
econometrics

Article

Parametric Inference for Index Functionals

Stéphane Guerrier 1, Samuel Orso 2 and Maria-Pia Victoria-Feser 2,* ID

1 Department of Statistics & Institute for CyberScience, Eberly College of Science, Pennsylvania State University,
University Park, 16802 PA, USA; stephane@psu.edu

2 Research Center for Statistics, Geneva School of Economics and Management, University of Geneva,
1202 Geneva, Switzerland; Samuel.Orso@unige.ch

* Correspondence: maria-pia.victoriafeser@unige.ch

Received: 13 December 2017; Accepted: 13 April 2018; Published: 20 April 2018
����������
�������

Abstract: In this paper, we study the finite sample accuracy of confidence intervals for index
functional built via parametric bootstrap, in the case of inequality indices. To estimate the parameters
of the assumed parametric data generating distribution, we propose a Generalized Method of
Moment estimator that targets the quantity of interest, namely the considered inequality index.
Its primary advantage is that the scale parameter does not need to be estimated to perform parametric
bootstrap, since inequality measures are scale invariant. The very good finite sample coverages that
are found in a simulation study suggest that this feature provides an advantage over the parametric
bootstrap using the maximum likelihood estimator. We also find that overall, a parametric bootstrap
provides more accurate inference than its non or semi-parametric counterparts, especially for heavy
tailed income distributions.

Keywords: parametric bootstrap; generalized method of moments; income distribution; inequality
measurement; heavy tail
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1. Introduction

In this paper, we consider the problem of inference for an index functional T, i.e., quantities of
interest that can be written as a function of the data generating model. Given a sample xi, i = 1, . . . , n
and an associated distribution F such that one can assume that Xi ∼ F, i = 1, . . . , n, we are interested in
computing confidence intervals or proceeding with hypothesis testing for T(F). For that, there exists
many different approaches that are based on either T(F(n)) or T(Fθ), where F(n) is the empirical
distribution (hence leading to a nonparametric approach) and Fθ , θ ∈ Θ ⊂ �p is a parametric model
for which θ needs to be estimated from the sample (hence leading to a parametric approach).

As a leading example, we consider T to be an inequality index and F an income distribution.
Inequality indices are welfare indices which can be very generally written in the following
quasi-additively decomposable form (see Cowell and Victoria-Feser (2002, 2003) for the original
formal setting)

WQAD(F) =
∫

ϕ (x, µ(F)) dF(x), (1)

where ϕ is piecewise differentiable in �. The generalized entropy family of inequality indices given by

Iξ
GE(F) =

1
ξ2 − ξ

[∫ [ x
µ(F)

]ξ

dF(x)− 1

]
, (2)
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is obviously obtained by setting

ϕ (x, µ(F)) =
1

ξ2 − ξ

[[
x

µ(F)

]ξ

− 1

]
. (3)

For example, the cases ξ = 0 and ξ = 1 are given by

I0
GE(F) = −

∫
log
(

x
µ(F)

)
dF(x),

I1
GE(F) =

∫ x
µ(F)

log
(

x
µ(F)

)
dF(x), (4)

with I0
GE(F) being the Mean Logarithmic Deviation (see Cowell and Flachaire 2015) and I1

GE(F) being
the Theil index. A notable exception to the class in (1) is the Gini coefficient which can be expressed in
several forms, such as

IGini(F) = 1− 2
∫ 1

0

C(F; q)
µ(F)

dq, (5)

with C(F; q) =
∫ F−1(q) xdF(x), the cumulative income functional. Inference on T(F) can be done in

several manners:

1. The (nonparametric) bootstrap is a distribution-free approach that allows to derive the sample
distribution of T(F(n)) from which quantiles (for confidence intervals) and variance (for testing)
can be estimated; for application to inequality indices, see e.g., Mills and Zandvakili (1997) and
Biewen (2002).

2. Another distribution-free approach consists in deriving the asymptotic variance of the index
using the Influence Function (IF) of Hampel (1974) (see also Hampel et al. 1986) as is done in
Cowell and Victoria-Feser (2003) (for different types of data features such as censoring and
truncating) and estimate it directly from the sample (see also Victoria-Feser 1999; Cowell and
Flachaire 2015).

