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This document contains proofs of all results presented in the paper ”TSLS and LIML estimators in Panels
with Unobserved Shocks”. The proofs are preceded by short review of stable convergence, conditional strong law
of large numbers and conditional central limit theorem.

1 Appendix A: Stable convergence, conditional strong law of large
numbers and conditional central limit theorem

This section briefly reviews concepts and results which are used in the main part of the paper but are not easily
available in the literature. These include the idea of stable convergence and conditional versions of the strong
law of large numbers and the central limit theorem.

The notion of stable convergence of a sequence of random variables was introduced by Rényi (1963): the
sequence of random variables &;, i = 1,2, ... defined on a probability space (2, .4, P) is stable if for any event B € A
with P (B) > 0 the conditional distribution of ¢; given B tends to a limiting distribution, lim;_,o, P (§ < z|B) =
Fp (z) for every x which is a continuity point of the distribution function Fg (z), written as & — X (stably)
(Rényi (1963), p. 294). Stable convergence implies convergence in distribution, and it has been shown that many
central limit theorems imply stable convergence (e.g., |Aldous and Eagleson| (1978) and [Hall and Heyde, (1980)).

In the panel data model considered in the paper, all random variables are defined on the space (2, .4, P) but
the conditioning sets we consider are in the sigma-algebra generated by the factors, F C A. Thus, we condition
on the events in F C A. The notion of stable convergence restricted to these sets is denoted using the terminology
of Daley and Vere-Jones| (1988)) as F-stability (see also [Kuersteiner and Pruchal (2013])).

The basis of conditional laws of large numbers and conditional central limit theorems is the notion of condi-
tional independence (e.g. (Chow and Teicher]| (1997)). Let C be a o-algebra of events and {C,, : n > 1} a sequence
of classes of events. The sequence {C,, : n > 1} is said to be conditionally independent given F if for all choices
of Cy, € Cy,,, where k; #kj fori #j, m=1,2,...,n,and n = 2,3, ...,

P(C1NCyN..NCulF) =] P(Ci|F), as..
i=1

A random sequence {X,, : n > 1} is said to be conditionally independent given F or, briefly, F-independent, if
the sequence of classes C, = 0 (X,,), n > 1 is conditionally independent given F. It should be noted that when
F = {0, 9} conditional independence reduces to ordinary stochastic independence of random variables.

Conditions under which conditional independence implies unconditional independence are fully discussed by
Phillips| (1988]). Recent discussions are are given by Majerek et al. (2005)), Rao| (2009)) and |[Roussas| (2008]).

The following results are conditional versions of the classical strong laws of large numbers and central limit
theorems. Their proofs are very close to those of the unconditional theorems and are reported in detail in the
supplementary file (they can also be found in the working paper version of this article - see |[Forchini et al.| (2015))).
The conditional central limit theorem can also be seen as a special case of Theorem 3 of [Eagleson| (1975)).

Theorem A.1. Let {Z;:1<i<n} be a sequence of F-independent random variables such that
E [|Zi|1+5\]:} < A for some 6 > 0, and A being F-measurable with A < oo a.s. Then conditional on F,

S (Zi - EIZJF) — 0 as

1
n

Theorems A.1 is the conditional version of Corollary 3.9 of White (2001). It is slightly weaker than the
conditional strong laws of large numbers by Majerek et al.| (2005)), [Rao| (2009)).



Theorem A.2. Let {Z;: 1 < i <n} be a sequence of F-independent random variables with conditional means
E[Z;|F], conditional variances o? = [(Z fE[Z-|}'])2|]-'}, and E [|Zi|2+6|f} < Aas. fori = 1,2,...
and A arbltrary F-measurable, where A < oo a.s. and some 0 > 0. If there is n F-measurable such

that 62 = 1 E 0? > n > 0 as., then conditional on F, = f Z (Z; — E1Z;|F))=PN(0,1) a.s.. Moreover,

SN

1
Tn/n

(Z E(Zi|F))=PN(0,1) (F-stably).

WM:

Theorem A.2 is the conditional version of the Theorem 5.10 of White (2001). It is slightly weaker versions of
the results of Prakasa Rao (2009), Grzenda and Zieba (2008), Yuan, Wei and Lei (2014).

