→d ΛS = Λ0 + ωt(δ− GSD) for each S ∈ {1, . . . , q}. (6)

Here, Λ0 ∼ N(0, τ2
0 ), for the τ0 given above, and Λ0 and D are independent. This implies that the limit

in (6) is normal, and we can read off its bias ωt(I − GS)δ and variance τ2
0 + ωtGSQGt

Sω. The risk or
mean squared error for this limit distribution is hence

mseS = E Λ2
S = τ2

0 + ωtGSQGt
Sω + {ωt(I − GS)δ}2 = varS + bsqS, (7)

say, in the usual fashion a sum of a variance part varS and a squared bias part bsqS. With a sparse S,
there are many zeros in GS, leading to small variance but potentially a larger bias; with a bigger subset
S, GS becomes closer to the identity matrix I, yielding bigger variance but a smaller bias.

The essence of the Focused Information Criterion (FIC), developed in Claeskens and Hjort
(2003, 2008) and later extended in various directions and to more general contexts and model classes,
is to estimate each mseS from the data. This leads to a full ranking of all candidate models, from the
best (smallest estimate of risk) to the worst (largest estimates of risk). Briefly, we start by putting
up FIC formulae for the limit experiment, where all quantities τ0, Q, GS, ω are known (thanks to
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consistent estimators for these, see below), but where δ is not, as we can only rely on the information
D ∼ Nq(δ, Q) from (5). Noting that E DDt = δδt + Q, which also means that using (ctD)2 to estimate
a squared linear combination parameter (ctδ)2 means overshooting with expected amount ctQc, there
are actually two natural versions here, namely

FICu = varS + b̂sqS = τ2
0 + ωtGSQGt

Sω + ωt(I − GS)(DDt −Q)(I − GS)
tω,

FICt = varS + b̃sqS = τ2
0 + ωtGSQGt

Sω + max{ωt(I − GS)(DDt −Q)(I − GS)
tω, 0}.

(8)

These correspond to the natural unbiased estimator and its truncated-to-zero version for the
squared bias. That the first estimator for squared bias is negative means that the event

{ωt(I − GS)D}2 < ωt(I − GS)Q(I − GS)
tω,

is taking place, which happens quite frequently if δ is close to zero, in fact with probability up to
P{χ2

1 ≤ 1} = 0.683, if δ = 0, but is growing less likely when δ is moving away from zero.
For actual data one plugs in consistent estimators τ̂0, Q̂, ĜS, ω̂ for the relevant quantities, to be

given below, and Dn of (5) for δ. This leads to FIC scores

FICu = τ̂2
0 + ω̂tĜSQ̂Ĝt

Sω̂ + {ω̂t(I − ĜS)Dn}2 − ω̂t(I − ĜS)Q̂(I − ĜS)
tω̂,

FICt = τ̂2
0 + ω̂tĜSQ̂Ĝt

Sω̂ + max
[
{ω̂t(I − ĜS)Dn}2 − ω̂t(I − ĜS)Q̂(I − ĜS)

tω̂, 0
]
.

(9)

Note from (6) that these are estimators of the limiting risk, where µ̂S − µtrue has been multiplied
with

√
n. Most often it is therefore better, regarding reading of tables and interpretation of FIC plots,

to transform the above scores to say

rootFICu = (FICu)1/2/
√

n and rootFICt = (FICt)1/2/
√

n. (10)

We consider the truncated version a good default choice, since it avoids having negative estimates
of squared biases, and this choice has indeed been used for Mrs. Jones and her FIC plot in Figure 1 and
FIC table in Table 1. The consistent estimators in question are computed as follows. From ML analysis
in the wide model, maximising `n,wide(θ, γ), we compute the normalised Hessian matrix at this ML
position, say α̂wide = (θ̂wide, γ̂wide),

Ĵwide = −n−1 ∂2`n,wide(α̂wide)

∂α ∂αt ,

of size (p + q) × (p + q). This is a consistent estimator for J of (3) under the assumed sequence
of data-generating mechanisms (2), under mild conditions; see Claeskens and Hjort (2008, chp. 6).
Inverting this matrix and reading off its lower right block leads to Q̂ = Ĵ11, consistent for Q. Finally
ω̂ and τ̂0 are defined by plugging in relevant blocks of Ĵwide in (4), along with partial derivatives of
µ(θ, γ), computed at the ML position (θ̂wide, γ̂wide). There are in fact a few alternatives here, regarding
estimation of J and ω, but these do not affect the basic asymptotics; see Claeskens and Hjort (2008,
chp. 6, 7) for further discussion.

For simplicity we have chosen not to overburden the notation here, with one name for FIC in the
limit experiment, as in (8), and a different one for FIC with real data, as in (9); it is, in each case, clear
from the context what is what.

2.2. Extension to Regression Models

As demonstrated in (Claeskens and Hjort 2003, 2008) the theory briefly reviewed above for the
i.i.d. setup can with the required extra effort be lifted to the framework of regression models. Data are
then of the form (xi, yi), with xi a covariate vector and yi the response. The natural setup becomes
that of a wide regression model with densities f (yi | xi, θ, γ), featuring a narrow model parameter
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θ of size p and an extra γ parameter of size q, and where a null value γ = γ0 yields the narrow
model. Again using γ = γ0 + δ/

√
n as the natural framework of local asymptotics, there are under

mild Lindeberg conditions clear limiting normality results for all submodel based estimators, etc.,
parallelling those of (5)–(7), though involving somewhat more complex notation than for the i.i.d. case
when it comes to key quantities Q, ω, GS. Technical details and formulae are provided in Section 11.

It is however simplest to develop our extended CD–FIC theory for the i.i.d. case, which we
make our task below. For each method and result reached below there is a natural extension to the
case of regression models. This is illustrated in Section 8 for a class of Poisson regression models
applied to a study of bird species abundance. Furthermore, our introductory illustration, involving
low birthweights, is an application of the general methodology to logistic regression models.

3. Confidence Distributions for FIC Scores

The FIC scores of (8) are estimators of the mseS quantities (7), defined in the limit experiment
where D ∼ Nq(δ, Q) and the other key quantities are known. Similarly, the rootFIC scores of (10) are
estimating the genuine rmseS, the root-mse for the estimators µ̂S. However, the FIC scores carry their
own uncertainty, which we address in this section through constructing confidence distributions for
the estimated quantities.

As in Section 2 we start working out matters in the clear limit experiment, and then insert
consistent estimators when engaged with real data. A brief prelude to explain what will take place is as
follows: Suppose a single X is observed from a N(η, 1), and that inference is needed for the parameter
φ = η2. Since X2 is a noncentral chi-squared, with 1 degree of freedom and noncentrality parameter
η2, which we write as X2 ∼ χ2

1(η
2), we can build the function

C(φ) = C(φ, xobs) = Pη{X2 ≥ x2
obs} = 1− Γ1(x2

obs, φ),

with Γ1(·, φ) the cumulative distribution function for the χ2
1(φ). Here, xobs is the observed value

of the random X. The C(φ, xobs) is a cumulative distribution function in φ, for the observed xobs,
with the property that for each η, when X comes from the data model N(η, 1), then C(φ, X) has the
uniform distribution:

Pη{C(φ, X) ≤ α} = α for each α.

In other words, C(φ, x) defines an exact confidence distribution (CD), see Hjort and Schweder
(2018); Schweder and Hjort (2016), and confidence intervals can be read off from {φ : C(φ, xobs) ≤ α}.
Note that this CD has a pointmass at zero, C(0, xobs) = 1− Γ1(x2

obs), involving the standard chi-squared
cumulative Γ1(·) = Γ1(·, 0). Thus confidence intervals for φ = η2 could very well start at zero. This
CD is the optimal one, in this situation, cf. Schweder and Hjort (2016, chp. 6).