3. A parametric (and asymptotic) approach, given a chosen parametric model Fθ for the data
generating model, consists in first consistently estimating θ, say θ̂, then considering its asymptotic
properties such as its variance var(θ̂) and derive the corresponding asymptotic variance of T(Fθ̂)

using e.g., the delta method (based on a first order Taylor series expansion).
4. A parametric (finite sample) approach, given a chosen parametric model Fθ for the data generating

model, consists in first consistently estimating θ, say θ̂, then using parametric bootstrap to derive
the sample distribution of T(Fθ̂) from which quantiles (for confidence intervals) and variance
(for testing) can be estimated.

5. Refinements and combinations of these approaches.

While most would agree that the fully parametric and asymptotic approach based on the delta
method cannot provide as accurate inference as the other methods, it is not clear that avoiding the
specification of a parametric model is the way to go. Indeed, for example, Cowell and Flachaire (2015)
notice that nonparametric bootstrap inference on inequality indices is sensitive to the exact nature of
the upper tail of the income distribution, in that bootstrap inference is expected to perform
reasonably well in moderate and large samples, unless the tails are quite heavy. Similar conclusions
are also drawn in Davidson and Flachaire (2007); Cowell and Flachaire (2007); Davidson (2009);
Davidson (2010) and Davidson (2012). This has for example motivated Schluter and van Garderen (2009)
and Schluter (2012), using the results of Hall (1992), to propose normalizing transformations of
inequality measures using Edgeworth expansions, to adjust asymptotic Gaussian approximations.

Alternatively, Davidson and Flachaire (2007) and Cowell and Flachaire (2007) consider a
semi-parametric bootstrap, where bootstrap samples are generated from a distribution which
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combines a parametric estimate of the upper tail, namely the Pareto distribution, with a nonparametric
estimate the other part of the distribution. We note that modelling the upper tail with a parametric
model is common in instances were not only the interest lies in the upper tail itself but also
where the data are sparse. For example, in finance, determination of the value at risk or expected
shortfall is central to portfolio management, and in insurance, it is important to estimate probabilities
associated with given levels of losses. A critical challenge is then to select the threshold from which the
upper tail is modelled parametrically (see for example Danielsson et al. 2001; Guillou and Hall 2001;
Beirlant et al. 2002; Dupuis and Victoria-Feser 2006 and the references therein).

Cowell and Flachaire (2015) propose to use a another type of semi-parametric approach by which a
mixture of lognormal distributions is first considered and then data are generated from the estimated
mixture. A mixture of lognormal distributions to model the data can be thought of as a compromise
between fully parametric and nonparametric estimation. The use of mixtures for income distribution
estimation can be found for example in Flachaire and Nuñez (2007) and the references in Cowell and
Flachaire (2015).

Through a simulation study, Cowell and Flachaire (2015), Table 7, compare the actual coverage
probabilities of 95% confidence intervals for the Theil index, using, as data generating models,
the lognormal distribution and the Singh-Maddala (SM) distribution (Singh and Maddala 1976),
with varying parameters to increase the heaviness of the tail. The different methods cited above are
compared. Cowell and Flachaire (2015) conclude that, in the presence of very heavy-tailed distributions,
even if significant improvements can be obtained on the fully asymptotic and the standard bootstrap
methods, none of the alternative methods provides very good results overall.

Moreover, Cowell and Flachaire (2015) do not consider a parametric bootstrap and this has
motivated the present paper. Namely, we study the behaviour of coverage probabilities associate to
the index functional T(F) using a parametric bootstrap based on samples generated from Fθ̂

(i.e., Approach 4). A parametric model introduces a form of smoothness into the inferential procedure
which can lead to more accurate inference. This is for example a fundamental argument for modelling
the upper tail with a Pareto distribution. Specifying a parametric distribution for the data generating
process can be considered as an additional risk of introducing “error” in the inferential procedure.
With income distributions, common wisdom however suggests that some parametric models are
sufficiently flexible to encompass most of the data generating processes observed with real data.
For example, the four parameters generalized beta distribution of second kind (GB2) proposed by
(McDonald 1984), which encompasses the generalized gamma, the Singh-Maddala and Dagum
distribution (Dagum 1977) (see also McDonald and Xu 1995), can be considered as sufficiently general to
model income data. If this is not the case, then one would wonder if the lack of flexibility of a
general four parameter model is not due to a spurious amount of observations, and hence consider a
robust estimation approach as proposed and motivated in Cowell and Victoria-Feser (1996), see also
(Cowell and Victoria-Feser 2000).