2 Appendix B: Proofs of the results in Sections 3 and 4

Lemma B.1. If Assumption 1.i to 1.vi hold, then the following results hold conditional on F as N — oc:

N
L+ Y wiw, = W (Fr) as
i=1
N
2. & > x'z; > X (Fr) as., where
i=1
| X
X (Fr) =V (Fr)+ lim — > E [IVFr'Frli| F] + v(Pr) Frl (Pr) + T (Fr) Fr' v(Fr);
i=1
N N
=~ wlajl—> T) =w(rT)FT T)+ 1 w;' v; a.s.;
3. % WX (F Fr)FrT (Pr) + lim 5 30 Ffw'vi|F
i=1 M=
N
4. % > wi'e; — w(Fr) Frvy (Fr) as
i=1
1 X ’ 4 ! I
5 ~ Z XTi €; —» F(FT> Fr' Fry (FT) + ’U(FT) Fry (FT) a.s
i=1
N N
6. %> ele; — 1E>moQ + 3 E [v/Fr'Frvi|F] + 2 (Fr) as
i=1 i=1
N i
7% ; (w; — ) (w; —w) = W*(Fr) a.s. where W* (Fr) is defined in 1 ;
N !
8. + ; (x; — Z) (x; — ) = X* (Fr) a.s., where X* (Fr) is defined in 1 ;
N I
9. + > (wi —w) (z; — &) = WX* (Fr) as. ,where WX* (Fr) is defined in 1}
i=1
N li
10. + ; (w; —w) (e; — &) — 0 a.s.;
N !
11. ; (x; —T) (e; — &) = 0 a.s.;
1 N —\/ = : 1 N / / / /
12. § > (e;—é€) (e; —e) — lim ~ > E [%- Fr FT'yi|.7:} —~(Fr) Fr'Fry(Fr)+ %. (Fr) as
i=1

1 N—o0

.
Il

The proof of Lemma is fairly standard so for the sake of simplicity is not reported here. It is available in
the supplementary file and in the working paper version of this article.

Proof of Lemma [1l
To prove the first part of the lemma, notice that

N -1 /N
(Z (2 — 2) (2 — 5)) (Z (z — 2) (yi — ﬂ))



- T+ <S’NZ< Z:;U))//((Zi_—;l))) ((IZ:Z))'/((;:__;)) >S>_ s <zifi( ((IZ:;D))/ ((:;—_éé)) ))

i=1

Thus IT — IT a.s. from 7-11 of Lemma A.1, where
N _\/ _ _\/ _
1 (w; —w) (w; —w) (w; —w) (x; — T) . _ W= (Fr) WX*(Fr)
Z < (z;— T ) s — Q" (Fr) = WX (FT)/ X* (Fr) a.s.

conditional on F.
To prove the second part let

VNvee (H . H)
(R o)) s (o)

_ (

N / _ _\/ _ -1
) (w; —w) (w; —w) (v; — ) o
;( ) (ui — 0) <xi—x>/<mi—x>>5> S)
N _
¥ L
The term

Z\H

A

can be written as

N
Zvec =1 (ei — Fry (Fr))

—vec N VN (e — Frv (Fr))|.
-5 -21 E[v;|F]' =T (Fr) Fr'
j:
N
We will now show that the last term can be neglected. Conditional on F, @ — + Y. E [w;|F] — 0 a.s. and

i=1

T—~ Z E [v;|F] = FrT' (Fr) — 0 a.s. So we just need to prove that v N (€ — Pr'~ (Fr)) converges to a random
matrlxl c})ndltlonal on F. Let k; = vec(e; — Fry (Fr)) and ¢ be an arbitrary T (p + 1) x 1 vector. We focus on
f Z ¢'k; and will now verify that the Liapounov’s conditions given in Theorem [A.2 holds a.s. conditional on
F. Notlce that

E[('%;|F] = 0 as. and E [(g'nz) |f} = ('E [vec (e; — Fry (Pr)) vec (e; — Fry (Fr)) |[F ¢ a.s.