Going back to the mseS of (7), write

mseS = τ2
0 + ωtGSQGt

Sω + {ωt(I − GS)δ}2 = τ2
S + σ2

S

{ωt(I − GS)δ

σS

}2
,

with

τ2
S = τ2

0 + ωtGSQGt
Sω and σ2

S = ωt(I − GS)Q(I − GS)
tω.

Here, τ2
S is the limiting variance of

√
nµ̂S. It is smaller with fewer elements in S, and becomes

larger with more elements. Furthermore, σ2
S is the variance of ωt(I − GS)D, i.e., of the estimate of

the bias ωt(I − GS)δ. Write for clarity XS = ωt(I − GS)D/σS, which has a N(ηS, 1) distribution,
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with ηS = ωt(I − GS)δ/σS. Since quantities τ0, ω, Q, GS are known, in the limit experiment, the
arguments above lead to the CD

CS(mseS) = Pδ{τ2
S + σ2

SX2
S ≥ τ2

S + σ2
SX2

S,obs}

= 1− Γ1

({ωt(I − GS)Dobs}2

σ2
S

,
mseS − τ2

S
σ2

S

)
for mseS ≥ τ2

S .
(11)

It starts at position τ2
S , the minimal possible value for mseS, with pointmass there of size CS(τ

2
S) =

1− Γ1({ωt(I − GS)Dobs/σS}2).
The narrow model, with S = ∅ and Gnarr = 0, has the smallest τS, namely τ0, but also the largest

σS, with

Cnarr(msenarr) = 1− Γ1

( (ωtDobs)
2

ωtQω
,

msenarr − τ2
0

ωtQω

)
for msenarr ≥ τ2

0 .

On the other side of the spectrum of candidate models, the widest model has Gwide = I, the msewide
is the constant τ2

0 + ωtQω with no additional uncertainty, in this framework of the limit experiment,
and the Cwide(msewide) is simply a full pointmass 1 at that position.

For a real dataset, we estimate the required quantities consistently, as per Section 2, and with
Dn =

√
n(γ̂wide − γ0) of (5) for D. Translating and transforming also to the real root-mse scale of

ρS = rmseS/
√

n, for µ̂S − µtrue,

we reach the data-based CD

C∗S(ρS) = 1− Γ1

({ω̂t(I − ĜS)Dn}2

σ̂2
S

,
nρ2

S − τ̂2
S

σ̂2
S

)
for ρS ≥ τ̂S/

√
n. (12)

Here, τ̂2
S = τ̂2

0 + ω̂tĜSQ̂Ĝt
Sω̂ and σ̂2

S = ω̂t(I − ĜS)Q̂(I − ĜS)
tω̂, and the CD starts with the pointmass

C∗S(τ̂S/
√

n) = 1 − Γ1({ω̂t(I − ĜS)Dn/σ̂S}2) at its minimal position τ̂S/
√

n. The CD C∗S(ρS) is
large-sample correct, in the sense that for any given position in the parameter space, its distribution
converges to that of the uniform as sample size increases. Thus {ρS : C∗S(ρS) ≤ α} defines a confidence
interval for ρS, with coverage converging to α.

In Figure 2 confidence distributions are displayed for the eight true root-mse values pertaining
to the eight submodels in the Mrs. Jones example of our introduction. Clearly, several of the CDs
have pointmasses well above zero. Furthermore, displayed in the figure are three root-FIC scores of
different type: the already mentioned FICu and FICt, along with the median-FIC which we come to
in the next section. The unbiased estimator FICu can for some models be considerably smaller than
FICt; indeed it has the value zero for the narrow model 000. The models with smaller FICu than FICt

have negative squared bias estimates, i.e., {ω̂t(I − ĜS)Dn}2 < σ̂2
S , then the ratio {ω̂t(I − ĜS)Dn}2/σ̂2

S
inside Γ1(·) will be smaller than 1, which leads to the corresponding CDs starting with a pointmass
higher than 0.3173 = 1− Γ1(1).

In our first exposition of the case of Mrs. Jones, Figure 1 gave eight point estimates for the
probability of her child-to-come having low birthweight, along with root-FIC scores. From the CDs in
Figure 2 we can construct an updated and statistically more informative FIC plot, namely Figure 3,
which provides accurate supplementary information regarding how precise these root-FIC scores
are. The figure provides confidence intervals for both the root-FIC scores and the focus estimates.
In particular, we see that the FIC score for the winning model 000 appears to be very precise, and we
may then select this model without many misgivings. The scores of the next best models 010 and 001
appear to be more uncertain, and their intervals indicate that their underlying true rmse values are
potentially much larger than what their root-FIC scores indicate.
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Figure 2. Confidence distributions for the true root-mse values of the eight submodels in the
Mrs. Jones example.
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Figure 3. FIC plot with associated uncertainty for the 23 = 8 models for estimating the probability
of having a child with birthweight below 2.5 kg, for Mrs. Jones (white, age 25, 60 kg, smoker).
The uncertainty is represented by 80% confidence intervals. The intervals for the root-FIC score
are read off from the confidence distributions in Figure 2. The intervals for the focus parameter are
based on the ordinary normal approximation with estimated variances taken from the variance part of
the FIC calculations (see, e.g., Table 1). Note that the points here are the truncated FIC scores, i.e., with
FICt rather than FICu of Formula (9).
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4. Median-FIC and Quantile-FIC

As briefly pointed to in Section 2, there are often two valid variations on the basic FIC, when it
comes to estimating the precise rmseS quantities, as in (8) and (9). The first uses the unbiased risk
estimator, involving the possibility of having negative estimates for squared biases, whereas these are
truncated up to zero for the second version.

Since the most natural way of assessing uncertainty of these risk estimators is via CDs, as in
Section 3, with confidence pointmasses at the smallest values, etc., a third version suggests itself,
namely the median confidence estimators. Generally, these have unbiasedness properties on the
median scale, as opposed to on the expectation scale, and are discussed in Schweder and Hjort (2016,
chp. 3, 4). Thus consider the median-FIC,

FIC0.50
S = C−1

S ( 1
2 ) = min{mseS : CS(mseS) ≥ 1

2}, (13)

defined for the limit experiment, via (11), to be viewed as an alternative to FICu
S and FICt

S of (8).
For actual data, having estimated the required background quantities and also transformed to the scale
of ρS = rmseS/

√
n, we use the CD C∗S(ρS) of (12), and infer the median-FIC score

FIC0.50
S
∗
= (C∗S)

−1( 1
2 ) = min{ρS : C∗S(ρS) ≥ 1

2}. (14)

See Figure 2 where we display the 0.50 confidence line and read off the corresponding medians.
Considering the limit experiment case (13) first, we know that the CD CS(mseS) starts out at

the minimal point τ2
S with the pointmass 1− Γ1({ωt(I − GS)Dobs/σS}2). If this is already at least 1

2 ,
which inspection shows is equivalent to rS = |ωt(I − GS)D/σS| ≤ 0.6745, then the median-FIC is
equal to τ2

S . If that ratio is above 0.6745, however, then the median-FIC is the numerical solution to

1− Γ1

({ωt(I − GS)Dobs}2

σ2
S

,
mseS − τ2

S
σ2

S

)
= 1

2 ,

viewed as an equation in mseS > τ2
S . Correspondingly, if

√
n|ω̂t(I − ĜS)(γ̂wide − γ0)/σ̂S| =

√
n
∣∣∣ ω̂t(I − ĜS)(γ̂wide − γ0)

{ω̂(I − ĜS)Q̂(I − ĜS)tω̂}1/2

∣∣∣ ≤ 0.6745,

for a given dataset, then the median-FIC for C∗S(ρS) is equal to the minimum value τ̂S/
√

n, and
otherwise one solves C∗S(ρS) =

1
2 numerically with a solution to the right of τ̂S/

√
n.