In this paper, as an alternative to the classical Maximum Likelihood Estimator (MLE), we propose a
Target Matching Estimator (TME), a member of the class of Generalized Method of Moments (GMM)
estimators (Hansen 1982), where one of the “moments” is the targeted inequality index T. It has
the advantage that for inference on T, the scale parameter does not need to be estimated (and hence
can be set to an arbitrary value), so that the estimation exercise is simpler in that the optimization
is performed in a smaller dimension. We derive its asymptotic properties and compare them to the
MLE when targeting T(Fθ). As illustrated in a simulation study, it turns out that the finite sample
coverage probabilities obtained from a parametric bootstrap based on this alternative estimator
are far more accurate than the ones computed with other methods, especially with heavy tailed
income distributions.
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2. A Target Matching Estimator

Recall that we are interested in making inference on an inequality index T and we assume that
the sample data are generated from a (sufficiently general) parametric mode Fθ , θ ∈ Θ ⊂ �p. We let
ν = (T, S1, . . . , Sq−1)

′ be a vector of statistics of length q, where the first element is the statistic of
interest and the remaining q− 1 elements are additional statistics. We denote by ν̂ the sample vector of
statistics and by νn(θ) its expectation at the model Fθ , for a fixed sample size n. Assuming that the
mapping θ 7→ νn(θ) is bijective, a GMM estimator can be defined as

θ̂ = argmin
θ∈Θ

∥∥ν̂− νn(θ)
∥∥2

Ω (6)

where Ω is positive definite q× q matrix of weights, possibly estimated from the sample (in that case
one assumes that it converges to a non-stochastic quantity), used to adjust the statistical efficiency of θ̂.
If νn(θ) cannot be obtained in an analytically tractable form, one can use instead ν(θ) = limn→∞ νn(θ),
or alternatively, use Monte Carlo simulations to approximate νn(θ), leading to a Simulated Method of
Moments (SMM) estimator (McFadden 1989) given by

θ̂ = argmin
θ∈Θ

∥∥ν̂− ν̄n(θ)
∥∥2

Ω (7)

where ν̄n(θ) = 1
B ∑B

b=1 ν̂b and ν̂b = ν̂b(Fθ) is the b-th vector of statistics obtained on pseudo-values
simulated from Fθ . If the number of simulation B is infinite, then the estimators in (6) and (7) are
equivalent, otherwise the latter is (asymptotically) less efficient.

It is computationally advantageous to have an analytic expression for ν(θ) and thus prefer this
approximation over ν̄n(θ). However, in finite samples, the bias on θ̂ using ν(θ) may be more important
than the one resulting from using ν̄n(θ) (see Guerrier et al. 2018). An other approach, considered
for example by Arvanitis and Demos (2015), is to directly approximate νn(θ) with expansions on
analytical functions.

Given that the interest here is to make inference about a functional T, one also needs to consider a
suitable choice for the (additional) statistics in ν. Obviously one needs to choose a number of
statistics at least as large as the number of parameter in the assumed model, i.e., q ≥ p. If these
statistics are sufficient, then q = p. Moreover, T may depend only on qs < p of the elements of θ,
and for this purpose, the whole estimation of θ maybe an unnecessary burden. Let θ = (θs ′, θc ′)′

where θs, of dimension qs ≥ 1 is the vector of parameters that (uniquely) determines T whereas θc,
of dimension qc, is the vector of “nuisance parameters” that do not influence T. Then, instead of
solving (6) or (7), we propose to consider a Target Matching Estimator (TME) defined as

θ̂s = argmin
θs∈Θs⊂�qs

∥∥ν̂s − ν(θs)
∥∥2

Σ . (8)

It is known that in an homogeneous system the asymptotic covariance of θ̂s is not influenced by the
weighting matrix Σ (supposedly independent from θ) as long as Σ is a positive-definite matrix. Since
we consider the case when the dimension of the statistics and the parameters of interest are the same,
i.e., dim(ν) = dim(θs) = qs, taking the identity matrix for Σ, and assuming that the minimum of the
quadratic function is attained in the interior of the parameter space Θs, we then have that (8) can be
equivalently written as

θ̂s = argzero
θs∈Θs⊂�qs

[ν̂s − ν(θs)] .