Moreover,
BI¢mVF] < 1, B [Jvec (ei = Pry (F))l,*1F| = 6,2 B [le: = Fry (Pr)),*1 7|
< CLPE [(eily + 1Pr (=7 (Pr) 1)1 7]
<1702 (B (|l 1F] + 1Bl B [l -y (P F])



where the terms in the last expectations are bounded uniformly a.s. Notice that + > F [|§’m|2\.7:] is a.s.
i=1

convergent because each term can be uniformly bounded from above a.s. Therefore, uging the Cramer-Wold
device and Theorem conditional on F, v Nvec (é — Fr'y (FT)) converges to a random vector and

N _ _
1 vec (w; — W) (e; — &)
N 2N ) (-2
— N , N
1 N w/—%ZE[wﬂﬂ
= —NZvec N =t (e; — Fry (Fr))| +op(1).
i=1 z — % ZlE [vj|F|' =T (Fr) Fr'
L Jj= J
- 1 N , N
1 X ’LU/—NZE[“’JU:]
= ﬁZvec N (ei = Fry (Fr))| +0p(1).
im1 z — % > F [v;|F]' =T (Fr) Fr'
L j= -

Let ¢ be an arbitrary (k1 + k2) (p+ 1) x 1 vector and

/ 1 N /
wi — § 2 [w;|F]
w; = C”UGC N i=t (61' — FT’}/ (FT))
&' — % ZIE[UJ'U:] T (Fr) Fr'

j=
We can write

7 ic< el )=7 Z it o

Notice that E [w;|F] = 0 and that E [|wi|2+5|}'} < A a.s. is bounded uniformly a.s., since

N 246
246 246 wl/i % Z:lE[wJU:]/
B |[wi"P1F| <1¢,*"E v (e = Pry(Fr))|  |F
zi' — % X EW/|F]-T (Fr) Fr'
Jj=1 2
2495
246 1 1 & +5
< LB || fwi= 5 Bl F)| + o= = DB F = P (Pr)| | lei— Pry (Fr)l, | F
j=1 9 j=1 )
< [CL*P0 () E [|es — Fry (Fr)l,” |7
N 2448 1 N 246
B [Jwil, ™| F] + NZ Wil 7|+ B [Jaily?1F] + 1P (P, 4 | D B vl ]
i—1 9 i=1 2

Since each term above is bounded uniformly, we can conclude that conditional on F

N —1/2
1 ) 1

so that by using Cramer-Wold device, conditional on F,

Nl

=t (e; = FPry (Fr)) | =P (© (Fr))2N (0, L(hy +hy+hs+ha)(p+1)) »

where © (Fr) is defined as (21).



Proof of Lemma [2L
Write

N o) 0 iy = -t N _\/ _
T — /i (wy —w) (w; —w) (w; —w) (z; — ) ’ i (w; —w) (e; — €)
HH+<SN;< () (wi—0) (-7 (@-7) )] O N; (@i—1) (ei—2) )]
We have shown that, conditional on F, the matrix in the inverse converges a.s. to S'Q* (Fr)S and that

N N N
L3 (w; —w)" (e; —€) — 0 a.s. The remaining term is + > (v, — ) (e; —€) = % > x;'e; — z'e. The re-
i=1 i=1 i=1

N N
sult follows from the fact that € — Fpvy (Fr) a.s., T — Frl' (Fr) — Nlim LY Ew|F] = 0as. and + 3 z;'e; —
— 00 i=1 -
N N .
~ 2 EWw/|FIFPry (Fr) — % > E [Iy'Fr' Frv| F] — 0 as.
i=1 i:l

Proof of Theorem [1l
For the panel TSLS estimator of the structural parameters, we have

Brsws — fo = (I Hlles) " T (f1s — Tlasfo)

It follows from Lemma |1 that conditional on F, ﬂgg — Ilos a.s. and 712 — 712 a.s. Moreover, in the proof of
Lemma [I| we have shown that

(29 — 22) (224 — Z2) = S,'Q* (Fr) Sy a.s.,

==
-

1

o
Il

(2’171‘ — 51)/ (Zl,i — 21) — ﬁllQ* (FT) §1 a.s.,

2=
1=

s
Il
-

(2271‘ — 22)/ (2171‘ — 21) — EQ/Q* (FT) §1 a.s.

==
-

i=1

Thus, H — H (Fr) a.s. follows immediately.

Notice that the convergence is uniform since it does not involve any of the parameters of the model. The first
result follows noticing that under Assumption 2, w15 = Ilo50,.