Going back to the limit experiment framework again, with rS = |ωt(I − GS)D/σS| the relative
size of the estimated bias versus its uncertainty, we have the following relations between the three
different FIC scores. (i) If rS ≤ 0.675, then FIC0.50

S = FICt
S = τ2

S > FICu
S; (ii) if 0.675 < rS < 1,

then FIC0.50
S ≥ FICt

S = τ2
S > FICu

S; (iii) if rS ≥ 1, then FIC0.50
S ≥ FICt

S = FICu
S ≥ τ2

S . In particular, it is
always the case that FIC0.50

S ≥ FICt
S ≥ FICu

S. Since the three types of FIC scores are identical for the
wide model, the three strategies can be understood as having increasing preference for selecting the
wide model. The unbiased-FIC generally gives smaller FIC scores to all models except the wide model,
so it will therefore have a smaller probability of selecting the wide. The median-FIC, on the other hand,
typically gives larger FIC scores to the competing models, and is then more likely to select the wide
model. The truncated-FIC lies somewhere between these two approaches. We will compare the three
strategies in more detail in Section 6, where each strategy is studied also in terms of the risk of the
estimator which the FIC score selects.

In addition to the median confidence estimator associated with the CDs it is also valuable to
consider the more general quantile-FIC, which is

FICq
S = C−1

S (q) = min{mseS : CS(mseS) ≥ q}, (15)
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for any given q ∈ (0, 1). We learn in Section 6 that quantile values smaller than 0.50 may be beneficial
for estimating the squared bias parts when these are small to moderate.

Similarly to our brief comments about the median-FIC score above, we may work out some
of the relations between the previously existing FIC scores and the quantile-FIC score. We may for
example study the specific choice of q = 0.25. This score, denoted by FIC0.25, will be equal to τ2

S
when rS ≤ 1.1503. For larger rS values one needs to find the numerical solution of CS(mseS) = 0.25.
Naturally, FIC0.50

S ≥ FIC0.25
S . Further, if rS ≤ 1, then FIC0.25

S = FICt
S > FICu

S, but if rS > 1, then
FICt

S = FICu
S ≥ FIC0.25

S . The lower-quartile-FIC will thus often be smaller than the previously existing
FIC scores, as opposed to the median-FIC which will always be larger or equal, as we saw above. Since
all the FIC scores are identical for the wide model, this entails that FIC0.25

S will exhibit a preference for
selecting smaller models. We will come back to these insights in the discussion section.

5. Model Averaging

Our FIC investigations above also invite new and focused model averaging schemes, where
the weights attached to the different candidate models are allowed to depend on the specific focus
parameter under consideration. Consider model averaging estimators of the general form

µ̂∗ = ∑
S

vn(S |Dn)µ̂S, (16)

with weights depending on Dn =
√

n(γ̂wide − γ0) of (5), assumed to sum to 1, and with limits
vn(S |Dn)→d v(S |D). Coupling Dn →d D with

√
n(µ̂S − µtrue)→d ΛS = Λ0 + ωt(δ− GSD) for each S ∈ {1, . . . , q}

of (6), and utilising the joint limit distribution for the 2q + 1 variables involved, a master theorem is
reached in Claeskens and Hjort (2008, chp. 7) of the form

√
n(µ̂∗ − µtrue)→d Λ0 + ωt{δ− δ̂(D)}, where δ̂(D) = ∑

S
v(S |D)GSD. (17)

This result is generalised to yet larger classes of model averaging strategies, including bagging
procedures, in Hjort (2014).

In the present context, a natural averaging estimator is as above, with weights of the form

vn(S |D) = exp(−λ FIC0.50
S )

/
∑
S′

exp(−λ FIC0.50
S′ ). (18)

The master theorem applies, which means we can read off the accurate limit distribution for the
median-FIC based model averaging scheme in question. We may also use different tuning parameters
for different models, i.e., with weights proportional to exp(−λS FIC0.50

S ), with appropriately selected
λS. A general venue is to use the CDs for each model in order to set such model-specific λS values.
One possibility is to evaluate all the CDs at the estimated rmse value of the widest model and then let

λS = 1/C∗S(FIC1/2
wide/

√
n) = 1/C∗S(r̂msewide), (19)

see (12). For the wide model the C∗wide(·) is a unit point mass at the position r̂msewide, and we take
λwide = 1, but for the other models the λS will have values above 1; see Figure 2. The intuition is that
dividing the FIC score with the confidence, evaluated at this specific point, will give higher weights
to models where the FIC scores are more certain. This is the method we have employed for Figure 4,
for the model averaging scheme there denoted ‘CD–FIC weights’.

There are clearly several other model averaging schemes that may be considered based on the
CDs for the FIC scores. For example, one may wish to use only models which have a high probability
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of having a rmse lower than a certain threshold, and then use a similar weighting scheme as above
among the models with scores falling below this threshold. Again our master theorem (17) applies,
with a precise description of the large-sample distributions of the ensuing model averaging estimators.
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Figure 4. Densities for limit distributions of
√

n(µ̂∗ − µtrue), for various choices of post-selection and
model averaging µ̂∗.

In Figure 4 we present a brief illustration of different model selection and averaging schemes.
The figure displays the limiting distribution densities of

√
n(µ̂∗ − µtrue), from (17), for five different

strategies. The densities are produced not by simulating from some given model with a high sample
size, but from the exact limit distributions, by drawing from Λ0 and D. A sharper density around zero
indicates that the strategy produces a more precise estimator than the others. The sharpness around
zero may be assessed by computing the limiting mse of each

√
n(µ̂∗ − µtrue), by simply summing the

squared draws from the limiting distributions. For this illustration we have used q = 3, with 2q = 8
submodels, Q equal to the identity matrix, τ0 equal to 0.1357, and the δ set to (0.3,−0.1, 1.5)t. The red
line represents the scheme where one always chooses the widest model. In that case the focus estimator
is unbiased and its distribution is a perfect normal (as we see). The two blue lines are model selection
strategies, where a single model is chosen, either using the classic AIC (light blue), or using our new
median-FIC score (dark blue). We see that both strategies induce some bias in the final estimator,
and that the distribution of µ̂∗ is a complicated nonlinear mixture of normals. The two green lines
are model averaging strategies. The light green one is the scheme with weights as in (18), with λ = 1.
The dark one is a strategy making use of the confidence distributions for the FIC score, with λS as
in (19).

For this particular position in the δ parameter space the two model averaging strategies produce
the most precise estimators, obtaining limiting root-mse values of about 1.26 and 1.58 for the average of
median-FIC and average with CD–FIC weights. The limiting root-mse values for the method selecting
the best estimator according to the best median-FIC score or best AIC scores are respectively 1.60 and
1.67. The strategy of always selecting the wide model has a limiting rmse of 1.74, and is thus the least
precise strategy among the five for this position in the parameter space.
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6. Performance Aspects for the Different Versions of FIC

Our FIC procedures use estimates of root mean squared errors to compare and rank candidate
models, and as we have demonstrated also lead to informative FIC plots and CD–FIC plots. There are
several issues and aspects regarding performance, including these:

(a) How good is the root-FIC score, as an estimator of the rmse?
(b) How well-working is the implied FIC scheme for finding the underlying best model, e.g., as a

function of increasing sample size?
(c) How precise is the final estimator, which would be the after-selection estimator µ̂final of (16) or

more generally the model average estimator µ̂∗ of (17)?
(d) How well-working are the (approximate) CDs regarding coverage properties; do confidence

intervals of the type {rmseS : C∗S(rmseS) ≤ 0.80} contain the true rmseS 80% of the time?

We note that themes (b) and (c) are quite related, even though different specialised questions
might be posed and worked with to address particularities. Furthermore, in various contexts, theme
(c) is what matters.