The generalized entropy family of measures and the Gini index are scale invariant whereas
the models Fθ usually suggested in the literature (Kleiber and Kotz 2003) are parametrised with a
scale component. Indeed, let δ, an element of θ, denote the scale parameter, then with the linear
property of the expectation, Iξ

GE(F) in (2) is invariant to any transformation δX. The same statement is
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true for the Gini coefficient. This is not surprising as scale-invariance is indeed one of the required
property of inequality indices. We hence have (∂/∂δ)T(Fθ) = 0, so that θs is θ without the scale
parameter δ. Note that (∂/∂δ)T(Fθ) = 0 may be useful in situations where the analytical form of T(Fθ)

is not available.
More generally, suppose we are in the situation where T is such that (∂/∂θc)T(Fθ) = 0 and

(∂/∂θs)T(Fθ) 6= 0. Also suppose that the statistics S1, . . . , Sq−1 are chosen such that (∂/∂θc)Sj(Fθ) = 0
and (∂/∂θs)Sj(Fθ) 6= 0, j = 1, . . . , q− 1, q = p, then (8) provides a suitable estimator for inference on T.
For scale invariant inequality measures T, any statistics of the form

Sk(x) =
1
n

n

∑
i=1

(
xi
µ̂

)k
, k ∈ �, µ̂ =

1
n

n

∑
i=1

xi, (9)

is also scale-invariant. This is also true with a logarithmic transformation as

Ul(x) =
1
n

n

∑
i=1

(log(xi)− m̂)l , l ∈ �, m̂ =
1
n

n

∑
i=1

log(xi). (10)

Finally, for the choice of Fθ , one can consider the GB2 (see Section 4) which is sufficiently general to
encompass real data situations with income data (Bandourian et al. 2002). Alternatively, as suggested
for example in Cowell and Flachaire (2015), one can also consider the SM distribution.

In the simulation Section 4 we propose suitable statistics ν that are used in (8). Given these
statistics ν and an assumed data generating model Fθ , inference about T, using the parametric bootstrap,
is obtained using Algorithm 1.

Algorithm 1: TME-percentile confidence interval
Input : A given function νs; its sample version ν̂s; number of iteration B; a confidence level

1− α.
Output : An interval: [H(n)

T (α/2), H(n)
T (1− α/2)], where H(n)

T (α) = inf{t : F(n)
T (t) ≥ α}, F(n)

T
is the empirical distribution function of T, with realizations T1, . . . , TB.

Compute θ̂s = argminθs ‖ν̂s − ν(θs)‖2.
Fix θc to an arbitrary value in Θc.
for b← 1 to B do

Draw a sample X(b) ∼ Fθ=(θ̂s ,θc).

Compute Tb on X(b).
end

Compute the percentiles H(n)
T (α/2), H(n)

T (1− α/2) on the values T1, . . . , TB.

Note that if ν̄(θs) is used instead of ν(θs) in (8), the last step of the optimization leading to θ̂s

readily delivers (T1, . . . , TB).

3. Asymptotic Properties

We now look at the asymptotic distribution of the TME in (8). Since θc is fixed but θs is estimated
by matching some statistics ν, a crucial question is on whether θ̂s is more efficient than say θ̂s

MLE,
the estimator that we would have obtained by the MLE on the whole vector θ. In order to answer
this question consider a setting in which the regular conditions for the MLE θ̂MLE to be square root-n
consistent are met. In this case, we let I denotes the Fisher information matrix evaluated at the point
θ0 ∈ Θ, we have

n1/2 (θ̂MLE − θ0
)
 N

(
0, I−1

)
.
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This setting is clearly not the weakest possible in theory for our analysis and may be further
relaxed. We do not attempt to pursue the weakest possible conditions to avoid overly technical
treatments in establishing the theoretical result given in this section.

Theorem 1. Let Θs ⊂ �qs be compact. Suppose that the point θs
0 is in the interior of Θs. Suppose that ν(θs

0) is
the expectation of ν̂s when n is large. If n1/2 (ν̂s − ν(θs

0)
)

satisfies a central limit theorem with covariance
matrix Ξ, the mapping θ 7→ ν is bijective, continuously once differentiable in an open neighborhood of the point
θs

0 ∈ Θs and the derivative ν̇ is nonsingular at the point θs
0, then

n1/2ν̇(θs
0)
(
θ̂s − θs

0
)
 N (0, Ξ) .