Now, consider the following term conditional on F,

VN (7?12 - ﬂzzﬁo) = VN (7%12 — 12, Tz — H22) ( —150 )
= \/N(O,]k2 < )
= (L -3) @ (0.11,)) VEvec (1T - 1)

=P ((1,-8") ® (0, I,)) ( pt1 ® (S'Q" (Fr) )715/) C (FT))%N (0, Zthy +hoths+ha) (p+1))

= ((17_%/) <(0 Ikz)( Q" (Fr)S) )5')(Q(FT))%N(071(h1+h2+h3+h4)(p+1))'

Thus, conditional on F, \/N(BTSLS — ﬁo) —P A(Fr)N (O,I(h1+h2+h3+h4)(p+1)) follows immediately. This
completes the proof of the first part of the theorem.

The proof of the second part of the theorem is established in three steps using the Argmax Theorem (e.g.
Theorem 3.2.2 of jvan der Vaart and Wellner| (1996} p. 286). and Theorem 1 of |[Stock and Wright| (2000)). First
we establish the consistency of the LIML estimator for 8y. Then, we establish the rate of convergence for the
LIML estimator, and finally we show that a rescaled version of the criterion function converges in distribution to
a limit process in the space of all uniformly bounded real functions on a compact set for any compact set B.

We have shown that II — IT a.s. and H — H a.s. uniformly, so that

A I A A~
(fr12,H22) H (ﬁ12,H22> — (12, o)  H (112, a2)  a.s.



uniformly. Moreover, Q-0 (Fr) a.s. by noting results 7-12 of Lemma Notice also that the convergence is
uniform in all the parameters. Thus,

(1,-8") (7}12712122)/[? (ﬁ12,ﬂ22> (1,-p")
(17 _Bl) Q (17 _5/)/
(17 —51) (7T127 H22)/ H (7T12, H22) (17 —5I)/

- (-3 2 (Fr) (1,3 =Lo(f) as.

uniformly. Notice that Lg (8) is uniquely minimized at Sy and it is continuous. Thus, for 8 in a compact set,
Theorem 2.1 of Newey and McFadden| (1994) implies that Sprar — Bo a-s.
Note that the LIML estimator minimizes

Ly(B) =

A / A A A
(1,=0) (ﬁ12,H22> HY2M g o, H'Y? (ﬁ12,H22> (1,-b)
(1,-b)Q (1, =)
A 1 ! r71/2 71/2 [~ 1 /
(1,-0") (7712,1122) H'Y? Py jogy, HY (7H27H22) (1, =0)
(L _b/)Q(la _b/)/

Ly () =

+

where Py = Z(Z/Z)le/ and Mz = I, — Pz are idempotent and projection matrices generated by any m x [
full column rank matrix Z. Since

A !/ A A A
(1,=b") (7}12,1_[22) H1/2Pg1/2ﬁ22H1/2 (ﬁ127H22) (1, -

. o )
= (1,-b) ( BTngS > 115, H1I9o (5TSLS,Ip) (1, -0

P
) o .
= <5TSLS - b) 115, H1I9o (ﬁTSLs - b) ,
we can write
. . . L )
Ao HY 2 My pagy,, H' ? 10 + (ﬁTSLs - b) M5y H1l2o <5TSLS - b)

L (b) = (1,-)Q (1, —b) B

Since the LIML estimator minimizes (B.1]), we must have

0 > N (LN (BLIML) — Ly (ﬁo)) (17 _B/LIML) ) (1» —B/LIML>/
= N (BLIML - Bo)/ 1Ty, H1lay (BLIJVIL - ﬂo)
—2N (BTSLS — ﬂo)/ﬁégﬁﬁzz (BLIML - 50)
(17 —BILIML) O (17 BLIML)
(L, —80") 2 (L, —50")’
(1 ~Bhane) @ (1 ~Bhn) |
(1,—80") 2 (1, =50")’

N (BTSLS - 60>/ﬁ/22ﬁﬁ22 (BTSLS - 50) 1—

ANl HY 2 Mgy jagg, H P05 | 1 -

Since B LivL — Bo a.s., it also converges in probability and we have

- (1, —B/LIML> Q (1 —B/LIML)/ 0, (1)
(1. 50") 2 (1, ~40") o




A / A A A A
N (ﬁTSLs - 50) 15y H1l5y (ﬂTSLs - 50) =0,(1),
Nty HY2 Mg gy, HY 000 = O, (1).