Methods to be compared are the unbiased FICu, the truncated FICt, the median-FIC FIC0.50,
and also its more general variant the FICq for other useful quantiles q. Themes (a), (b), (c), (d) can of
course be studied for finite sample sizes, in different setups and with many variations, and indeed these
questions addressed in Section 7 below. It is again illuminating to work inside the limit experiment
setup of Sections 2 and 3, however, where complexities are stripped down to the basics. This involves
certain known basis parameters and the crucial relative distance parameter δ =

√
n(γ− γ0) estimated

via a single D ∼ Nq(δ, Q). Below we report on relatively brief investigations into themes (a), (c), and
return also to (b), (d) in the next section.

6.1. FIC for Estimating MSE

The limiting mse expressions are of the form τ2
S + (aSδ)2, say, as per (7), with τS and aS known

quantities. The different FIC schemes differ with respect to how the squared bias term is estimated.
In the reduced prototype form worked with at the start of Section 3, the comparison boils down to
investigating four methods for estimating φ = η2 in the setup with a single X ∼ N(η, 1). The unbiased
and truncated FIC are associated with the estimation schemes φ̂u = X2 − 1 and φ̂t = max(X2 − 1, 0),
and both of these uniformly beat the simpler X2 maximum likelihood estimator (which is hence
inadmissible, in the decision theoretic sense). The median-FIC corresponds to setting φ̂m equal
to the median of the confidence distribution C(φ, x) = 1 − Γ1(x2, φ). Risk functions risk(φ) =

Eφ (φ̂− φ)2 can now be numerically computed and compared, for the different estimators, yielding
say risku(φ), riskt(φ), riskm(φ), riskq(φ); the first is incidentally equal to 2 + 4φ. Figure 5 displays four
root-risk functions, i.e., risk(φ)1/2. We learn that the two ‘usual’ FIC based methods, the unbiased and
truncated, are rather similar, though the truncated version is uniformly better for this particular task.
The quartile-FIC is significantly better for a relatively large window of squared bias values, whereas
the median-FIC is better when such values are large.

6.2. Narrow vs. Wide

We now consider a relatively simple setup, where we only wish to choose between two models,
the narrow (with p parameters) and the wide (with p + q parameters). The limiting mean squared
errors are

msenarr = τ2
0 + (ωtδ)2 and msewide = τ2

0 + ωtQω,

from which it also follows that the narrow model is better than the wide in the infinite band |ωtδ| ≤
(ωtQω)1/2. The FIC in effect attempts to use data to see whether δ is inside this band or not. We have
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FICu
narr = τ2

0 + (ωtD)2 −ωtQω,

FICt
narr = τ2

0 + max{(ωtD)2 −ωtQω, 0}.

Thus the unbiased FICu says that the narrow is best if and only if |ωtD| ≤
√

2(ωtQω)1/2, and a bit
of analysis reveals that the truncated FICt in this case is in full agreement. In the limit experiment of
this two-models setup, ψ = ωtδ has the estimators ψ̂narr = 0 and ψ̂wide = ωtD, and the final estimator
used is

ψ̂final =

{
ψ̂narr if |t(D)| ≤

√
2,

ψ̂wide if |t(D)| >
√

2.

Here,

t(D) =
ωtD

(ωtQω)1/2 , which has distribution N(η, 1) with η =
ωtδ

(ωtQω)1/2 . (20)

This FIC strategy is then to be contrasted with that of the median-FIC. The question is when

FICm
narr = min{msenarr : Cnarr(msenarr) ≥ 1

2} ≤ τ2
0 + ωtQω,

where

Cnarr(msenarr) = 1− Γ1

( (ωtD)2

ωtQω
,

msenarr − τ2
0

ωtQω

)
for msenarr ≥ τ2

0 .

This means finding when the function 1− Γ1(t(D)2, 1) crosses 0.50, and a simple investigation shows
that FIC0.50 prefers the narrow to the wide model if and only if |t(D)| ≤ 1.0505.

0 5 10 15

2
4

6
8

φ

ro
ot

−
ris

k

FICu

FICt

FIC0.50

FIC0.25

Figure 5. Root-mse risk functions risk(φ)1/2, for four estimators of φ = η2 is the setup where
X ∼ N(η, 1). These correspond to the unbiased FICu, the truncated FICt, and two versions of the
quantile-FIC FICq, with q = 0.50 and q = 0.25.
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The limiting risk functions for the three FIC methods for reaching a final estimator µ̂final are
therefore of the form

risk(δ) = τ2
0 + ωtQω R(η), with R(η) = Eη [I{|t(D)| > t0}t(D)− η]2,

using (20), with cut-off value t0 =
√

2 for FICu and FICt, and with t0 = 1.0505 for FIC0.50. More
generally, the quantile-FIC method of (15) can be seen to have such a cut-off value t0 = Γ−1

1 (1− q, 1)1/2,
which is, e.g., t0 = 1.6859 for q = 0.25. The conservative strategy, choosing the wide model regardless
of the observed D, corresponds to cut-off value t0 = 0.

Let us also briefly point to the classic AIC method, in this setup. As shown in Claeskens and Hjort
(2008, chp. 5, 6), in the limit AIC prefers the narrow over the wide model if and only if DtQ−1D ≤ 2q.
With notation as in Sections 2 and 3, the limit distribution of the AIC selected estimator becomes

√
n(µ̂aic − µtrue)→d Λ0 + (ωtQω)1/2[η − I{DtQ−1D > 2q}t(D)

]
.

When there is only q = 1 extra parameter in the wide model, this is the very same as for the two first
FIC methods, with cut-off value t0 =

√
2.

Figure 6 displays root-risk functions R(η)1/2 for the usual FIC (with t0 =
√

2, full curve), for the
median-FIC (with t0 = 1.0505, dotted curve, low max value), and the quantile-FIC with q = 0.25
(with t0 = 1.6959, dotdashed curve, high max value). We see that the median-FIC often wins over the
standard FIC, and its maximum risk is considerably lower. More precisely, median-FIC has the lowest
risk in the parts of the parameter space where the wide model is truly the best model, but where η only
has moderately large values, i.e., the parts of the parameter space where the true model is at some
moderate distance from the narrow model. This fits well with some of our insights from Section 4,
where we saw that median-FIC will select the wide model with a higher probability than ordinary FIC.
For moderate η values, the median-FIC turns out to balance its submodel selection probabilities well,
in the sense of securing relatively small risk for the final estimator. For η values farther away from
zero all strategies always select the wide model and they therefore have identical risk.
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Figure 6. For the one-dimensional case q = 1, root-risk function curves for estimators coming from
three different FIC selection schemes, as functions of η = ωtδ/(ωtQω)1/2: the usual FIC (black full),
here also equivalent to the AIC; the median-FIC (dotted, blue, and with lowest maximum); and the
quantile-FIC with q = 0.25 (dotdashed, blue, and with highest maximum). Furthermore, shown is the
benchmark wide procedure (grey, constant). Inside the two vertical grey lines the narrow model is
truly better than the wide.
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For η values closer to zero, in the part of the parameter space where the narrow model is truly
more precise than the wide, we see that median-FIC has a higher risk than the other strategies and
that quantile-FIC with q = 0.25 is the best strategy. Again this is related to our comments in Section 4,
with q = 0.25 quantile-FIC tending to give lower FIC scores to the non-wide models, compared
to the other strategies. In this scenario, this gives FIC0.25 a propensity to select the narrow model.
This property is advantageous for η values around zero, but gives FIC0.25 a higher risk for moderately
large η values.

6.3. Three FIC Schemes with Q = 2

We continue with the somewhat more complex case where we have q = 2 extra parameters
in the wide model, and four submodels under consideration, here denoted by 0, 1, 2, 12. We let
Q = diag(κ2

1, κ2
2) be diagonal, in order to have simpler expressions than otherwise. This in particular

means that γ̂1 and γ̂2 become independent in the limit. The mse expressions for the four different
candidate models are then

mse0 = τ2
0 + (ω1δ1 + ω2δ2)

2,

mse1 = τ2
0 + ω2

1κ2
1 + ω2

2δ2
2 ,

mse2 = τ2
0 + ω2

2κ2
2 + ω2

1δ2
1 ,

mse12 = τ2
0 + ω2

1κ2
1 + ω2

2κ2
2,

where τ0, ω1, ω2, κ1, κ2 are considered known parameters, whereas what one can know about δ =

(δ1, δ2) is limited to the independent observations D1 ∼ N(δ1, κ2
1) and D2 ∼ N(δ2, κ2

2). The FIC scores
FICu, FICt, FIC0.50 will depend on these known parameters and on D = (D1, D2)

t, and the associated
limiting risks will be functions of δ = (δ1, δ2),

risk(δ) = Eδ |Λ0 + ωt{δ− δ̂(D)}|2 = τ2
0 + Eδ {ωtδ̂(D)−ωtδ}2

for the three different versions of

δ̂(D) = v0(D)

(
0
0

)
+ v1(D)

(
D1

0

)
+ v2(D)

(
0

D2

)
+ v12(D)

(
D1

D2

)
,

with v0(D), v1(D), v2(D), v12(D) the associated indicator functions for where submodels 0, 1, 2, 12
are selected.

We can now compute and compare these risk functions in the two-dimensional δ space, for each
choice of τ0, ω1, ω2, κ1, κ2. Since the mse expressions, as well as the risk functions, all have the same
τ2

0 term, we disregard that contribution, and in effect set τ0 = 0. In Figure 7 we show the results of
such an exercise, with ω = (1, 1)t and κ = (1, 1)t. On the left hand side, we see that for this setup
median-FIC gives lower risk than the two other strategies for a relatively large part of the parameter
space. The right side shows the ratio between the risk of median-FIC and the best competing strategy.
The panels indicate that median-FIC beats the two other strategies for moderate values of both δ1 and
δ2, but loses when one or both of these quantities are close to zero, and also when both are large in
absolute size.

This is consistent with our observations in Section 4; the median-FIC has good performance in the
parts of the parameter space where the wide model is truly the best. If quantile-FIC with q = 0.25 had
been included in this comparison, we would have discovered that FIC0.25 beats the other strategies in
the areas were the wide model is not the best, particularly in the narrow diagonal band from (−6, 6) to
(6,−6).
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Figure 7. Contour plots for the risk depending on the true value of δ1 and δ2. (Left) showing which of
the three FIC scores gives the estimator with the smallest risk; median-FIC is the winner in the red area.
(Right) the median-FIC risk divided by the minimum risk among the two competing strategies.

7. Finite-Sample Performance Evaluations

Complementing the performance analyses of Section 6, in the framework of the limit experiment,
we have conducted various investigations of the performance of the FIC scores and of the CDs in
finite-sample settings, via simulations. In these experiments we sample data from a known wide model
and with a particular choice of focus parameter, for which we then know the true value. We generate a
high number of datasets from this model, and compute FIC scores and CDs for each of these. From this
we can investigate aspects (a), (b), (c), (d) mentioned in the beginning of the previous section. Do the
root-FIC scores succeed in estimating the true rmse? And do the FIC scores provide a correct ranking
of the models? Further, we can investigate the coverage properties of our CDs: do the confidence
intervals we obtain from the CDs, say the {rmseS : C∗S(rmseS) ≤ 0.80}, cover the true rmse values for
approximately 80% of the rounds? We will present the results from four different simulation setups:
(1) a linear regression model with relatively few candidate models, (2) a linear regression model with
many candidate models, (3) a Poisson regression, and (4) a logistic regression.

Our first two illustrations are for datasets of n = 100 observations from a linear normal model
with the structure yi = xt

i β + zt
iγ + εi, with errors being independent from N(0, σ2), and with focus

parameter of the type µ0 = xt
0β + zt

0γ. In the first setup we have an intercept parameter β protected
(so p = 1) and three extra parameters γ1, γ2, γ3 associated with three covariates considered for
ex- or inclusion (q = 3). The narrow model M1 has only the intercept parameter, and the wide
model M8 has the intercept term and all three covariates. The other candidate models correspond to
including or excluding the three covariates. We have used β = 0, γ = (0.5,−0.5, 0.1)t, and residual
standard deviation σ = 1. The covariates are drawn from a multivariate normal distribution with zero
means, unit variances, and intercorrelations chosen to be corr(X1, X2) = −0.3, corr(X1, X3) = −0.2,
corr(X2, X3) = 0.6. The focus parameter is µ0 = xt

0β + zt
0γ, with x0 = 1 and z0 = (1,−1, 3)t. The red

line in the left panel of Figure 8 indicates the true rmse values for the eight models. The grey crosses
are the root-median-FIC scores evaluated in 103 datasets. The black dashed line gives the average
scores from these 103 datasets. In the right panel, we see the realised coverage of the computed 80%
confidence intervals. Note that the realised coverage for the wide model (here M8) will always be zero
as our framework does not yield confidence intervals for the widest model, but only a point estimate,
by construction. Table 2 reports the percentage of rounds where each model has the lowest FIC score
(i.e., the winning model). In this setup, model 5 had the lowest true rmse (as we see in the figure),
and the wide model M8 had the second lowest rmse.
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Figure 8. Simulation results for setup (1), an ordinary linear model with q = 3. (Left) the red line
indicates the true rmse values, the grey crosses are the root-median-FIC scores from 103 simulated
datasets and the black dashed lines are the average root-median-FIC scores. (Right) the realised
coverage of 80% confidence intervals for root-mse.

Table 2. The percentage of rounds where each model has the lowest FIC score (i.e., the winning model).
The first row is for setup (1), the second for setup (4).

M1 M2 M3 M4 M5 M6 M7 M8

(1) winning % 5.5 6.1 18.1 0 32.0 0 0 38.3
(4) winning % 6.1 10.3 0.1 20.8 41.3 0.5 0 20.9

In our second setup, we investigated a linear normal model with a higher number of covariates,
and a much higher number of candidate models. Again we have n = 100 and an intercept
parameter β protected (so p = 1), but this time we have ten extra parameters γ1, . . . , γ10 considered
for ex- or inclusion (q = 10). There are then 1024 candidate models. We have used β = 0,
γ = (0.5,−0.5, 0.1, 0.4,−0.1, 0.05,−0.05,−0.5, 0.2,−0.4)t, and residual standard deviation σ = 1.
The covariates are drawn from a multivariate normal distribution with zero means, variances between
0.9 and 2.2, and correlations ranging from −0.85 to 0.85. Again the focus parameter is of the form
µ0 = xt

0β+ zt
0γ, with x0 = 1 and z0 = (1,−1, 3, 2,−1, 0, 0, 0, 0, 0)t. For the sake of presentation, we have

chosen to present the results for 100 among the 1024 candidate models, see Figure 9. The first model is
the narrow model, the last is the wide, and the remaining are a random selection among the candidate
models. Figure 9 presents the same type of results as Figure 8, but because of the high number of
candidate models we have not include this setup in Table 2.

Naturally, the size of the residual standard deviation σ is a crucial importance here, as seen also
via the exact mseS Formula (21). For small σ, the bias part dominates, and the mseS is smallest for
wider and more elaborate models; for larger σ, the variance part dominates, with mseS being smallest
for simpler models with fewer regression terms. These aspects are also picked up by the FIC. It also
follows from our analyses of the CD approximations that the rmseS confidence coverage property is
more precise for smaller σ than for bigger σ.

Our third setup is a Poisson regression model where we simulate datasets of the same size and
with the same covariates as in our application in Section 8. Here, n = 73, p = 3, q = 6, giving 48
submodels; see further details in the section mentioned. We also use the same focus parameter as
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we describe there, and simulate data from the fitted wide model, corresponding to parameter values
β = (1.630,−0.004, 0.250)t, γ = (0.105, 0.094,−0.011, 0.032, 0.001,−0.006)t. In Figure 10, we present the
same type of results as for the previous setups, but here we have used FIC0.25 instead of median-FIC.
With this criterion the truly best model was correctly identified in 63.5% of the rounds.
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Figure 9. Simulation results for setup (2), an ordinary linear model with q = 10. (Left) the red line
indicates the true rmse values, the grey crosses are the root-median-FIC scores from 103 simulated
datasets and the black dashed lines are the average root-median-FIC scores. (Right) the realised
coverage of 80% confidence intervals for root-mse.
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Figure 10. Simulation results for setup (3), a Poisson regression model. (Left) the red line indicates
the true rmse values, the grey crosses are the root-FIC0.25 scores from 103 simulated datasets and the
black dashed lines are the average root-FIC0.25 scores. (Right) the realised coverage of 80% confidence
intervals for root-mse.
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In our fourth setup we simulated n = 300 binary observations from a logistic regression model
of the same form as in Section 1, but with p = 1 and q = 3. We let β = 0, γ = (0.5,−0.5, 0.1)t.
Our focus parameter is the probability of an event for a certain vector of covariates, x0 = 1 and
z0 = (1.0, 0.2,−0.5)t. The results are presented in Figure 11 and Table 2. In this setup, the truly best
model was M5, closely followed by M8.
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Figure 11. Simulation results for setup (4), a logistic regression model. (Left) the red line indicates the
true rmse values, the grey crosses are the root-median-FIC scores from 103 simulated datasets and
the black dashed lines are the average root-median-FIC scores. (Right) the realised coverage of 80%
confidence intervals for root-mse.

From the left panels in each of the four figures in this section, we see that average root-FIC scores
are generally close to the true rmse values. The FIC score selects the truly best model, in terms of mse,
for most of the rounds, but not always. The ability to select the best model depends on the estimation
quality of the FIC scores, but also on how close, or different, the rmse values of the models really are.
In the first setup, M5 is the truly best model, but the wide model M8 is often preferred by the FIC score.
This might appear disappointing, but in fact these two models have almost identical performance
(the red line in Figure 8). Similarly, in the logistic regression setup the two best models had very similar
performance and were often selected by the FIC machinery. In the Poisson regression setup the correct
model was identified surprisingly often given the relatively high number of candidate models.

The right panels in the four figures are possibly even more interesting, since the main contribution
in this paper are the CDs for the rmse. The realised coverage of the 80% confidence intervals is generally
close to 80%, but for some candidate models it is considerably lower than the nominal level. First,
as mentioned already, we do not get confidence intervals for the wide model in this framework, only an
unbiased point estimate, so its realised coverage will always be zero. For other candidate models than
the wide, the under-coverage phenomenon happens for candidate models which consistently produce
very steep CDs. These are candidate models which have a small estimated bias, and also a small
variance-term related to the estimation of the bias (σS in our terminology). Reassuringly, for all the cases
we have investigated, the candidate models with under-coverage consistently have very small spread
in their FIC scores (note for instance M5 in Figure 11). These candidate models thus should really
get narrow confidence intervals, but these happen to become too narrow. Ultimately, the observed
under-coverage is a consequence of our CDs being constructed based on the approximation to the
limit experiment, and there is therefore a layer of uncertainty not accounted for in our construction;
see the discussion in Section 9.
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8. Illustration: Birds on 73 British and Irish Islands

Reed (1981) analysed the abundance of landbirds on 73 British and Irish islands. In the dataset,
characteristics of each island were recorded: the distance from mainland (x1), the log area (x2),
the number of different habitats (z1), an indicator of whether the island is Irish or British (z2), latitude
(z3), and longitude (z4). As the notation indicates, we take x1, x2 as protected covariates, to be included
in all candidate models, whereas z1, z2, z3, z4 are open. Based on general ecological theory and study of
similar questions we also include two potential interaction terms, viz. z5 = x2z1 and z6 = x1x2. Of the
26 = 64 candidate models, corresponding to inclusion and exclusion of z1, . . . , z6, we only allow the
interaction term z5 = x2z1 in a model if z1 is also inside; this leaves us with 64− 18 = 48 candidate
models below.

Suppose we take an interest in predicting the number of species yi on the Irish island of Cape
Clear. In Reed’s dataset we have the following information about this island: it is located at 6.44 km
from the mainland, at 51.26 degrees north and −9.37 degrees east, with an area of 639.11 hectares.
At the time of study it had 20 different habitats (z1), and 40 different bird species (yi) were observed.
Assume that we know that the number of habitats has decreased to 15 – which model gives the most
precise estimate of the current number of species?

As the required wide model we choose the Poisson regression model, with yi ∼ Pois(λi), where

λi = exp(β0 + β1xi,1 + β2xi,2 + γ1zi,1 + γ2zi,2 + γ3zi,3 + γ4zi,4 + γ5zi,5 + γ6zi,6).

The wide model thus has nine parameters to estimate, while the smallest, narrow one only has three.
We conduct our FIC analysis, and using our confidence distribution apparatus we obtain our extended
FIC plot with uncertainty bands in Figure 12. Some models indicate a clear improvement compared to
the wide model, with very low uncertainty around their FIC scores. The winning model is similar to
the narrow model, but includes the habitat covariate. Most of the models with low FIC scores contain
this covariate, and one or both interaction terms or the longitude covariate (Cape Clear lies quite far
west compared to most of the islands in the dataset). The predicted number of species on Cape Clear
among the favoured models is around 29, a decrease from the 40 species in the dataset.
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Figure 12. FIC plot with associated uncertainty for the 48 candidate models for estimating the number
of bird species on the Irish island Cape Clear. In red the wide model, in blue the narrow model,
and in green the winning model. The uncertainty is represented by 80% confidence intervals. The points
plotted are the usual truncated FIC scores, on the FICt/

√
n scale.
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The point to convey with this application is also that any other focused statistical question of
interest can be worked with in the same fashion. Natural focus parameters could be the probability
that y falls below a threshold y0, given a set of present or envisaged island characteristics, or the mean
function E (y | x1, x2, z1, z2, z3, z4) itself, for a given set of covariate combinations. For each such focused
question, a FIC analysis can be run, leading to FIC plots and finessed CD–FIC plots as in Figure 12,
perhaps each time with a new model ranking and a new model winner.

9. Discussion

Our paper has extended and finessed the theory of FIC, through the construction of confidence
distributions associated with each point (FIC1/2

S , µ̂S) in the traditional FIC plots and FIC tables.
The resulting CD–FIC plots enable the statistician to delve deeper into how well some candidate
models compare to others; not only do some parameter estimates have less variance than others,
but some estimates of the underlying root-mse quantities, i.e., the root-FIC scores, are more precise
than others. The extra programming and computational cost is moderate, if one already has computed
the usual FIC scores. Check in this regard the R package fic, which covers classes of traditional
regression models; see Jackson and Claeskens (2019).

Differences in AIC scores have well-known limiting distributions, under certain conditions,
which helps users to judge whether the AIC scores of two models are sufficiently different as to prefer
one over the other. Aided by results of our paper one may similarly address differences in FIC scores,
test whether two such scores are significantly different, etc.; see Remark C in the following section.

We trust we have demonstrated the usefulness of our methodology in our paper, but now point
to a few issues and mild caveats. Some of these might be addressed in future work; see also Section 10.
One concern is that our CDs for root-mse are constructed using a local neighbourhood framework for
candidate models, leading to certain mse approximations where the squared bias terms are put on
the same general O(1/n) footing as variances. First, this is not always a good operating assumption,
since it rests on candidate models not being too far from each other. This points to the necessity of
setting up such FIC schemes with care, when it comes to deciding on the narrow and the wide model,
e.g., which covariates should be protected and which open in the model selection setup. Second,
the mse approximations, of type (7), have led to clear CDs, but where these in essence stem from
accurate analysis of estimated squared biases, not taking into account the extra variability associated
with variance estimators. There is in other words a certain extra layer of second order variability not
directly taken into account in the general CDs constructed in this paper.

For any finite dataset, therefore, our CDs will to some small extent underestimate the true
variability present in the root-mse estimation. Still, we have seen in simulation studies that the coverage
can be quite accurate with moderate sample sizes, i.e., that intervals of the type {rmseS : CS(rmseS) ≤
0.80} have real coverage close to 0.80, etc. Furthermore, it is possible to work out better finite-sample
fine-tuned CDs for the important case of linear regression models, starting with the exactly valid mseS
Formula (21). This is beyond the scope of the present article, however.

These considerations also imply that the estimated bias associated with submodel S will have a
strong influence on the appearance of the CD for submodel S. The CD for rmseS will start at a position
corresponding to the estimated variance of that model’s focus parameter estimator µ̂S, but the height
of the CD at this point will be determined by the relative size of the bias, viz. the bias estimate squared
divided by the variance of the bias. Further, the steepness of the CD will mostly be determined by
the variance of the estimated bias, with a steeper CD when the variance of the bias estimate is small.
Thus a particular submodel S will obtain a narrow confidence interval around its root-FIC score if it
leads to a focus estimator with small relative bias, or small variance in its bias estimate, or both.

This paper also introduces a new version of the FIC score, the quantile-FIC, and its natural special
case, the median-FIC. One of the benefits of this latter FIC score is that it falls directly out of the
CD, and avoids the need to explicitly decide whether one wants to truncate the squared bias or not.
We have also indicated that the quantile-FIC scores can have good performance in large parts of the
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parameter space. More careful examination reveals that the advantageous performance of median-FIC
is primarily found in the parts of the parameter space where the wide model really is the most precise.
These are not the most interesting parameter regions when it comes to model selection with FIC,
however, because model selection is typically conducted in situations where one hopes to find simpler
effective models than the wide one. Our performance investigations reveal that other quantile-FIC
versions, e.g., the lower-quartile-FIC with q = 0.25, appears to be a favourable strategy in the more
crucial parts of the parameter space where the wide model is outperformed by smaller models.

10. Concluding Remarks

We conclude our paper by offering a list of remarks, some pointing to further research.

A. The relative sizes of minimum uncertainty and the model averaging potential. The master theorems
underlying the essential descriptions of what can go on, with submodel estimators as well as model
averaging estimators, are those of (6) and (17). Thus two key parameters are τ0 and (ωtQω)1/2,
the standard deviations of Λ0 and ωt(δ−D). In a suitable sense τ0 measures the unavoidable minimum
uncertainty, whereas (ωtQω)1/2 represents the total variability level with the extra terms involved,
for both model selection and model averaging. With a given dataset, and a set of candidate models,
one may estimate these quantities separately, and hence the relative components of variability, say

ρ0 = τ2
0 /(τ2

0 + ωtQω) and ρ1 = ωtQω/(τ2
0 + ωtQω),

before turning to model selection and model averaging. If ρ0 is big and ρ1 hence small, there is little
scope for carrying out sophisticated additional analyses, as most estimates will be close. Indeed,
for two candidate model estimators we have

corr(µ̂S, µ̂T)→
τ2

0 + ωtGSQGTω

(τ2
0 + ωtGSQGt

Sω)1/2(τ2
0 + ωtGTQGt

Tω)1/2
.

If on the other hand ρ0 is small and ρ1 big, there is room for genuine risk improvement with model
selection and averaging.

B. More accurate finite-sample FIC scores. We have extended the FIC apparatus to include confidence
distributions for the underlying root-mse quantities. Our formulae have been developed via the
limit experiment, where there are clear and concise expressions both for the mse parameters and the
precision of relevant estimators. For real data there remain of course differences between the actual
finite-sample FIC scores, as with (9), and the large-sample approximations, as with (8). As discussed
in Section 9 the CDs we construct, based on accurate analysis of limit distributions, miss part of the
real-data variability for finite samples. It would hence be useful to develop relevant finite-sample
corrections to our CDs. See in this connection also the second-order asymptotics section of Hjort and
Claeskens (2003b).

C. Differences and ratios of FIC scores. For two candidate models, say S and T subsets of {1, . . . , q},
our CDs give accurate assessment of their associated rmseS and rmseT . It would be practical to have
tools for also assessing the degree to which these quantities are different. It is not easy to construct
a simple test for the hypothesis that rmseS = rmseT , but a conservative confidence approach for
addressing the mse difference

d(δ) = mseT −mseS = τ2
T − τ2

S + {ωt(I − GT)δ}2 − {ωt(I − GS)δ}2,

for any fixed pair of candidate models, is as follows. For each confidence level α of interest, consider the
natural confidence ellipsoid Eα = {δ : (δ− D)tQ−1(δ− D) ≤ Γ−1

q (α)}, with Γ−1
q the quantile function

for the χ2
q. Then sample a high number of δ ∈ Eq, to read off the range [lα, uα] or values attained by

d(δ). Then the confidence of the interval is at least α. This may in particular be used to construct a
conservative test for d(δ) = 0.
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Similar reasoning applies to other relevant quantities, like using ratios of FIC scores to build tests
and confidence schemes for the underlying mseT/mseS ratios. In Hjort (2020) CDs are constructed for
all rmseS,n/rmsewide,n ratios, and these are exact for each n, for the case of variable selection in linear
regression models, leading to new selection criteria.

D. The fixed wide model framework for FIC. The setup of our paper has been that of local neighbourhood
models, with these being inside a common O(1/

√
n) distance of each other. This framework, having

started with Hjort and Claeskens (2003a) and Claeskens and Hjort (2003), has been demonstrated to
be very useful, leading to various FIC procedures in the literature, and now also to the extended and
finessed FIC procedures of the present paper. A different and in some situations more satisfactory
framework involves starting with a fixed wide model, and with no ‘local asymptotics’ involved; see the
review paper Claeskens et al. (2019) for general regression models and Cunen et al. (2020) for classes
of linear mixed models. The key results involve different approximations to mse quantities, along the
lines of

mseM = σ2
M/n + {µtrue − µM(θ0,M)}2,

for each candidate model M. Here, µtrue is defined through the real data generating mechanism of
the wide model, whereas θ0,M is the least false parameter in candidate model M, and with µM(θM)

the focus parameter expressed in terms of that models’s parameter vector. It would be very useful
to lift the present paper’s methodology to such setups. This would entail setting up approximate
CDs, say CM(rmseM), for each candidate model. This involves different approximation methods and
indeed different CD formulae than those worked out in the present paper.

E. From FIC to AFIC. The FIC machinery is geared towards optimal estimation and performance
for each given focus parameter. Sometimes there are several parameters of primary interest, however,
as with all high quantiles, or the regression function for a stratum of covariates. The FIC apparatus
can with certain efforts be lifted to such cases, where there is a string of focus parameters, along with
measures of relative importance; see Claeskens and Hjort (2008, chp. 6) for such average-FIC, or AFIC.
The present point is that all methods of this paper can be lifted to the setting of such AFIC scores as
well. In Hjort (2020) a connection is built from such AFIC scores to the Mallows Cp criterion for linear
regression models.

F. Post-selection and post-averaging issues. The distribution of post-selection and post-averaging
estimators are complicated, as seen in Section 5, with limits being nonlinear mixtures of normals.
Supplementing such estimators with accurate confidence analysis is a challenging affair, see, e.g., Efron
(2014); Hjort (2014); Kabaila et al. (2019). Partial solutions are considered in Claeskens and Hjort (2008,
chp. 7), Fletcher et al. (2019).

11. FIC and CD–FIC Formulae for General Regression Models

In Section 2 we gave the basic formulae for the key quantities involved in building the various FIC,
FIC0.50, FICq scores, the confidence distribution CS(rmseS), etc., inside the i.i.d. setup. Here, we give
the necessary technical details and formulae for similar quantities, for a general regression framework.

For regression applications more care might be needed when setting up both the wide model,
under which biases, variances, mean squared errors are to be defined and then approximated and
estimated, and the narrow model, in a natural sense the smallest of the candidate models. As with
our introductory illustration, it often makes sense to designate some of the covariates as protected
and others as open; see Claeskens and Hjort (2008, chp. 5–7) for a wider discussion. Consider
therefore a regression setup with (xi, zi, yi), for one-dimensional response variables yi, where xi a
vector of length say p denoting such protected covariates, to be included in each candidate model,
and zi = (zi,1, . . . , zi,1)

t of length q, with components which might be included or excluded, in the
various candidate models. There is a wide model of the form f (yi | xi, zi, θ, β, γ), where θ of length say
r is a set of core parameters, relating to perhaps scale and shape, and then with β and γ of dimensions
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p and q having regression coefficients related to xi and zi. The framework encompasses the traditional
generalised linear models (linear, logistic, Poisson, gamma type regressions) but also wider models,
like those called doubly-linear or generalised linear-linear regression models in Schweder and Hjort
(2016, chp. 8). Examples of the latter are normal distributions (ξi, σ2

i ) with linear regression structure
on both ξi and log σi, gamma distributions (ai, bi) with log-linear structure on both parameters, etc.

The model selection and model averaging setup now takes

fn,true(yi | xi) = f (yi | xi, zi, θ0, β0, γ0 + δ/
√

n)

as the data-generating mechanism, with δ/
√

n the relative modelling distance from the narrow model
f (yi | xi, zi, θ0, β0, γ0); in most applications, the γ0 is simply the zero point, reflecting no influence of
the zi on the response yi. The log-likelihood function for the wide model is

`wide(θ, β, γ) =
n

∑
i=1

log f (yi | xi, θ, β, γ),

leading to ML estimators α̂wide = (θ̂wide, β̂wide, γ̂wide) for the full r + p + q-dimensional parameter.
For submodel S, corresponding to a subset S of {1, . . . , q}, the log-likelihood is

`S(θ, β, γS) =
n

∑
i=1

log f (yi | xi, θ, β, γ0,Sc , γS),

with r + p + |S| unknown parameters, and ensuing ML estimator α̂S = (θ̂S, β̂S, γ̂S). For a general
focus parameter µ = µ(θ, β, γ), a smooth function of the parameters of the wide model, and hence
with a clear statistical interpretation across candidate models, the question is how well the different
submodel generated estimators

µ̂S = µ(θ̂S, β̂S, γ0,Sc , γ̂S)

succeed in coming close to µtrue = µ(θ0, β0, γ0 + δ/
√

n).
The point is now that essentially all of the theory for the simpler i.i.d. case, covered in Section 2.1,

goes through, mutatis mutandis, with the required attention to details, under broadly valid Lindeberg
conditions for limiting normality etc. This needs of course properly modified definitions of the key
quantities J, Q, ω, τ0, Dn →d D, GS used in Sections 2 and 3, along with estimators for these. We
now give such formulae, pointing also to Claeskens and Hjort (2008, chp. 5–7) for further details and
illustrations of related points. We start with

Jn = −n−1
n

∑
i=1

E
∂2 log f (yi | xi, α0)

∂α ∂αt ,

writing α0 for the full parameter vector (θ0, β0, γ0). This information matrix is of size (r + p + q)×
(r + p + q). There is convergence to a well-defined limit matrix J, and the natural consistent estimator
is Ĵn = −n−1∂2`wide(α̂wide)/∂α ∂αt, minus the Hessian from the numerical optimisation involved
in finding the ML estimators in the wide model. The lower right q × q submatrix of Ĵn, say Q̂n,
is consistent for Q, the lower right submatrix of J−1. Similarly, there is a crucial

ω̂ = Ĵn,10 Ĵ−1
n,00∂µ(α̂)/∂(θ, β)− ∂µ(α̂)/∂γ,
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with Jn,00 of size (r + p)× (r + p) corresponding to the protected (θ, β) part of the parameter vector,
and with partial derivatives of µ(θ, β, γ) computed at the wide model’s ML position. Other quantities
from the i.i.d. setup are similarly modified, and with the key results being

Dn =
√

n(γ̂wide − γ0) →d D ∼ Nq(δ, Q),
√

n(µ̂S − µtrue) →d ΛS = Λ0 + ωt(δ− GSD),

parallelling those given attention in Section 2.
Two illustrations of the FIC apparatus and central formulae above are as follows. We first

consider Poisson regression, as used in Section 8. Suppose yi is Poisson with mean parameter λi =

exp(xt
i β + zt

iγ), with the xi protected and zi open, of dimensions say p and q. In this situation there are
no extra parameters, i.e., no θ, in the notation above, and one finds

Jn = n−1
n

∑
i=1

exp(xt
i β + zt

iγ)

(
xi
zi

)(
xi
zi

)t

,

along with Ĵn obtained by plugging in wide model ML estimators (β̂wide, γ̂wide). This leads to the
relevant Qn and Q̂n, etc. If the focus parameter is as relative simple as µ = xt

0β + zt
0γ, i.e., a linear

combination of the log-means parameters, one has ωn = Jn,10 J−1
n,00x0− z0, with corresponding estimator

ω̂, a vector of length q. These formulae then lead to all FIC scores, the CDs C∗S(mseS), etc. The setup is
fully capable of handling also more complicated focus parameters. Formulae for the case of logistic
regression models are similar to those given here for the Poisson case, but involve a differently defined
Jn matrix.

Our second illustration of the general setup is the important class of linear regressions, with wide
model yi = xt

i β + zt
iγ + σεi in terms of parameters (σ, β, γ), of combined length 1 + p + q. This is in

some ways a simpler regression model than for the Poisson, but there is the extra scale parameter σ to
include in the calculations. One finds

Jn =
1
σ2

2 0 0
0 Σn,00 Σn,01

0 Σn,10 Σ1,01

 and J−1
n = σ2

1/2 0 0
0 Σ00

n Σ01
n

0 Σ10
n Σ11

n

 ,

in terms of the four blocks of the (p + q)× (p + q) covariate variance matrix Σn for the (xi, zi), and its
inverse. In particular, Qn = σ2Σ11

n . There are also q× q matrices Gn,S = πt
SQn,SπSQ−1

n parallelling
those of Section 2, and these are fully observed, since the σ2 factor cancels out.

Now consider a focus parameter of the mean type µ = E (y | x0, z0) = xt
0β + zt

0γ, for which we
find ωn = Σn,10Σ−1

n,00x0− z0. For candidate model S, a subset of the zi,1, . . . , zi,q covariates, the estimator
of µ is µ̂S = xt

0 β̂S + zt
0,Sγ̂S, where (β̂S, γ̂S) are the least squares estimators for the submodel with means

xt
i β + zt

i,SγS. The parallel to the i.i.d. result (7) for the limiting mse for candidate model S now yields
an expression for

msen,S = Ewide{
√

n(µ̂S − µtrue)}2 = n Ewide (µ̂S − µtrue)
2,

namely

msen,S = σ2{xt
0Σ−1

n,00x0 + ωt
nGn,SΣ11

n Gt
n,Sωn}+ n{ωt

n(I − Gn,S)γ}2. (21)

The crucial point is that this expression, derived here from a local asymptotics perspective with
γ = δ/

√
n, is found to be exactly valid for these linear models.
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