The proof is provided in the Appendix A.
Compared to the MLE, the additional condition that the statistics ν̂s satisfy a central limit

theorem is mild and generally met in practice for sample moments and the inequality indices
considered here. The results on the delta method and the continuous mapping theorem of
Phillips (2012) may be employed to refine Theorem 1 to the case where the known function ν is
replaced by the function evaluated by simulation ν̄n.

The asymptotic covariance matrix of θ̂s, given in Theorem 1 by [ν̇(θs
0)
′]−1Ξν̇(θs

0)
−1,

is proportional to the inverse of the derivative of the expectation of the statistics with respect to θ and
the asymptotic covariance matrix of the statistics. The choice of statistics should then be guided by
their sensitivity to θ and their variability at the model. The same argument is found in Heggland and
Frigessi (2004).

If the statistics ν are sufficient, then the asymptotic covariance matrix of θ̂s is equivalent to the
asymptotic covariance matrix of the MLE conditionally on θ̂c

MLE fixed. From the properties of the
normal distribution, we have asymptotically that

n1/2 (θ̂s
MLE − θs

0
) ∣∣∣ (θ̂c

MLE = θc
0
)
 N (0, Vss) ,

where Vss = I−1
ss − [I−1]scIcc[I−1]cs, Iss denotes the partition of I corresponding to θs, Icc for θc and

[I−1]sc for the covariances between θ̂s
MLE and θ̂c

MLE. Thus, the estimator θ̂s obtained from (8) has a
smaller variance than the unconditional MLE by a factor [I−1]scIcc[I−1]cs ≥ 0. In particular, this gain
could by substantial if θ̂c has a large variance. On the other hand, the gain would be null if θ̂s and θ̂c

are independent as their covariances [I−1]sc = [I−1]′cs = 0.
Choosing “good” statistics ν̂s remains a difficult task: sufficient statistics with appropriate data

reduction and with the property of being independent (asymptotically) from θc may be hard to find.
Heggland and Frigessi (2004) suggest a graphical procedure based on simulation to find statistics
“sensitive enough” to the parameter of interest. In a similar context, Gallant and Tauchen (1996)
propose to use the likelihood score function of a model “close” to the one of interest as statistics.
In the present context, it could be a probability model parametrised by θs only. There are however no
guarantee that such a model exists, and if it does, it might be not unique.

4. Simulation Study

We consider here two parametric distributions, namely the four parameters GB2 and the three
parameters SM distributions. We compare the coverage probabilities provided by the parametric
bootstrap using on the one hand the MLE and on the other hand the TME approach presented in
Section 2 (using Algorithm 1) to the nonparametric bootstrap for the GB2. We also compare the coverage
probabilities assuming a SM data generating process, to a variance stabilizing transform of the index
proposed by Schluter (2012) (Varstab), the semi-parametric approach of Davidson and Flachaire (2007)
and Cowell and Flachaire (2007) (Semip) and when mixtures of lognormal distributions are used to fit
the density as proposed in Cowell and Flachaire (2015).
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The GB2 has density function

fθ(x) =
axap−1

bapB(p, q)(1 + (x/b)a)p+q , x, a, b, p, q > 0, (11)

where B is the beta function, b is the scale parameter, a, p and q are shape parameters. Note that
here we consider a to be positive, yet, the distribution of the inverse may be obtained by allowing a
to be negative (McDonald and Xu 1995). Suppose we are interested in the Theil index defined in (4),
the population index, with θ = (a, b, p, q)′, is given by

T(Fθ) = log(Γ(p)) + log(Γ(q))− log
(

Γ
(

aq− 1
a

))
− log

(
Γ
(

ap + 1
a

))
+

1
a

[
ψ

(
ap + 1

a

)
− ψ

(
aq− 1

a

)]
,

where Γ is the gamma function and ψ is the digamma function. Clearly the Theil index is scale
invariant, so that we set θs = (a, p, q)′ and θc = b.