Thus,
. P . . P .
N (BLIML - 50) 1Ty H1loo (ﬂLIML - 50) —2N (5TSLS - 50) IT5, H1Io, <5L1ML - ﬁo) +0, (1) 0.
Let A\, (f['mﬁﬂgg) be the smallest eigenvalue of ﬂ/22gﬂ227 and notice that
" /N R " R R “ 2
N (BLJML - 50) 115, H1I9o (5LIML - 50) = A (H/QQHH22) H\/N (BLIML - ﬁo) H2

and

'N (BLIML - ﬁo)/ [T, A1l (BTSLS - 30)

< VA (B = )| ot VN (Brsis = 0)

2

Using these two inequalities we obtain

0 > N(Buia —6o) Thllsy (Brins — o)

~2N (Brses — o) Tl (Brrars — Bo) + 0, (1)

o () [V (B )]

oV (s~ )|t | (s~ ), 400

WV

This can be rewritten to give

H\/N (BLIML - 50)H2 <2- HHIzQHHﬂH2”\/N(BTSLS - ﬁ0> H2 +0,(1)

||IZI'2212112122||2 N ||H22'HH22||2

Ao (153 FiTias) A (T2 FTDs) which is finite and well defined and

Notice that as N tends to infinity

H\/N(BTSLS—&))‘L = Op,(1) so that H\/N<BLIML_BO>H2 = 0,(1). Uniform tightness of

by = VN (BLIML - 50) follows from the fact that by = VN (BLIML - ﬁ()) is a weakly convergent sequence.

We regard N x Ly (ﬁo + N_1/2b) as a function of b on the set B C RP, where B is compact. Multiplying N
on both sides of (B.1]), we obtain that

N x Ly (ﬁo + N_l/QbN)

A~ A A ~ / A A A ~
Nl BV M A g oy Y0 + (b = NV2 (Brsis = o) ) Mo HTTs (b = NV2 (Brovs — o))
(1,—B0" — N—1/2by") Q (1,-B0" — N_1/2bN/>/

where VN (BTSLS — ﬁo) —PA(Fr)N (O,I(k1+k2)(p+1)) by Theorem
Let C be a matrix such that CC’ = Mi)op,, and C'C = I1,. By construction, C'HY2I15 = 0, so

C'H Y7y = C'HY? (frlz - ﬁzgﬂo) .

Then



A A~ A A~ A A / A A A
N7AT/12H1/2MHH1/21"122H1/27AT12 = (C/Hlm\/ﬁ (ﬁn - H22ﬁo)) C'H'*VN (ﬁm - H22ﬁo)

of which the probability limit (denoted by W) is uniformly bounded in b € B by noting , and the fact that
C — Cin which CC'" = My /2p,, and C'C = Iy,.
Then we obtain that

b—by) Tyy'H (Fr) Iy, (b — by)
(1, -50") (1, 5"

where b1 = A(Fr) N (0,1(h,4hoths+ha)(p+1))-  Notice that L(b) is continuous and is minimised at
b=A(Fr)N (0, I(h1+h2+h3+h4)(p+1)). The proof is then complete. [

N x Ly (50 + N‘l/QbN) —PL(b) = W+ (

)

Proof of Theorem [2. R
The first part follows from the fact that conditional on F, H — H (Fr) a.s., and

1 1?21 o ™ Ty, n Ayy (Fr) Aoy (Fr) as
712 g mg  Ilgg Ao (Fr) Ao (Fr) o

To prove the second part notice that the LIML estimator minimizes

(1,-8") (ﬁlz,ﬂ22>/ﬁ (7?12,12122) (1,-p"
(1, =801, -5

as a function of 8 on the compact set B C RP. Notice that (B.2) is continuous for every /3 in this compact set
B so that the continuity is also uniform.
By the Lemma and the proof of Lemma [2) we know (B.2]) converges a.s. and uniformly to

(B.2)

(1,—B") (m12 + A1z (Fr) , oz + Aoz (Fr)) H (Fr) (m12 + Az (Fr) , o + Agg (Fr)) (1,-8)
(1L, =B Q(Fr) (1,-p") '
(B.3)

(B.3)) has a unique minimizer. Thus, the LIML estimator converges to the minimum of (B.3).
Notice also that (B.3) is equal to zero when H (Fr) (w12 + A12 (Fr),Has + Ags (Fr)) (1,—8") = 0. Since
T12 = H22ﬂ07 one has

H (Fr) (Ila2 + Aoy (Fr)) 8 = H (Fr) (12280 + A2 (Fr)) .

