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Abstract: Structural break tests for regression models are sensitive to model misspecification.
We show—analytically and through simulations—that the sup Wald test for breaks in the conditional
mean and variance of a time series process exhibits severe size distortions when the conditional mean
dynamics are misspecified. We also show that the sup Wald test for breaks in the unconditional
mean and variance does not have the same size distortions, yet benefits from similar power to its
conditional counterpart in correctly specified models. Hence, we propose using it as an alternative
and complementary test for breaks. We apply the unconditional and conditional mean and variance
tests to three US series: unemployment, industrial production growth and interest rates. Both the
unconditional and the conditional mean tests detect a break in the mean of interest rates. However,
for the other two series, the unconditional mean test does not detect a break, while the conditional
mean tests based on dynamic regression models occasionally detect a break, with the implied
break-point estimator varying across different dynamic specifications. For all series, the unconditional
variance does not detect a break while most tests for the conditional variance do detect a break which
also varies across specifications.

Keywords: structural change; sup Wald test; dynamic misspecification

JEL Classification: C01; C12

1. Introduction

There is vast literature on alternative structural break tests, as well as empirical evidence that
many economic indicators went through periods of structural change. Most structural break tests are
developed for the slope parameters of a regression model (see inter alia Andrews 1993; Andrews and
Ploberger 1994; Bai and Perron 1998; Ploberger and Krämer 1992).

Macroeconomic variables may often exhibit long-run mean shifts, that is, structural breaks in their
unconditional mean. Mean shifts in unemployment rates, interest rates, GDP growth, inflation and
other macroeconomic variables may signal permanent changes in the structure of the economy and are
therefore themselves of interest to practitioners. Nevertheless, very few papers test for unconditional
mean shifts; instead, most of the literature refers to “mean shifts” as breaks in the short-run conditional
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mean and proceed with the usual regression based tests for break-points (see inter alia Vogelsang 1997,
1998; McKitrick and Vogelsang 2014; Perron and Yabu 2009).1

In this paper, we show, analytically and through simulations, that tests for conditional mean
breaks are severely oversized when the functional form is misspecified, leading to detection of spurious
breaks. Their unconditional counterparts are not plagued by the same issues and we propose using
them instead, or in conjunction with, the conditional mean break tests.

The sensitivity of the conditional mean break tests to functional form misspecifications has been
documented earlier. Chong (2003) focused on cases with iid, conditionally homoskedastic errors.
Bai et al. (2008) focused on models with measurement error and proposed a new break-point test
that corrects for measurement error. Another strand of literature focuses on trend breaks rather than
mean breaks. It shows that dynamic misspecification of the conditional mean may result in severe
size distortions and nonmonotonic power (see inter alia Vogelsang 1997, 1998, 1999; Kejriwal 2009;
McKitrick and Vogelsang 2014; Perron and Yabu 2009). The theoretical and simulation results in these
papers are supported by the empirical studies of Altansukh (2013) and Bataa et al. (2013), who exposed
the undesirable effects of misspecifying the conditional mean seasonalities, outliers, dynamics and
heteroskedasticity in practice.

In this paper, we analyze the effects of static and dynamic misspecification on conditional mean
break tests. We focus on the sup Wald test of Andrews (1993) because it is widely used in applied work.
We prove that its asymptotic distribution is nonstandard and highly data-dependent when the number
of lags is underspecified. Our analysis focuses on stationary weakly dependent and heteroskedastic
processes, generalizing the iid homoskedastic results derived in Chong (2003).2

Most of the literature proposed correcting for dynamic misspecification by better lag selection
procedures in possibly non-stationary series (Perron and Yabu 2009; Vogelsang and Perron 1998) or by
fixed bandwidth asymptotics (Cho and Vogelsang 2014; Sayginsoy and Vogelsang 2011; Vogelsang
1998). Moreover, Perron (1989), Diebold and Inoue (2001) and Smallwood (2016), among others,
established that both unit root tests and long memory tests are size distorted in the presence of
structural breaks. In our paper, we focus exclusively on testing for structural breaks for otherwise
stationary processes, and using fixed bandwidth asymptotics is beyond the scope of our paper.

Concerning lag selection, AIC and BIC are routinely used for selecting the number of lags in
dynamic models. In the presence of breaks, Kurozumi and Tuvaandorj (2011) proposed AIC- and
BIC-type information criteria to jointly estimate the number of lags and breaks in a dynamic model.
In our simulations, we show that, in a model with no breaks, AIC and BIC underselect the true
number of lags even for large samples, especially when the true model has higher order lags with
smaller coefficients than the first two lags, which is typically the case in empirical applications.
Moreover, even if a data generating process has higher order lags with large coefficients, where our
simulations show that the BIC performs well in large samples, it is unclear how the method in
Kurozumi and Tuvaandorj (2011) would fare in selecting the true number of breaks, because it is
derived under the assumption of shrinking (moderate) shifts, while some breaks typically encountered
in macroeconomic series such as the Great Moderation break are typically treated as fixed (large) shifts.
Therefore, we focus instead on how dynamic misspecification affects the break point inference when
using conditional mean tests.

1 There are a few notable exceptions. For example, Rapach and Wohar (2005) directly tested and found multiple unconditional
mean shifts in international interest rates and inflation using the Bai and Perron (1998) tests. Elliott and Müller (2007) and
Eo and Morley (2015) considered in their simulations a break in the unconditional mean (and variance) of a time series.
Their focus was on constructing confidence sets with good coverage for small and large breaks, by inverting structural
break tests. Recently, Müller and Watson (2017) proposed new methods for detecting low-frequency mean or trend changes.
Our paper is different as it highlights the properties of the existing sup Wald test for a break in the unconditional and
conditional mean and variance of a time series.

2 Non-stationary processes with a trend break and unit root errors, whose first-differences exhibit mean shifts with stationary
errors, have been analyzed in many papers. However, as Vogelsang (1998, 1999) showed, to recover monotonic power,
testing the first-differenced series for a mean shift is better than testing the level series for a trend shift.
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Additionally, we propose testing for breaks in the unconditional mean as an alternative to
testing for breaks in the conditional mean. Breaks in the conditional mean are not equivalent, yet
closely related, to breaks in the conditional mean, as long as the conditional mean is correctly
specified. Aue and Horvath (2012), among others, illustrated tests for both type of breaks in a recent
comprehensive review on structural break tests. Our extensive simulation study shows that the
unconditional mean break test, corrected for autocorrelation, yields close to correctly-sized tests,
while, for most common static and dynamic misspecifications in the conditional mean, the conditional
mean tests are severely oversized. Moreover, the power of both tests is very similar, especially as the
sample size increases.3 Similar results hold for the unconditional versus conditional break tests in
variance. Therefore, the approach of testing first for a break in the unconditional mean and variance
of the variable of interest is not only complementary to the regression approach, but is robust to
alternative sources of misspecification.

There is a plethora of empirical evidence for breaks in the conditional mean and volatility of many
US macroeconomic time series during the early and mid 1980s, associated with the Great Moderation
(see, for example, Bataa et al. 2013; McConnell and Perez-Quiros 2000; Sensier and van Dijk 2004; Stock
and Watson 2002). Most studies employ dynamic regression models to detect such breaks. Focusing
on unemployment, the industrial production and the real interest rate, we show that the unconditional
mean and volatility tests mostly indicate no breaks in the unemployment or the industrial production
growth. We further show that while the conditional mean tests occasionally detect breaks, the implied
break-point estimates vary across the dynamic specifications employed. Therefore, it is plausible that
the breaks found by the conditional tests are spurious because of size distortions, or that they do not
result in long-run breaks in the mean of unemployment or industrial production growth. We also find
that the evidence for a break in the variance of unemployment rates and real interest rates around the
Great Moderation is not as strong as previously shown in Stock and Watson (2002).

This paper is organized as follows: Section 2 defines the unconditional break tests in mean and
variance and derives their asymptotic properties in a unified framework. Section 3 defines the conditional
structural break tests in mean and variance. It contains asymptotic results for the conditional break tests
under correct specification and misspecification. Section 4 presents the simulation evidence comparing
the size and power of the conditional and unconditional break tests. Section 5 illustrates the difference
between these alternative structural break tests approaches with three empirical applications: the US
civilian unemployment rate, the short-term real interest rate and the industrial production growth rate.
A final section concludes. All the proofs are relegated to Appendix A.

2. Unconditional Mean and Variance Break Tests

In this section, we define the unconditional sup Wald test for an unknown break in the mean or
variance of a dynamic univariate process.4

To our knowledge, a test for an unknown unconditional mean break, adjusted for autocorrelation,
is rarely used in the literature.5 Most papers test for a break in the conditional mean of a series;
when they intend to test for an unconditional mean break, they routinely test for a trend break or
an intercept break instead, after specifying a conditional mean (see, e.g., Stock and Watson 2002).

3 The only case where our test has comparatively low power to the conditional mean test is in a correctly specified dynamic
model with an intercept very close to zero. This case is further discussed in Section 3.

4 Throughout the paper, we use the sup Wald test definition in Andrews (1993); alternative definitions of the sup Wald test are
available, but they are not equivalent to the original sup Wald test in Andrews (1993) and should not be confused with it.

5 Even though UM tests are not routinely used, they are a special case of the HAC-adjusted conditional break-point test in,
e.g., Bai and Perron (1998), when the only regressor is an intercept. In addition, a CUSUM (cumulative sum) variant of this
test for iid data is in Pitarakis (2004). As shown in Appendix A, proof of Theorem 1, for unconditional break tests, there
is an explicit asymptotic relationship between the CUSUM test and the sup Wald test. However, as the Appendix shows,
the conclusion of the two tests based on asymptotic critical values is in general different. Since there is strong evidence for
the non-monotonic power of the CUSUM test (see, e.g., Vogelsang 1999), the paper focuses on the sup Wald test instead.
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Such approaches have the disadvantage that they are highly dependent on the correct specification
of the conditional mean. They also do not shed light on unconditional mean shifts, which may not
be equivalent to conditional mean shifts. Therefore, in this paper, we propose using UM break tests
complementarily to CM break tests, to uncover long-run mean shifts in the presence of potential static
and dynamic misspecification.

We denote the unconditional mean by UM, and the unconditional variance by UV henceforth.
In contrast to UM breaks, UV breaks are routinely tested in applications, for example to uncover the
Great Moderation break. It is common to test for a break in the absolute value of the demeaned data,
as a proxy for testing a variance break (see McConnell and Perez-Quiros 2000; Sensier and van Dijk
2004; Stock and Watson 2002). We call these tests UA (unconditional absolute deviation) break tests.
One can also use the squared demeaned data to test for a variance break, as in Pitarakis (2004) and
Qu and Perron (2007). We call these UV break tests, because they test directly for a variance break.6

Below, we state the null asymptotic distributions of UM, UA and UV break tests under fairly
general assumptions on the data. These distributions are not dependent on regressor, functional
form, or seasonality misspecifications, simply because a conditional mean is not specified. The only
misspecification that affects the null asymptotic distribution of these tests are UM breaks for the
UA and UV tests, or UV breaks for the UM test. Fortunately, this misspecification is easy to correct;
we discuss this correction at the end of this section.

The true model takes the general form:

yt = µ11[t ≤ TUM] + µ21[t > TUM] + ut, (1)

where µ1, µ2 are deterministic, the break TUM = [TλUM] is an unknown, fixed fraction of the sample
0 < λUM < 1, and ut satisfies the assumption below, in which AVar = limT→∞ Var.

Assumption 1.

(i) E(ut) = 0 and AVar
(

T−1/2 ∑
[Tλ]
t=1 ut

)
= λ vu;

(ii) for some d > 4, supt E|ut|d < ∞ and {ut} is L2-near epoch dependent of size cm = O(m−1) on {gt},
i.e.,

∥∥ut − E[ut|G t+m
t−m ]

∥∥
2 ≤ cm with cm = O(m−1) where G t+m

t−m = σ(gt−m, . . . , gt+m), and {gt} is
either φ-mixing of size m−d/(2(d−1)) or α-mixing of size m−d/(d−2).7

With these assumptions, yt can exhibit very general dependence—ARMA, GARCH, and nonlinear
dependence—but it cannot have unit roots or UV breaks.8

For a UM break, the null and alternative hypotheses are:

HUM
0 : µ1 = µ2 vs. HUM

A : µ1 6= µ2.

For a UA break, let at = E|yt − y|, and test:

HUA
0 : at = au vs. HUA

A : at = au,1 1[t ≤ TUA] + au,2 1[t > TUA], au,1 6= au,2.

For a UV break, let vut = E(yt − y)2, and test:

HUV
0 : vt = vu vs. HUV

A : vt = vu,1 1[t ≤ TUV ] + vu,2 1[t > TUV ], vu,1 6= vu,2.

6 Note that a break in the expected absolute value of a demeaned series is not the same as a variance break only under
certain conditions.

7 Here, ‖ · ‖2 = (E‖ · ‖2)1/2 stands for the L2-norm, and | · | stands for the Euclidean norm.
8 For a proof that the most common GARCH model, GARCH(1,1), is near-epoch dependent and therefore fits our assumptions,

see (Hansen 1991).
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Under the alternative hypotheses, all breaks TUM = [TλUM], TUV = [TλUV ], TUA = [TλUA] are
assumed to occur at unknown fixed fractions 0 < λUM, λUV , λUA < 1 of the sample.

The UM test is defined below. It is a special case of the Andrews (1993) sup Wald test when the
only regressor is an intercept, and when the variance is estimated under the null of no break. Therefore,
it is not new; nevertheless, to our knowledge, it is rarely used in the empirical literature in the form
defined below:

UM∗T = sup
λ∈[ε,1−ε]

UMT(λ), UMT(λ) = T(y1λ − y2λ)
2/v̂uλ, (2)

ε > 0 is a small cut-off, typically ε = 0.15 in applications, yiλ = T−1
iλ ∑iλ yt for i = 1, 2, T1λ = [Tλ],

T2λ = T − [Tλ], ∑1λ = ∑T1λ
t=1, ∑2λ = ∑T

t=T2λ+1 and v̂uλ is a HAC consistent estimator of vuλ =

AVar(
√

T(y1λ − y2λ)) = vu/[λ(1− λ)] under HUM
0 .