The population values of the statistics Sk in (9) are given by

Sk(Fθ) =
[Γ(p)Γ(q)]k−1 Γ

(
aq−k

a

)
Γ
(

ap+k
a

)
[
Γ
(

aq−1
a

)
Γ
(

ap+1
a

)]k , k ∈ �,

and the ones for Ul in (10), for l = 2, 3, are given by

U2(Fθ) =
ψ(1)(p) + ψ(1)(q)

a2 ,

U3(Fθ) =
ψ(2)(p)− ψ(2)(q)

a3 ,

where ψ(m) is the polygamma function, i.e., the m-th derivative of the digamma function ψ.
As is done in Cowell and Flachaire (2015), we consider the SM distribution with density

fθ(x) =
aqxa−1

ba(1 + (x/b)a)1+q , x, a, b, q > 0, (12)

and corresponding population statistics T, Sk and Ul , l = 2, 3, given by

T(Fθ) = 1 + log(Γ(q))− log
(

Γ
(

aq− 1
a

))
− log

(
Γ
(

a + 1
a

))
+

1
a

[
ψ

(
1
a

)
− ψ

(
aq− 1

a

)]
,

Sk(Fθ) =
akΓ(q)k−1Γ

(
aq−k

a

)
Γ
(

k+a
a

)
Γ
(

1
a

)
Γ
(

aq−1
a

) , k ∈ �,

U2(Fθ) =
π2 + 6ψ(1)(q)

6a2 ,

U3(Fθ) =
−ψ(2)(q)− 2ζ(3)

a3 ,

where ζ(3) is the Apéry’s constant.
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Under the GB2, for generating the data, we set θs = (a = 3, p = 3.5, q = 0.8)′, θc = (b = 10)
and n = 250, 500, 1000. For the TME, we choose the vector of statistics to be ν = [T(x), U2(x), U3(x)]′

with T(x) the Theil index and Uj(x), j = 2, 3 given in (10). We fix the value of the scale parameter to
the arbitrary value of one (b = 1) in Algorithm 1. We repeat the experiment 104 times and set the
number of bootstrap replicates to B = 103.

To solve for θ̂s in (8) or for the MLE, we use the classical quasi-Newton optimization algorithm
with starting values obtained from the differential evolution heuristic (Storn and Price 1997), in order to
mimic a real situation in which the true parameter’s values are unknown.

In Table 1, we report the performances of the three approaches with respect to a nominal
confidence level of 95% for the three sample sizes. As already shown in the literature (see e.g.,
Cowell and Flachaire 2015), we find poor performance for the nonparametric bootstrap (Boot), far
from the nominal confidence level. The parametric bootstrap using the MLE provides reasonable
finite sample coverage that are nevertheless conservatives. On the other hand, the performance of
parametric bootstrap using the TME is overall satisfactory, with enhanced performance when sample
size increases.

Table 1. Finite sample coverage probability with respect to a nominal confidence level (two-sided) of
95% for the Theil Index. Data are simulated under the GB2 with θs = (a = 3, p = 3.5, q = 0.8)′,
θc = (b = 10). ν = [T(x), U2(x), U3(x)]′ with T(x) the Theil index. In Algorithm 1, b = 1.
The experiment is repeated 104 times and B = 103.

Sample Size Boot MLE TME

n = 250 0.708 0.962 0.927
n = 500 0.753 0.978 0.942
n = 1000 0.790 0.990 0.949

In Table 2, we replicate the simulation study in (Cowell and Flachaire 2015, Table 6.6), and report
the values for Varstab, Semip and Mixture. We have θs = (a = 2.8, q)′, θc = (b = 0.193) and set
ν = [T(x), U2(x)]′ with T(x) the Theil index and U2(x) given in (10). We fix the value of the scale
parameter to the arbitrary value of one (b = 1) in Algorithm 1. We repeat the experiment 104 times and
set the number of bootstrap replicates to B = 103. The results reported in Table 2 are also presented
graphically in Figure 1. Both parametric approaches present finite sample coverage probabilities that
are far more accurate than the other approaches, especially in the heavy tail case. As with the GB2,
the parametric bootstrap based on the MLE tends to provide conservative coverage probabilities.