Solving for 8 completes the proof. [

Proof of Theorem [3l

Conditional almost sure convergence can be easily proved, So, using Lemma 1, it follows that &g = 711 —
f[glﬁ — m11 — 218 = ag a.s. conditional on F.

Since the panel LIML and TSLS estimators of the vector 5y are asymptotically equivalent we prove this result
for the TSLS estimator only. Notice that

—BrsLs

arsrLs = ((ﬁ11,ﬂ21) - (7T11,H21)) ( 5 ' ) + 711 — oy Brsrs

((ﬁ11,ﬁ21) - (7T11,H21)> ( Al > + 1 — oy (BTSLS - 50) — 12180

—BrsLs

= (Ix,0) (H - H) < ! ) — Iy (BTSLS - 50) +ap

—Brsrs

. 1 R -1, . R
— (I,,0) (H _ H) ) Iy (H’QQHHQQ) 1), (ﬁu - H2260> +ag
—BrsLs



(o) ) () ) o )

—Brsrs

Thus

VN (40— ) = <Ik1,0>\/ﬁ(ﬂ‘ﬂ)< . )

—Brsrs

—1IIy, (ﬂ/zszﬂm) 711:[/2216[ (0. 71,) VN (ﬂ - H) < —150>

- (Ikl,O)\/N(ﬂ—H)< ; )

o — BrsLs
1

- (00000) = T (A i) 11 0,10 ) VA (11-10) (L

A 0
Notice that conditional on F, (I,,0) VN (H - H) (ﬁ 3 ) — 0 a.s. and
0o — Prsrs

. N -1, ~
(Ix,,0) — IIa (lezHﬂzz) 5, H (0, Iy,)
— (Ipy,0) — Ty (Tlas'H (Fyr) Tlyy) ™ Ty H (Fr) (0, Ii,) a.s.

The asymptotic distribution follows from

((100) 1t (P i) 7 (0, 11,) ) VA (i1 1) (_150>

— vee [(g,ﬁ ,0) — Iy, (ﬁ;ﬁﬂ2g> i, (0, Ik2)> VN (H - H) <1ﬂo>

— (150 (1 0) = Ty (10 T10) 3,7 0,13,)) ) (VIVwee [ - 1] ).

Theorem [3] follows easily. [

Proof of Theorem [4 In the proofs of Lemma 2] and Theorem [2} we have shown

arsrs = m1 + A (Fr) — (a1 + Aoy (Fr)) (Bo +b(Fr))  a.s.,
qrrvr = m + A (Fr) — (o + Aoy (Fr)) (Bo +b(Fr))  a.s.,

conditional on F. Thus, the results follow immediately. [J

Proof of Lemma 3
For simplicity let v =« (Fr) and notice that

0=+ ivec [(zi — 2 (ei — Fry)]vee [(zi — 2 (ei — Fry)]’

- % f vee [(z — 2)' (e — Fra)]vee [(zi — 2 (10, a0 ) — (a0, Tao) — Fir )|
- % ivec (21— ) (e — Fr)]vee (i~ 2) (= (11 -10))]

- fvi [z =2 (10 TT20) = (mr0: ) = Fiy) e (1 = 2) (e = Fro)]’

+
=]
=
-4
]
)
:N\
\
&
—

(fflo, ﬁQO) — (710, 20) — FT’Y)]UGC |:(Zz -z) ((ﬁlo,ﬁzo) — (710, 20) — FT’Y)]

/



+ % ﬁ;vec |:<Zz — 2)' ((fno, f[go) — (w10, Mgp) — FTV)]WC [(zz — 5)’ z (ﬁ _ H)}/
1 l; r
- N ;vec |

1 N
+ N;vec I
(Zi - E)I Zi (f[ — H)-

1L
+N;vec

(z —2) 2 (ﬁ H) vec [(z; — z) (e; — FT'y)}/

:vec [(Zz —z) ((ﬁ10,ﬁ2()) — (710, H20) — FT’Y)}/

Apart from the first, all terms vanish because they involve quantities which go to zero a.s. conditional on F

given Assumpton 1.i-vi. We therefore focus on the first term.