For the HAC estimator v̂uλ, it is crucial to calculate it over the full sample, i.e., under the null HUM
0 .

If we use sub-sample estimators in its computation—i.e., we estimate the variances T1/2(y1λ − µ) and
T1/2(y2λ − µ) separately—we need a separate bandwidth for each. Since the bandwidth estimation is
only accurate in large samples, for those λ’s that are close to ε and 1− ε, such an estimation would be
highly inaccurate, resulting in high size distortions.9

Thus, we define:

v̂uλ =
1

λ(1− λ)

bT−1

∑
j=−bT+1

k
(

j
bT

)
γ̂j, γ̂j =

{
1

T−1 ∑T
t=j+1(yt − y)(yt−j − y), j ≥ 0

γ̂−j j < 0
,

where y = T−1 ∑T
t=1 yt, k(x) = (1− |x|) 1[|x| ≤ 1] is throughout the paper the Bartlett kernel, with the

optimal data-dependent bandwidth in Newey and West (1994).10 Specifically, we let bT = min[T, η̂ T
1
3 ],

where η̂ = 1.1447( f̂ (1)/ f̂ (0))
2
3 , and f̂ (1) = 2 ∑τ

j=1 jγ̂j, f̂ (0) = γ̂0 + 2 ∑τ
j=1 γ̂j, with τ = [(T/100)2/9].

The lag truncation parameter τ governs how many auto-covariances should be used in forming the
nonparametric estimates f̂ (1) and f̂ (0), which estimate the spectral density at frequency one and zero.11

Therefore, f̂ (1), f̂ (0), and η̂ are computed over the full sample.
The UA and UV tests are denoted by UA∗T and UV∗T . They are computed as UM∗T , but with yt

replaced by ât = |yt − y| for UA, v̂t = (yt − y)2 for UV, and v̂uλ replaced by the HAC consistent
estimator of the asymptotic variance of ât or v̂t.

Define the distribution:

Gp = sup
λ∈[ε,1−ε]

[Bp(λ)− λBp(1)]′[Bp(λ)− λBp(1)]
λ(1− λ)

,

where Bp(·) is a p× 1 vector of independent standard Brownian motions, for some p ≥ 1. As Theorem 1
shows, G1 is the null asymptotic distributions of the UM, UA and UV break tests. Although the
distribution of various break point tests under different (more restrictive) assumptions is available,
an explicit proof for the UM, UV and UA tests under Assumption 1 is not available in a unified setting
to our knowledge, and we provide it in Appendix A.

For the UA, respectively, UV tests, we need the following additional assumptions.

9 Simulation evidence for this statement is available from the authors upon request.
10 Additional simulations not reported here show that the fixed optimal bandwidth proposed in Andrews (1991) leads to

worse performance of the UM break test.
11 The weights mentioned in Newey and West (1994) are set equal to one as usual for scalar cases.
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Assumption 2.

(i) AVar
(

T−1/2 ∑
[Tλ]
t=1 |yt − ȳ|

)
= λ va, for some va > 0; and

(ii) AVar
(

T−1/2 ∑
[Tλ]
t=1 (yt − ȳ)2

)
= λ vs, for some vs > 0.

Theorem 1. Let the model be as in (1), and let Assumption 1 hold. Then: (i) under HUM
0 , UM∗T ⇒ G1;

(ii) under HUM
0 , HUA

0 and Assumption 2(i), UA∗T ⇒ G1; and (iii) under HUM
0 , HUV

0 and Assumption 2(ii),
UV∗T ⇒ G1.12

Note that the distributions are non-standard, but critical values are available in, e.g., Andrews
(1993) and Bai and Perron (1998).

Theorem 1 assumes no UV breaks for UM tests, via imposing Assumption 1(i), and no UM
breaks for UV/UA tests, via imposing HUM

0 . If there is a UM break (HUM
A holds instead of HUM

0 ),
as shown in Pitarakis (2004), we can obtain v̂t and ât via subsample demeaning, and Theorem 1(ii)–(iii)

will hold. That is, we let v̂t = (yt − yt)
2, ât = |yt − yt|, and yt = T̂−1

UM ∑T̂UM
t=1 yt1[t ≤ T̂UM] + (T −

T̂UM)−1 ∑T
t=T̂UM+1

yt1[t > T̂UM], where T̂UM is the Bai and Perron (1998) OLS break-point estimator of
TUM in (1). If there is a UV break, the asymptotic distribution of the UM test is affected, but one can
employ the fixed-regressor bootstrap in Hansen (2000) to correct for this. The correction for the UV
tests via sub-sample demeaning is necessary and employed in our empirical analysis in Section 5.

3. Conditional Mean and Variance Break Tests

3.1. Correct Specification

Unlike unconditional break tests, regression-based break tests are pervasive in empirical work,
despite their sensitivity to misspecification (this sensitivity is discussed in Section 3.2). The most
common regression specification is of the linear form:

yt = x′tθ11[t ≤ TCM] + x′tθ21[t > TCM] + εt, (3)

where TCM = [TλCM], 0 < λCM < 1, xt is a p× 1 vector of regressors that includes an intercept and
possibly lagged dependent variables, and εt are scalar errors.

We denote by CM, CA and CV the conditional mean, conditional absolute deviation and the
conditional variance, where the word “conditional” simply refers to specifying the conditional mean
in (3). To derive the asymptotic distribution of the CM, CA and CV break tests, we need additional
assumptions on the joint dependence of regressors and errors.

Assumption 3.

(i) E(xtεt) = 0, AVar(T−1/2 ∑
[Tλ]
t=1 xtεt) = λV and T−1 ∑

[Tλ]
t=1 xtx′t

P−→ λQ, two positive definite (pd)
matrices of constants; and

(ii) for some d > 4, supt ‖xtεt‖d < ∞ and {xtεt} is L2-near epoch dependent of size cm = O(m−1) on {ht},
and {ht} is either φ-mixing of size m−d/(2(d−1)) or α-mixing of size m−d/(d−2).

Note that we need the assumption T−1 ∑
[Tλ]
t=1 xtx′t

P−→ λQ for two reasons. First, as explained in
Hansen (2000), if this assumption does not hold, then the asymptotic distribution of the test statistic
is not pivotal. Second, this assumption does not allow for unit roots in xt, but it allows for lagged
dependent variables in xt.

12 Here, “⇒” indicates weak convergence in the Skorohod metric.
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The null and alternative hypotheses of the conditional tests are:

HCM
0 : θ1 = θ2 vs. HCM

A : θ1 6= θ2,

HCA
0 : aεt = aε vs. HCA

A : aεt = aε1 1[t ≤ TCA] + aε2 1[t > TCA], aε1 6= aε2,

HCV
0 : vεt = vε vs. HCV

A : vεt = vε1 1[t ≤ TCV ] + vε2 1[t > TCV ], vε1 6= vε2,

where aεt = E|εt|, vεt = Var(εt), TCA = [TλCA], TCV = [TλCV ], 0 < λCA, λCV < 1.
The corresponding sup Wald test for a CM break is defined in, e.g., Andrews (1993):

CM∗T = sup
λ∈[ε,1−ε]

CMT(λ), CMT(λ) = T(θ̂1λ − θ̂2λ)
′V̂−1

λ (θ̂1λ − θ̂2λ),

where θ̂1λ, θ̂2λ are the OLS estimators of θ in Equation (3) in subsamples {1, . . . , T1λ} and {T1λ +

1, . . . , T}, and V̂λ is a consistent estimator of AVar(T1/2(θ̂1λ − θ̂2λ)) under HCM
0 .

For the conditional test, the asymptotic variance AVar(T1/2(θ̂1λ − θ̂2λ)) is routinely estimated
over subsamples, i.e., separately for T1/2(θ̂1λ − θ0) and T1/2(θ̂2λ − θ0), or under the alternative. If a
HAC estimator under the alternative would be used, the same problems would arise as for the
unconditional test: there would be size distortions due to inaccurate bandwidth estimation for λ

close to the beginning or the end of the sample. However, in most studies, the conditional mean
specification in (3) is assumed to be correct, in which case all lags of the dependent variable are
included as regressors, and correcting for autocorrelation is no longer necessary. If this is the case,
the variance can be estimated under the alternative without further size distortions. Thus, as in most
empirical studies, we use variance estimators that are not autocorrelation-robust in all the simulations
except those where the model is static. In a static model, the researcher might suspect that the errors
are autocorrelated, and a HAC estimator is justified.

For the theory section, we consider two potential estimators for AVar(T1/2(θ̂1λ − θ̂2λ)), under
homoskedasticity or heteroskedasticity. The one under homoskedasticity is:

V̂λ = V̂1λ + V̂2λ, V̂iλ = v̂ε,iλ
(
T−1 ∑iλ xtx′t

)−1 , v̂ε,iλ = T−1
iλ ∑iλ ε̂2

t , (i = 1, 2),

ε̂t = yt − x′t θ̂1λ1{t ≤ T1λ} − x′t θ̂2λ1{t > T1λ}. (4)

The one under heteroskedasticity is:

V̂λ = V̂1λ + V̂2λ, V̂iλ =
(
T−1 ∑iλ xtx′t

)−1 (T−1 ∑iλ ε̂2
t xtx′t

) (
T−1 ∑iλ xtx′t

)−1 , (i = 1, 2). (5)

We define the CA and CV tests as the UA and the UV tests, but with ât, v̂t replaced by
âεt = |ε̂t|, v̂εt = ε̂2

t , and with ε̂t = yt − x′t θ̂ the residuals from estimating (3) under the null HCM
0 .

We emphasize that the name “conditional” refers exclusively to pre-specifying the conditional mean
in (3), and not the conditional variance of yt or εt. Therefore, the tests in this paper should not be
confused with the conditional variance tests proposed by, e.g., Andreou and Ghysels (2002), who wrote
down a model for the conditional variance of εt.

Theorem 2 states the asymptotic distribution of the CM, CA and CV break tests.

Theorem 2. Let the model be as in (3), and let Assumption 3 hold. Then: (i) under HCM
0 , CM∗T ⇒ Gp;

(ii) under HCM
0 and HCA

0 , CA∗T ⇒ G1; and (iii) under HCM
0 and HCV

0 , CV∗T ⇒ G1.

Note that the distributions are similar to the unconditional break tests, but there are more degrees
of freedom used up by the conditional break tests.

As for the UA and UV tests, the asymptotic distributions of the CA and CV tests are not valid if
there is a CM break; in that case, as Pitarakis (2004) shows, the CM break at TCM can be pre-estimated
by T̂CM along with the slope parameters θ̂1, θ̂2 before and after the break, via the methods in Bai and
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Perron (1998). Then, we can redefine ε̂t = yt − x′t θ̂11[t ≤ T̂CM]− x′t θ̂21[t > T̂CM] in the computation
of âεt, v̂εt, obtaining the same asymptotic distributions as stated in Theorem 2. Under the alternative
HCV

A , the asymptotic null distribution of the CM test is not valid, but, as for the unconditional break
tests, it can be bootstrapped via the fixed regressor bootstrap in Hansen (2000).

Note that UM and CM tests are in general testing equivalent null hypotheses under correct
specification, with some exceptions. Consider the following general AR(p) model with additional
covariates:

yt =

(
α1 +

p

∑
i=1

yt−iβ1i + x′tγ1

)
1[t ≤ TCM] +

(
α2 +

p

∑
i=1

yt−iβ2i + x′tγ2

)
1[t > TCM] + εt

The CM statistic tests the null hypothesis HCM
0 : θ1 = θ2, where θj = (αj, β j1, . . . , β jp, γ′j)

′ for

j = 1, 2. The UM statistic tests the null hypothesis HUM
0 : µ1 = µ2, where µj = (αj + [E(xt)]′θj)/(1−

∑
p
i=1 β ji). In principle, a change in any of the elements of θ1 results in a change in µ1. In addition,

a small change in β1i, a number usually between zero and one, typically results in a larger change
in µ1, which means that the UM test will tend to have larger power that the CM test against these
changes. However, it is useful to note that, if αj + [E(xt)]′θj = 0 (for example, αj = θj = 0 for j = 1, 2),
then the unconditional mean is zero and the UM test will have no power against changes in the
other parameters β ji. Therefore, the UM test should be used only for series which do not have a zero
unconditional mean over the whole sample, a condition that can be easily verified for any dataset
before proceeding with the UM test.

3.2. Dynamic Misspecification

Unlike the unconditional break tests, all the conditional break tests are highly dependent on
the correct specification of the functional form, including seasonality and dynamics. Bataa et al.
(2013) and Altansukh (2013) empirically showed the effects of misspecifying the conditional mean
seasonalities, outliers, dynamics and heteroskedasticity on the conditional break tests. Chong (2003)
and Bai et al. (2008) theoretically showed that misspecification of the functional form leads to
different null asymptotic distributions for the CM break tests. They focus on iid errors and static
misspecifications, although some of their theoretical results apply to dynamic misspecification as well.
The impact of dynamic misspecification of Equation (3) on conditional break tests was analyzed by
Vogelsang and Perron (1998),Vogelsang (1999), Perron and Yabu (2009), inter alia. However, all these
studies correct for omitted autocorrelation in the errors by either better selection of lags in the regression
equation, or directly correcting the error variance via HAC estimators. The first correction is successful
if the method used indeed selects the number of lags correctly. The second correction is not always
valid if the regression model is already dynamic, as omitted autocorrelation in the errors often violates
the exogeneity Assumption 3(i), so a HAC variance estimator does not fix the dynamic misspecification
problems.

To our knowledge, the effect of misspecifying the regressors or number of lags on CM break
tests has not been studied before under general dependence and conditionally heteroskedastic data as
allowed for in Assumption 4. The result in Theorem 3 is a generalization of the result in Chong (2003).
The assumptions in Chong (2003) allow for lagged dependent variables, however the authors assumed
that the error term is iid, and constructed the sup Wald test imposing this assumption (i.e., imposing
homoskedasticity). Our results are more general than Chong (2003) in two ways. First, we allow the
error term in the true model to be a near epoch dependent process, thus also allowing for conditionally
heteroskedastic series, which is empirically important for analyzing both macroeconomic and financial
time series. Second, we construct the sup Wald test such that it corrects for heteroskedasticity. We prove
below that the asymptotic distribution of the CM break test is data-dependent and different than that
stated in Theorem 3. Therefore, in the presence of dynamic misspecification, the critical values of the
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CM tests will be incorrect13, while the critical values for the UM break test are correct. Thus, the UM
break test provides a valuable tool for assessing stability of the process yt in the presence of dynamic
misspecification.

To formalize the results under dynamic misspecification, let xt = vec(xt(1), xt(2)) and θ =

vec(θ(1), θ(2)), where xt(1), θ(1) are p1 × 1, xt(2), θ(2) is p2 × 1, and p1 + p2 = p.14 The true model
is (3), but we mistakenly regress yt only on xt(1) (which we assume includes the intercept).
Thus, we underspecify the number of regressors; in particular, we are interested in the effects of

underspecifying the number of lags.15 Partition Q =

[
Q(1) Q(12)
Q′(12) Q(2)

]
, with Q(1), Q(2) of dimensions

p1 × p1 and p2 × p2, respectively.

Assumption 4. Let kt = xt(1)εt, Lt = xt(1)x′t(2) − Q(12), Mt = xt(1)x′t(1) − Q(1), and wt =

vech(kt, Lt, Mt), where vech(A, B) selects, in order, the unique elements and the first occurrence of the
repeating elements in vec(A, B).

(i) E(wt) = 0, AVar(T−1/2 ∑
[Tλ]
t=1 wt) = λH, a pd matrix of constants;

(ii) for some d > 4, supt ‖wt‖d < ∞ and {wt} is L2-near epoch dependent of size dm = O(m−1) on either
an φ-mixing process of size m−d/(2(d−1)) or an α-mixing process of size m−d/(d−2);

(iii) Q(12) 6= Op1×p2 , where Op1×p2 is the p1 × p2 null matrix; and

(iv) T−1 ∑1λ wtw′t
P−→ λΩ, a pd matrix of constants.

Assumption 4(iii) states that the omitted regressors are correlated with the included regressors,
as is the case when the number of lags is underspecified. The rest of the statements in Assumption 4
are standard. Let r = p1(1 + p2 + (p1 + 1)/2), the dimension of wt. Then, under Assumption 4,
the functional central limit theorem in (Wooldridge and White 1988, Theorem 2.11) can be applied
to yield T−1/2 ∑1λ wt ⇒ H1/2Br(λ). To state the asymptotic distribution of the CM break test under
misspecification, let Br(λ) = Br(λ) − λBr(1), s = p1(1 + p1 + p2), and B∗s (λ) = B∗s (λ) − λB∗s (1),
where B∗s (λ) is constructed from Br(λ) by repeating its elements exactly in the positions where
w∗t = vec(kt, Lt, Mt) repeats the elements of wt = vech(kt, Lt, Mt). Similarly, let H∗1/2 and Ω∗ be
positive semidefinite matrices constructed from H1/2 and Ω, which were defined in Assumption 4,

so that AVar(T−1/2 ∑
[Tλ]
t=1 w∗t ) = λH∗1/2H∗1/2′ , and T−1 ∑1λ w∗t w∗

′
t

P−→ λΩ∗. With this notation,
the asymptotic distribution of the CM test is stated in Theorem 3.

Theorem 3. Let Assumptions 3 and 4 and HCM
0 hold, δ = Q−1

(1)Q(12)θ(2), ξ = vec(1, θ(2),−δ) and A =

H∗1/2′ [ξ ⊗Q−1
(1)]

{
[ξ ′ ⊗Q−1

(1)]Ω
∗[ξ ⊗Q−1

(1)]
}−1

[ξ ′ ⊗Q−1
(1)]H

∗1/2.

(i) If CM∗T is constructed under heteroskedasticity,

CM∗T ⇒ sup
λ

B∗′s (λ) A B∗s (λ)
λ(1− λ)

.

(ii) Let ν = σ2
ε + θ′(2)[Q(2) −Q′(12)Q

−1
(1)Q(12)]θ(2). If CM∗T is constructed under homoskedasticity, then the

result in (i) holds, with A = ν−1H∗1/2′ [(ξξ ′)⊗Q−1
(1)]H

∗1/2.

13 The simulation section shows that the CM tests are severely oversized with dynamic misspecification.
14 We extend the vec(A, B) notation to denote stacking in a vector all columns of A, then all columns of B, one by one, in order,

even when A, B do not have the same number of rows, and we let vec′(A, B) = [vec(A, B)]′.
15 Overspecifying the number of lags or regressors is not a problem, as the coefficients on the additional regressors or lags will

converge to zero.
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Comment 1. The theorem above shows that the asymptotic distribution of the CM test is
nonstandard and highly dependent on the data parameters and the unknown number of lags omitted.
Our theorem is a generalization of Theorem 3 in Chong (2003), who proved the same result, but under
iid and conditionally homoskedastic errors, with CM∗T constructed only under homoskedasticity.

Comment 2. As we expect, in the presence of no misspecification (θ(2) = 0), we can show
that Theorem 3 reduces to Theorem 2. To see this, note that, when θ(2) = 0, ξ ′ = (1, 0, 0).

Therefore, [Q−1
(1) ⊗ ξ ′]H∗1/2B∗s (λ) = Q−1

(1)Ω
∗1/2
kk Bp1(λ), where Ω∗kk was defined in the Appendix as

Ω∗kk ≡ AVar(T−1/2 ∑T
t=1 xt(1)εt), and Bp1(λ) are the first p1 elements of Bs(λ). Moreover, note that

Ω∗kk = AVar(T−1/2 ∑T
t=1 xtεt) because in the true model, p1 = p, so xt = xt(1). Finally, note that{

[ξ ′ ⊗Q−1
(1)]Ω

∗[ξ ⊗Q−1
(1)]
}−1

=
{

Q−1
(1)Ω

∗
kkQ−1

(1)

}−1
= Q(1)Ω

∗−1
kk Q(1). Therefore, Theorem 3(i) reduces

to

CM∗T ⇒ sup
λ

B′p1
(λ)Ω∗1/2′

kk Q−1
(1)Q(1)Ω

∗−1
kk Q(1)Q

−1
(1)Ω

∗1/2
kk Bp1(λ)

λ(1− λ)
= sup

λ

B′p1
(λ)Bp1(λ)

λ(1− λ)
= Gp(λ),

exactly the distribution in Theorem 2. By similar arguments, Theorem 3(ii) also reduces to Theorem 2,
as it should under conditional homoskedastic errors.

Comment 3. The distributions in Theorem 3 are also the same as in Theorem 2 when the model
is static, except that they have fewer degrees of freedom (p1 instead of p). The reason for this is that
the functional form of the model is still linear when misspecified, so it will be correctly specified
for a modified version of the initial model.16 To see the intuition for this result, note that, under the
null hypothesis, the true model is yt = xt(1)θ(1) + xt(2)θ(2) + εt. The parameters will be consistently
estimated by OLS if we regress yt on xt = (x′t(1), x′t(2))

′. However, the initial model can be rewritten as

yt = xt(1)θ
∗
(1) + ut, where θ∗(1) = θ(1) + Q−1

(1)Q(12)θ2 = θ(1) + δ and ut = x′t(1)[θ(1) − θ∗(1)] + xt(2)θ(2) +

εt = εt + x′t(2)θ(2) − x′t(1)δ. This new model satisfies E(xt(1)ut) = 0 by construction and therefore it
is also correctly specified in the sense that it will consistently estimate the new parameter θ∗(1) when
regressing yt on xt(1) via OLS. This would suggest that the test statistic CM∗T for breaks should have a
similar distribution as for the correct specification but using only p1 degrees of freedom pertaining to
xt(1). However, this intuition is only true for static models (by static models, we mean models where the
long-run variance H∗ = AVar(T−1/2 ∑T

t=1 wt) is equal to the short-run variance Ω∗ = T−1 ∑T
t=1 wtw′t.

In such models, A = H∗1/2′ [ξ ⊗Q−1
(1)]
{
[ξ ′ ⊗Q−1

(1)]H
∗[ξ ⊗Q−1

(1)]
}−1

[ξ ′ ⊗Q−1
(1)]H

∗1/2 and it is therefore

a projection matrix of rank p1, acting as a matrix that selects only the first p1 elements of B∗
′

s (λ).17

It follows that B∗′s (λ) A B∗s (λ) = B
′
p1
(λ)Bp1(λ), therefore CM∗T ⇒ Gp1(λ), the same distribution as in

Theorem 2, but with p1 degrees of freedom instead of p.
Comment 4. If the model is dynamic in the sense that the long-run and short-run variances differ

(H∗ 6= Ω∗), then the distribution in Theorem 3 does not simplify, as the intuition outlined in Comment 3
no longer holds. For example, if xt(1)εt are autocorrelated, then xt(1)ut are autocorrelated, but the CM∗T
test does not correct for autocorrelation, yielding a more complicated distribution. Even if a HAC
correction would be employed, there is still the problem of dynamic misspecification: lags of xt(1)εt

might be correlated with lags of xt(1)xt(2), yielding H∗ 6= Ω∗ and therefore the more complicated
distribution in Theorem 3.

Comment 5. Theorem 3 shows that, in the general case of dynamic misspecification (with Q(12) 6=
0), the usual critical values from Theorem 2 no longer apply. Allowing for conditional heteroskedasticity,
Theorem 3 demonstrates that the size distortions of the CM test are dependent on several parameters

16 This was also mentioned in (Chong 2003), in the comments after their Theorem 3.
17 A formal proof of this statement can be found in (Hall et al. 2012, Supplemental Appendix, page 23.)



Econometrics 2018, 6, 27 11 of 39

of the data generating process, and that correcting for heteroskedasticity does not help in overcoming
this problem.

4. Simulation Results

4.1. Correct Specification and Various Misspecifications

The objective of the simulation analysis was to compare the size and power of unconditional
moments, UM/UV, break tests to their conditional moments, CM/CV, counterparts, under correct
regression model specification, and under static and dynamic misspecification. We evaluated the
size and power of the tests for alternative model specifications, sample sizes, as well as structural
break sources and sizes.18 We considered sample sizes T = 100, 200, 500, 1000 with a break in the
middle of the sample, T0 = [0.5T] and four data generating processes (DGPs). We also considered
alternative break points and our results are robust to T0 = [0.25T] and T0 = [0.75T]. For all simulations,
we used the critical values reported in (Andrews 2003). For DGPs with static errors, we calculated
CM∗T with V̂λ as described in (4). For a static DGP with i.i.d. errors, we calculated UM∗T without the
HAC adjustment, but with split sample variance estimators as for the CM∗T to make the comparison
fair. For the same purpose of fair comparison, for the DGP with static regressors and AR(1) errors,
both the UM∗T and the CM∗T tests employed the Newey–West HAC estimator over the full sample as
an estimator of the variances present in these test statistics.

The results are organized as follows: the sizes of all tests are reported in Tables and the
(size-adjusted) powers in Figures.19,20 Tables 1 and 2 and Figures 1–3 refer to mean tests, and Tables 3
and 4 and Figure 4 refer to variance tests. Tables 1 and 3 and Figures 1–4 are for correctly specified
models, while Tables 2 and 4 are for misspecified models.

We consider four DGPs, some of which we analyze under both correct specification and
misspecification. The first DGP is a simple AR(1) model with iid errors:

DGP1 : yt = αt + βtyt−1 + εt, εt ∼ iid N (0, 1), (t = 1, . . . , T).

All simulations were performed in Matlab for 10,000 replications21 and for the AR models we
used zero as the starting value and 100 burn-in observations. Under the null, αt = α = 1, and the
persistence ranges βt = β ∈ [0.1, 0.7]. Under the alternative, there is one break either in the intercept,
with αt = 1 + δα 1t>T0 , and δα ∈ (0, 2], or in the slope, with βt = 0.1 + δβ 1t>T0 , and δβ ∈ (0, 0.6].

For DGP1, we estimated only the correctly specified dynamic model. The size of the CM and
UM break tests (under the null) are reported in the top panel of Table 1. Using the 5% critical values,
we found that the UM test exhibits slightly better size for small sample sizes of T = 100 relative to
the CM test which yields size around 10%. For large sample sizes of T > 500, both tests approached
the nominal level, as expected. Under the alternative, we plot the size-adjusted power functions in
Figure 1. When the break occurs in the slope parameter, the UM and CM tests have similar power as

18 The unconditional mean and variance sup Wald tests require a long-run variance estimator. We report the Newey and
West (1994) HAC estimator with the data dependent bandwidth therein and the Bartlett kernel, as explained in detail in
Section 2. The Andrews (1991) fixed bandwidth HAC estimator leads to slightly worse performance across all tests and
designs; results are available upon request from the authors.

19 For a static DGP with i.i.d. errors (DGP3, detailed below), we report the power of the tests based on asymptotic critical
values rather than size-adjusted powers, because the size distortions are minor.

20 The size-adjusted powers are computed as follows: for a DGP under the alternative of one break, we take the parameter
values after the break, and use these parameter values for generating the DGP under the null, which will have the same
sample size as the DGP under the alternative. We simulate this null DGP and take the 95% quantile of the empirical
distribution of a test statistic as the empirical critical value to be used. We then simulate the corresponding DGP under the
alternative, and calculate the empirical rejection frequency using the corresponding empirical critical values. Note that,
by construction, all size-adjusted power plots start at 5%, which is the corresponding empirical rejection frequency for a
DGP under the null of no break using its simulated empirical 95% critical values.

21 Only for the static model in DGP3, we used 2000 simulations because they were sufficient to get accurate Monte Carlo results.
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the sample size grows. The CM test performs only mildly better for moderate changes in the AR slope
parameter (with maximum relative gains in power of 10% for T = 100). On the other hand, when the
break is in the intercept, the UM test has better power in small sample sizes (of T = 100, 200), with up
to 20% gains vis-a-vis the CM test.22

The second DGP is an AR(4) model with iid errors:

DGP2 : yt = αt + β′tvec(yt−1, . . . , yt−4) + εt, εt ∼ iid N (0, 1), (t = 1, . . . , T).

We set β′t = (βt,1, 0.2, 0.15, 0.075) to represent the memory decaying pattern encountered in many
time series in economics. Under the null, we set αt = α = 1 and vary βt,1 = β ∈ [0.1, 0.3].

We analyze the impact of dynamic misspecification: the true DGP is an AR(4) model, but we
estimate an AR(1) model or an AR(2) model instead.23

The top two panels of Table 2 show that underestimating the number of lags causes severe size
distortions of the CM test, of up to 60% even for small levels of forgone persistence. This effect does not
die out even for large sample sizes of T = 1000. In contrast, the UM test is not so severely oversized,
especially for large samples; the size distortions reach a maximum of 13% for large samples of T = 1000.
Our simulation results indicate that, although the HAC estimator that corrects for dynamics in error
term of the UM test may be less reliable in small samples, it results in much smaller size distortions
than if we instead used a CM test for a misspecified model. In Section 4.2, we provide further evidence
for this using DGP2; we consider information criteria to select the number of lags and show the
performance of the CM test for various lag lengths.

The third DGP is a static model with iid errors:

DGP3 : yt = αt + βtXt + εt, εt ∼ iid N (0, 1), Xt ∼ iid N (1, 1), Xt ⊥ εs, (t, s = 1, . . . T).

Under the null, we set αt = α = 1 and vary βt = β ∈ [0.1, 0.9]. Under the alternative, there is
one break either in the intercept, where αt = 1 + δα 1t>T0 , and δα ∈ (0, 2], or in the slope, where βt =

0.1 + δβ 1t>T0 , and δβ ∈ (0, 0.8].
For DGP3, we analyzed both correctly specified and misspecified models. As expected, if we

estimated the correctly specified static model in DGP3, the size of both the CM and UM break tests is
close to the nominal size, as shown by the second panel in Table 1. The corresponding power curves in
Figure 2 are again similar for the two tests, especially as T increases.

However, if instead we estimated an AR(1) model, the results in the third panel of Table 2
show that the UM test is undersized for small sample sizes and that its size improves for T > 500.
In contrast, the CM test is oversized for small samples. For smaller samples, misspecifying the
regressors compromises the power of the CM test which can be up to around 20% smaller than that of
the UM test when T = 100.

The fourth DGP is a static model with AR(1) errors:

DGP4 : yt = αt + βtXt + εt, εt = 0.6εt−1 + νt, νt ∼ iid N (0, 1), (t = 1, . . . , T).

For comparison purposes, in DGP4, the Xt and the null and alternatives are generated in the same
way as in DGP3. For DGP4, we analyzed both correctly specified and misspecified models. Under
correct specification, the last panel of Table 1 shows that the UM test is correctly sized for all sample
sizes, whereas the CM test is oversized even for large sample sizes. The size of the CM tests can reach
up to 10% even when T = 1000 (and the nominal size is 5%).

22 Note that, for DGP1, the unconditional mean of yt is equal to αt/(1− βt). If αt/(1− βt) is close to zero regardless of t,
the UM test will, by design, have little power for a break in the slope βt. Therefore, if a slope break is the only break of
interest, it should be tested directly via the CM test for partial structural change in slopes.

23 Note that we do not plot size-adjusted powers for this DGP, and we only do so in general for correctly specified models.
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Furthermore, we consider a nonlinear misspecification by estimating the model with X2
t instead

of Xt, similar to (Chong 2003). The nonlinear misspecification yields oversized CM tests across all
sample sizes. The last panel of Table 2 shows that, even for T = 1000, the traditional CM test yields
size of around 13%.

We now turn to examine the size and power of tests for breaks in the variance of the residuals
of the regression models by comparing the UV and CV tests.24 We considered the same DGPs as
before, but we set αt = 1, βt = 0.5. For DGP1–3, we let εt ∼ iid N (0, σt), and, for DGP4, we let
νt ∼ iid N (0, σt). Under the null hypotheses, we fixed σt = σ ∈ [1, 2.6]. Under the alternative, we set
σt = 1 + δσ1[t > T0], and let δσ ∈ (0, 1.6]. As before, we estimated both correctly specified and
misspecified models.

When the estimated model is correctly specified, as considered in DGP1 and DGP4, the size
of both CV and UV tests are close to the nominal size for T > 200, as shown in Table 3. However,
the powers of these two tests differ. Figure 4 shows that, for DGP1, the CV test has better power for
small sample sizes across all break sizes, including small breaks, as T increases. For DGP4, Figure 4
shows that the power curves of the CV tests and UV tests are the same.

If instead, a misspecified model is estimated for DGP1–DGP4, the CV test appears to enjoy good
size properties, as shown in Table 4. The exception is the oversizing reported in the top panel of
Table 4, which is due to underestimating the lag order; in this case the size does not improve as the
sample increases. Our analysis shows that misspecifying the dynamics of the conditional mean of the
regression model yields an oversized CV test.

Summarizing, the simulation results show that under correct model specification, the UM/UV and
CM/CV have similar size and power. In contrast, under static nonlinear and dynamic misspecifications,
the CM/CV tests are severely oversized, having both finite and large sample distortions. While the
UM/UV tests may also occasionally exhibit mild size distortions, they feature similar power properties
as the CM/CV tests, especially in larger samples. Therefore, the UM/UV tests can be a valuable tool
for detecting breaks, because, in applied work, misspecification is likely to occur and bias the CM/CV
break test results.25

24 The results are very similar for the UA and CA tests and they are available upon request.
25 Other types of model misspecifications may also affect the size and power of the (CM and CV) structural break tests.

Analyzing them is beyond the scope of this paper, but further results regarding these misspecifications can be found in
(Chong 2003; Pitarakis 2004), among others.
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Table 1. Size of the UM/CM tests in correctly specified models.

DGP Trim
Model U M∗

T CM∗
T

α β T = 100 200 500 1000 100 200 500 1000

DGP1—AR(1) model, iid errors 15% 1

0.1 0.034 0.040 0.047 0.052 0.067 0.056 0.050 0.050
0.2 0.039 0.047 0.054 0.056 0.078 0.060 0.050 0.051
0.3 0.040 0.048 0.053 0.057 0.082 0.063 0.056 0.052
0.4 0.044 0.055 0.056 0.056 0.091 0.064 0.058 0.048
0.5 0.052 0.052 0.062 0.060 0.107 0.068 0.063 0.050
0.6 0.061 0.058 0.070 0.065 0.120 0.079 0.055 0.058
0.7 0.082 0.072 0.075 0.069 0.141 0.092 0.062 0.058

DGP3—static model, iid errors 15% 1

0.1 0.067 0.052 0.060 0.050 0.075 0.063 0.059 0.041
0.2 0.073 0.053 0.049 0.043 0.086 0.052 0.054 0.047
0.3 0.067 0.056 0.054 0.052 0.083 0.062 0.049 0.049
0.4 0.084 0.055 0.049 0.052 0.091 0.058 0.042 0.052
0.5 0.061 0.053 0.058 0.051 0.070 0.056 0.061 0.051
0.6 0.058 0.058 0.046 0.054 0.080 0.056 0.044 0.052
0.7 0.073 0.056 0.056 0.055 0.081 0.059 0.054 0.048
0.8 0.063 0.060 0.047 0.048 0.079 0.059 0.051 0.048
0.9 0.069 0.062 0.055 0.050 0.092 0.065 0.050 0.052

DGP 4—static model, AR(1) errors 15% 1

0.1 0.063 0.055 0.067 0.064 0.115 0.107 0.090 0.098
0.3 0.065 0.061 0.066 0.062 0.113 0.111 0.090 0.100
0.5 0.063 0.060 0.063 0.059 0.122 0.109 0.091 0.106
0.7 0.060 0.061 0.070 0.060 0.111 0.113 0.104 0.109
0.9 0.064 0.061 0.065 0.065 0.109 0.106 0.086 0.099
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Table 2. Size of the UM/CM tests in misspecified models.

DGP Estimated Model Trim
Model U M∗

T CM∗
T

α β T = 100 200 500 1000 100 200 500 1000

DGP2—AR(4), iid errors AR(1) 15% 1
0.1 0.157 0.114 0.114 0.088 0.427 0.463 0.486 0.508
0.2 0.191 0.131 0.132 0.102 0.493 0.509 0.531 0.560
0.3 0.231 0.171 0.174 0.130 0.554 0.579 0.606 0.616

DGP2—AR(4), iid errors AR(2) 15% 1
0.1 0.157 0.113 0.114 0.088 0.419 0.371 0.336 0.332
0.2 0.190 0.131 0.131 0.103 0.455 0.378 0.344 0.336
0.3 0.230 0.170 0.173 0.129 0.496 0.421 0.374 0.358

DGP3—static model, iid errors AR(1) 15% 1

0.1 0.067 0.052 0.060 0.050 0.067 0.054 0.053 0.046
0.2 0.073 0.053 0.049 0.043 0.067 0.054 0.047 0.049
0.3 0.067 0.056 0.054 0.052 0.070 0.056 0.048 0.056
0.4 0.084 0.055 0.049 0.052 0.070 0.053 0.048 0.052
0.5 0.061 0.053 0.058 0.051 0.065 0.055 0.051 0.051
0.6 0.058 0.058 0.046 0.054 0.074 0.053 0.049 0.051
0.7 0.073 0.056 0.056 0.055 0.067 0.055 0.049 0.048
0.8 0.063 0.060 0.047 0.048 0.073 0.054 0.050 0.051
0.9 0.069 0.062 0.055 0.050 0.065 0.053 0.053 0.052

DGP4—static model, AR(1) errors X2
t instead of Xt 15% 1

0.1 0.063 0.055 0.067 0.064 0.207 0.165 0.111 0.121
0.3 0.065 0.061 0.066 0.062 0.204 0.158 0.120 0.125
0.5 0.063 0.060 0.063 0.059 0.211 0.162 0.121 0.131
0.7 0.060 0.061 0.070 0.060 0.209 0.160 0.127 0.128
0.9 0.064 0.061 0.065 0.065 0.216 0.173 0.137 0.143
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Table 3. Size of the UV/CV break tests in correctly specified models.

DGP Trim
Model UV∗

T CV∗
T

α σ T = 100 200 500 1000 100 200 500 1000

DGP1—AR(1) model, iid errors 15% 1

1 0.042 0.052 0.051 0.059 0.0753 0.0570 0.050 0.048
1.2 0.042 0.047 0.051 0.050 0.0730 0.0533 0.050 0.048
1.4 0.039 0.046 0.050 0.056 0.0754 0.0584 0.050 0.052
1.6 0.040 0.043 0.052 0.054 0.0745 0.0517 0.053 0.047
1.8 0.040 0.045 0.052 0.055 0.0735 0.0543 0.053 0.051
2.0 0.040 0.047 0.052 0.054 0.0775 0.0572 0.053 0.052
2.2 0.041 0.044 0.054 0.057 0.0768 0.0592 0.050 0.051
2.4 0.043 0.049 0.054 0.055 0.0774 0.0595 0.051 0.048
2.6 0.043 0.047 0.052 0.052 0.0738 0.0581 0.049 0.048

DGP4—static model, AR(1) errors 15% 1

1 0.041 0.051 0.052 0.057 0.076 0.067 0.059 0.060
1.2 0.041 0.049 0.053 0.055 0.075 0.067 0.060 0.058
1.4 0.042 0.048 0.053 0.058 0.076 0.066 0.060 0.060
1.6 0.039 0.047 0.056 0.054 0.071 0.064 0.063 0.056
1.8 0.041 0.048 0.056 0.053 0.077 0.066 0.063 0.057
2.0 0.043 0.048 0.055 0.057 0.076 0.062 0.063 0.061
2.2 0.039 0.049 0.058 0.052 0.073 0.064 0.063 0.056
2.4 0.042 0.053 0.056 0.054 0.075 0.072 0.061 0.057
2.6 0.045 0.048 0.053 0.057 0.072 0.061 0.058 0.060
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Table 4. Size of the CV/UV tests in misspecified models.

DGP Estimated Model Trim
Model UV∗

T CV∗
T

α σ T = 100 200 500 1000 100 200 500 1000

DGP2—AR(4) model, iid errors AR(1) 15% 1

1 0.057 0.064 0.075 0.063 0.110 0.107 0.124 0.121
1.2 0.061 0.063 0.072 0.065 0.112 0.102 0.118 0.129
1.4 0.059 0.068 0.072 0.065 0.116 0.112 0.119 0.129
1.6 0.062 0.061 0.072 0.063 0.116 0.100 0.118 0.125
1.8 0.055 0.056 0.073 0.067 0.113 0.104 0.120 0.125
2 0.057 0.064 0.068 0.062 0.119 0.106 0.115 0.123

2.2 0.060 0.063 0.077 0.064 0.118 0.099 0.119 0.122
2.4 0.057 0.063 0.075 0.067 0.108 0.108 0.121 0.125
2.6 0.062 0.065 0.074 0.065 0.111 0.113 0.116 0.125

DGP1—AR(1) model, iid errors AR(4) 15% 1

1 0.042 0.052 0.051 0.059 0.075 0.054 0.047 0.047
1.2 0.042 0.047 0.051 0.050 0.075 0.052 0.048 0.046
1.4 0.039 0.046 0.050 0.056 0.070 0.054 0.049 0.050
1.6 0.040 0.043 0.052 0.054 0.079 0.052 0.049 0.046
1.8 0.040 0.045 0.052 0.055 0.076 0.051 0.049 0.050
2 0.040 0.047 0.052 0.054 0.075 0.056 0.050 0.050

2.2 0.041 0.044 0.054 0.057 0.073 0.051 0.047 0.049
2.4 0.043 0.049 0.054 0.055 0.074 0.053 0.048 0.046
2.6 0.043 0.047 0.052 0.052 0.076 0.055 0.047 0.046

DGP3—static model, iid errors AR(1) 15% 1

1 0.030 0.033 0.041 0.047 0.077 0.057 0.051 0.051
1.2 0.030 0.032 0.040 0.048 0.076 0.058 0.048 0.053
1.4 0.029 0.032 0.043 0.047 0.075 0.055 0.055 0.051
1.6 0.028 0.032 0.041 0.044 0.072 0.054 0.049 0.050
1.8 0.028 0.033 0.039 0.049 0.071 0.054 0.047 0.053
2 0.029 0.037 0.040 0.048 0.074 0.061 0.049 0.054

2.2 0.029 0.033 0.040 0.043 0.080 0.057 0.049 0.045
2.4 0.026 0.036 0.039 0.044 0.069 0.058 0.048 0.049
2.6 0.029 0.032 0.045 0.045 0.074 0.055 0.056 0.050

DGP4—static model, AR(1) errors X2
t instead of Xt 15% 1

1 0.041 0.051 0.052 0.057 0.075 0.064 0.059 0.058
1.2 0.041 0.049 0.053 0.055 0.074 0.063 0.058 0.055
1.4 0.042 0.048 0.053 0.058 0.073 0.064 0.058 0.058
1.6 0.039 0.047 0.056 0.054 0.071 0.063 0.063 0.057
1.8 0.041 0.048 0.056 0.053 0.070 0.064 0.060 0.059
2 0.043 0.048 0.055 0.057 0.076 0.065 0.058 0.059

2.2 0.039 0.049 0.058 0.052 0.069 0.064 0.063 0.054
2.4 0.042 0.053 0.056 0.054 0.075 0.067 0.060 0.052
2.6 0.045 0.048 0.053 0.057 0.075 0.060 0.057 0.058
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Figure 1. DGP1: Size-adjusted power for a correctly specified AR(1) model with iid errors. Note:
Wald is the CM test, and WaldU is the UM test.
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Figure 2. DGP3: Power for a correctly specified static model with iid errors. Note: Wald is the CM test,
and WaldU is the UM test.
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Figure 3. DGP4: Size-adjusted power for a correctly specified static model with AR(1) errors. Note:
Wald is the CM test, and WaldU is the UM test.
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Figure 4. DGP1 (left); and DGP4 (right) with size-adjusted power for a correctly specified model:
with an AR(1) lag and iid errors (left); or with static regressors and AR(1) errors (right). Note: Wald is
the CV test, and WaldU is the UV test.
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4.2. Dynamic Misspecification

In this section, we further analyze DGP2, given by the AR(4) model below, with i.i.d. N (0, 1)
errors, and 400 burn-in observations:

yt = 1 + βyt−1 + γ1yt−2 + γ2yt−3 + γ3yt−4 + εt.

We consider two variants of this model: DGP2-A and DGP2-B. DGP2-A is a typical DGP
encountered in applied work, where the coefficients on the higher order lags are smaller than those
of the first and second lag (β ∈ {0.1, 0.2, 0.3}, γ1 = 0.2, γ2 = 0.15, γ3 = 0.075). Note that the three
empirical applications in Section 5 show similar patterns of smaller coefficients on higher order lags.
The second DGP, DGP2-B, is less realistic, allowing for the coefficient on the fourth lag to be larger than
that on the other lags (β = 0.1, γ1 = 0, γ2 = 0, γ3 ∈ {0.175, 0.275, 0.375}). Such DGP is plausible if the
seasonality at lag four was not yet removed from the data, and it is encountered less in macroeconomic
datasets, because they are typically seasonally adjusted. Nevertheless, we include it for completeness.

In most empirical applications, the number of lags are selected with AIC and BIC. Hence,
we begin by showing the empirical distribution of the number of lags selected by AIC and BIC
in 10,000 simulations for both DGP2-A and DGP2-B. Figures 5–7 show that, for DGP2-A, both the AIC
and BIC tend to incorrectly select the number of lags even for sample sizes of T = 1000. In particular,
the BIC tends to underestimate the number of lags about 60% of the time. What is perhaps more
surprising is the even the AIC underestimates the number of lags about 20% of the times in large
samples. This result implies that both the AIC and BIC are not reliable for typical datasets where the
higher order lags enter with smaller coefficients; unfortunately, those are the same datasets typically
encountered in applications, for which the problem of dynamic misspecification of the conditional
mean seems unavoidable.

For completeness, we also show the empirical distribution of the number of lags estimated by AIC
and BIC for DGP2-B, for which the fourth coefficient is larger than all the three others. Figures 8–10
show that in this case, BIC selects the true number of lags with probability approaching one as the
sample size gets large. However, notice that, when β = 0.1 and γ3 = 0.175, it still selects only one
lag about 10% of the time for large sample sizes T = 1000. This implies that γ3 has to be quite large,
reminiscent of models with uncorrected seasonalities, for a correct selection of the number of lags.
We also notice that AIC tends to select the true number of lags or a larger number, but only as the
sample size rises to T = 500.

From these figures, we conclude that AIC and BIC can both incorrectly choose the number of
lags, leading to dynamic misspecification in the conditional mean of the CM tests. In Tables 5 and 6,
we show for DGP2-A and DGP2-B the empirical sizes of both the UM and CM tests for a nominal size
of 5% and 10, 000 simulations. For the CM test, we impose different lags, from k = 0 to k = 8.

For DGP2-A presented in Table 5, we notice severe size distortions when underspecifying the
number of lags, with the sizes of the CM test up to 61.4% for one lag and 21.7% for two lags and
T = 1000. When the number of lags is overspecified, the size distortions of the CM tests remain severe
for T = 100, with sizes going up to 69.9%, although they do decrease towards the nominal level as the
sample size increases. The size distortions in the UM test are less severe for small sample sizes like
T = 100, and can reach up to 22.1%, due to the HAC correction this test employs. As the sample size
increases, the size of the UM test improves to around 10% for T = 1000.

For DGP2-B in Table 6, we notice the same patterns. Given these results and Figures 8–10,
we conclude that, even for seasonally unadjusted models such as DGP2-B, performing the CM test
with the number of lags selected by BIC is only reliable if the sample sizes are large; otherwise, the UM
test would be a good alternative.
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Figure 5. Empirical distribution of the number of lags selected by AIC and BIC. DGP2: AR(4) model:
yt = 1 + 0.1 yt−1 + 0.2 yt−2 + 0.15 yt−3 + 0.075 yt−4 + εt.

Figure 6. Empirical distribution of the number of lags selected by AIC and BIC. DGP2: AR(4) model:
yt = 1 + 0.2 yt−1 + 0.2 yt−2 + 0.15 yt−3 + 0.075 yt−4 + εt.
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Figure 7. Empirical distribution of the number of lags selected by AIC and BIC. DGP2: AR(4) model:
yt = 1 + 0.3 yt−1 + 0.2 yt−2 + 0.15 yt−3 + 0.075 yt−4 + εt.

Figure 8. Empirical distribution of the number of lags selected by AIC and BIC. DGP2: AR(4) model:
yt = 1 + 0.1 yt−1 + 0.175 yt−4 + εt.
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Figure 9. Empirical distribution of the number of lags selected by AIC and BIC. DGP2: AR(4) model:
yt = 1 + 0.1 yt−1 + 0.275 yt−4 + εt.

Figure 10. Empirical distribution of the number of lags selected by AIC and BIC. DGP2: AR(4) model:
yt = 1 + 0.1 yt−1 + 0.375 yt−4 + εt.
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Table 5. Size of the UM/CM tests in possibly misspecified models.

DGP 2: AR(4) Model: yt = 1 + β yt−1 + 0.2 yt−2 + 0.15 yt−3 + 0.075 yt−4 + εt

k 0 1 2 3 4 5 6 7 8

U M∗
T CM∗

T

T = 100
β = 0.1 0.153 0.563 0.468 0.309 0.246 0.292 0.346 0.447 0.536 0.661
β = 0.2 0.178 0.714 0.515 0.332 0.271 0.323 0.377 0.465 0.558 0.676
β = 0.3 0.221 0.849 0.577 0.373 0.300 0.354 0.407 0.500 0.592 0.699

T = 200
β = 0.1 0.110 0.612 0.464 0.243 0.151 0.140 0.154 0.169 0.184 0.215
β = 0.2 0.134 0.774 0.527 0.265 0.168 0.149 0.160 0.180 0.200 0.230
β = 0.3 0.170 0.893 0.585 0.292 0.182 0.165 0.178 0.198 0.217 0.245

T = 500
β = 0.1 0.121 0.660 0.492 0.210 0.109 0.082 0.083 0.088 0.092 0.095
β = 0.2 0.131 0.813 0.545 0.214 0.105 0.077 0.076 0.082 0.085 0.087
β = 0.3 0.170 0.924 0.606 0.243 0.119 0.086 0.086 0.094 0.095 0.101

T = 1000
β = 0.1 0.087 0.682 0.501 0.190 0.097 0.064 0.061 0.067 0.067 0.066
β = 0.2 0.099 0.838 0.569 0.203 0.097 0.065 0.065 0.069 0.069 0.070
β = 0.3 0.119 0.944 0.614 0.217 0.096 0.066 0.063 0.064 0.065 0.065

Note: k is the number of lags imposed in the model when performing the CM∗T test.

Table 6. Size of the UM/CM tests in possibly misspecified models.

DGP 2: AR(4) Model: yt = 1 + 0.1 yt−1 + γ3 yt−4 + εt

k 0 1 2 3 4 5 6 7 8

U M∗
T CM∗

T

T = 100
γ3 = 0.175 0.084 0.233 0.157 0.235 0.275 0.254 0.306 0.399 0.498 0.624
γ3 = 0.275 0.143 0.315 0.219 0.335 0.383 0.272 0.327 0.421 0.513 0.637
γ3 = 0.375 0.214 0.405 0.305 0.454 0.516 0.295 0.355 0.455 0.542 0.656

T = 200
γ3 = 0.175 0.106 0.239 0.139 0.191 0.203 0.122 0.127 0.152 0.164 0.191
γ3 = 0.275 0.168 0.342 0.221 0.315 0.327 0.128 0.137 0.163 0.183 0.208
γ3 = 0.375 0.242 0.455 0.326 0.453 0.479 0.138 0.148 0.172 0.194 0.226

T = 500
γ3 = 0.175 0.138 0.262 0.149 0.193 0.187 0.076 0.081 0.088 0.091 0.096
γ3 = 0.275 0.191 0.365 0.221 0.300 0.293 0.071 0.072 0.075 0.079 0.084
γ3 = 0.375 0.279 0.509 0.351 0.469 0.467 0.077 0.078 0.086 0.084 0.091

T = 1000
γ3 = 0.175 0.072 0.266 0.138 0.171 0.164 0.060 0.063 0.062 0.062 0.062
γ3 = 0.275 0.077 0.385 0.224 0.312 0.303 0.063 0.062 0.063 0.065 0.069
γ3 = 0.375 0.092 0.539 0.357 0.475 0.460 0.063 0.063 0.063 0.066 0.068

Note: k is the number of lags imposed in the model when performing the CM∗T test.

Overall, the simulation results show that, under both static and dynamic misspecifications and
for data generating processes typically encountered in applications, the CM/CV tests are severely
oversized even in large samples, while the UM/UV tests occasionally exhibit size distortions that are
relatively mild. Especially because the size distortions due to dynamic misspecification cannot be
fixed by choosing the number of lags with information criteria, while imposing too many lags also
leads to size distortions in small samples as we showed above, the UM/UV tests can be a valuable
complementary alternative to the CM/UM tests.

5. Empirical Illustrations

This section illustrates the use of UM/UV in conjunction with CM/CV breaks tests for three
macroeconomic series: the US civilian unemployment rate, the industrial production growth and the
short term real interest rates. These variables were also examined for breaks in the conditional mean
and volatility by Stock and Watson (2002) and Sensier and van Dijk (2004), among others, at quarterly
frequency. We employed the analysis on a monthly sample during January 1960–October 2014 with
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T = 658 to benefit from larger samples (except for the interest rates for which data are available
only from April 1960, therefore we used the sample April 1960–October 2014). Our data source is
the FRED database at the Federal Reserve Bank of St. Louis. The unemployment rate is the civilian
unemployment rate, and the real interest rates are computed as the annualized nominal three-month
Treasury Bill minus the three-month CPI inflation rate over the sample period.

The unemployment rate and the real interest rates are analyzed in levels for two reasons:
(1) because both series are measured in rates so they are bounded over the sample period;
and (2) because first differencing removes most of the variation in these two series. The industrial
production series is typically treated as a unit root process with a possible trend; therefore, as in
(Stock and Watson 2002), we analyze the first differences of the logs of the series. Note that the unit
root tests give mixed results, but they are also unreliable even if there were no breaks in these series,
because the lag length selection may fail as shown in the simulation section. We therefore show the
ACF and PACF plots for these series in Figures 11–13. The ACF of the unemployment rate is dying out
reasonably fast for a monthly series, so if we believe that the mean of this series does not have breaks,
as argued in Section 5.1, then indeed this series should be treated as stationary. The ACF for the interest
rates is dying out much slower. However, if we believe that there are mean breaks in the interest
rates, as argued in Section 5.2, then this plot is unreliable, and the interest rates should be treated as
piece-wise stationary with breaks. The ACF is very persistent for the industrial production series,
and if we believe that this series has no mean breaks, as argued in Section 5.3, then it is non-stationary
in the sense of having a unit root and/or a trend, and it therefore needs to be first differenced. We refer
to the first differences in the log of the industrial production series as the industrial production growth
in the rest of the paper.

Figure 11. ACF and PACF for the unemployment rate.
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Figure 12. ACF and PACF for the industrial production.

Figure 13. ACF and PACF for the interest rates.

We apply the UM/CM with 5% and 10% trimming to allow detection of potential breaks due to
the recent economic crisis. However, the 5% trimming turns out to be problematic in many cases, as we
argue in Sections 5.1–5.3. Therefore, we report the UV/CV tests only at the 10% level. For all tests,
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we use the critical values in (Andrews 2003).26 For all series, the CM and CV tests are employed for an
AR(p) model with an intercept, where p ∈ {1, 4, 12} as these are typical choices in the literature, or p is
selected by AIC and by BIC. When using the AIC and BIC in Tables 7–13, we impose a maximum of
12 lags because this is the typical maximum choice in applied work for monthly data. If we increase
the maximum to 30 lags, then only the AIC selects more lags for some series, and this is discussed
explicitly below for the series for which this occurs.

We also report for all series a distributed lag model with an intercept and p lags—DL(p)— of each
of two monthly factors: a macro factor, extracted from the mean of a large cross-section of economic
and financial US series, and a macro uncertainty factor. The number of lags is selected with AIC
and BIC. The two factors are taken from (Jurado et al. 2014) and their use is further motivated in
(Benigno et al. 2015), inter alia. Note that, as shown in Table 8, the macro factor may have a variance
break in July 2008. Since the CM tests are not robust to changes in the variance of regressors, as shown
in (Hansen 2000), we employ a simple correction to these CM tests in Tables 7, 10 and 12, by interacting
the lags of the macro factor with the break in variance in July 2008, as recommended in (Pitarakis 2004).
Similarly, all variance tests in Tables 9, 11 and 13 are not valid if a mean break was detected in the
unconditional or conditional mean of that particular model used. Therefore, we follow (Pitarakis 2004)
and correct the UV/CV tests for a potential break as follows. If for a particular model, a mean break
is detected by the UM or the CM test, then the implicit break is imposed in the unconditional or
conditional mean of the model (in the conditional mean, all regressors and the intercept are interacted
with this break). From this model, the residuals are calculated, and the CV test is testing for a mean
break in the squared residuals of the corresponding model.

Table 7. Structural breaks in the mean of the unemployment rate.

Moments/Models Trimming Statistic Value Critical Value Break Fraction Break Date

Unconditional Mean sup Wald tests:

E(yt)
10% 9.585 * 9.11 0.892 Oct-08
5% 9.585 9.71 0.892 -

Conditional Mean sup Wald tests:

AR(1) 10% 11.408 12.17 0.419 -
5% 15.494 * 12.80 0.929 Nov-10

AR(4) 10% 14.736 18.86 0.139 -
5% 38.485 * 19.57 0.911 Dec-09

AR(5)—BIC 10% 18.205 20.81 0.121 -
5% 36.777 * 21.53 0.928 Nov-10

AR(6)—AIC 10% 25.214 * 22.62 0.880 Apr-08
5% 31.279 * 23.41 0.928 Nov-10

AR(12) 10% 30.343 32.76 0.879 -
5% 56.090 * 33.63 0.949 Jan-12

DL(1) with macro factors—BIC 10% 13.935 16.91 0.451 -
5% 18.612 * 17.54 0.949 Mar-09

DL(7) with macro factors—AIC 10% 19.665 37.43 0.619 -
5% 25.653 38.35 0.934 -

DL(12) with uncertainty factors—AIC/BIC 10% 150.259 * 32.76 0.173 Mar-70
5% 1826 * 33.63 0.941 Jan-09

Note: (a) Superscript * means that the test rejects the null of no breaks at the 5% level; (b) DL(p) refers to a
distributed lag model with p lags of a given factor; and (c) the tests with the macro factors are corrected for a
potential break in variance as explained in Section 5.

26 For one test in Table 10, the critical values are not available because this test entails 26 parameters, while critical values
are available, to our knowledge, only for maximum 20 parameters. However, from (Andrews 2003), it is evident that the
critical values are strictly increasing in the number of parameters, so it is reasonable to assume that the critical values for
26 parameters should be above the critical values for 20 parameters.
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Table 8. Structural breaks in the regressors.

Moments Test Trimming Statistic Value Critical Value Break Fraction Break Date

Macro Factor

E(yt) UM∗T
10% 2.646 9.11 0.281 -
5% 2.646 9.71 0.281 -

Macro Uncertainty Factor

E(yt) UM∗T
10% 5.214 9.11 0.898 -
5% 6.295 9.71 0.921 -

Macro Factor

Var(yt) UV∗T
10% 4.277 9.11 0.898 -
5% 10.181 * 9.71 0.935 Jul-08

Macro Uncertainty Factor

Var(yt) UV∗T
10% 4.969 9.11 0.898 -
5% 8.317 9.71 0.928 -

Note: The variance tests are corrected for a mean break, if needed, as in (Pitarakis 2004).

Table 9. Structural breaks in the variance of the unemployment rate.

Moments/Models Statistic Value Critical Value Break Fraction Break Date

Unconditional Variance sup Wald tests:

Var(yt) 5.011 9.11 0.447 -

Conditional Variance sup Wald tests:

AR(1) 15.278 * 9.11 0.476 Feb-86
AR(4) 11.948 * 9.11 0.471 Feb-86

AR(5)—BIC 13.024 * 9.11 0.469 Feb-86
AR(6)—AIC 17.660 * 9.11 0.468 Feb-86

AR(12) 14.753 * 9.11 0.457 Feb-86
DL(1) with macro factors—BIC 15.098 * 9.11 0.275 May-74
DL(7) with macro factors—AIC 15.044 * 9.11 0.259 Apr-74

DL(12) with uncertainty factors—AIC/BIC 6.375 9.11 0.415 -

Note: (a) A 10% trimming is used for all tests. Superscript * means that the test rejects the null of no breaks at
the 5% level; and (b) the variance tests are corrected for a mean break as explained in Section 5.

It is worth noting that the unconditional mean over the full-sample of our three macroeconomic
series is significantly different from zero at the 1% level27, which implies that it is non-zero at least for
some subsamples of the data, and we therefore expect the UM test to have power against structural
change for at least. In addition, for all three series, the full sample coefficient estimates on higher
order lags in AR(p) models are typically larger than the coefficients on the first two lags, so, from the
simulation evidence in Section 4.2, we expect the conditional mean to be misspecified when choosing
the number of lags with AIC or BIC.

27 The means are: 6.11 for the unemployment rate, 17.73 for the interest rate, and 0.002 for the industrial production growth.
For the power of the UM test, the means themselves are not important as long as they are non-zero, and as long as the
t-statistics for these means (also known as signal-noise ratios) reject the null hypothesis of a zero mean.
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Table 10. Structural breaks in the mean of the industrial production growth.

Moments/Models Trimming Statistic Value Critical Value Break Fraction Break Date

Unconditional Mean sup Wald tests:

E(yt)
10% 3.191 9.11 0.252 -
5% 3.191 9.71 0.252 -

Conditional Mean sup Wald tests:

AR(1) 10% 13.949 * 12.17 0.401 Jan-82
5% 28.948 * 12.80 0.933 Feb-11

AR(3)—BIC 10% 19.147 * 16.91 0.399 Jan-82
5% 22.813 * 17.54 0.922 Jul-10

AR(4) 10% 25.432 * 18.86 0.398 Jan-82
5% 25.432 * 19.57 0.398 Jan-82

AR(5)—AIC 10% 28.486 * 20.81 0.397 Jan-82
5% 28.486 * 21.53 0.397 Jan-82

AR(12) 10% 35.846 * 32.76 0.392 Feb-82
5% 37.517 * 33.63 0.924 Sep-10

DL(12) with macro factors—AIC/BIC 10% 32.600 >43.47 0.102 -
5% 36.215 >44.46 0.060 -

DL(1) with uncertainty factors—BIC 10% 11.632 12.17 0.539 -
5% 26.729 * 12.80 0.948 May-09

DL(5) with uncertainty factors—AIC 10% 17.761 20.81 0.254 -
5% 20.115 21.53 0.935 -

Note: (a) Superscript * means that the test rejects the null of no breaks at the 5% level; (b) DL(p) refers to a
distributed lag model with p lags of a given factor; and (c) the test with the macro factors are corrected for a
potential break in variance as explained in Section 5. In addition, note that, for the CM test for the DL(12)
model with macro factors, there are 12 regressors and the intercept plus the same regressors interacted with
the potential break in variance, adding up to 26 parameters. Critical values for more than 20 parameters are
not available to our knowledge. However, the critical values in (Andrews 1993) strictly increase with the
number of parameters, so it is plausible that the critical values with 26 parameters are strictly larger than the
critical values for 20 parameters.

Table 11. Structural breaks in the variance of the industrial production growth.

Moments/Models Statistic Value Critical Value Break Fraction Break Date

Unconditional Variance sup Wald tests:
Var(yt) 5.535 9.11 0.437 -

Conditional Variance sup Wald tests:
AR(1) 10.164 * 9.11 0.437 Jan-84

AR(3)—BIC 12.535 * 9.11 0.433 Jan-84
AR(4) 13.302 * 9.11 0.413 Jan-83

AR(5)—AIC 12.168 * 9.11 0.411 Jan-83
AR(12) 10.495 * 9.11 0.398 Jan-83

DL(12) with macro factors—AIC/BIC 8.267 9.11 0.442 -
DL(1) with uncertainty factors—BIC 13.318 * 9.11 0.455 Jan-84
DL(5) with uncertainty factors—AIC 10.938 * 9.11 0.448 Jan-84

Note: (a) A 10% trimming is used for all tests. Superscript * means that the test rejects the null of no breaks at
the 5% level, (b) The variance tests are corrected for a mean break, as explained in Section 5.
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Table 12. Structural breaks in the mean of real interest rates.

Moments/Models Trimming Statistic Value Critical Value Break Fraction Break Date

Unconditional Mean sup Wald tests:

E(yt)
10% 15.797 * 9.11 0.752 Apr-01
5% 15.797* 9.71 0.752 Apr-01

Conditional Mean sup Wald tests:

AR(1) 10% 57.077 * 12.17 0.893 Dec-08
5% 57.077 * 12.80 0.893 Dec-08

AR(4) 10% 54.459 * 18.86 0.893 Dec-08
5% 54.459 * 19.57 0.893 Dec-08

AR(9)—BIC 10% 125.086 * 27.77 0.892 Dec-08
5% 125.086 * 28.64 0.892 Dec-08

AR(12)—AIC 10% 129.647 * 32.76 0.891 Dec-08
5% 129.647 * 33.63 0.891 Dec-08

DL(1) with macro factors—AIC/BIC 10% 8.081 16.91 0.409 -
5% 25.995 * 17.54 0.934 Jun-08

DL(1) with uncertainty factors—AIC/BIC 10% 850.945 * 12.17 0.791 Apr-01
5% 1840 * 12.80 0.942 Jan-09

Note: (a) Superscript * means that the test rejects the null of no breaks at the 5% level; (b) DL(p) refers to a
distributed lag model with p lags of a given factor; and (c) the test with the macro factors are corrected for a
potential break in variance as explained in Section 5.

Table 13. Structural breaks in the variance of real interest rates.

Moments/Models Statistic Value Critical Value Break Fraction Break Date

Unconditional Variance sup Wald tests:

Var(yt) 4.852 9.11 0.409 -

Conditional Variance sup Wald tests:

AR(1) 21.591 * 9.11 0.410 Sep-82
AR(4) 24.721 * 9.11 0.407 Oct-82

AR(9)—BIC 20.799 * 9.11 0.394 Aug-82
AR(12)—AIC 23.787 * 9.11 0.388 Aug-82

DL(1) with macro factors—AIC/BIC 12.637 * 9.11 0.433 Aug-82
DL(1) with uncertainty factors—AIC/BIC 9.678 * 9.11 0.428 Aug-82

Note: (a) A 10% trimming is used for all tests. Superscript * means that the test rejects the null of no breaks at
the 5% level. (b) The variance tests are corrected for a mean break as explained in Section 5.

5.1. Unemployment Rate

Stock and Watson (2002) estimated AR(4) models for the quarterly difference in the US
unemployment rate and found no break in the conditional mean, over a shorter period (1959–2001),
but that is likely because the series was first differenced so a lot of the variation in the series has been
removed. When analyzing the unemployment rate in levels, Table 7 shows that the evidence for breaks
in this series is inconclusive. The UM test indicates a break in the recent crises when using a 10%
cut-off, but not when using a 5% cut-off. Some of the CM tests also give mixed evidence: no break
in the conditional (or short-run) mean at the 10% level, and one break in the recent crisis at the 5%
level. The PACF in Figure 11 indicates spikes at lags 13 and 25 (also at higher lags), lags that are
to our knowledge rarely used in applied work. Nevertheless, when rerunning the model selection
with AIC and BIC and a maximum of 30 lags, we observe that the BIC does not change, but the AIC
selects 25 lags. The CM tests on an AR(25) model are 51.508 at the 10% level, and 148.311 at the 5%
level, so they reject in both cases the null of no break because they are above the critical values of
43.47 and 44.46, respectively (these are critical values for 20 parameters, and as explained in Footnote
23, they only provide a lower bound for the true critical values which are in this case not available).
Nevertheless, these tests achieve their maximum value at the boundaries of the cut-off: 0.9 and 0.05.
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Because at a 5% cut-off we only have 33 observations relative to 26 parameters to estimate, there are
strong reasons to believe that these tests are plagued by numerical inaccuracies driven by too many
parameters relative to the cut-off. Note that this numerical inaccuracy may also plague the CM test for
the DL(12) model with uncertainty factor at the 5% level. Moreover, the uncertainty factor seems to be
very persistent; an AR(1) model of the uncertainty factor yields a coefficient of 0.98 on the first lag.
Because typically this factor is used in predictions in levels rather than first differences, we just report
the CM tests for the models with the uncertainty factor in levels. However, note that the large values
of the CM test can be explained by large distortions in the presence of long memory regressors, and
therefore these results are also not to be fully trusted.

To summarize, it could be that CM tests are oversized and spuriously reject the null because of
heavy underspecification of the true number of lags, an explanation in line with our simulations in
Section 4.2. However, this problem cannot be remedied by including more lags because of numerical
issues. When examining the UM test, it can also be that the HAC correction in the UM test is inaccurate
for a large number of lags; it could explain why this test rejects the null hypothesis when using a 10%
cut-off.

Next, we test for breaks in the variance of unemployment via the UV and CV tests; these results
are reported in Table 9. The UV test and the CV test with 12 lags of the uncertainty factor used in the
conditional mean does not reject the null of no breaks. In contrast, the CV tests based on AR(p) models
show a structural break in the conditional variance of the unemployment in the mid 1980s, associated
with the Great Moderation period. In Section 4.2, we showed that dynamic misspecification, especially
underestimation of the number of lags, yields severely oversized CV tests even for T = 1000, while their
power is comparable to the UV tests. This might explain the difference in results between the two
tests. Alternatively, the results in Table 9 can be taken to suggest that although there is no break in the
unconditional (long-run) variance of unemployment, there is a structural change in the conditional
(short-run) variance of the unemployment dynamics, possibly related to the Great Moderation. It is
worth mentioning that the mixed empirical evidence on volatility breaks in unemployment provided by
the two tests is also found in other studies using quarterly data. Namely, while Stock and Watson (2002)
report no evidence of breaks using the UV test for quarterly unemployment, Sensier and van Dijk
(2004) find support for a Great Moderation volatility break when using an AR(4) model.

5.2. Industrial Production Growth

Table 10 reports the UM and CM tests for industrial production growth. Here, the UM test and
the CM tests for DL models with lags of the uncertainty factor and 10% cut-off do not show evidence
of breaks. Neither do the CM tests with lags of the macro factor. The other tests for AR(p) models do
find breaks, but notice that as the number of lags increases, the CM tests become closer to the critical
values, so the evidence for breaks is getting weaker. Moreover, the PACF in Figure 12 indicates a
sizable negative spike at lag 24; it seems that underspecification of the number of lags (for example
with AIC and BIC) yields to incorrect rejection of the null of no breaks, as shown in the simulation
Section 4. This may also explain why Stock and Watson (2002) find a break in the conditional mean of
the quarterly industrial production growth around the Great Moderation. To investigate this further,
we reran the AIC and BIC model selection of an AR(p) model using a maximum of 30 lags; the BIC
does not change, but the AIC now selects 18 lags. The corresponding CM test statistic is 137.039 with
both 10% and 5% cutoffs and rejects the null of no breaks at the 5% level, but the implied break-faction
estimate is in both cases at 0.89, so near the cut-off, indicating that this test cannot be fully trusted as
evidence of a mean break in the recent period, given its inflated value near the cut-off due to estimating
many parameters with few observations.

As for breaks in the variance of the industrial production growth, the UV test and the CV test
for a model with lags of the macro factor do not reject the null of no breaks, but the other CV tests
indicate a break around the Great Moderation. This result is also found in (Stock and Watson 2002)
for the quarterly industrial production growth, where the UV test does no reject, but the CV tests
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reject. Note however that the CV tests starting with the one for the AR(4) model are decreasing when
including more lags and getting very close to the critical values at 12 lags, indicating that the evidence
for a Great Moderation break seems to diminish as more lags are taken into account.

5.3. Interest Rates

Several papers find breaks in the conditional mean of the short-term interest rates (see, e.g., Garcia
and Perron 1996; Sensier and van Dijk 2004; Stock and Watson 2002). For example, Garcia and Perron
(1996) employed a Markov switching model with three possible regimes in mean and variance for
ex-post real interest rates. They find that there are two mean shifts, one in 1973 associated with the
sudden rise in oil prices and another in 1981 which is in line with a federal budget deficit. Furthermore,
Rapach and Wohar (2005) examined structural breaks in the mean real interest rate for 13 industrialized
countries over the period 1960 till 1998. For the US series, they find breaks in the late 1960s, early 1970s
and early 1980s.

Table 12 confirms these findings: it shows strong evidence of breaks in both the long-run and
short-run mean of the interest rates, some around the Great Moderation and some around 2001,
perhaps tied to the 11 September 2001 attack, which sent the stock market plummeting after several
days in which it was closed.28

The UV test in Table 13 does not detect a break whilst the CV tests indicate at least one break,
whose estimate is again around the Great Moderation. In this case, also because the CV test statistics
seem to still be large at 12 lags, it is more likely that there is a variance break, and the UV test does not
have enough power to detect it, which can happen for some data generating processes as indicated in
Figure 2. We conclude that there is strong evidence of breaks in the unconditional mean and in the
variance of short-term interest rates.

6. Conclusions

In this paper, we propose an alternative and complementary approach to the sup Wald test for
breaks in the conditional mean and variance. We show that the corresponding unconditional mean
and variance break tests exhibit comparable size and power properties. The unconditional mean and
variance do not employ a conditional mean specification, so they do not suffer from potential regression
model misspecification. We show that under certain commonly encountered forms of regression model
misspecification, especially dynamic misspecification, the traditional conditional mean break tests
suffer from severe oversizing, even for large sample sizes. Moreover, both tests for a break in mean
have similar size-adjusted power as the sample size grows. In a comprehensive empirical analysis,
we applied these tests to show that there is no clear evidence of long-run breaks in the mean of the
unemployment rate or the industrial production growth. Similarly, the evidence for breaks in the
long-run variance of the unemployment rate and the industrial production growth is mixed. It is worth
noting that we only focus on the sup Wald test, which is among the most popular break point tests in
empirical work. It would be interesting to repeat the analysis in this paper for other break-point tests,
including more powerful tests, and we leave this for future research.
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Appendix A. Proofs of Theorems 1–3

Proof of Theorem 1. Part (i). Aue and Horvath (2012) define a CUSUM test for HUM
0 versus HUM

A
as follows:

Z∗T = supλ∈[ε,1−ε] ZT(λ), ZT(λ) =
1√
T

(
∑
[Tλ]
t=1 yt − [Tλ]

T ∑T
t=1 yt

)
/v̂1/2

u ,

where v̂u is a HAC consistent estimator of vu = AVar
(

1√
T ∑T

t=1 yt

)
under HUM

0 and Assumption 1(i).

They state that if a functional central limit theorem (FCLT) holds under HUM
0 for 1√

T ∑
[Tλ]
t=1 ut,

then ZT(λ)⇒ [B1(λ)− λB1(1)] = B1(λ), and so by the continuous mapping theorem (CMT),

Z∗T ⇒ supλ∈[ε,1−ε] B1(λ), (A1)

where B1(λ) = B1(λ)− λB1(1) is a scalar independent Brownian bridge. Below, we show that there is
a clear connection between the CUSUM and the UM test, so the asymptotic distribution of the second
follows from the first.

T(y1λ − y2λ)
2 = T

(
1

T1λ
∑1λ yt − 1

T2λ
∑2λ yt

)2
= T3

T2
1λT2

2λ

(
T2λ
T ∑1λ yt − T1λ

T ∑2λ yt

)2

= T3

T2
1λT2

2λ

(
∑1λ yt − T1λ

T ∑T
t=1 yt

)2
=
[

1
λ2(1−λ)2 + o(1)

] [
1√
T

(
∑1λ yt − T1λ

T ∑T
t=1 yt

)]2

⇒ vu[B1(λ)− λB1(1)]
2/[λ2(1− λ)2] = vu B2

1(λ)/[λ
2(1− λ)2].

Since vuλ = AVar(
√

T(y1λ − y2λ)) = vu/[λ(1− λ)], UMT(λ)⇒ B2
1(λ)/[λ(1− λ)], so:

UM∗T ⇒ supλ∈[ε,1−ε] B2
1(λ)/[λ(1− λ)]. (A2)

Comparing (A1) and (A2), the two limiting distributions attain their supremum at different λs,
and thus the size of these tests will in general be different.29 However, underlying the asymptotic
theory is the same assumption, that the FCLT holds for T−1/2 ∑

[Tλ]
t=1 ut. Assumption 1 guarantees that

the FCLT in (Wooldridge and White 1988), Theorem 2.11, can be applied for ut (in fact, we only need
dm = O(m−1/2)), completing the proof of (i).

Part (ii). Here, we just verify Assumption 1 for |yt − y| − a instead of ut. The rest of the proof
is as in part (i) of the proof. Assumption 1(i) holds by the null hypothesis and by Assumption 2(i),
and we are left to verify Assumption 1(ii). Since ut is L2-near epoch dependent of size m−1/2 on {gt}
with positive constants equal to 1 (these constants appear in the near epoch dependent definition in
Davidson (1994) but since here they are fixed, they are absorbed into the definition for dm), it follows
that so is yt − y, with constants 2 supt(1) = 2. In Theorem 17.12 in Davidson (1994), let φt(·) = | · |,
a uniform Lipschitz function, with the argument yt − y. Then, yt − y is L2-near epoch dependent of
size m−1/2.

Part (iii). Here, we just verify Assumption 1(ii) for (yt − y)2 − vu, instead of ut, because
Assumption 1(i) holds by the null hypothesis and Assumption 2(ii). In Theorem 17.12 in Davidson
(1994), under HUV

0 and HUM
0 , define the function φt(yt − y) = (yt − y)2 − vu. From part (ii) of the

29 In addition, note that the test statistic supλ∈[ε,1−ε]

√
UMT is known in statistics as a “weighted version” of the CUSUM

test—see (Aue and Horvath 2012, p. 5).
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proof, (yt − y) is a L2-near epoch dependent process of size m−1 on {gt} with constants equal to 2.
Below, we show that under HUM

0 , φt is uniform Lipschitz almost surely:

|φt(yt − y)− φt(yk − y)| = |(yt − y)2 − (yk − y)2|
≤ |yt + yk − 2y| |(yt − y)− (yk − y)| ≤ |ut + uk − 2u| |(yt − y)− (yk − y)|
≤ (4 supt |ut|) |(yt − y)− (yk − y)| ≤ κ|(yt − y)− (yk − y)|, almost surely,

for some κ > 0, by Assumption 1 for ut, where u = T−1 ∑T
t=1 ut. Hence, by Theorem 17.12 in Davidson

(1994), (yt − y)2 − vu is also L2-near epoch dependent of size m−1/2.

Proof of Theorem 2. (i). Since Assumption 3 is a special case of Assumption 8 in (Hall et al. 2012),
the result follows directly from their Theorem 6, setting xt = zt. (ii)–(iii). Primitive assumptions for CV
test can be found in, e.g., Qu and Perron (2007), and involve joint mixing assumptions on {xtεt} and
ε2

t . They mention that these conditions can be replaced by sufficient conditions to yield a FCLT for
{xtεt} and ε2

t − vε under the null. By similar reasoning, for the CA test, sufficient conditions to yield a
joint FCLT for {xtεt} and |εt| − E|εt| suffice. Since xt includes an intercept, these conditions can be
verified as for the proof of Theorem 1(ii)–(iii). Note that they all require HCM

0 .

Proof of Theorem 3. Denote, for i = 1, 2, Q̂iλ,(1) = T−1 ∑iλ xt(1)x′t(1), Q̂iλ,(12) = T−1 ∑iλ xt(1)x′t(2),

Q̂iλ,(2) = T−1 ∑iλ xt(2)x′t(2), where recall that ∑1λ = ∑
[Tλ
t=1, and ∑2λ = ∑T

[Tλ]+1. By Assumption 3,

Q̂iλ,(1)
P−→ λiQ(1), Q̂iλ,(2)

P−→ λiQ(2) and Q̂iλ,(12)
P−→ λiQ(12), where i = 1, 2, λ1 = λ and λ2 = 1− λ1.

Recall that we mistakenly regress yt only on xt(1); let θ̂1λ and θ̂2λ be the OLS estimators in {1, . . . , [Tλ]},
respectively {[Tλ] + 1, . . . , T}.

θ̂1λ = Q̂−1
1λ,(1) ∑1λ xt(1)yt = θ(1) + Q̂−1

1λ,(1)Q̂1λ,(12)θ(2) + Q̂−1
1λ,(1)T

−1 ∑1λ xt(1)εt

θ̂2λ = Q̂−1
2λ,(1) ∑1λ xt(2)yt = θ(1) + Q̂−1

2λ,(1)Q̂2λ,(12)θ(2) + Q̂−1
2λ,(1)T

−1 ∑2λ xt(1)εt

T1/2(θ̂1λ − θ(1)) = Q̂−1
1λ,(1)T

1/2Q̂1λ,(12)θ(2) + Q̂−1
1λ,(1)T

−1/2 ∑1λ xt(1)εt

T1/2(θ̂2λ − θ(1)) = Q̂−1
2λ,(1)T

1/2Q̂2λ,(12)θ(2) + Q̂−1
2λ,(1)T

−1/2 ∑2λ xt(1)εt

T1/2(θ̂1λ − θ̂2λ) = Q̂−1
1λ,(1)T

−1/2 ∑1λ[xt(1)εt + (xt(1)x′t(2) −Q(12))θ(2)]

− Q̂−1
2λ,(1)T

−1/2 ∑2λ[xt(1)εt + (xt(1)x′t(2) −Q(12))θ(2)]

+ (λQ̂−1
1λ,(1) − (1− λ)Q̂−1

2λ,(1)) T1/2Q(12)θ(2) + oP(1)

= Q̂−1
1λ,(1)T

−1/2 ∑1λ(kt + Ltθ(2))− Q̂−1
2λ,(1)T

−1/2 ∑2λ(kt + Ltθ(2)) + oP(1)

− λ(1− λ) T1/2Q̂−1
1λ,(1) [Q̂1λ,(1)/λ− Q̂2λ,(1)/(1− λ)] Q̂−1

2λ,(1)Q(12)θ(2) + oP(1)

= Q̂−1
1λ,(1)T

−1/2 ∑1λ(kt + Ltθ(2))− Q̂−1
2λ,(1)T

−1/2 ∑2λ(kt + Ltθ(2)) + oP(1)

− Q̂−1
1λ,(1)T

−1/2[∑1λ xt(1)x′t(1) − λ ∑T
t=1 xt(1)x′t(1)]Q̂

−1
2λ,(1)Q(12)θ(2) + oP(1)

≡ I + I I − I I I.

I + I I = Q−1
(1) T−1/2 [∑1λ[kt Lt]/λ−∑2λ[kt Lt]/(1− λ)] vec(1, θ(2)) + oP(1)

= 1
λ(1−λ)

Q−1
(1)T

−1/2
[
∑1λ[kt Lt]− λ ∑T

t=1[kt Lt]
]

vec(1, θ(2)) + oP(1).
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Let δ = Q−1
(1)Q(12)θ(2), and note:

I I I = 1
λ(1−λ)

Q−1
(1)T

−1/2[∑1λ xt(1)x′t(1) − λ ∑T
t=1 xt(1)x′t(1)]Q

−1
(1)Q(12)θ(2) + oP(1)

= 1
λ(1−λ)

Q−1
(1)T

−1/2
(

∑1λ Mt − λ ∑T
t=1 Mt

)
δ + oP(1)

= 1
λ(1−λ)

Q−1
(1)T

−1/2
(

∑1λ Mt − λ ∑T
t=1 Mt

)
δ + oP(1).

With st = [kt Lt Mt], we have:

T1/2(θ̂1λ − θ̂2λ) =
1

λ(1−λ)
Q−1

(1)

(
∑1λ st − λ ∑T

t=1 st

)
vec(1, θ(2),−δ) + oP(1).

By Assumption 4 and the FCLT, T−1/2 ∑1λ vec(st) ⇒ H∗1/2B∗s (λ), and so T−1/2 ∑1λ st ⇒
H∗1/2B∗mat(λ), where we denoted

B∗mat(λ) = (B∗1:p1
(λ),B∗p1+1:2p1

(λ), . . . ,B∗p1 p2+1:p1(p2+1)(λ),B
∗
p1(p2+1)+1:p1(p2+1)+p1

(λ), . . . ,B∗p1 p+1:p1(p+1)(λ)),

so that vec(B∗mat(λ)) = B∗s (λ). Letting ξ = vec(1, θ(2), δ), we obtain:

T1/2(θ̂1λ − θ̂2λ)⇒ Q−1
(1)H

∗1/2 [B∗mat(λ)/λ− (B∗mat(1)− B∗mat(λ))/(1− λ)] vec(1, θ(2), δ)

= Q−1
(1)H

∗1/2[B∗mat(λ)− λB∗mat(1)]ξ/[λ(1− λ)]

= Q−1
(1)H

∗1/2
(
B∗1:p1

(λ) + ∑
p2
i=1 B

∗
p1i+1:p1(i+1)θi(2) + ∑

p1
i=1 B

∗
p1(p2+1)+p1(i−1)+1:p1(p2+1)+p1i(λ)δi

)
= [Q−1

(1) ⊗ ξ ′]H∗1/2B∗p1(p+1),

where θi(2), δi are the ith elements of θ(2), respectively δ.
Part (i). Recall that V̂iλ = (∑iλ xt(1)x′t(1))

−1Ω̂iλ(∑i xt(1)x′t(1))
−1 and Ω̂iλ = T−1 ∑iλ ε̂2

t xt(1)x′t(1),

for i = 1, 2. Since ε̂t = εt − x′t(1)(θ̂1λ − θ(1)) + x′t(2)θ(2), ε̂2
t = ε2

t + (θ̂1λ − θ(1))
′xt(1)x′t(1)(θ̂1λ − θ(1)) +

θ′(2)xt(2)x′t(2)θ(2) − 2(θ̂1λ − θ(1))
′εtxt(1) + 2θ′(2)εtxt(2) − 2(θ̂1λ − θ(1))

′xt(1)x′t(2)θ(2) and so:

Ω̂1λ = T−1 ∑1λ ε̂2
t xt(1)x′t(1) = T−1 ∑1λ ε2

t xt(1)x′t(1) + T−1 ∑1λ[x′t(1)(θ̂1λ − θ(1))]
2xt(1)x′t(1)

+ T−1 ∑1λ[θ
′
(2)xt(2)]

2xt(1)x′t(1) − 2T−1 ∑1λ(θ̂1λ − θ(1))
′εtxt(1)xt(1)x′t(1)

+ 2T−1 ∑1λ εtx′t(2)θ(2)xt(1)x′t(1)

− 2T−1 ∑1λ(θ̂1λ − θ(1))
′xt(1)x′t(2)θ(2)xt(1)x′t(1)

= IV + V + VI −VII + VII I − IX.

Partition Ω∗ =

Ω∗kk Ω∗k` Ω∗km
Ω∗

′
k` Ω∗`` Ω∗`m

Ω∗
′

km Ω∗
′

`m Ω∗mm

, such that Ω∗kk, Ω∗``, Ω∗mm are p1 × p1, (p1 p2)× (p1 p2), and

p2
1 × p2

1 respectively. First, IV = T−1 ∑1λ ε2
t xt(1)x′t(1) = T−1 ∑1λ ktk′t = λΩ∗kk + oP(1). In addition,

from the above, θ̂1λ − θ(1) = δ + oP(1), where δ = Q−1
(1)Q(12)θ(2). Thus, because of existence of fourth

order moments of xt by Assumption 4, it can be shown that:
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V = T−1 ∑1λ[x′t(1)(θ̂1λ − θ(1))]
2xt(1)x′t(1) = T−1 ∑1λ(xt(1)x′t(1)δ)(δ

′xt(1)x′t(1)) + oP(1)

= T−1 ∑1λ(xt(1)x′t(1) −Q(1))δδ′(xt(1)x′t(1) −Q(1)) + oP(1) + Q(1)δδ′T−1 ∑1λ xt(1)x′t(1)
+ T−1 ∑1λ xt(1)x′t(1)δδ′Q(1) − λQ(1)δδ′Q(1) + oP(1)

= T−1 ∑1λ(xt(1)x′t(1) −Q(1))δδ′(xt(1)x′t(1) −Q(1)) + λQ(1)δδ′Q(1) + oP(1)

= T−1 ∑1λ Mtδδ′M′t + λQ(12)θ(2)θ
′
(2)Q

′
(12) + oP(1).

We have T−1 ∑1λ vec(Mt)vec′(M′t)
P−→ λΩ∗mm by Assumption 4. With mt,ij, `t,ij the (i, j)th

element of Mt, Lt and δi the ith element of δ, we have:

δ′M′t = vec[∑
p1
n=1 δnmt,n1, . . . , ∑

p1
n=1 δnmt,np1 ]

= vec[δ′ {vec[Mt]}1:p1
, . . . , δ′ {vec[Mt]}(p2

1−p1+1):p2
1
] = vec′[Mt][Ip1 ⊗ δ],

Mtδ = [∑
p1
n=1 δn Mt,1n, . . . , ∑

p1
n=1 δn Mt,p1n] = [Ip1 ⊗ δ′]vec[M′t],

Ltθ(2) = [Ip1 ⊗ θ′(2)]vec[L′t],

θ′(2)L
′
t = vec′[Lt][Ip1 ⊗ θ(2)].

It follows that:

Mtδδ′M′t = [Ip2 ⊗ δ′]vec[M′t]vec′[Mt][Ip1 ⊗ δ],

V = T−1 ∑1λ Mtδδ′M′t + λQ(12)θ(2)θ
′
(2)Q

′
(12) + oP(1)

= λ[Ip1 ⊗ δ′]Ω∗mm[Ip1 ⊗ δ] + λQ(12)θ(2)θ
′
(2)Q

′
(12) + oP(1).

Similarly, it follows that:

VI = T−1 ∑1λ xt(1)x′t(2)θ(2)θ
′
(2)xt(2)x′t(1) = T−1 ∑1λ(xt(1)x′t(2) −Q(12))θ(2)θ

′
(2)(xt(2)x′t(1) −Q′(12))

+ Q(12)T−1 ∑1λ θ(2)θ
′
(2)xt(2)x′t(1) + T−1 ∑1λ xt(1)x′t(2)θ(2)θ

′
(2)Q

′
(12) − λQ(12)θ(2)θ

′
(2)Q

′
(12)

= T−1 ∑1λ Ltθ(2)θ
′
(2)L

′
t + λQ(12)θ(2)θ

′
(2)Q

′
(12) + oP(1)

= λ[Ip1 ⊗ θ′(2)]Ω
∗
``[Ip1 ⊗ θ(2)] + λQ(12)θ(2)θ

′
(2)Q

′
(12) + oP(1).

In addition,

VII = 2T−1 ∑1λ(θ̂1λ − θ(1))
′εtxt(1)xt(1)x′t(1) = 2T−1 ∑1λ(δ

′xt(1)εt) xt(1)x′t(1) + oP(1)

= 2T−1 ∑1λ(δ
′xt(1)εt) (xt(1)x′t(1) −Q(1)) + 2T−1 ∑1λ(δ

′xt(1)εt)Q(1) + oP(1)

= 2T−1 ∑1λ xt(1)εtδ
′(xt(1)x′t(1) −Q(1)) + oP(1) = 2T−1 ∑1λ ktδ

′M′t + oP(1)

= T−1 ∑1λ ktδ
′M′t + T−1 ∑1λ δ′M′tkt + oP(1) = λΩ∗km[Ip1 ⊗ δ] + λ[Ip1 ⊗ δ′]Ω∗

′
km + oP(1),
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VII I = 2T−1 ∑1λ θ′(2)εtxt(2)xt(1)x′t(1) = 2T−1 ∑1λ xt(1)εtθ
′
(2)xt(2)x′t(1)

= 2T−1 ∑1λ xt(1)εtθ
′
(2)(xt(2)x′t(1) −Q′(12)) + oP(1) = 2T−1 ∑1λ ktθ

′
(2)L

′
t + oP(1) =

= λΩ∗k`[Ip1 ⊗ θ(2)] + λ[Ip1 ⊗ θ′(2)]Ω
∗′
k` + oP(1),

IX = 2T−1 ∑1λ(θ̂1λ − θ(1))
′xt(1)x′t(2)θ(2)xt(1)x′t(1) = 2T−1 ∑1λ xt(1)x′t(1)δθ′(2)xt(2)x′t(1) + oP(1)

= 2T−1 ∑1λ Mtδθ′(2)L
′
t + 2Q(1)δθ′(2)T

−1 ∑1λ xt(2)x′t(1) + 2T−1 ∑1λ xt(1)x′t(1)δθ′(2)Q
′
(12)

− 2λQ(1)δθ′(2)Q
′
(12) + oP(1)

= λ[Ip1 ⊗ δ′]Ω∗
′

`m[Ip1 ⊗ θ(2)] + λ[Ip1 ⊗ θ′(2)]Ω
∗
`m[Ip1 ⊗ δ] + 2λQ(1)δθ′(2)Q

′
(12) + oP(1).

Putting all of the above together,

Ω̂∗1λ = λ
{

Ω∗kk + [Ip1 ⊗ δ′]Ω∗mm[Ip1 ⊗ δ] + [Ip1 ⊗ θ′(2)]Ω
∗
``[Ip1 ⊗ θ(2)]−Ω∗km[Ip1 ⊗ δ]− [Ip1 ⊗ δ′]Ω∗

′
km

+Ω∗k`[Ip1 ⊗ θ(2)] + [Ip1 ⊗ θ′(2)]Ω
∗′
k` − [Ip1 ⊗ δ′]Ω∗

′
`m[Ip1 ⊗ θ(2)]− [Ip1 ⊗ θ′(2)]Ω

∗
`m[Ip1 ⊗ δ]

}
+ oP(1)

= λ
{
[Ip1 ⊗ ξ ′] Ω∗ [Ip1 ⊗ ξ]

}
+ oP(1)

V̂1λ = 1
λ Q−1

(1)

{
[Ip1 ⊗ ξ ′] Ω∗ [Ip1 ⊗ ξ]

}
Q−1

(1) + oP(1) = 1
λ

{
[Q−1

(1) ⊗ ξ ′] Ω∗ [Q−1
(1) ⊗ ξ]

}
+ oP(1)

V̂2λ = 1
1−λ

{
[Q−1

(1) ⊗ ξ ′] Ω∗ [Q−1
(1) ⊗ ξ]

}
+ oP(1)

V̂λ = 1
λ(1−λ)

{
[Q−1

(1) ⊗ ξ ′] Ω∗ [Q−1
(1) ⊗ ξ]

}
+ oP(1).

Hence,

CM∗T ⇒ supλ

{
1

λ(1−λ)
B∗′p1(p+1)(λ) A B∗p1(p+1)(λ)

}
,

with A = H∗1/2′ [Q−1
(1) ⊗ ξ]

{
[Q−1

(1) ⊗ ξ ′] Ω∗ [Q−1
(1) ⊗ ξ]

}−1
[Q−1

(1) ⊗ ξ ′]H∗1/2.
Part (ii). In this case,

v̂ε,1λ = T−1
1λ ∑1λ ε2

t + (θ̂1λ − θ(1))
′ T−1

1λ ∑1λ xt(1)x′t(1)(θ̂1λ − θ(1)) + θ′(2) T−1
1λ ∑1λ xt(2)x′t(2)θ(2)

− 2(θ̂1λ − θ(1))
′ T−1

1λ ∑1λ εtxt(1) + 2θ′(2) T−1
1λ ∑1λ εtxt(2) − 2(θ̂1λ − θ(1))

′ T−1
1λ ∑1λ xt(1)x′t(2)θ(2)

= σ2
ε + δ′Q(1)δ + θ′(2)Q(2)θ(2) − 2δ′Q(12)θ(2) + oP(1)

= σ2
ε + θ′(2)Q

′
(12)Q

−1
(1)Q(12)θ(2) + θ′(2)Q(2)θ(2) − 2θ′(2)Q

′
(12)Q

−1
(1)Q(12)θ(2) + oP(1)

= σ2
ε − θ′(2)Q

′
(12)Q

−1
(1)Q(12)θ(2) + θ′(2)Q(2)θ(2) + oP(1)

= λσ2
ε + θ′(2)[Q(2) −Q′(12)Q

−1
(1)Q(12)]θ(2) + oP(1)

V̂1λ =
{

σ2
ε + θ′(2)[Q(2) −Q′(12)Q

−1
(1)Q(12)]θ(2)

}
Q−1

(1)/λ + oP(1)

V̂2λ =
{

σ2
ε + θ′(2)[Q(2) −Q′(12)Q

−1
(1)Q(12)]θ(2)

}
Q−1

(1)/(1− λ) + oP(1)

V̂λ = 1
λ(1−λ)

{
σ2

ε + θ′(2)[Q(2) −Q′(12)Q
−1
(1)Q(12)]θ(2)

}
Q−1

(1) + oP(1) = ν
λ(1−λ)

Q−1
(1) + oP(1).

Thus, CM∗T weakly converges to:

= supλ

{
1

νλ(1−λ)
B∗′p1(p+1)(λ)H

∗1/2′{Q−1
(1) ⊗ (ξξ ′)}H∗1/2B∗p1(p+1)(λ)

}
.
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