Table 2. Finite sample coverage probability with respect to a nominal confidence level (two-sided) of
95% for the Theil Index. The values for Varstab, Semip and Mixture are directly reported from (Cowell
and Flachaire 2015, Table 6.6). Data are simulated under the Singh-Madalla with n = 500, θs = (a =

2.8, q), θc = (b = 0.193). The parameter q accounts for the shape of the upper tail of the distribution,
the smaller the heavier the tail. ν = [T(x), U2(x)]′ with T(x) the Theil index. In Algorithm 1, b = 1.
The experiment is repeated 104 times and B = 103.

Singh-Madalla Varstab Semip Mixture Boot MLE TME

q = 1.7 0.933 0.926 0.928 0.912 0.962 0.952
q = 1.2 0.899 0.905 0.912 0.859 0.979 0.957
q = 0.7 0.796 0.871 0.789 0.637 0.994 0.939
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Figure 1. Illustration of the coverage probabilities obtained over 10,000 Monte Carlo experiments for
the GB2 (a) (see Table 1) and the Singh-Madalla (b) (see Table 2). Each color represents a different
method. The shade area around each line is the 99.9% asymptotic confidence interval for proportion.
The black line is the nominal confidence level of 95%.

5. Conclusions

In this paper, we study the finite sample accuracy of confidence intervals built via parametric
bootstrap. We also propose a GMM estimator, the TME, that targets the quantity of interest, namely
the considered inequality index. Its primary advantage is that the scale parameter of the assumed
parametric model does not need to be estimated to perform parametric bootstrap, since inequality
measures are scale invariant. The theoretical result and the simulation study suggest that this feature
provides an advantage over the parametric bootstrap using the MLE and also over other established
simulation-based inferential methods.

As noted by an anonymous referee, an important point that has not been directly assessed is the
specification robustness, i.e., the properties of the proposed method when the assumed general model
is not the exact one. This point deserves more (formal) investigation that we leave for further research.

On the more practical side, although this study is limited to two income distributions and one
inequality index, the methodology presented here can be extended to other settings in a relative
straightforward manner. For example, it is possible to extend the TME to include trimmed inequality
indices since it suffices to use the trimmed version of T in ν. If trimming is done for robustness
purposes as proposed in Cowell and Victoria-Feser (2003), then the other statistics in ν̂ should also be
robust (see also Victoria-Feser 2000). This is the case, for example, with trimmed moments.

Author Contributions: All authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

Proof. Fix θs
0 in the interior of Θs. Since Θs is compact, supθs∈Θs ν(θs) is bounded (see Theorem 4.15 in

Rudin 1976). Since the mapping θ 7→ ν is bijective, ν(θs) = 0 only if θs = θs
0. The conditions for

the consistency theorem of a GMM are satisfied (Theorem 2.6 in Newey and McFadden 1994) and θ̂s

converges in probability to θs
0.

Now take an open neighborhood around θs
0, say B. Instead of solving the quadratic form in (8),

it is equivalent to solve its derivative:
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θ̂s = argzero
θs∈B

ν̇(θs)′g(θs), g(θs) = ν̂s − ν(θs).

By the delta method (see Van der Vaart (1998)), we have

g(θ̂s)− g(θs
0) = ν̇(θs

0) ·
(
θ̂s − θs

0
)
+ op

(∥∥θ̂s − θs
0
∥∥) . (A1)

Since θ̂s is consistent, the right-hand side element of (A1) is op(1). Now multiplying (A1) by
ν̇(θ̂s)′ yields

ν̇(θ̂s)′g(θ̂s)− ν̇(θ̂s)′g(θs
0) = ν̇(θ̂s)′ν̇(θs

0) ·
(
θ̂s − θs

0
)
+ ν̇(θ̂s)′op(1).

By construction, ν̇(θ̂s)′g(θ̂s) = 0. By the continuity assumption on the mapping θ 7→ ν̇, the
continuous mapping theorem applies (see Van der Vaart (1998)) so ν̇(θ̂s) = ν̇(θs

0) + op(1). Next,
multiplying by square-root n gives

−ν̇(θs
0)
′n1/2g(θs

0) + op(1) = ν̇(θs
0)
′ν̇(θs

0) · n1/2 (θ̂s − θs
0
)
+ op(1).

The proof results from the central limit theorem on n1/2g(θs
0), the invertibility of the derivative

ν̇(θs
0) and the Slutsky’s lemma.
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