Write
1 o :
—\/
i ; vec [(z; — — Fry)]vec [(z; — 2)’ (e; — Fr)]
as
! / -/
1 1 1
N Z vee || zi— & Z E[z|F] | ( Frv)|vec | | zi — ~ Z E[z|F] | (e, — Frv)
i=1 j=1 j=1
r ! / -/
1 1 & 1 &
—y2uvee | sm Z E[zj|F]| (e; — Frvy)|vec ||z — N Z Ez|F] | (e — Fry)
i=1 i j=1 j=1 |
r ! / -/
1 1 i 1 i
—— > vec||z— =) E[z|F]]| (es—Fry)|vec || z——= > E[z]|F]| (e; — Fr7)
NI i N j=1 N j=1 |
!/ / -/
N L L
+N2vec zZ— NZE[ZA}'} (e; — Frvy)|vec | | z— NZE[ZA}'} (e; — Fr7y)
i=1 j=1 j=1 |

The first term (B.4) converges a.s. to © (Fr) since each term involves squares of the components of e;
and squares of the components of z;.

/ / !

N N
1
E |||vec | | z — N ZE (2| F] | (ei — Fry)| vec || zi — Z (2| F] | (ei — Frv) |F
Jj=1 J=1 )
_ , )
N
=F Z (2| F] | (ei — Fry)|| |F
L =t 2
r 2
N
<E Z [zl FI|| |F| E [||ei - FT7||§ |]-"} Subadditivity and conditional independence
=1 2

where the last quantities are bounded a.s. by Assumption 1.
The term (B.5)) converges a.s. to zero. To see this, notice that

/

N N
vec Z 2| F1 | (ei—Fry)| = (Ip41® | 2 — Z [z F] | | vecle; — Frr]
So that (B.5) can be written as
/ /
1 1 o 1
N Zvec %=y Jz::l E[z|F] | (ei — Frv)|vecle; — Frvy)' Iy ® | Z2— N Jz::l E [z;]F]

10

(B.7)

— Fry
The expectations of the first quantities are a.s. bounded by Assumption



N
The term z — & > F[zj|F] — 0 a.s.. Moreover, each term in the sum has zero mean and each term involves
—

N
products of components of (e; — Frr7y) (ei - FT’y)/ and components of z; — % Y. E[2;|F]. The moments of these
j=1

N
1
E |||lvec || zi — N E[z|F] | (ei — Frv)| vecle; — Fryl'|| |F
Jj=1 9
r /
N
<FE z; — Z (2| F] | (ei — Fry)| |lei — Frvll,|F| Cauchy - Schwarz inequality
L J=1 2
- o
< E ||z — N E[z;|F|| |F| Ellle; — FT'y||2\.7-"]2 Subadditivity and conditional independence
L =1 2

The two expectations above are bounded uniformly a.s. by Assumption 1.

is the transpose of (B.5)).
(B.7

) can be written as

I

N N
_ 1 _ 1
i@ | zZ— N E E [z|F] ( E vecle; — Frvy|vec[e; — Frv] ) Inyi®|z2— N E E [z|F]

J=1 j=1

N

Notice that z — & Z E [zj|F] — 0 a.s. and the term in the middle is a.s. bounded since it involves only terms
j=

of (e; — Fry) (e; FT'Y) by Assumption 1.i and iv. Thus, ) converges to zero a.s. conditional on F. [J

Appendix C

This file provides the proofs of Theorem A.1, Theorem A.2 and Lemma B.1. The proofs of Theorems A.1 and
A .2 follow the classical proofs and are reported here just for the sake of completeness.

Proposition C.1. (Conditional generalized Kolmogorov inequality, Rao| (2009, Theorem 4, p. 449)) Assume
that {X; : 1<k <n} is a set of F-independent random variables with E [|X|"|F] < oo for each k and some
r > 1 where E[-|F] denotes the conditional expectation given the sub-o-algebra F. For any F-measurable

k
random variable £ > 0 a.s., let S, = > X,, be the partial sum and let event

n=1

D= (max |Sk — E [Sk|F]| 26),

1<k<
then we have

e"P(DIF) < E[|Sk — E(Sel A" IplFI < E ISk — E[Se| FI'|F] - a.s.,
where Ip = 1 when D holds and Ip = 0 otherwise.

Proposition C.2. (Conditional Borel-Cantelli lemma, Rao| (2009, Theorem 1, pp.444-445); Majerek et al.| (2005,
Theorem 3.1, Lemmas 3.2 and 3.3, pp. 149-151)) Suppose that (£2,.4,P) is a probability space and F is a sub-
o-algebra of A. We have the following results:

1. Let {A,,n > 1} be a sequence of F-independent events such that Z P (A,) < oco. Then Y P(A,|F) <
n=1 n=1
a.s..

2. Let {A,,,n > 1} be a sequence of F-independent events and A = { Z Ella,|F] = oo} with P (A) < 1.
Then only finitely many events from the event sequence {A, N A,n > 1} hold with probability one.

11



M8

3. Let {A,,n > 1} be a sequence of F-independent events and let A = {w El4,|F] = } Then it

n=1

holds that P (hm sup An> = P(4).
n— oo
Proposition C.3. (Kronecker’s lemma, [Chow and Teicher| (1997, Lemma 2, pp. 114-115)) If {a,,} and {b,} are

o0 n
sequences of real numbers where 0 < b, T co and > a;/b; converges, we have | >_ a; | /b, — 0.
i=1 i=

Proposition C.4. (Bound on Characteristic Function, (Chow and Teicher| (1997, Lemma 1, p. 295)) For any
t € (—o00,00) and arbitrary nonnegative integer n

n it k ( t)n+l ) t tnil ta
Z ' / et (1 —u)"du = i" ! / dtpi1 / dtp -+ / et dty.
: 0 0 0 0

Jj=0

Moreover, for each 0 < 6 < 1,

iy~ ()" A
BT (1+8)2+8)--(n+46)

J=0

Proposition C.5. (Conditional expectation of a product lemma, |[Chow and Teicher| (1997, Corollary 5, p. 234))
Let X; € L1 be the space of all measurable function with finite mean and B° be the class of Borel subsets
of R° = R x R x ---. If the random variables {X,,,n > 1} are conditionally independent given the o-algebra
F of events, then there exists a regular conditional distribution P¥ for X = (X;, Xo,...) given F such that
for each w € Q the coordinate random variable sequence {(,,n > 1} of the probability space (R>, B>, P¥) are
independent. Moreover, if X; € £; for every 1 < j < n and E [X;X; --- X,,|F] exists, then when n > 2 it holds
that

E[X: X1 Xo|Fl = [[EIXi|F]  as.
i=1

Proposition C.6. (Jensen’s inequality for conditional expectations, (Chow and Teicher| (1997, Theorem 4, p.
217)) Let g € R — R be convex. Then for any Y such that ¢ (Y) is integrable,

ElgW)|F12g9(EXYIF])  as.

Theorem C.1. (Conditional Markov strong law of large numbers) Let {Z; : ¢ > 1} be a sequence of F-independent

random variables with conditional means FE[Z;|F] for ¢ = 1,2,... If for some scalar 0 < 0 < 1,

> s E [|Zi - F [Zi|]:]|1+5|.7-" < 00 a.s., then conditional on F, = > (Z; — E[Z;|F]) = 0 as..
i=1

i=1

Proof of Theorem C.1:
The proof of this result follows closely the proof of classical (unconditional) case given in (Chung (1974, pp.
130-132). Let p; = E [Z;|F]. First of all, we define for each 1,

vl Zi—w 7=l <4,
v 0 |Zi—ui|>’i.

Then,
(o) o0
SB[ =Y B[Nz - uil  H{Zi -l <iHF] ase
=1 1=1

Notice that for any real number |y| <iand 0 < 6 < 1, y2/i® < y'*+°/i'*% so

o0

ZVar 7Y F] < D E[TY?FISY B [*1*5|Zi—ui|1+5.1{|zi—m|<¢}|f
i=1 =1

ZE {fl*‘;\Zi —pi|1+5|}—] <00 a.s..

N

12



Moreover, {Y;} is also a F-independent random sequence by construction. