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Abstract: This paper provides a detailed exposition of an extension of the Oaxaca-Blinder
decomposition method that can be applied to various distributional measures. The two-stage
procedure first divides distributional changes into a wage structure effect and a composition effect
using a reweighting method. Second, the two components are further divided into the contribution
of each explanatory variable using recentered influence function (RIF) regressions. We illustrate the
practical aspects of the procedure by analyzing how the polarization of U.S. male wages between the
late 1980s and the mid 2010s was affected by factors such as de-unionization, education, occupations,
and industry changes.
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1. Introduction

The ongoing growth in wage inequality in the United States and several other countries over
the past thirty-five years has generated a resurgence of interest for distributional issues and methods
to analyze these issues. There is also a sizeable literature looking at wages differentials between
subgroups that goes beyond simple mean comparisons. More generally, there is increasing interest
in distributional impacts of various programs or interventions. In all these cases, the key question of
economic interest is which factors account for changes (or differences) in distributions. For example,
did wage inequality increase because education or other wage setting factors became more unequally
distributed, or because the return to these factors changed over time?

In response to these important questions, several decomposition procedures have been suggested
to untangle the sources of changes or differences in wage distributions. In Fortin et al. (2011),
we reviewed the traditional Oaxaca-Blinder (OB) decomposition method and several of its extensions
in the context of the treatment effect literature to highlight the advantages and disadvantages of
different methodologies. The goal of the current paper is to provide a detailed and updated exposition
of an extension to the OB decomposition that relies on recentered influence function (RIF) regressions
(Firpo et al. 2009) [FFL, thereafter] to estimate the effect of covariates on inequality measures, such
as percentile differences and ratios, the variance of log wages, or the Gini coefficient.1 Relative to
several procedures proposed recently (Machado and Mata 2005; Melly 2005; Chernozhukov et al. 2013)

1 Recentered influence functions have since been derived for a host of inequality measures by Essama-Nssah and Lambert (2012).
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[CFM, thereafter], this method has the advantage of allowing general distributional measures to be
decomposed non-sequentially in the same way means can be decomposed using the conventional
OB method. The methodology has been applied in a number of different settings where the object of
interest is the unconditional distribution of outcomes.2

As is well known, the OB procedure provides a way of: (1) decomposing changes or differences in
mean wages into a wage structure effect and a composition effect; and (2) further dividing these two
components into the contribution of each covariate. The main problem with sequential decomposition
methods is that they cannot be used to divide the composition effect into the role of each covariate in a
way that is independent of the order of the decomposition. Thus, while it is natural to ask to what
extent changes in the distribution of education have contributed to the growth in wage inequality,
this particular question has not been answered in the literature for lack of available decomposition
methods. In contrast, this question is straightforward to answer in the case of the mean using a
OB decomposition.

In this paper, we focus on a two-stage procedure that can be used to perform OB type
decompositions on any distributional measure, and not only the mean. The first stage consists of
decomposing the distributional statistic of interest into a wage structure and a composition component
using a reweighting approach, where the weights are either parametrically or non-parametrically
estimated. As in the related program evaluation literature, we show that ignorability and common
support are key assumptions required to identify separately the wage structure and composition
effects. Provided that these assumptions are satisfied, the underlying wage setting model can be as
general as possible. The idea of the first stage is thus very similar to DiNardo et al. (1996). Here,
we clarify the assumptions required for the identification of distributional statistics besides the mean
by drawing a parallel with the program evaluation (treatment effect) literature.

In the second stage, we further divide the wage structure and composition effects into the
contribution of each covariate, just as in the usual OB decomposition. This is done using the
regression-based method proposed by FFL to estimate the effect of changes in covariates on any
distributional statistics such as inter-quartile ranges, the variance, or the Gini coefficient.

The method developed in FFL replaces the dependent variable of a regression by the
corresponding recentered influence function (RIF) for the distributional statistics of interest.
The influence function, also known as Gâteaux (1913) derivative, is a widely used concept in robust
statistics and is easy to compute. Using the fact that the expected value of the influence function is
equal to zero and the law of iterated expectations, we can express the distributional statistic of interest
as the average of the conditional expectation of the RIF given the covariates. As in FFL, we call these
conditional expectations RIF-regressions.

Average derivatives computed using the RIF-regressions yield the partial effect of a small location
shift in the distribution of covariates on the distributional statistic of interest. FFL call this parameter
Unconditional Partial Effect (UPE), which for the special case of quantiles become the Unconditional
Quantile Partial Effect (UQPE). By approximating the conditional expectations by linear functions,
the coefficients of these RIF-regressions indicate by how much the functional (e.g., the quantile) of the
marginal outcome distribution is affected by an infinitesimal shift to the right in the distribution of
the regressors.

Because the UPE parameter corresponds to the effect of infinitesimal shift in the distribution
of regressors, it approximates well small changes in that distribution, but not necessarily large
changes. For known changes in the distribution of covariates (e.g., between two time periods),

2 Eeckhout et al. (2014) compare the CFM approach to the RIF-regressions approach to decompose the skill distributions
across large and small cities in terms of education, occupations, and industries, focusing on the bottom and top decile.
Bento et al. (2017) provide a useful comparison of local kernel regressions, conditional quantile regressions, and RIF
regressions in the context of a Monte-Carlo simulation of the effect of fuel economy standards on the distribution of
vehicle weight.
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one can easily compute the associated total change in the functional of the outcome distribution
of interest. Rothe (2012) proposes statistical inference for that case.3 Both Rothe (2012) and CFM
compute the conditional CDF (cumulative distribution function) of the outcome given covariates in
the first step. This adds a computationally intensive layer of estimation, since one needs to calculate
the entire conditional CDF, even if only interested in one single quantile of the marginal outcome
distribution. By contrast, our approach requires only one OLS regression, which is very attractive from
a computational standpoint. Finally, even though we end up performing bootstrap-based inference in
our empirical application, we show in the Appendix B that the analytical formulas for the standard
errors of the reweighting estimates can be derived.

The main advantage of using the RIF-regression method in a Oaxaca-Blinder type decomposition
is that it provides a linear approximation of highly non-linear functionals, such as the quantiles or
the Gini coefficient. Nevertheless, its simplicity comes at a cost. As pointed out by Rothe (2015),
the impact of changes in the distribution of covariates on some non-linear functionals may be poorly
approximated by RIF-regressions. Thus, approximation errors are a by-product of the method and
they should always be reported in the decomposition results, as we do in our empirical analysis below.

We illustrate how our procedure works in practice by looking at changes in the distribution
of male wages in the United States between the late 1980s and the mid 2010s. This period is quite
interesting from a distributional point of view as inequality increased in the top end of the wage
distribution, but decreased in the low end of the distribution, a phenomenon that Autor et al. (2006)
referred to as the polarization of the U.S. labor market. We use our method to investigate the source of
change in the wage distribution by decomposing the changes at various wage quantiles. The results
indicate that no single factor appears to be able to fully explain the polarization of the wage distribution.
De-unionization accounts for some of the decreasing wage inequality at the low end and increasing
inequality at the top end. The continuing growth in returns to education, especially at a level
above high school, is the most important source of growth in top-end inequality. Changes in the
occupational structure of the workforce helps account for the polarization of wages, but these wage
changes are mostly offset by changes in the effect of industry at the upper end of the distribution.
This explains why, despite convincing evidence that the “routinization of jobs” had substantial impact
of the polarization of employment, its effects of wage polarization has been more difficult to identify
directly (e.g., Autor and Dorn 2013). Our results suggest that the wage decline in “routine occupations”
(Autor et al. 2003), such as production jobs in the manufacturing sector, has been compensated by
increases in the primary sector (e.g., mining, oil and gas, etc.), the distribution sector (transportation
and wholesale) and in the services sector. Potentially offsetting effects underline the need for the
proposed approach that can “run horse races" between different sets of factors. However, increases at
the lower end appear to be attributable to changes in minimum wages, which we do not model here.4

The remainder of the paper is organized as follows. Section 2 discusses the decomposition
problem and reviews the strengths and weaknesses of existing procedures. The identification of
the proposed decomposition procedure is presented in Section 3. Section 4 discusses estimation
and inference, and illustrates how the decomposition methodology works in the case of quantiles,
the variance, and the Gini coefficient. Section 5 provides an empirical application of the methodology
to the changes in the distribution of male wages in the United States between the late 1980s and the
mid 2000s.

3 See also Rothe (2010).
4 The federal minimum wage has declined substantially (in real terms) over time and is now superseeded by higher state

minimum wages in most states. As a result, the effect of state and federal minimum wages would need to be modeled over
of a range of wages. This task is beyond the scope of the current paper.
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2. The Decomposition Problem and Shortcomings of Existing Methods

Before presenting our method in detail, it is useful to first review the case of the mean for which
the standard OB method is very well known. To simplify the exposition, we will work with the case
where the outcome variable, Y, is the wage, although our approach can be used for any other outcome
variable. The OB method can be used to divide a difference in mean wages between two groups,
or overall mean wage gap, into a composition effect linked to differences in covariates between the
two groups, and a wage structure effect linked to differences in the return to these covariates between
the two groups. The two groups are labeled as t = 0, 1. In the original papers by Oaxaca (1973)
and Blinder (1973), the two groups used were either men and women, or blacks and whites. More
generally, the two groups can be a control and a treatment group, or similar groups of individuals at
two points in time, as in the wage inequality literature.

We first review how the OB decomposition provides a straightforward way of dividing up the
contribution of each covariate in a composition and a wage structure effect. Focusing on differences
in the wage distributions of two groups, 1 and 0, for a worker i, let Y1i be the wage that would be
paid in Group 1, and Y0i the wage that would be paid in Group 0. Since a given individual i is only
observed in one of the two groups, we either observe Y1i or Y0i, but never both. Therefore, for each
i, we can define the observed wage, Yi, as Yi = Y1i · Ti + Y0i · (1− Ti), where Ti = 1 if individual i
is observed in Group 1, and Ti = 0 if individual i is observed in group 0. There is also a vector of
covariates X ∈ X ⊂ RK that we can observe in both groups.

In the standard OB decomposition, one assumes a linear functional form. In other words,
one writes

Yti = X′i βt + εti, for t = 0, 1,

where E[εti|Xi, T = t] = 0.
Define the overall mean wage gap as ∆µ

O = E[Y|T = 1]−E[Y|T = 0], and consider dividing the
overall mean gap into a wage structure effect and a composition effect. Averaging over X, the mean
wage gap ∆µ

O can be written as

∆µ
O = E[Y|T = 1]−E[Y|T = 0]

= E[E(Y|X, T = 1)|T = 1]−E[E(Y|X, T = 0)|T = 0]

= E [X|T = 1]′ β1 +E [ε1|T = 1]−
(
E [X|T = 0]′ β0 +E [ε0|T = 0]

)
,

where E [εt|T = t] = 0 because E [εt|X, T = t] = 0, so the expression reduces to ∆µ
O = E [X|T = 1]′ β1

− E [X|T = 0]′ β0. Thus, by adding and subtracting E [X|T = 1]′ β0 we get

∆µ
O =

E [X|T = 1]′ (β1 − β0)︸ ︷︷ ︸
∆µ

S,OB

+
(E [X|T = 1]−E [X|T = 0])′ β0.︸ ︷︷ ︸

∆µ
X,OB

The first term in the equation is the wage structure effect, ∆µ
S,OB, while the second term is the

composition effect, ∆µ
X,OB. Note that the reference group used to compute the wage structure effect

here is the Group 0, though the decomposition could also be performed using Group 1 instead as the
reference group. The wage structure and composition effects can also be written in terms of sums over
the explanatory variables

∆µ
S,OB =

K

∑
k=1

E
[

Xk|T = 1
]
(β1,k − β0,k),

∆µ
X,OB =

K

∑
k=1

[
E
[

Xk|T = 1
]
−E

[
Xk|T = 0

]]
β0,k,
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where Xk and βt,k represent the kth element of X and βt, respectively. This provides a simple way of
dividing ∆µ

S,OB and ∆µ
X,OB into the contribution of a single covariate or a group of covariates as needed.

Because of the linearity assumption, the OB decomposition is very easy to compute in practice.
It can be estimated by replacing the parameter vectors βt by their OLS estimates, and replacing the
expected value of the covariates E [X | T = t] by the sample averages.

There are nonetheless some important limitations to the standard OB decomposition.
A well-known difficulty discussed by Oaxaca and Ransom (1999) and Gardeazabal and Ugidos (2004)
is that the contribution of each covariate to the wage structure effect, E

[
Xk|T = 1

]
[β1,k − β0,k],

is sensitive to the choice of the base group.5

A second limitation discussed by Barsky et al. (2002) is that the OB decomposition provides
consistent estimates of the wage structure and composition effect only under the assumption that the
conditional expectation is linear.6 One possible solution to the problem is to estimate the conditional
expectation using non-parametric methods. Another solution proposed by Barsky et al. (2002) is to use
a (non-parametric) reweighting approach as in DiNardo et al. (1996) to perform the decomposition.7

The advantage of this solution is that it can be applied to more general distributional statistics.
The disadvantage of both solutions, however, is that they do not provide direct ways, in general, of
further dividing the contribution of each covariate to the wage structure and composition effects.8

Currently available methods, such as DiNardo et al. (1996), can be used to compute the overall
wage structure and composition effects for various distributional statistics. We build on this in the
current paper by suggesting to estimate these two overall effects using a reweighting procedure.
Available methods are much more limited, however, when it comes to further dividing the wage
structure and, especially, the composition effect into the contribution each covariate. The main
contribution of the paper is to explain how a simple regression-based procedure to remedy this
shortcoming building on recent work by FFL.

3. Identification of General Composition and Structure Effects

3.1. Wage Structure and Composition Effects

Following the treatment effect literature (Rosenbaum and Rubin 1983, Heckman 1990, Heckman
and Robb 1985, 1986), we focus on differences in the wage distributions between two groups, 1 and
0. Suppose we could observe a random sample of N = N1 + N0 individuals, where N1 and N0

are the number of individuals in each group and we index individuals by i = 1, . . . , N. We define
the probability that an individual i is in Group 1 as p, whereas the conditional probability that an

5 Consider, for instance, the contribution of increasing returns to education to changes in mean wages over time in the case
where workers are either high school graduates or college graduates. In the case where high school is the base group, Xi,k
is a dummy variable indicating that the worker is a college graduate, and β0,k and β1,k are the effect of college on wages
in years t = 0 and 1. If returns to college increase over time (β1,k − β0,k > 0), then the contribution of education to the
wage structure effect, X1,k [β1,k − β0,k ], is positive, where X1,k is the share of college graduates. If we use instead college as
the base group, then X1,k [β1,k − β0,k ] is negative, where X1,k represents the share of high school (X1,k = 1− X1,k) and βt,k
represents the effect of high school (βt,k = −βt,k). Thus, whether changes in returns to schooling contribute positively or
negatively to the change in mean wages critically depends on the choice of the base group.

6 As we show below, our goal is to estimate a counterfactual mean wage that would prevail if workers in Group 1 were paid
under the wage structure of Group 0. Under the linearity assumption, this is equal to E [X | T = 1]′ β0, a term that appears
in both the wage structure and composition effect. The problem is that, when linearity does not hold, the counterfactual
mean wage is not be equal to E [X | T = 1]′ β0.

7 Kline (2011) notes that, if the reweighting factor is linear in the covariates, the OB decomposition will yield a valid estimate
of the counterfactual mean even if the conditional expectation is not linear in the covariates.

8 We discuss the case of reweighting in more detail below. In the case where the conditional expectation E(Yi |Xi , T = t) is
estimated non-parametrically, a whole different procedure would have to be used to separate the wage structure into the
contribution of each covariate. For instance, average derivative methods could be used to estimate an effect akin to the β
coefficients used in standard decompositions. Unfortunately, these methods are difficult to use in practice, and would not
be helpful in dividing up the composition effect into the contribution of each individual covariate.
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individual i is in Group 1 given X = x, is p(x) = Pr[T = 1|X = x], sometimes simply called the
propensity score.

Wage determination depends on some observed components Xi and on some unobserved
components εi ∈ Rm through the wage structure functions

Yti = gt(Xi, εi), for t = 0, 1 (1)

where gt(·, ·) are unknown real-valued mappings: gt : X ×Rm → R+ ∪ {0}. As we are not imposing
any distribution assumption or specific functional form, writing Y1 and Y0 in this way does not restrict
the analysis in any sense. We will however assume that (T, X, ε), or equivalently (Y, T, X), have an
unknown joint distribution but that is far from being restrictive.

From observed data on (Y, T, X), we can non-parametrically identify the distributions of

Y1|T = 1 d∼ F1 and Y0|T = 0 d∼ F0. Without further assumptions, however, we cannot identify

the counterfactual distribution of Y0|T = 1 d∼ FC. The counterfactual distribution FC is the one that
would have prevailed under the wage structure of Group 0, but with the distribution of observed and
unobserved characteristics of Group 1. For the sake of completeness, we consider also the conditional

distributions Y1|X, T = 1 d∼ F1|X , Y0|X, T = 0 d∼ F0|X and Y0|X, T = 1 d∼ FC|X .
We typically analyze the difference in wage distributions between Groups 1 and 0 by looking

at some functionals of these distributions. Let ν be a functional of the conditional joint distribution
of (Y1, Y0) |T, that is ν : F� → R, and F� is a class of distribution functions such that F ∈ F� if
‖ν (F)‖ < +∞. The difference in the νs between the two groups is called here the ν-overall wage gap,
which is basically the difference in wages measured in terms of the distributional statistic ν:9

∆ν
O = ν (F1)− ν (F0) = ν1 − ν0. (2)

We can use the fact that the distribution of X is not the same across groups to decompose
Equation (2) into two parts:

∆ν
O = (ν1 − νC) + (νC − ν0) = ∆ν

S + ∆ν
X (3)

where the second term ∆ν
X reflects the effect of differences in the distribution of X.

The first term of the sum, ∆ν
S, will reflect changes in the gt(·, ·) functions only if we are able

to fix the distribution of observables and unobservables as the one prevailing for Group 1, that is,
the distribution of (X, ε)|T = 1. For that to be true, νC will be a functional evaluated at that distribution.
This holds under the following assumptions: Ignorability and Overlapping Support.

The Ignorability Assumption has become popular in empirical research following a series of papers
by Rubin and coauthors and by Heckman and coauthors.10 In the program evaluation literature, this
assumption is sometimes called unconfoundedness and allows identification of the treatment effect on
the treated sub-population.

Assumption 1. [Ignorability]: Let (T, X, ε) have a joint distribution. For all x in X : ε is independent of T
given X = x.

The Ignorability assumption should be analyzed in a case-by-case situation, as it is more plausible
in some cases than in others. In our case, it states that the distribution of the unobserved explanatory
factors in the wage determination is the same across Groups 1 and 0, once we condition on a

9 We sometimes refer to the functional ν(FZ) simply as νZ . In the Oaxaca–Blinder decomposition discussed earlier, the
parameter ν equals the mean (ν = µ) and ∆ν

O is the total difference in mean wages.
10 See, for instance, Rosenbaum and Rubin (1983, 1984), Heckman et al. (1997) and Heckman et al. (1998).
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vector of observed components.11 Now, consider the following assumption about the support of
the covariates distribution:

Assumption 2. [Overlapping Support]: For all x in X , p(x) = Pr[T = 1|X = x] < 1. Furthermore,
Pr[T = 1] > 0.

The Overlapping Support assumption requires that there be an overlap in observable characteristics
across groups, in the sense that there is no value of x in X such that it is only observed among
individuals in Group 1.12 Under these two assumptions, we are able to identify the parameters of the

counterfactual distribution of Y0|T = 1 d∼ FC. To see how the identification result works, let us define
first three relevant weighting functions:

ω1(T) ≡
T
p

ω0(T) ≡
1− T
1− p

ωC(T, X) ≡
(

p(X)

1− p(X)

)
·
(

1− T
p

)
.

The first two reweighting functions transform features of the marginal distribution of Y into
features of the conditional distribution of Y1 given T = 1, and of Y0 given T = 0. The third reweighting
function transforms features of the marginal distribution of Y into features of the counterfactual
distribution of Y0 given T = 1. We are now able to state our first identification result:13

Result 1. [Inverse Probability Weighting]:
Under Assumptions 1 and 2:
(i)

Ft (y) = E [ωt(T) · 1I{Y ≤ y}] t = 0, 1

(ii)
FC (y) = E [ωC(T, X) · 1I{Y ≤ y}]

Identification of FC implies identification of ν (FC) and therefore of ∆ν
S and ∆ν

X. Furthermore,
because of the ignorability assumption, we know that differences between the conditional distributions
of (X, ε) |T = 1 and (X, ε) |T = 0 correspond only to differences in the conditional distributions FX|T=1
and FX|T=0. Thus, ∆ν

X will only reflect changes in distribution of X. We state these results more
precisely below.

Result 2. [Identification of Wage Structure and Composition Effects]:
Under Assumptions 1 and 2:
(i) ∆ν

S, ∆ν
X are identifiable from data on (Y, T, X);

(ii) if g1 (·, ·) = g0 (·, ·) then ∆ν
S = 0;14

(iii) if FX|T=1 = FX|T=0, then ∆ν
X = 0

In Result 2, the identification of ∆ν
S and ∆ν

X follows from the fact that these quantities can be
expressed as functionals of the distributions obtained by weighting the observations with the inverse
probabilities of belonging to Group 0 or 1 given T, as stated in Result 1. Note that the non-parametric
identification of either the wage determination functions g1(·, ·) and g0(·, ·), or the distribution function

11 This rules out selection into Group 1 or 0 based on unobservables.
12 This is not a restrictive assumption when looking at changes in the wage distribution over time. Problems could arise,

however, in gender wage gap decompositions where some of the detailed occupations are only held by men or by women.
13 See also Firpo and Pinto (2016).
14 Note that, even if g1(·, ε) = h1(ε) and g0(·, ε) = h0(ε), the result from Result 2 is unaffected. The intuition is that, since (X, ε)

have a joint distribution, we can use the available information on that distribution to reweight the effect of the ε’s on Y.
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of ε are not necessary for the effects ∆ν
S and ∆ν

X to be identified. Therefore, methods based on
conditional mean restrictions (the OB decomposition approach) and methods based on conditional
quantile restrictions (the Machado and Mata (2005) approach) are based on too strong identification
conditions that can be easily relaxed if we are simply interested in the terms ∆ν

S and ∆ν
X .

Part (ii) of Result 2 also states that, when there are no group differences in the wage determination
functions, then we should find no wage structure effects. Part (iii) states that, if there are no group
differences in the distribution of the covariates, there will be no composition effects.

Finally, it is interesting to relate these general results to the OB decomposition. Given the
functional form assumptions of OB, the conditional mean zero expectation of ε and ignorability
assumption, it follows that E [X|T = 1]′ β0 equals µC, the counterfactual mean or the expectation of Y0

given T = 1:

µC = E[Y0|T = 1] = E[g0(X, ε)|T = 1] = E[E(g0(X, ε)|X, T = 1)|T = 1]

= E[E(g0(X, ε)|X, T = 0)|T = 1]

= E[X|T = 1]′β0 + E[E(ε0|X, T = 0)|T = 1]

= E[X|T = 1]′β0

In the following subsection, we show how one can generalize other features of the OB
decomposition using a regression based approach, the RIF Regression.

3.2. The RIF Regressions

One important goal of the desired approach, as discussed in Section 2, is to apportion the
wage structure and composition effects into the contribution of each individual covariate. To do
so, we use the method proposed by FFL to compute partial effects of changes in distribution of
covariates on a given functional of the distribution of Yt|T. The method works by providing a linear
approximation to a non-linear functional of the distribution. Thus, through collecting the leading term
of a von Mises (1947) expansion, FFL approximate those non-linear functionals by expectations, which
are linear functionals or statistics of the distribution. Finally, that linearization method allows one to
apply the law of iterated expectations to the distributional statistics of interest and thus to compute
approximate partial effects of changes in the distribution of each single covariate on the functional
of interest.

The details of the method are summarized as follows. Consider again a general functional
ν = ν (F). Recall the definition of the influence function (Hampel 1974), IF, introduced as a measure
of robustness of ν to outlier data when F is replaced by the empirical distribution: IF(y; ν, F) =

limε→0 (ν(Fε)− ν(F)) /ε, where Fε(y) = (1− ε)F + εδy, 0 ≤ ε ≤ 1 and where δy is a distribution that
only puts mass at the value y. It can be shown that, by definition,

∫ ∞
−∞ IF(y; ν, F) dF(y) = 0.

We use a recentered version of the influence function RIF(y; ν, F) = ν(F) + IF(y; ν, F) that has an
expectation equal to the original ν :∫

RIF(y; ν, F) · dF (y) =
∫

(ν(F) + IF(y; ν, F)) · dF (y) = ν(F). (4)

Letting νt = ν(Ft) and νC = ν(FC), we can therefore write the distributional statistics ν1, ν0,
and νC as the expectations: νt = E [RIF(Yt; ν, Ft) | T = t], t = 0, 1 and νC = E [RIF(Y0; ν, FC) | T = 1].
Using the law of iterated expectations, the distributional statistics can also be expressed in terms of
expectations of the conditional recentered influence functions

ν(F) =
∫

E [RIF(Y; ν, F)|X = x] · dFX(x).
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Letting the so-called RIF-regressions be written as mν
t (x) ≡ E [RIF(Yt; νt, Ft)|X, T = t], for t = 0, 1,

and mν
C (x) ≡ E [RIF(Y0; νC, FC)|X, T = 1], we have

νt = E [mν
t (X) | T = t] , t = 0, 1 and νC = E [mν

C (X) | T = 1] . (5)

It follows that ∆ν
S and ∆ν

X can be rewritten as:

∆ν
S = E [mν

1 (X) | T = 1]−E [mν
C (X) | T = 1] ,

∆ν
X = E [mν

C (X) | T = 1]−E [mν
0 (X) | T = 0] .

As is well known, in the case of the mean, the influence function at point y is its deviation from
the mean and, therefore, the recentered influence function of the mean is simply the point y itself

IF(y; µt, Ft) = lim
ε→0

[(1− ε) · µt + ε · y− µt]

ε
= y− µt, (6)

RIF(y; µt, Ft) = IF(y; µt, Ft) + µt = y. (7)

As a result, the RIF-regression coefficients in the case of the mean are identical to standard
regression coefficients of Y on X used in the OB decomposition (βt above), and we have

γ
µ
t =

(
E[ωt(T)XX′]

)−1 · E[ωt(T)XY], t = 0, 1

γ
µ
C =

(
E[ωC(T, X)XX′]

)−1 · E[ωC(T, X)XY],

where γ
µ
t = βt, and

∆µ
S = E [X, T = 1] ′ ·

(
γ

µ
1 − γ

µ
C

)
, (8)

∆µ
X = (E [X|T = 1]−E [X|T = 0]) ′ · γµ

0 + Rµ, (9)

where Rµ is an approximation error. When the linearity and zero conditional mean assumption of
the OB decomposition are satisfied, it follows that γ

µ
C = γ

µ
0 and Rµ = 0, as seen in the end of the

previous subsection. Our decomposition is then identical to the OB decomposition. However, when
these conditions are not satisfied the two decompositions are different.

In general, there is no particular reason to expect the conditional expectations mν
t (X) and mν

C (X)

to be linear in X. As a matter of convenience and comparability with OB decompositions, it is
nonetheless useful to consider the case of the linear specification. To be more precise, consider the
linear projections (indexed by L) mν

L (x)

mν
t,L (x) = x′γν

t and mν
C,L (x) = x′γν

C,

where

γν
t =

(
E
[
XX′ | T = t

])−1 ·E [RIF(Yt; νt, Ft)X | T = t] , t = 0, 1,

γν
C =

(
E
[
XX′ | T = 1

])−1 ·E [RIF(Y0; νC, FC)X | T = 1] .

As is well known, even though linear projections are only an approximation for the true
conditional expectation, the expected approximation error is zero, so that:

E
[
mν

t,L (X) | T = t
]

= E [mν
t (X) | T = t] t = 0, 1

and E
[
mν

C,L (X) | T = 1
]

= E [mν
C (X) | T = 1] .
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We can thus rewrite ∆ν
S and ∆ν

X as:

∆ν
S = E [X|T = 1]′ (γν

1 − γν
C) , (10)

∆ν
X = E [X|T = 1]′ γν

C −E [X|T = 0]′ γν
0 , (11)

which generalizes the OB decomposition to any distributional statistic through the projection of its
recentered influence function onto the covariates. Note that, under an additional assumption that
mν

t,L (·) = mν
t (·) and mν

C,L (·) = mν
C (·), that is, if the conditional expectation is indeed linear in x, then

γν
0 = γν

C. In the case of the mean (ν = µ), it then follows that the equations above reproduce exactly
the OB decomposition.

It is important to note that the case of the mean is quite unique because the recentered influence
function does not depend on the distribution F, i.e., RIF(y; µ, F) = IF(y; µ, F) + µ = y. The lack of
dependence on F is due to the fact that the influence function is a linear approximation that is exact in
the case of the mean. For other distributional statistics, the approximation (or specification) error R is
due to two separate factors. First, as in the case of the mean the conditional expectation of RIF(y; ν, F)
given X may not be linear in X. Second, both the RIF and the projection coefficients γ depend on
the distribution F. Thus, for more general distributional statistics, γν

0 = γν
C will not generally hold

regardless of whether the conditional expectation is linear or not. As a result, we should expect to
have a non-zero approximation error (see Equation (12)) for distributional statistics besides the mean,
although how large the error is remains an empirical question.

3.3. Interpreting the Decomposition

We have just shown that, under a linearity assumption, the decomposition based on
RIF-regressions is similar to a standard OB decomposition. We now go beyond this simple analogy to
define more explicitly what we mean by the contribution of each single covariate to the wage structure
and composition effects.

3.3.1. Composition Effects

FFL show that RIF-regression estimates can either be used to estimate the effect of a “small
change” of the distribution of X on ν, or to provide a first-order approximation of a larger change
of the distribution of X on ν. The latter effect, that FFL call a “policy effect” , is what concerns us
here. In fact, the composition effect ∆ν

X exactly corresponds to FFL’s policy effect, where the “ policy”
consists of changing the distribution of X from its value at T = 0 to its value at T = 1 (holding the
wage structure constant).

For the sake of simplicity, we continue to work with the linear specification introduced in
Section 3.2. As it turns out, FFL show that, in the case of quantiles, using a linear specification
for RIF-regressions generally yields very similar estimates to more flexible methods allowing for
non-linearities.15 We nonetheless discuss below the consequences of the linearity assumption for the
interpretation of the results.

An explicit link with the results of FFL concerning policy effects is obtained by rewriting the
composition effects as

∆ν
X = (E [X|T = 1]−E [X|T = 0]) ′γν

0 + Rν. (12)

15 This finding is closely linked to the well-known fact that estimates of marginal effects estimated using a linear probability
model tend to be very similar, in practice, to those obtained using a probit, logit, or another flexible non-linear discrete
response model.
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where Rν = E [X|T = 1]′
(
γν

C − γν
0
)
. The first term in Equation (12) is now similar to the standard OB

type composition effect, and can be rewritten in terms of the contribution of each covariate as

K

∑
k=1

(
E
[

Xk|T = 1
]
−E

[
Xk|T = 0

])
γν

0,k.

Each component of this equation can be interpreted as the “ policy effect” of changing the
distribution of one covariate from its T = 0 to T = 1 level, holding the distribution of the other
covariates unchanged.

As discussed earlier, the second term in Equation (12), Rν, is the approximation error linked to the
fact that FFL’s regression-based procedure only provides a first-order approximation to the composition
effect ∆ν

X. In practice, it can be estimated as the difference between the reweighting estimate of the
composition effect, νC − ν0, and the estimate of

(
E [X|T = 1] −E [X|T = 0]

)′γν
0 obtained using the

RIF-regression approach. When the latter approach provides an accurate (first-order) approximation of
the composition effect, the error should be small. Looking at the magnitude of the error thus provides
a specification test of FFL’s regression-based procedure.

Note that using a linear specification for the RIF-regression instead of a general function
mν (X) = E [RIF(Y; νt, Ft) | X] simply changes the interpretation of the specification error Rν by adding
an error component linked to the fact that a potentially incorrect specification may be used for the
RIF-regression. We nonetheless suggest using the linear specification in practice for three reasons. First,
we get an approximation error anyway since FFL’s procedure only gives a first-order approximation
to the impact of “large” changes in the distribution of X. Second, the linear specification does not
affect the overall estimates of the wage structure and composition effects that are obtained using the
reweighting procedure. Third, using a linear specification has the advantage of providing a much
simpler interpretation of the decomposition, as in the OB decomposition. Our suggestion is thus to
use the linear specification but also look at the size of the specification error to make sure that the FFL
approach provides an accurate enough approximation for the problem at hand.16

3.3.2. Wage Structure Effect

The wage structure effect in Equation (11), ∆ν
S = E [X|T = 1] ′

(
γν

1 − γν
C
)
, already looks very much

like the usual wage structure effect in a standard OB decomposition. One important difference relative
to the OB decomposition is that the coefficient γν

C (the regression coefficient when the Group 0 data
are reweighted to have the same distribution of X as Group 1) is used instead of γν

0 (the unadjusted
regression coefficient for Group 0). The reason for using γν

C instead of γν
0 is that the difference γν

1 − γν
C

solely reflects differences between the wage structures g1(·) and g0(·), while the difference γν
1 − γν

0
may be contaminated by differences in the distribution of X between the two groups.

In conventional regression analysis, the main reason why OLS estimates may depend on the
distribution of X is that, when the conditional expectation of Y given X is non-linear, OLS minimizes a
specification error that itself depends on the distribution of X (White 1980). An additional issue in our
context is that for distribution statistics besides the mean, the recentered influence function RIF(Y; ν, F)
depends on the distribution of Y (F). Changing the distribution of X changes the distribution of Y and,
thus, the value of RIF(Y; ν, F) for a given value of Y. This also affects the coefficients in a regression
of RIF(Y; ν, F) on X since we are no longer using the same RIF on the left hand side of the regression.
As just discussed, this important problem can be addressed by estimating γν

C in the reweighted sample,

16 In the case of the mean, another rationale for using a linear model comes from Kline (2011), who notes that the OB
decomposition remains valid even when the regression function is non-linear as long as the reweighting factor ωC is well
approximated by a linear odds ratio model. Unfortunately, this property does not hold for distributional statistics besides
the mean.
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which insures that the difference γν
1 − γν

C only reflects differences between the wage structures g1(·)
and g0(·).

Another limitation of OB decompositions that also applies here is that the contribution of each
covariate to the wage structure effect is sensitive to the choice of a base group. There is, unfortunately,
no simple solution to this problem.17 To see this, rewrite the wage structure effect

∆ν
S = ν1 − νC

= [(ν1 − νB1)− (νC − νBC)] + (νB1 − νBC) , (13)

where νB1 is the distributional statistic in an arbitrary “base group” under the wage structure g1(·, ·),
while νBC is the distributional statistic for the same base group under the wage structure g0(·, ·).
The term ν1 − νB1 represents the “policy effect” of changing the distribution of X from its value in
the base group to its T = 1 value under the wage structure g1(·, ·), while νC − νBC represents the
corresponding policy effect under the wage structure g0(·, ·). Since there is no dispersion in X in a base
group of workers with similar characteristics, switching to the actual distribution of X will typically
result in more wage dispersion. The overall wage structure effect is, thus, equal to the difference in
the dispersion enhancing effect under g1(·, ·) and g0(·, ·), respectively, plus a “residual” difference in
the distributional statistic in the base group, νB1 − νBC. Unless this residual change is invariant to the
choice of the base group, the contribution of each covariate to the wage structure will be sensitive to
the choice of base group.

4. Estimation and Inference

In this section, we discuss how to estimate the different elements of the decomposition introduced
in the previous section: ν1, ν0, νC, γ1, γ0 and γC. For ν1, ν0, γ1 and γ0, the estimation is very standard
because the distributions F1, and F0, are directly identified from data on (Y, T, X). The distributional
statistic ν1, ν0 can be estimated as their sample analogs in the data, while γ1 and γ0 can be
estimated using standard least square methods. In contrast, the estimation of νC and γC requires
first estimating the weighting function ωC(T, X). We present two common methods—parametric and
non-parametric—to estimate ωC(T, X).

We discuss separately the estimation of the first and second stages of the decomposition.
The first stage relies on a reweighting procedure, while the second stage is based on the estimation
of RIF-regressions. We only present the general lines of the estimation procedure in this section.
Proofs and details about the parametric and non-parametric procedure to estimate ωC(T, X), and the
asymptotic behavior of these estimators are discussed in the Appendix B and in Firpo and Pinto (2016).
Finally, we show how the estimation procedure can be applied to the specific cases of the quantiles,
interquantile ranges, variance and the Gini coefficient.

4.1. First Stage Estimation

The first step of the estimation procedure consists of estimating the weighting functions ω1(T),
ω0(T) and ωC(T, X). Then, the distributional statistics ν1, ν0, νC are computed directly from the
appropriately reweighted samples. Details of the estimation procedure are presented in the Appendix B
and in Firpo and Pinto (2016).

17 In the case of the mean, several procedures have been suggested as potential solutions to the base group problem.
They typically involve creating an artificial base group with the average observed characteristics in the population (see, e.g.,
Yun 2005). As this choice is as arbitrary as other choices of base group, and arguably harder to interpret, especially across
studies, it does not really solve the base group problem. See Fortin et al. (2011) for a more complete discussion. In Footnote
29, we also discuss some issues with previous attempts (Firpo et al. 2007) using a normalization approach to the base group.
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4.2. Second Stage Estimation

Now, consider estimation of the regression coefficients γν
1 , γν

0 , and γν
C:

γ̂ν
t =

(
N

∑
i=1

ω̂∗t (Ti)XiXi
′
)−1

·
N

∑
i=1

ω̂∗t (Ti)R̂IF(Yi; νt, Ft)Xi, t = 0, 1

γ̂ν
C =

(
N

∑
i=1

ω̂∗C(Ti, Xi)XiXi
′
)−1

·
N

∑
i=1

ω̂∗C(Ti, Xi)R̂IF(Yi; νC, FC)Xi

where for t = 0, 1

R̂IF(y; νt, Ft) = ν̂t + ÎF(y; νt, Ft) and R̂IF(y; νC, FC) = ν̂C + ÎF(y; νC, FC),

and ÎF(·; ν, F) is a proper estimator of the influence function. We discuss how to estimate the influence
function for a number of specific cases in Section 4.3.

We can thus decompose the effect of changes from T = 0 to T = 1 on the distributional statistic
ν as:

∆̂ν
S =

(
N

∑
i=1

ω̂∗1 (Ti)Xi

)
′ (γ̂ν

1 − γ̂ν
C)

∆̂ν
X =

(
N

∑
i=1

ω̂∗1 (Ti)Xi

)
′γ̂ν

C −
(

N

∑
i=1

ω̂∗0 (Ti)Xi

)
′γ̂ν

0

It is also useful to rewrite the estimate of the composition effect as

∆̂ν
X =

(
N

∑
i=1

(ω̂∗1 (Ti)− ω̂∗0 (Ti)) Xi

)
′γ̂ν

0 + R̂ν,

where R̂ν =
(

∑N
i=1 ω̂∗1 (Ti)Xi

)
′ (γ̂ν

C − γ̂ν
0
)

is an estimate of the approximation error previously
discussed. This generalizes the OB decomposition to any distributional statistic, including quantiles,
the variance or the Gini coefficient.

4.3. Examples

We now turn to popular statistics, (unconditional) quantiles, the variance, and the Gini coefficient
to illustrate how the different elements of the decomposition can be computed in these specific cases.

4.3.1. Quantiles and Interquantile Ranges

Quantiles are a set of distributional measures that have been used extensively for the
decomposition of wage distributions. Several methodologies (Machado and Mata 2005; Melly 2005)
use conditional quantiles regressions as primary tools to infer entire distributions and counterfactual
distributions even when the object of interest is the unconditional quantiles. For instance, in
decompositions of the gender wage gap, they are used to address issues such as glass ceilings and
sticky floors.

The τ-th quantile of the distribution F is defined as the functional, Q(F, τ) = inf{y|F(y) ≥ τ},
or as qτ for short, and its influence function is:

IF(y; qτ , F) =
τ − 1I {y ≤ qτ}

fY (qτ)
. (14)
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As shown in FFL, the recentered influence function of the τth quantile is

RIF(y; qτ , F) = qτ + IF(y; qτ , F) = qτ +
τ − 1I {y ≤ qτ}

fY (qτ)
= c1,τ · 1I {y > qτ}+ c2,τ .

where c1,τ = 1/ fY (qτ), c2,τ = qτ − c1,τ · (1− τ), and fY (qτ) is the density of Y evaluated at qτ . Thus,

E [RIF(Y; qτ , F)|X = x] = c1,τ · Pr [Y > qτ |X = x] + c2,τ .

and the estimation of conditional mean of the RIF(Y; qτ , F) can be seen more intuitively as the
estimation of a conditional probability model of being below or above the quantile of interest
qτ , rescaled by a factor c1,τ to reflect the relative importance of the quantile to the distribution,
and recentered by a constant c2,τ .

The decomposition of (unconditional) quantiles proceeds along the same steps as in the case
of the mean. In the first stage, the estimates of qτt, t = 0, 1 and qτC are obtained by reweighting
as q̂τt = arg minq ∑N

i=1 ω̂t(Ti)· ρτ(Yi − q), t = 0, 1, and q̂τC = arg minq ∑N
i=1 ω̂C(Ti, Xi)· ρτ(Yi − q).

The function ρτ(·) is the well known check function, proposed by Koenker and Bassett (1978), where,
for any u in R, ρτ(u) = u · (τ − 1{u ≤ 0}). Note that q̂τt and q̂τC can simply be computed using
standard software packages with the appropriate weighting factor.

The estimators for the gaps are computed as:

∆̂qτ

O = q̂τ1 − q̂τ0; ∆̂qτ

S = q̂τ1 − q̂τC and ∆̂qτ

X = q̂τC − q̂τ0. (15)

In the second stage, we estimate the linear RIF-regressions. First, the recentered influence function
is computed for each observation by plugging the sample estimate of the quantile, q̂τ , and estimating
the density at the sample quantile, f̂ (q̂τ).

For the τ quantile of Y1|T = 1, we would use R̂IF(y; qτ1, F) = q̂τ1 +
(

f̂1 (q̂τ1)
)−1
· (τ −

1I{y ≤ q̂τ,1}) where f̂1 (·) is a consistent estimator for the density of Y1|T = 1, f1 (·). For example,
kernel methods can be used to estimate the density, but other simpler alternative methods are also
available. For example, one may dispense with estimation of the density by kernel by noticing that
c1,τ = dqτ/dτ. By estimating sufficiently close quantiles, say qτ and qτ+λ, where λ is a small positive
real number, an estimate of c1,τ is ĉ1,τ = (q̂τ+λ − q̂τ)/λ, which is the inverse of the sparsity density
estimator (Koenker 2005, p. 139). Another interesting alternative method is the recent one suggested
by Cattaneo et al. (2017), which uses local polynomial regressions.

In the example of Y1|T = 1, the RIF-regressions are estimated by replacing the usual dependent
variable, Y, by the estimated value of R̂IF(y; qτ1, F). Standard software packages can be used to do so.
The resulting regression coefficients are therefore

γ̂
qτ
t =

(
N

∑
i=1

ω̂t(Ti)XiXi
′
)−1

·
N

∑
i=1

ω̂t(Ti)XiR̂IF(Yi; qτt, Ft), t = 0, 1, (16)

γ̂
qτ

C =

(
N

∑
i=1

ω̂C(Ti, Xi)XiXi
′
)−1

·
N

∑
i=1

ω̂C(Ti, Xi)XiR̂IF(Yi; qτC, FC). (17)

Similar to the case of the mean, we get:

∆̂qτ

S = E [X, T = 1] ′
(

γ̂
qτ

1 − γ̂
qτ

C

)
, (18)

∆̂qτ

X = (E [X|T = 1]−E [X|T = 0]) ′γ̂qτ

0 + R̂qτ , (19)

where R̂qτ = E [X|T = 1] ′
(

γ̂
qτ

C − γ̂
qτ

0

)
.
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Interquantile ranges, such as the difference between the 75th and the 25th percentiles, and the
90–10 gap (difference between 90th and the 10th percentiles) are also popular inequality measures that
only depend on quantiles. Because they are simple differences between quantiles, their γ coefficients
are the differences in the γ coefficients of their respective quantiles. For that reason, we omit the
theoretical discussion about interquantile ranges, but present their estimates in the empirical section.

4.3.2. Variance

There are other applications where it is useful to decompose the impact of covariates on the
variance of the distributions of log wages. Examples include the compression effect of unions and of
public sector wage setting.

The estimators of these gaps can be computed as:

∆̂σ2

O = σ̂2
1 − σ̂2

0 ; ∆̂σ2

S = σ̂2
1 − σ̂2

C and ∆̂σ2

X = σ̂2
C − σ̂2

0 , (20)

using the reweighting scheme σ̂2
t = ∑N

i=1 ω̂∗t (Ti) (Yi − µ̂t)
2, t = 0, 1, and σ̂2

C = ∑N
i=1 ω̂∗C(Ti, Xi)

· (Yi − µ̂C)
2 . The influence function of the variance is well-known to be

IF(y; σ2, FY) =

(
y−

∫
z · dFY (z)

)2
− σ2, (21)

and the recentered influence function is the first term of this expression RIF(y; σ2, FY) =

(y−
∫

z · dFY (z))2
= (Y− µ)2.

The decomposition in terms of individual covariates, such as union coverage, follows by replacing
RIF(·; qτ) by RIF(·; σ2, F) in Equations (16)–(19).

4.3.3. The Gini coefficient

Finally, another popular measure of wage inequality is the Gini coefficient. There are a few papers
(Choe and Van Kerm 2014; Gradín 2016) that have begun to use RIF-Gini regressions to investigate
changes in income inequality. Recall that the Gini coefficient is defined as

νG(FY) = 1− 2µ−1R(FY) (22)

where R(FY) =
∫ 1

0 GL(p; FY)dp with p(y) = FY(y) and where GL(p; FY) is the generalized Lorenz

ordinate of FY given by GL(p; FY) =
∫ F−1(p)
−∞ z dFY(z). The generalized Lorenz curve tracks the

cumulative total of y divided by total population size against the cumulative distribution function.
The generalized Lorenz ordinate can be interpreted as the proportion of earnings going to the 100p%
lowest earners.

Monti (1991) derives the influence function of the Gini coefficient as

IF(y; νG, FY) = A2(FY) + B2(FY)y + C2(y; FY) (23)

where A2(FY) = 2/µ−1R(FY), B2(FY) = 2µ−2R(FY), and C2(y; FY) = −2/µ−1[y [1− p(y)]
+GL (p(y); FY) with R(FY) and GL(p(y); FY) as defined underneath Equation (22). Recentering yields

RIF(y; νG, FY) = 1 + B2(FY)y + C2(y; FY). (24)

The recentered influence function of the Gini coefficient can also be written as

RIF(y; νG, FY) = 2
y
µ

νG +
(1− y)

µ
+

2
µ

∫
zFY(z)dz,
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which gives a more intuitive expression after integrating by parts

RIF(y; νG, FY) = 2
y
µ

[
FY(y)−

(1 + νG)

2

]
+ 2

[
(1− νG)

2
− GL(p; FY)

]
+ νG,

where (1 + νG)/2 and (1− νG)/2 correspond, respectively, to the areas above and below the Lorenz
curve. As pointed out by Monti (1991), the first term is unbounded because it increases by the factor
y/µ, while the second is bounded between νG − 1 and 1 + νG. Thus, the RIF(y; νG, FY) is continuous
and convex in y; its first derivative is equal to 2/µ[FY(y)− (1 + νG)/2], and it reaches its minimum
when FY(y) = (1 + νG)/2. The function is theoretically unbounded from above, but in practice it
reaches its maximum at the upper bound of the empirical support of the distribution. This implies that
the Gini coefficient is not robust to measurement error in high earnings, as pointed out by Cowell and
Victoria-Feser (1996).

The GL coordinates are estimated using a series of discrete data points y1, . . . yN , where
observations have been ordered so that y1 ≤ y2 ≤ . . . ≤ yN . Consider

p̂t(yi) =
∑i

j=1 ω̂t(Tj)

∑N
j=1 ω̂t(Tj)

, ĜLt(p(yi)) =
∑i

j=1 ω̂t(Tj) ·Yj

∑N
j=1 ω̂t(Tj)

t = 0, 1

p̂C(yi) =
∑i

j=1 ω̂C(Tj, Xj)

∑N
j=1 ω̂C(Tj, Xj)

, ĜLC(p(yi)) =
∑i

j=1 ω̂C(Tj, Xj) ·Yj

∑N
j=1 ω̂C(Tj, Xj)

where the numerators are the sum of the i ordered values of Y. The R̂(Ft), t = 0, 1 and R̂(FC)

are obtained by numerical integration of ĜLt(p(yi)) over p̂t(yi), and of ĜLC(p(yi)) over p̂C(yi).18

The estimates of ν̂G(Ft), t = 0, 1 and ν̂G(FC) are obtained by substituting R̂(Ft) and R̂(FC), as well as
µ̂t and µ̂C, into Equation (22). We can then compute the gaps for the changes in the Gini coefficient as
in Equation (20).

Similar substitutions into Equation (24) allows the estimation of R̂IF(y; νG
t , Ft), t = 0, 1 and

R̂IF(y; νG
C , FC). As before, the decomposition in terms of individual covariates, follows by replacing

R̂IF(·; qτ , F) by R̂IF(·; νG, F) in Equations (16)–(19).

5. Empirical Application: Changes in Male Wage Inequality between 1988 and 2016

Our empirical application focuses on changes in wage inequality over the past 30 years. It is
well known that wage inequality increased sharply in the United States since the beginning of the
1980s. Using various distributional methods, Juhn et al. (1993) and DiNardo et al. (1996) showed
that inequality expanded all through the wage distribution during the 1980s. In particular, both the
“90–50 gap” (the difference between the 90th and the 50th quantile of log wages) and the “50–10 gap”
increased during this period.

Since the late 1980s, however, changes in inequality have increasingly been concentrated at the
top end of the wage distribution. In fact, Autor et al. (2006) showed that, while the 90–50 gap kept
expanding after the late 1980s, the 50–10 gap declined during the same period. They refer to these
changes as an increased polarization of the labor market. An obvious question is why wage dispersion
has changed so differently at different points of the distribution. Autor et al. (2006) suggest that
technological change is a possible answer, provided that computerization resulted in a decline in the

18 In practice, we simply use the Stata integ command.
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demand for skilled but “ routine” tasks that used to be performed by workers around the middle of
the wage distribution.19

Lemieux (2008) reviewed possible explanations for the increased polarization in the labor market,
including the technological-based explanation of Autor, Katz, and Kearney. He suggested that, if this
explanation is an important one, then changes in relative wages by occupation, i.e., the contribution
of occupations to the wage structure effect, should play an important role in changes in the wage
distribution. Furthermore, since it is well known that education wage differentials kept expanding
after the late 1980s (e.g., Acemoglu and Autor 2011), the contribution of education to the wage structure
effect is another leading explanation for inequality changes over this period. More recent studies
have also implicated the role of offshorability and trade (Firpo et al. 2011; Autor et al. 2014) which
may be more salient at the industry level, given that some “local” industries such as the construction,
distribution (wholesale trade, transportation), and personal service sectors are likely less affected by
these economic forces.

Previous studies also show that composition effects played an important role in increasing wage
inequality. Lemieux (2006b) showed that all the growth in residual inequality over this period is due to
composition effects linked to the fact that the workforce became older and more educated, two factors
associated with more wage dispersion. Furthermore, Lemieux (2008) argued that de-unionization,
defined as a composition effect in this paper, still contributed to the changes in the wage distribution
over this period.

These various explanations can all be understood in terms of the respective contributions of
a few broad sets of factors (unions, education, experience, occupations, industries, etc.) to either wage
structure or composition effects. This makes the decomposition method proposed in this paper ideally
suited for estimating the contribution of each of these possible explanations to changes in the wage
distribution. Unlike other procedures, our method allows us to estimate the relative contribution of
each of the factors mentioned above to recent changes in the U.S. wage distribution.20

Our empirical analysis is based on data for men from the 1988–1990 and 2014–2016 Outgoing
Rotation Group (ORG) Supplements of the Current Population Survey, yielding about a quarter
million observations for each time period. As in Fortin and Lemieux (2016), for conciseness, we focus
exclusively on men. The extent of occupational gender segregation is such that we would have to
perform the analysis and choose the base group separately by gender. Increasing inequality appears
to have worked through different channels and time period for men and women. Autor et al. (2015)
showed that men’s employment was impacted by the automation of production activities in the
manufacturing sector at the beginning of the period, while women suffered employment losses
associated with the impact of computerization of information-processing tasks in non-manufacturing
later in the period.

The data files were processed as in Lemieux (2006b) who provided detailed information on the
relevant data issues. The wage measure used is an hourly wage measure computed by dividing
earnings by hours of work for workers not paid by the hour. For workers paid by the hour, we use
a direct measure of the hourly wage rate. In light of the above discussion, the key set of covariates
on which we focus are education (six education groups), potential experience (nine groups), union
coverage, occupation (17 categories), and industry (14 categories). We also include controls for marital

19 This technological change explanation was first suggested by Autor et al. (2003). It also implies that the wages of both
skilled (e.g., doctors) and unskilled (e.g., truck drivers) non-routine jobs, at the top and low end of the wage distribution,
increased relative to those of “routine” workers in the middle of the wage distribution.

20 Autor et al. (2005) used the Machado and Mata (2005) method to decompose changes at each quantile into a “price” (wage
structure) and “quantity” (composition) effect. They did not further consider, however, the contribution of each individual
covariate to the wage structure effect, except for separating the contribution of (all) covariates from the residual change in
inequality. See also Lemieux (2002) for a similar decomposition based on a reweighting procedure.
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status and race in all the estimated models. The sample means for all these variables are provided in
Table A1.21

Before proceeding to the estimation of RIF-regressions, it is important to inspect the density
of wages for unusual features that would challenge the estimation of the RIF at the quantiles of
interest or the wage model that w use. Figure 1 presents kernel density estimates of male wages for
1988–1990 and 2014–2016 estimated using the Epanechnikov kernel and bandwidths of 0.06 and 0.08,
respectively.22 The figure also shows the 1988–1990 density reweighted to have the same distribution
of characteristics as in 2014–2016. The typical issues to look for include cliffs associated with minimum
wage effects at the bottom of the distribution, peaks associated with heaping (the fact that hourly
wage workers, in particular, are more likely to round their wages at next dollar amount) in the middle
of the distribution, and top-coding at the top of the distribution. The impact of minimum wages is
clearly seen in Figure 1 when vertical lines corresponding to the minimum and maximum of federal
and state minimum wages are displayed. Because we do not model minimum wages in the current
paper, the 1988–1990 density and the reweighted density are superimposed in those wage ranges,
showing the wage setting variables that we include are inadequate for modeling the distribution of
wages when minimum wages matter.23 Thus, we remain cautious with regards to the interpretation of
any effect at the bottom of the distribution.

Minimum  Wages
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1.5 2 2.5 3 3.5 4 4.5 5

Log Wages

1988-90 1988-90 rwgt 2014-16
2014-16 top-coded 2014-16

Figure 1. Density of Log Wages ($2010)—Men CPS. Note: The vertical lines show the minimum and
maximum of state and federal minimum wages in each time period.

Heaping and top-coding can be problematic if they imply an unusually high value of the density
at a particular quantile of interest that potentially biases the estimation of the denominator f̂Y(q̂τ) of
the influence function (14). While only 0.7% of workers are top-coded in 1988–1990, this proportion

21 Table A2 gives the details of the occupation and industry categories used.
22 Several cross-validation tools suggested tuning parameters in that range, but the graphs were indistinguishable. In addition

to the reweighting factors discussed in Sections 3 and 4, we also use CPS sample weights throughout the empirical analysis.
In practice, this means that we multiply the relevant reweighting factor with CPS sample weight.

23 See Brochu et al. (2017) for a more precise modeling of the effect of minimum wages on the distribution of wages.
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increases to 3.6% in 2014–2016.24 A standard adjustment for top-coding consists of multiplying
top-coded wages by a fixed adjustment factor. In Figure 1, we use the adjustment factor of 1.4
suggested by Lemieux (2006b). While there is no visual evidence of an impact of top-coding in
1988–1990, there is a clear spike in the 2014–2016 distribution around the point (log wage of about 4.5)
where most top-coded observations lie.25 We deal with this issue using a more sophisticated stochastic
imputation procedure (shown as the solid line) based on a Pareto distribution estimated using tax data
from Alvaredo et al. (2013).

Given our large sample of hourly paid and salaried workers, heaping does not appear to be a
serious issue in Figure 1.26 However, heaping is more visible in Figure 2, which plots the 1988–1990
and 2014–2016 densities of wages for our base group. This group of about 400 workers in each period
consists of non-unionized, white, married, high school educated men with 20 to 25 years of experience,
working as construction workers in the construction industry, but not in the public sector.27 The figure
shows that the densities have changed very little over time, aside from different positioning of some
local peaks associated with heaping.28 This group was chosen because the economic forces that impact
the overall wage distribution are less likely at play among this non-unionized group of low-educated
workers in non-routine manual jobs with little exposure to international trade.29

Minimum  Wages
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1.5 2 2.5 3 3.5 4 4.5 5

Log Wages
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Figure 2. Density of Log Wages ($2010)—Base Group. Note: The vertical lines show the minimum and
maximum of state and federal minimum wages in each time period.

24 Weekly earnings are top-coded at $1923 in 1988–1990 and $2884 in 2014–2016. The latter is substantially lower in constant
dollars. Furthermore, the top-code is even higher in relative terms because of the substantial growth in real wages at the top
end of the distribution.

25 A large fraction of workers top-coded at $2884 a week work 40 h a week, which yields an hourly wage rate of $72.1.
Applying the 1.4 adjustment factor increases the wage to $100.9, or about $92.5 in dollars of 2010. This precisely matches the
spike in Figure 1 since log(92.5) = 4.53.

26 Deflating wages with monthly CPI while combining several years of data helps mitigate the issue of heaping.
27 There are only 5–6 women in this category, which highlights the need of using different base groups for men and women.
28 In nominal terms, the mode of the distributions is around $10.00/h in 1988–1990 and around $19.00/h in 2014–2016.

In 1988–1990, there is a second local peak around $12.00/h, while, in 2014–2016, the second lower local peak is around
$10.00/h.

29 In Firpo et al. (2007), we used a mixed approach for the base group normalizing the coefficients of the occupation and
industry dummies. That approach, although superficially attractive, has the important disadvantage of limiting the
explanatory power of the variables whose coefficients are constrained. As a result, in this earlier version of the paper, very
little of the changes in inequality were attributable to occupations and industries.
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5.1. RIF-Regressions

Before showing the decomposition results, we first present some estimates from the
RIF-regressions for different wage quantiles, the variance of log wages, and the Gini coefficient.
From Equation (14), we compute IF(y; qτ , F) for each observation using the sample estimate of qτ ,
and the kernel density estimate of f (qτ).

The RIF-regression coefficients for the 10th, 50th, and 90th quantiles in 1988–1990 and 2014–2016,
along with bootstrapped standard errors, are reported in Table 1. The RIF-regression coefficients for the
variance and the Gini are reported in Table 2. Detailed estimates for each of the 19 quantiles from the 5th
to the 95th are also reported in Figures 3–5. For several covariates (for example, union status, non-white,
married, clerical, production, and service occupations, transportation and utility, public administration
sectors ). Figure 3 illustrates highly non-monotonic effects across the different quantiles for some
demographics. For instance, in Panel 1, the effect of union status first increases up to around the 40th
quantile in 1988–1990, and up the 50th quantile in 2014–2016, and then declines, even turning negative
for the 90th and 95th quantiles.

As shown by the RIF-regressions for the more global measures of inequality—the variance of log
wages and the Gini coefficient of the wage distribution—displayed in Table 2, the effect of unions on
these measures is negative, although the magnitude of that effect has decreased over time. This is
consistent with the well-known result (e.g., Freeman 1980) that unions tend to reduce the variance of
log wages for men. More importantly, as shown in Table 1, the results also indicate that unions increase
inequality in the lower end of the distribution, but decrease inequality even more in the higher end
of the distribution. As we will see later in the decomposition results, this means that the continuing
decline in the rate of unionization can account for some of the “polarization” of the labor market
(decrease in inequality at the low-end, but increase in inequality at the top end). The results for unions
also illustrate an important feature of RIF regressions for quantiles, namely that they capture both
the between-group effect (arising from union wage premia) and the within-group effect (arising from
wage union compression) of unions on wage dispersion, which go in opposite direction in this case.30

The RIF-regression estimates in Table 1 for other covariates also illustrate this point. Consider,
for instance, the case of college education. Table 1 and Figure 3 show that the effect of college
increases monotonically as a function of percentiles. In other words, increasing the fraction of the
workforce with a college degree has a larger impact on higher than lower quantiles. The reason why
the effect is monotonic is that education increases both the level and the dispersion of wages (see, e.g.,
Lemieux 2006a). As a result, both the within- and the between-group effects go in the same direction
of increasing inequality.

Another clear pattern that emerges in Figures 3 and 4 is that for most inequality enhancing
covariates, i.e., those with a positively sloped curve, the inequality enhancing effect increases over
time. In particular, the slopes for high levels of education (college graduates and post-graduates) and
high-wage occupations (upper management, engineers and computer scientists, doctors, and lawyers)
become steeper over time. This suggests that these covariates make a positive contribution to the wage
structure effect.

There are some changes in the contribution of occupations and industries that are consistent
with technological change and the routine-biased polarization of wages. For example, as shown in
Figures 4 and 5, there are increases in the returns to high-tech service industries at the upper end of the
wage distribution, but decreases in the returns to production and clerical occupations in the middle
of the wage distribution. There are also decreases in the penalties to some low skilled non-routine

30 As argued in FFL, the different relative strength of between and within effects at different quantiles explain the inverse
U-shaped effect of unions. This is in sharp contrast with the effect of unions found estimated using conditional
quantile regressions which captures only within-group effects and declines monotonically over the wage distribution
(Chamberlain 1994).
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occupations and associated industries, such as service occupations and truck driving and the retail
industry, although some increases at the lower end appear to be driven by changes in minimum wages.
On the other hand, there are some offsetting effects in industries that could have compensated the
decline in manufacturing employment, such as the primary (e.g., mining), wholesale and retail trade,
and personal services industries. In summary, the changes in the rewards and penalties associated
with occupations and industries provide a descriptive account of factors potentially offsetting the
wage effects of the polarization of employment. We turn next to the evaluation of the magnitude of
these effects.

Table 1. Unconditional Quantile Regression Coefficients on Log Wages.

Years: 1988/90 2014/16

Quantiles: 10 50 90 10 50 90

Explanatory Variables
Union covered 0.146∗∗∗ 0.343∗∗∗ −0.025∗∗∗ 0.058∗∗∗ 0.240∗∗∗−0.008

(0.003) (0.005) (0.004) (0.003) (0.006) (0.007)
Non-white −0.063∗∗∗−0.137∗∗∗ −0.072∗∗∗−0.053∗∗∗−0.106∗∗∗−0.041∗∗∗

(0.006) (0.005) (0.005) (0.004) (0.004) (0.006)
Non-Married −0.111∗∗∗−0.109∗∗∗ −0.031∗∗∗−0.046∗∗∗−0.107∗∗∗−0.064∗∗∗

(0.004) (0.003) (0.004) (0.003) (0.004) (0.005)
Education (High School omitted)
Primary −0.301∗∗∗−0.312∗∗∗ −0.109∗∗∗−0.212∗∗∗−0.415∗∗∗−0.110∗∗∗

(0.011) (0.006) (0.005) (0.01) (0.009) (0.006)
Some HS −0.305∗∗∗−0.112∗∗∗ 0.005 −0.275∗∗∗−0.215∗∗∗ 0.002

(0.007) (0.005) (0.003) (0.008) (0.007) (0.004)
Some College 0.055∗∗∗ 0.135∗∗∗ 0.112∗∗∗ 0.036∗∗∗ 0.098∗∗∗ 0.023∗∗∗

(0.005) (0.004) (0.005) (0.004) (0.005) (0.004)
College 0.143∗∗∗ 0.343∗∗∗ 0.410∗∗∗ 0.125∗∗∗ 0.409∗∗∗ 0.493∗∗∗

(0.005) (0.005) (0.008) (0.004) (0.006) (0.009)
Post-grad 0.094∗∗∗ 0.418∗∗∗ 0.772∗∗∗ 0.099∗∗∗ 0.502∗∗∗ 0.962∗∗∗

(0.006) (0.006) (0.013) (0.004) (0.008) (0.017)
Potential Experience (20 ≤ Experience < 25 omitted)
Experience < 5 −0.486∗∗∗−0.448∗∗∗ −0.312∗∗∗−0.335∗∗∗−0.425∗∗∗−0.301∗∗∗

(0.009) (0.006) (0.008) (0.007) (0.007) (0.011)
5≤ Experience < 10 −0.056∗∗∗−0.270∗∗∗ −0.278∗∗∗−0.067∗∗∗−0.285∗∗∗−0.306∗∗∗

(0.006) (0.006) (0.008) (0.005) (0.007) (0.011)
10≤ Experience < 15 −0.005 −0.122∗∗∗ −0.172∗∗∗−0.022∗∗∗−0.157∗∗∗−0.182∗∗∗

(0.005) (0.006) (0.008) (0.004) (0.006) (0.011)
15≤ Experience < 20 0.002 −0.051∗∗∗ −0.091∗∗∗−0.009* −0.051∗∗∗−0.034∗∗∗

(0.005) (0.005) (0.008) (0.004) (0.006) (0.012)
25≤ Experience < 30 0.010 0.033∗∗∗ 0.060∗∗∗−0.001 0.020∗∗∗ 0.036∗∗∗

(0.006) (0.006) (0.01) (0.004) (0.006) (0.012)
30≤ Experience < 35 0.017∗ 0.048∗∗∗ 0.071∗∗∗ 0.008 0.037∗∗∗ 0.042∗∗∗

(0.006) (0.006) (0.011) (0.004) (0.007) (0.012)
35≤ Experience < 40 0.022∗∗ 0.028∗∗∗ 0.061∗∗∗ 0.013∗∗ 0.054∗∗∗ 0.062∗∗∗

(0.007) (0.008) (0.012) (0.004) (0.007) (0.013)
Experience ≥ 40 0.068∗∗∗ 0.020∗∗ −0.010 0.030∗∗∗ 0.058∗∗∗−0.013

(0.008) (0.008) (0.009) (0.005) (0.007) (0.012)
R−square 0.253 0.359 0.206 0.182 0.353 0.202
No. of observations 268,494 236,296

Note: Linear limited dependent variable model. Bootstrapped standard errors (500 repetitions) are in
parentheses. Statistical signifiance levels: ∗∗∗ p≤ 0.01, ∗∗ p≤ 0.05, ∗ p≤0.1. Also included in the regression are
a public sector dummy, 16 occupation dummies, and 14 industry dummies. The base group is made up of
individuals who are non-unionized (not covered), not in the public sector, white, married, have a high school
degree, work as construction workers in the construction industry.
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Figure 3. Unconditional Quantile Coefficients—Demographics and Human Capital.
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Figure 4. Unconditional Quantile Coefficients—Occupations.
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Figure 5. Unconditional Quantile Coefficients—Industries.
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Table 2. RIF Regression of Inequality Measures.

Years: 1988/90 2014/16 1988/90 2014/16

Inequality Measures Variance of Log Wages Gini
Estimated Values: 0.341 0.418 0.330 0.396

Explanatory Variables
Constant 0.203∗∗∗ 0.205∗∗∗ 0.261∗∗∗ 0.290∗∗∗

(0.004) (0.006) (0.002) (0.002)
Union covered −0.075∗∗∗ −0.040∗∗∗ −0.067∗∗∗ −0.039∗∗∗

(0.002) (0.004) (0.001) (0.001)
Non-white −0.002 0.005 0.006∗∗∗ 0.005∗∗∗

(0.003) (0.004) (0.001) (0.001)
Non-Married 0.039∗∗∗ 0.001 0.022∗∗∗ 0.008∗∗

(0.002) (0.004) (0.001) (0.001)
Education (High School omitted)
Primary 0.074∗∗∗ 0.073∗∗∗ 0.051∗∗∗ 0.057∗∗∗

(0.004) (0.006) (0.002) (0.002)
Some HS 0.104∗∗∗ 0.129∗∗∗ 0.048∗∗∗ 0.063∗∗∗

(0.003) (0.005) (0.001) (0.001)
Some College 0.028∗∗∗ −0.001 0.006∗∗∗ −0.006∗∗∗

(0.003) (0.003) (0.002) (0.003)
College 0.121∗∗∗ 0.166∗∗∗ 0.053∗∗∗ 0.061∗∗∗

(0.005) (0.005) (0.002) (0.001)
Post-grad 0.301∗∗∗ 0.401∗∗∗ 0.157∗∗∗ 0.177∗∗∗

(0.007) (0.01) (0.003) (0.002)
Potential Experience(20 ≤ Experience <25 omitted)
Experience < 5 0.047∗∗∗ 0.027∗∗∗ 0.031∗∗∗ 0.021∗∗∗

(0.004) (0.007) (0.002) (0.002)
5≤ Experience < 10 −0.098∗∗∗ −0.093∗∗∗ −0.036∗∗∗ −0.030∗∗∗

(0.005) (0.007) (0.002) (0.002)
10≤ Experience < 15 −0.078∗∗∗ −0.070∗∗∗ −0.035∗∗∗ −0.028∗∗∗

(0.004) (0.007) (0.002) (0.002)
15≤ Experience < 20 −0.050∗∗∗ −0.006 −0.026∗∗∗ 0.003∗∗

(0.005) (0.008) (0.002) (0.002)
25≤ Experience < 30 0.023∗∗∗ 0.024∗∗∗ 0.012∗∗∗ 0.014∗∗∗

(0.006) (0.008) (0.002) (0.002)
30≤ Experience < 35 0.022∗∗∗ 0.017∗∗ 0.008∗∗∗ 0.007∗∗∗

(0.006) (0.008) (0.002) (0.002)
35≤ Experience < 40 0.015∗∗ 0.022∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.007) (0.008) (0.003) (0.002)
Experience≥ 40 −0.031∗∗∗ −0.012 −0.015∗∗∗ −0.005∗∗

(0.005) (0.008) (0.003) (0.002)
Occupations (Construction & Repair Occ. omitted)
Upper Management 0.235∗∗∗ 0.415∗∗∗ 0.132∗∗∗ 0.203∗∗∗

(0.007) (0.011) (0.003) (0.002)
Lower Management 0.090∗∗∗ 0.200∗∗∗ 0.027∗∗∗ 0.080∗∗∗

(0.008) (0.009) (0.003) (0.002)
Engineers & Computer Occ. 0.107∗∗∗ 0.202∗∗∗ 0.013∗∗ 0.054∗∗∗

(0.006) (0.009) (0.003) (0.002)
Other Scientists 0.081∗∗∗ 0.134∗∗∗ 0.025** 0.068∗∗∗

(0.011) (0.027) (0.005) (0.006)
Social Support Occ. −0.001 0.065∗∗∗ −0.012∗∗ 0.012∗∗∗

(0.007) (0.009) (0.003) (0.003)
Lawyers & Doctors 0.524∗∗∗ 0.637∗∗∗ 0.337∗∗∗ 0.363∗∗∗

(0.027) (0.032) (0.010) (0.008)
Health Treatment Occ. −0.020 0.115∗∗∗ −0.035∗∗∗ 0.011∗∗∗

(0.0101) (0.012) (0.005) (0.005)
Clerical Occ. 0.013∗∗ 0.069∗∗∗ 0.017∗∗∗ 0.044∗∗∗

(0.004) (0.005) (0.002) (0.002)
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Table 2. Cont.

Years: 1988/90 2014/16 1988/90 2014/16

Inequality Measures Variance of Log Wages Gini
Estimated Values: 0.341 0.418 0.330 0.396

Explanatory Variables
Occupations (cnt.)
Sales Occ. 0.088∗∗∗ 0.177∗∗∗ 0.043∗∗∗ 0.084∗∗∗

(0.005) (0.008) (0.002) (0.002)
Insur. & Real Estate Sales 0.208∗∗∗ 0.197∗∗∗ 0.152∗∗∗ 0.105∗∗∗

(0.031) (0.038) (0.011) (0.010)
Financial Sales 0.525∗∗∗ 0.409∗∗∗ 0.429∗∗∗ 0.219∗∗∗

(0.06) (0.076) (0.018) (0.014)
Service Occ. 0.188∗∗∗ 0.208∗∗∗ 0.101∗∗∗ 0.107∗∗∗

(0.004) (0.005) (0.002) (0.002)
Primary Occ. 0.226∗∗∗ 0.222∗∗∗ 0.114∗∗∗ 0.127∗∗∗

(0.008) (0.015) (0.004) (0.004)
Production Occ. 0.004 0.020∗∗∗ 0.011∗∗∗ 0.028∗∗∗

(0.003) (0.005) (0.001) (0.002)
Transportation Occ. 0.119∗∗∗ 0.145∗∗∗ 0.079∗∗∗ 0.094∗∗∗

(0.004) (0.006) (0.002) (0.002)
Truckers 0.015∗∗∗ 0.042∗∗∗ 0.030∗∗∗ 0.040∗∗∗

(0.004) (0.006) (0.002) (0.002)
Industries (Construction omitted)
Agriculture, Mining 0.079∗∗∗ 0.013 0.036∗∗∗ −0.001

(0.008) (0.012) (0.003) (0.003)
Hi-Tech Manufac 0.018∗∗∗ 0.014 −0.001 0.002

(0.005) (0.009) (0.002) (0.002)
Low-Tech Manufac −0.037∗∗∗ −0.053∗∗∗ −0.011∗∗∗ −0.019∗∗∗

(0.004) (0.007) (0.002) (0.002)
Wholesale Trade −0.012 −0.027∗∗ 0.001 −0.006∗

(0.006) (0.012) (0.002) (0.003)
Retail Trade 0.060∗∗∗ 0.016∗ 0.038∗∗∗ 0.023∗∗∗

(0.005) (0.007) (0.002) (0.002)
Transportation & Utilities 0.013∗∗∗ −0.029∗∗∗ −0.005∗ −0.019∗∗∗

(0.005) (0.007) (0.002) (0.002)
Information except Hi-Tech −0.001 0.055∗∗∗ −0.010∗∗∗ 0.041∗∗∗

(0.008) (0.019) (0.003) (0.005)
Financial Activities 0.065∗∗∗ 0.064∗∗∗ 0.052∗∗∗ 0.053∗∗∗

(0.009) (0.013) (0.004) (0.003)
Hi-Tech Services 0.048∗∗∗ 0.071∗∗∗ 0.018∗∗ 0.035∗∗∗

(0.008) (0.01) (0.004) (0.003)
Business Services 0.018∗∗ −0.042∗∗∗ 0.019∗∗∗ −0.014∗∗∗

(0.005) (0.008) (0.002) (0.002)
Education & Health Services −0.008 −0.064∗∗∗ −0.001 −0.018∗∗∗

(0.006) (0.008) (0.003) (0.002)
Personal Services 0.136∗∗∗ 0.054∗∗∗ 0.051∗∗∗ 0.023∗∗∗

(0.006) (0.006) (0.002) (0.002)
Public Admin −0.038∗∗∗ −0.071∗∗∗ −0.036∗∗∗ −0.029∗∗∗

(0.007) (0.011) (0.003) (0.003)
Public Sector −0.058∗∗∗ −0.055∗∗∗ −0.030∗∗∗ −0.048∗∗∗

(0.005) (0.007) (0.002) (0.002)
R-squared 0.115 0.087 0.048 0.025
No. of observations 268,492 236,287 268,492 236,287

Note: Bootstrapped standard errors (500 repetitions) are in parentheses. Statistical signifiance levels:
∗∗∗ p ≤ 0.01, ∗∗ p ≤ 0.05, ∗ p ≤ 0.1. The base group is made up of individuals who are non-unionized
(not covered), not public sector, white, married, have a high school degree, work as construction workers in
the construction industry. Trimmed sample drops 15 observations with hourly wages > $1,636 ($2010).
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5.2. Decomposition Results

The results for the aggregate decomposition are presented in Figure 6. Tables 3 and 4 summarize
the results for the standard measures of top-end (90–50 log wage differential) and low-end (50–10 log
wage differential) wage inequality, as well as for the variance of log wages and the Gini coefficient.
The covariates used in the RIF-regression models are those discussed above and listed in Table A1.
A richer specification with additional interaction terms is used to estimate the logit models used
compute the reweighting factor ω̂C(Ti, Xi).31
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Figure 6. Decomposition of Total Change into Composition and Wage Structure Effects.

Figure 6a shows the overall change in (real log) wages at each percentile τ, ∆qτ

O , and decomposes
this overall change into a composition (∆qτ

X ) and wage structure (∆qτ

S ) effect computed using the
reweighting procedure of Result 1. Consistent with the pattern first documented in Autor et al. (2006),
the overall change is U-shaped as wage dispersion increases in the top-end of the distribution,
but declines in the lower end.32 Most summary measures of inequality such as the 90–10 gap
nonetheless increase over the 1988–1990 to 2014–2016 period as wage gains in the top-end of the
distribution exceed those at the low-end. In other words, although the curve for overall wage changes
is U-shaped, its slope is positive, on average, suggesting that inequality generally goes up. This overall
increase shows up as positive total changes in the 90–10 gap, the variance of log wages, and the
Gini, reported in Tables 3 and 4. In all cases, the aggregate decomposition of these overall measures
attributes most (from 55% to 66%) of the changes to composition effects.

Figure 6a also shows that, consistent with Lemieux (2006b), composition effects have contributed
to a substantial increase in inequality. In fact, once composition effects are accounted for, the remaining
wage structure effects (estimated using reweighting) follow a “purer” U-shape than overall changes
in wages. The wage declines are now right in the middle of the distribution (20th to 80th percentile),
while wage gains at the top and low end are more similar. By the same token, however, composition
effects cannot account at all for the U-shaped nature of wage changes.

Figure 7 moves to the next step of the decomposition using linear RIF-regressions to attribute the
contribution of each set of covariates to the composition effect.33 Figure 8, which we discuss below,
does the same for the wage structure effect. Figure 6b summarizes the total of the composition and

31 The logit specification also includes a full set of interaction between experience and education, union status and education,
union status and experience, between education and occupations, and experience and industries.

32 This stands in sharp contrast with the situation that prevailed in the 1980s when the corresponding curve was positively
sloped as wage dispersion increased at all points of the distribution (Juhn et al. 1993).

33 The effect of each set of factors is obtained by summing up the contribution of the relevant covariates. For example, the
effect for “education” is the sum of the effect of each of the five education categories shown in Table 1. Showing the effect of
each individual dummy separately would be cumbersome and harder to interpret.
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wage structure effects by the sets of factors of interest. The combination of composition and wage
structure effects shows the strong monotonic effect of education on wage changes, the mild U-shaped
effect of union and occupations, and the offsetting hump-shaped effect of industries.
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Figure 7. Decomposition of Composition Effects.
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Figure 8. Decomposition of Wage Structure Effects.

Figure 7a compares the overall composition effect obtained by reweighting and displayed
in Figure 6a, ∆̂qτ

X , to the composition effect explained using the RIF-regressions, (XC
0 − X0)

′γ̂
qτ

0 .
The difference between the two curves is the specification (approximation) error Rqτ . The error term is
relatively small and does not exhibit much of a systematic pattern. This means that the RIF-regression
model does relatively well at tracking down the composition effect estimated consistently using
the reweighting procedure; however, as we discuss below, in some cases, the specification error is
significantly different from zero.

Figure 7b then divides the composition effect (explained by the RIF-regressions) into the
contribution of five main sets of factors. To simplify the discussion, we focus on the impact of
each factor on overall wage inequality summarized by the 90–10 log wage differential in comparison to
the 50–10 and 90–50 log wage differentials that capture what happened in the lower and upper parts of
the distribution, respectively. The decomposition of the log wage differentials, the log variance, and the
Gini are reported in Tables 3 and 4. Table 3 presents the simple OB type decomposition computed from
RIF-regressions of the five inequality measures, without reweighting. Table 4 applies the complete
two-step procedure described above.

As discussed in Section 4.3, we compute the RIF of the difference between two (log) quantiles
q1 and q2, where q2 > q1, as RIF(yi; q2 − q1) = RIF(yi; q2) − RIF(yi; q2), and use these differences
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as dependent variables in the regressions. For the variance of log wages and the Gini, the RIF
are as described above. Using the estimation results from these sets of regressions, we compute
the components of the simple OB-type decomposition for the changes over time, ν̂1 − ν̂0 = ∆̂ν

OB,
from 1988–1990 (T = 0) to 2014–2016 (T = 1) as:

∆̂ν
OB =

(
X1 − X0

)′
γ̂ν

0︸ ︷︷ ︸
∆̂ν

X,OB

+
X1
′
(γ̂ν

1 − γ̂ν
0) .︸ ︷︷ ︸

∆̂ν
S,OB

Table 3. Decomposition Results without Reweighting.

Inequality Measures 90–10 50–10 90–50 Variance Gini
(× 100) (× 100)

Total Change 0.125∗∗∗ −0.075∗∗∗ 0.201∗∗∗ 7.775∗∗∗ 6.599∗∗∗

Composition 0.089∗∗∗ 0.037∗∗∗ 0.052∗∗∗ 4.163∗∗∗ 1.966∗∗∗

Wage Structure 0.037∗∗∗ −0.112∗∗∗ 0.149∗∗∗ 3.612∗∗∗ 4.633∗∗∗

Composition Effects:
Union 0.016∗∗∗ −0.019∗∗∗ 0.035∗∗∗ 0.713∗∗∗ 0.639∗∗∗

Other 0.019∗∗∗ 0.008∗∗∗ 0.011∗∗∗ 0.984∗∗∗ 0.473∗∗∗

Education 0.009∗∗∗ 0.013∗∗∗ −0.005∗∗∗ 0.665∗∗∗ 0.207∗∗

Occupation 0.019∗∗∗ 0.022∗∗∗ −0.002** 0.672∗∗∗ 0.112∗∗∗

Industry 0.026∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 1.128∗∗∗ 0.536∗∗∗

Wage Structure Effects:
Union 0.014∗∗∗ −0.002∗ 0.015∗∗∗ 0.442∗∗∗ 0.360∗∗∗

Other −0.048∗∗∗ −0.034∗∗∗ −0.014 −0.983 −0.161
Education 0.015∗∗ 0.008∗∗∗ 0.007 1.444∗∗∗ 0.188∗

Occupation 0.057∗∗∗ −0.066∗∗∗ 0.123∗∗∗ 5.664∗∗∗ 2.423∗∗∗

Industry −0.079∗∗∗ −0.048∗∗∗ −0.031∗∗∗ −3.212∗∗∗ −1.044∗∗

Constant 0.079∗∗∗ 0.030∗∗ 0.049∗∗∗ 0.257 0.287∗∗∗

Total Effects:
Union 0.030∗∗∗ −0.021∗∗∗ 0.051∗∗∗ 1.156∗∗∗ 0.998∗∗∗

Other −0.029∗∗ −0.026∗∗∗ −0.003 0.001 0.312
Education 0.024∗∗∗ 0.022∗∗∗ 0.002 2.110∗∗∗ 0.395∗∗

Occupation 0.076∗∗∗ −0.045∗∗∗ 0.121∗∗∗ 6.336∗∗∗ 2.534∗∗∗

Industry −0.054∗∗∗ −0.036∗∗∗ −0.018 −2.084∗∗∗ −0.508

Note: Other includes non-white, non-married, and five categories of experience. Statistical signifiance levels:
∗∗∗ p ≤ 0.01, ∗∗ p ≤ 0.05, ∗ p ≤ 0.1. Bootstrapped standard errors over the entire procedure (500 replications)
were used to compute the p-value. Trimmed sample for the variance and Gini drops 15 observations with
hourly wages > $1,636 ($2010).

These results are displayed in Table 3 by groups of variables.34 In Table 4, we present the results
of the decomposition that also applies the reweighting procedure

∆̂ν
O =

(XC
0 − X0)

′ · γ̂ν
0︸ ︷︷ ︸

∆̂ν
X,p

+
XC

0
′
· (γ̂ν

C − γ̂ν
0)︸ ︷︷ ︸

∆̂ν
X,e

+
X1
′ · (γ̂ν

1 − γ̂ν
C)︸ ︷︷ ︸

∆̂ν
S,p

+
(X1 − XC

0 )
′ · γ̂ν

C.︸ ︷︷ ︸
∆̂ν

S,e

The four terms in this decomposition are easily obtained by running two OB decompositions
using RIF regressions. First, we perform an OB decomposition using the T = 0 sample and the
counterfactual sample (T = 0 sample reweighted to be as in T = 1) to get the pure composition effect,

34 In practice, we use the popular Jann (2008) “oaxaca" Stata ado file and obtain bootstrapped standard errors over the
entire procedure given the statistics and the RIF are estimated values. We opted for boostrapped instead of analytical
standard errors by simplicity. Computation of analytical standard errors would involve estimation of different functionals,
increasing the degree of complexity of the estimation step, whereas bootstrapped standard errors, although being potentially
computationally more demanding are typically simpler to implement.
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∆̂ν
X,p, using T = 0 as reference wage structure. The total unexplained effect in this decomposition

corresponds to the specification error, ∆̂ν
X,e, and allows one to assess the importance of departures

from the linearity assumption. Second, we perform the decomposition using the T = 1 sample and the
counterfactual sample, using the counterfactual wage structure as reference, and obtain the pure wage
structure effect, ∆̂ν

S,p, in the “unexplained" part of the decomposition. The total explained effect in this

decomposition, ∆̂ν
S,e, corresponds to the reweighting error which should go to zero in large samples.

It provides an easy way of assessing the quality of the reweighting.35

Table 4. Decomposition Results with Reweighting.

Inequality Measures 90–10 50–10 90–50 Variance Gini
(×100) (×100)

Total Change 0.125∗∗∗ −0.075∗∗∗ 0.201∗∗∗ 7.775∗∗∗ 6.599∗∗∗

Composition 0.090∗∗∗ 0.038∗∗∗ 0.052∗∗∗ 4.193∗∗∗ 1.966∗∗∗

Wage Structure 0.030∗∗∗ −0.105∗∗∗ 0.135∗∗∗ 3.149∗∗∗ 4.402∗∗∗

Composition Effects:
Union 0.016∗∗∗ −0.019∗∗∗ 0.035∗∗∗ 0.712∗∗∗ 0.638∗∗∗

Other 0.019∗∗∗ 0.009∗∗∗ 0.011∗∗∗ 1.007∗∗∗ 0.481∗∗∗

Education 0.007∗∗∗ 0.013∗∗∗ −0.005∗∗∗ 0.600∗∗∗ 0.173
Occupation 0.020∗∗∗ 0.022∗∗∗ −0.002∗ 0.719∗∗∗ 0.129∗∗∗

Industry 0.026∗∗∗ 0.013∗∗∗ 0.014∗∗∗ 1.155∗∗∗ 0.546∗∗∗

Specification Error 0.002 −0.010 0.012∗∗∗ −0.308∗∗∗ 0.175∗∗∗

Wage Structure Effects:
Union 0.012∗∗∗ −0.005∗∗ 0.017∗∗∗ 0.338∗∗∗ 0.220∗∗∗

Other −0.049∗∗∗ −0.026∗∗∗ −0.023 −0.871 −0.068
Education 0.054∗∗∗ 0.010 0.045∗∗∗ 2.303∗∗∗ 1.183∗∗∗

Occupation 0.018 −0.075∗∗∗ 0.093∗∗∗ 2.872∗∗∗ 1.416∗∗∗

Industry −0.094∗∗∗ −0.030∗∗ −0.064∗∗∗ −3.852∗∗∗ −1.306∗∗∗

Constant 0.089∗∗∗ 0.022 0.067∗∗∗ 2.359∗∗∗ 2.957∗∗∗

Reweighting Error 0.003∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.125∗∗∗ 0.057∗∗∗

Total Effects:
Union 0.029∗∗∗ −0.024∗∗∗ 0.052∗∗∗ 1.050∗∗∗ 0.857∗∗∗

Other −0.029∗∗ −0.018∗ −0.012 0.135 0.413
Education 0.062∗∗∗ 0.022∗∗∗ 0.039∗∗∗ 2.903∗∗∗ 1.356∗∗∗

Occupation 0.038∗∗∗ −0.053∗∗∗ 0.091∗∗∗ 3.591∗∗∗ 1.545∗∗∗

Industry −0.068∗∗∗ −0.017 −0.051∗∗∗ −2.697∗∗∗ −0.760∗

Note: Other includes non-white, non-married, and five categories of experience.
Statistical signifiance levels: ∗∗∗ p ≤ 0.01, ∗∗ p ≤ 0.05, ∗ p ≤ 0.1. Bootstrapped standard
errors over the entire procedure (500 replications) were used to compute the p-value. Trimmed
sample for the variance and Gini drops 15 observations with hourly wages > $1,636 ($2010).

Consistent with Figure 7a, specification errors reported in Table 4 are generally small. As discussed
in Section 3, the specification error reflects departures from non-linearity of the RIF-regressions and
the fact that, except for the mean, the RIF depends on the distribution of Y (and X through its effect
on Y). In Table 4, we formally test whether the specification error is significantly different from
zero. The results are mixed. The specification error is not significantly different from zero for the
90–10 and the 50–10 gaps, but is statistically significant for the 90–50 gap, the variance, and the Gini.
The specification error is nonetheless small relative to the overall changes in the distributional statistics,
which indicates that RIF-regressions provide highly accurate estimates of the overall composition and
wage structure effects in the empirical example being studied here. However, as we discuss below,

35 Adding more terms in the specification of the reweighting function helps reducing the reweighting error. This has to be
balanced with issues of common support, as more terms may lead to more perfect predictions, an undesirable outcome.
As we discuss below, the specification we use yields a very small reweighting error.
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although the specification error is small, using the two-step decomposition instead of a standard OB
decomposition matters much more when looking at the contribution of individual covariates to the
wage structure effect.

In both Table 3 and 4, the composition effects linked to factors other than unions go the “wrong
way” in the sense that they account for rising inequality at the bottom end while inequality is rising at
the top end, a point noted earlier by Autor et al. (2005). This applies in particular to education and
occupations effects that are larger for the 50–10 than for the 90–50, while the effects of industry and
other factors (race, marital status, and experience) on the 50–10 and 90–50 are similar. In contrast,
composition effects linked to unions (the impact of de-unionization) reduce inequality at the low
end (effect of −0.019 on the 50–10) but increases inequality at the top end (effect of 0.035 on the
90–50). Note that, just as in an OB decomposition, these effects on the 50–10 and the 90–50 gap can
be obtained directly by multiplying the 9.5 percent decline in the unionization rate (Table A1) by
the relevant union effects in 1988–1990 shown in Table 1. The effect of de-unionization accounts for
about 25 percent of the total change in the 50–10 gap, which is remarkably similar to the relative
contribution of de-unionization to the growth in inequality in the 1980s (see Freeman 1993; Card 1992;
and DiNardo et al. 1996).

Figure 8a divides the wage structure effect, ∆̂qτ

S , into the part explained by the RIF-regression
models, ∑M

k=2(γ̂
ν
1,k − γ̂ν

C,k)X1, and the residual change γ̂ν
1,1 − γ̂ν

C,1 (the change in for the base group
captured by the intercepts). The contribution of each set of factors is then shown in Figure 8b. As in
the case of the composition effects, it is easier to discuss the results by focusing on the 90–50 and 50–10
gaps shown in Tables 3 and 4.

Here, we note that the contribution of different covariates to the wage structure effect are quite
different in Tables 3 and 4. This indicates that the OB decomposition of Table 3 is inaccurate because of
differences between the estimated RIF-regression coefficients γ̂ν

C and γ̂ν
0 . As discussed in Section 3,

the difference between γ̂ν
1 and γ̂ν

C used to compute wage structure effects in Table 4 solely reflects
changes in the wage structure. By contrast, the difference between γ̂ν

1 and γ̂ν
0 used in Table 3 is

likely contaminated by changes in the distribution of X that are being adjusted for (by reweighting)
when estimating γ̂ν

C. The difference is particularly striking in the case of education. As expected,
Table 4 shows that wages structure effects linked to education play an important role in the growth
of the 90–50 gap. By contrast, the effect is small and insignificant when using a conventional OB
decomposition in Table 3. The case of education, a central variable in most studies on the sources of
growing inequality, dramatically illustrates the importance of using the two-step decomposition with
reweighting proposed in this paper.

The wage structure results of Table 4 first show that covariates overexplain −0.127 (sum of the
five effects) of the −0.105 change (decline) in the 50–10 gap, the constant capturing the difference.
Covariates do a less impressive job explaining changes in the 90–50 gap explaining only 0.068 (half) of
the 0.136 change. Occupations are the set of the covariates that best capture the changes in the wage
structure. They account for −0.075 of the −0.105 decline (73%) in the 50–10 gap and 0.088 of the 0.135
increase (68%) in the 90–50 gap. These results justify the increased attention given in the literature to
the role of occupational tasks (Firpo et al. 2011; Fortin and Lemieux 2016). Changes in the returns to
education continue to play an important role at the top of distribution accounting for 0.045 of the 0.135
increase (33%) in the 90–50. This supports Lemieux (2006a)’s conjecture that increases in the return to
post-secondary education contribute to the convexification of the wage distribution.

Finally, the total effect of each covariate (wage structure plus composition effect) is reported in
Figure 6b and the bottom panel of Table 4. Unions and occupations are the two factors that best account
for the differential changes at the bottom and top of the distribution, capturing both a negative effect
on the 50–10 and a positive effect on the 90–50. The total effect of the two factors on the 50–10 gap
corresponds to −0.078 out of −0.105 (74%) of the change, while they account for 0.139 out of 0.136
change in the 90–50 (102%). This goes a substantial way towards explaining the polarization of the
labor market.
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6. Conclusions

We provide a detailed exposition of a two-stage method to decompose changes in the distribution
of wages (or other outcome variables). In Stage 1, distributional changes are divided into a wage
structure effect and a composition effect using a reweighting method. In Stage 2, these two components
are further divided into the contribution of each individual covariate using the recentered influence
function regression technique introduced by FFL. This two-stage procedure generalizes the popular
OB decomposition method by extending the decomposition to any distributional measure (besides the
mean), and allowing for a more flexible wage setting model. Other procedures (Machado and Mata
2005; Melly 2005; Rothe 2012; CFM) have been suggested for performing part of this decomposition
for distributional parameters besides the means. One important advantage of our procedure is that
it is easy to use in practice, as it simply involves estimating a logit model (first stage) and running
least-square regressions (second stage). Another more distinctive advantage is that it can be used
to divide the contribution of each covariate to the composition effect, something that most existing
methods cannot do.

We illustrate the workings of our method by looking at changes in male wage inequality in the
United States between 1988 and 2016. This is an interesting case to study as the wage distribution
changed very differently at different points of the distribution, a phenomenon that cannot be captured
by summary measures of inequality such as the variance of log wages. Our method is particularly
well suited for looking in detail at the source of wage changes at each percentile of the wage
distribution. Our findings indicate that unions, occupations, and education are the most important
factors accounting for the observed changes in the wage distribution over this period.
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Appendix A. Tables

Table A1. Sample Means.

Years: 1988/90 2014/16 Difference

Log wages 2.860 2.901 0.041
Std of log wages 0.579 0.622 0.043
Union covered 0.223 0.127 −0.095
Non-white 0.134 0.186 0.052
Non-Married 0.388 0.457 0.068
Age 36.204 39.882 3.677

Education
Primary 0.059 0.034 −0.025
Some HS 0.118 0.054 −0.064
High School 0.381 0.307 −0.074
Some College 0.202 0.275 0.072
College 0.139 0.218 0.078
Post-grad 0.101 0.113 0.012

Occupations
Upper Management 0.082 0.080 −0.002
Lower Management 0.040 0.068 0.028
Engineers & Computer Occ. 0.061 0.081 0.019
Other Scientists 0.014 0.010 −0.004
Social Support Occ. 0.052 0.061 0.009
Lawyers & Doctors 0.010 0.015 0.005
Health Treatment Occ. 0.010 0.019 0.009
Clerical Occ. 0.066 0.068 0.002
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Table A1. Cont.

Years: 1988/90 2014/16 Difference

Sales Occ. 0.086 0.085 −0.001
Insur. & Real Estate Sales 0.007 0.006 −0.001
Financial Sales 0.003 0.002 −0.001
Service Occ. 0.107 0.149 0.042
Primary Occ. 0.026 0.011 −0.015
Construction & Repair Occ. 0.164 0.155 −0.009
Production Occ. 0.141 0.086 −0.055
Transportation Occ. 0.086 0.060 −0.026
Truckers 0.045 0.041 −0.004

Industries
Agriculture, Mining 0.033 0.026 −0.007
Construction 0.097 0.101 0.005
Hi-Tech Manufac 0.102 0.066 −0.037
Low-Tech Manufac 0.137 0.087 −0.050
Wholesale Trade 0.051 0.033 −0.018
Retail Trade 0.105 0.113 0.008
Transportation & Utilities 0.086 0.079 −0.008
Information except Hi-Tech 0.018 0.012 −0.006
Financial Activities 0.047 0.058 0.011
Hi-Tech Services 0.035 0.064 0.029
Business Services 0.051 0.065 0.014
Education & Health Services 0.097 0.113 0.016
Personal Services 0.081 0.127 0.046
Public Admin 0.058 0.054 −0.005
Public Sector 0.149 0.126 −0.024

Note: Computed using sample weights. All differences over time are
statistically significant at the p = 0.001 level.

Table A2. Occupation and Industry Definitions.

Code Sources: 2010 Census SOC 1980 SOC

Occupations
Upper Management 10–200, 430 1–13, 19
Lower Management 200–950 14–18, 20–37, 473–476
Engineers & Computer Occ. 1000–1560 43–68, 213–218, 229
Other Scientists 1600–1960 69–83, 166–173, 223–225, 235
Social Support Occ. 2000–2060, 2140–2960 113–165, 174–177, 183–199, 228, 234
Lawyers & Doctors 2100–2110, 3010, 3060 84–85, 178–179
Health Treatment Occ. 3000, 3030–3050, 3110–3540 86–106, 203–208
Clerical Occ. 5000–5940 303–389
Sales Occ. 4700–4800, 4830–4900, 4930–4965 243–252, 256–285
Insur. & Real Estate Sales 4810,4920 253–254
Financial Sales 4820 255
Service Occ. 3600–4650 430–470
Primary Occ. 6000–6130 477–499
Construction & Repair Occ. 6200–7620 503–617, 863–869
Production Occ. 7700–8960 633–799, 873, 233
Transportation Occ. 9000–9120, 9140–9750 803, 808–859, 876–889, 226–227
Truck Drivers 9130 804–806

Industries
Agriculture, Mining 170–490 10–50
Construction 770 60
Hi-Tech Manufac 2170–2390, 3180, 3360–3690, 3960 180–192, 210–212, 310, 321–322, 340–372
Low-Tech Manufac 1070–2090, 2470–3170, 3190–3290, 3770–3890, 3970–3990 100–162, 200–201,220–301, 311–320, 331–332, 380–392
Wholesale Trade 4070–4590 500–571
Retail Trade 4670–5790 580–640, 642–691
Transportation & Utilities 570–690, 6070–6390 400–432, 460–472
Information except Hi-Tech 6470–6480, 6570–6670, 6770–6780 171–172, 852
Financial Activities 6870–7190 700–712
Hi-Tech Services 6490, 6675–6695, 7290–7460 440–442, 732–740, 882
Business Services 7270–7280, 7470–7790 721–731, 741–791, 890, 892
Education & Health Services 7860–8470 812–851, 860–872, 891
Personal Services 8560–9290 641, 750–802, 880–881
Public Admin 9370–9590 900–932
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Appendix B. Supplemental Material

Appendix B.1. Details of Weighting Functions Estimation

Appendix B.1.1. Estimating the Weights

We are interested in estimating weights ω that are generally functions of the distribution of (T, X).
The three weighting functions under consideration are ω1(T), ω0(T), and ωC(T, X). The first two
weights are trivially estimated as:

ω̂1(T) =
T
p̂

and ω̂0(T) =
1− T
1− p̂

where p̂ = N−1 ∑N
i=1 Ti.

The weighting function ωC(T, X) can be estimated as

ω̂C(T, X) =
1− T

p̂
·
(

p̂ (X)

1− p̂ (X)

)
,

where p̂ (·) is an estimator of the true probability of being in Group 1 given X. We describe in detail
below the two approaches that we consider, a parametric one and a non-parametric one. In addition,
to have weights summing up to one, we use the following normalization procedures:

ω̂∗1 (Ti) =
ω̂1(Ti)

∑N
j=1 ω̂1(Tj)

=
Ti

N · p̂ ,

ω̂∗0 (Ti) =
ω̂0(Ti)

∑N
j=1 ω̂0(Tj)

=
1− Ti

N · (1− p̂)
,

ω̂∗C(Ti, Xi) =
ω̂C(Ti)

∑N
j=1 ω̂C(Tj)

=
(1− Ti) ·

(
p̂(Xi)

1− p̂(Xi)

)
∑N

j=1
(
1− Tj

)
·
(

p̂(Xj)
1− p̂(Xj)

) .

Appendix B.1.2. Estimating the Distributional Statistics

We are interested in the estimation and inference of ν1, ν0, and νC. It can be shown that, under
certain regularity conditions, estimators of these objects will be distributed asymptotically normal. We
now show how to estimate those quantities, and derive their asymptotic distributions below.

The estimation follows a plug-in approach. Replacing the CDF by the empirical distribution
function yields the estimators of interest:

ν̂t = ν
(

F̂t
)
, t = 0, 1; ν̂C = ν

(
F̂C
)

where

F̂t (y) =
N

∑
i=1

ω̂∗t (Ti) · 1I{Yi ≤ y}, t = 0, 1

F̂C (y) =
N

∑
i=1

ω̂∗C(Ti, Xi) · 1I{Yi ≤ y}.

Note that, in practice, it is not usually necessary to compute these empirical distribution functions
to get estimates of a distributional statistic, ν̂. Standard software programs such as Stata can be
used to compute distributional statistics directly from the observations on Y using the appropriate
weighting factor.
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The estimated distributional statistics can then be used to estimate the wage structure and
composition effects as ∆̂ν

S = ν̂1 − ν̂C and ∆̂ν
X = ν̂C − ν̂0.

Appendix B.1.3. Parametric Propensity Score Estimation

Suppose that p (X) is correctly specified up to a finite vector of parameters δ0. That is, p (X) =

p (X; δ0) or more formally:

Assumption A1. (Parametric p-score) Pr [T = 1|X = x] = p (x; δ0); where p (·; δ0) : X → [0, 1] is a
known function up to δ0 ∈ Rd, d < +∞.

Estimation of δ0 follows by maximum likelihood:

δ̂MLE = arg max
δ

N

∑
i=1

Ti · log (p (Xi; δ)) + (1− Ti) · log (1− p (Xi; δ))

Define the derivative of p (X; δ) with respect to δ as
·
p (X; δ) = ∂p (X; δ) /∂δ. The score function

s (T, X; δ) is:

s (T, X; δ) =
·
p (X; δ) · T − p (X; δ)

p (X; δ) · (1− p (X; δ))

Using a normalization argument, we suppress the entry for δ whenever a function of it is evaluated
at the true δ. Therefore,

s (T, X; δ0) = s (T, X) =
·
p (X) · T − p (X)

p (X) · (1− p (X))

and finally

ω̂C(T, X) =
1− T

p̂
·

 p
(

X; δ̂MLE

)
1− p

(
X; δ̂MLE

)


In particular, in this paper, we assume that the p (x; δ0) can be modeled as a logit, that is,

p (x; δ0) = L(x′δ0)

where L : R→ R, L(z) = (1 + exp(−z))−1.

Appendix B.1.4. Nonparametric Propensity Score Estimation

Suppose that p (X) is completely unknown to the researcher. In that case, following
Hirano et al. (2003), we approximate the log odds ratio by a polynomial series. In practice, this is
done by finding a vector π̂ that is the solution of the following problem:

π̂ = arg max
π

N

∑
i=1

Ti · log
(

L
(

HJ (Xi)
′ π
))

+ (1− Ti) · log
(

1− L
(

HJ (Xi)
′ π
))

where HJ(x) = [HJ, j(x)] (j = 1, ..., J), a vector of length J of polynomial functions of x ∈ X satisfying
the following properties: (i) HJ : X → RJ ; and (ii) HJ, 1(x) = 1. More details on this estimation
procedure can be found at Hirano et al. (2003) or in Firpo (2007). The non-parametric feature of
this estimation procedure comes from the fact that such approximation is refined as the sample size
increases, that is, J will be a function of the sample size N, J = J(N)→ +∞ as N → +∞.
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In this approach, p(X) is estimated by p̂(X) = L(HJ(X)′π̂), thus:

ω̂C(T, X) =
1− T

p̂
·
(

L(HJ(X)′π̂)

1− L(HJ(X)′π̂)

)
Appendix B.2. Asymptotic Distribution

We first show that the plug-in estimators ν̂ are asymptotically normal and compute their
asymptotic variances. We then do the same for the density estimators.

Appendix B.2.1. The Asymptotic Distribution of Plug-In Estimators

We start by assuming that the estimators ν̂ are asymptotically linear in the following sense:

Assumption A2 (Asymptotic Linearity). ν̂t and ν̂C are asymptotically linear, that is,

ν
(

F̂t

)
− ν (Ft) =

N

∑
i=1

ω̂t (Ti, Xi) · IF(Yi; Ft, ν) + op(1/
√

N)

ν
(

F̂C

)
− ν (FC) =

N

∑
i=1

ω̂C (Ti, Xi) · IF(Yi; FC, ν) + op(1/
√

N)

Assumption A2 establishes that the estimators are either exactly linear, as those that are based on
sample moments, or they can be linearized and the remainder term will approach zero as the sample
size increases.

An additional technical assumption is that the influence function are square integrable and its
conditional expectation given X is differentiable. To simplify notation, let us write IF(Yt; ν, F) = ψν

t (Y).

Assumption A3. [Influence Function] For all weighting functions ω considered,
(i) E

[
(ψν

t (Y; Ft))
2
]
< ∞, E

[(
ψν

C (Y; FC)
)2
]
< ∞ and

(ii) E [ψν
t (Y; Ft) |X = x] E

[
ψν

C (Y; FC) |X = x
]

and are continuously differentiable for all x in X .

Under ignorability, both types of estimators (parametric and non-parametric first step) for ν̂1,
ν̂0, and ν̂C proposed before will remain asymptotically linear. The theorem below considers both the
parametric and non-parametric cases.

Theorem A1. [Asymptotic Normality of the ν̂ Estimators]:
Under Assumptions 1, 2, A2 and A3:

(i-ii)
√

N · (ν̂t − νt) =
1√
N ∑N

i=1 ωt(Ti) · ψν (Yi; Ft) + op(1)
D→ N (0, Vt), t = 0, 1

(iii) (a) if in addition, Assumption A1 holds, then:
√

N · (ν̂C − νC) =
1√
N

N

∑
i=1

ωC(Ti, Xi) · ψν (Yi; FC)

+ (ω1(Ti)−ωC(Ti, Xi)) ·
·
p (Xi)

′

p (Xi)
·
(
E
[
s (T, X) · s (T, X) ′

])−1

·E
[ ·

p (X)

1− p (X)
·E [ψν

C (Y; FC) | X, T = 0]

]
+ op(1)

D→ N (0, VC,P)

(iii) (b) otherwise, if in addition we assume [non-parametric], then:
√

N · (ν̂C − νC) =
1√
N

N

∑
i=1

ωC(Ti, Xi) · ψν (Yi; FC)

+ (ω1(Ti)−ωC(Ti, Xi)) ·E [ψν
C (Y; FC) | Xi, T = 0] + op(1)

D→ N (0, VC,NP)
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where
Vt = E

[
(ωt(T) · ψν

t (Y; Ft))
2
]

, t = 0, 1

VC,P = E
[(

ωC(T, X) · ψν (Y; FC)

+ (ω1(T)−ωC(T, X)) ·
·
p (X)′

p (X)
·
(
E
[
s (T, X) · s (T, X) ′

])−1

·E
[ ·

p (X)

1− p (X)
·E [ψν

C (Y; FC) | X, T = 0]

])2]

VC,NP = E
[(

ωC(T, X) · ψν (Y, X; FC)

+ (ω1(T)−ωC(T, X)) ·E [ψν
C (Y, X; FC) | X, T = 0]

)2]

Appendix B.3. Proofs

Proof of Result 1. A proof can be found in Firpo and Pinto (2016).

Proof of Result 2. Part (i) is straightforward and follows from identification of the functionals ν1, ν0

and νC, a direct consequence of identification of F1, F0 and FC. Part (ii) follows from the fact that

F1 (y) = E [E [1I{g1 (X, ε) ≤ y} | T = 1, X]]

=
E[E [1I{g0 (X, ε) ≤ y} | T = 1, X]

+E [1I{g1 (X, ε) ≤ y} − 1I{g0 (X, ε) ≤ y} | T = 1, X] ]

= FC (y) + F1−0 (y)

where
F1−0 (y) = E [E [1I{g1 (X, ε) ≤ y} − 1I{g0 (X, ε) ≤ y} | T = 1, X]]

thus, if g1 (·, ·) = g0 (·, ·), then for all y, F1−0 (y) = 0 and

ν1 = ν (F1) = ν (FC + F1−0) = ν (FC) = νC.

Part (iii) follows from a similar argument:

F0 (y) =
∫

Pr [Y0 ≤ y | T = 0, X = x] · dFX|T (x|0) · dx

=
∫

Pr [Y0 ≤ y | T = 0, X = x] · dFX|T (x|1) · dx

+
∫

Pr [Y0 ≤ y | T = 0, X = x] ·
(

dFX|T (x|0)− dFX|T (x|1)
)
· dx

= FC (y) + F∆ (y)

where
F∆ (y) =

∫
Pr [Y0 ≤ y | T = 0, X = x] · d

(
FX|T (x|0)− FX|T (x|1)

)
· dx

thus if FX|T (·|1) = FX|T (·|0), then for all x, FX|T (x|1) − FX|T (x|0) = 0 and therefore, for all y,
F∆ (y) = 0 and

ν0 = ν (F0) = ν (FC + F∆) = ν (FC) = νC.
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Proof of Theorem A1. A proof of parts (i), (ii) and (iii) (b) can be found in Firpo and Pinto (2016).
A proof of part (iii) (a) can be found in Chen et al. (2008).
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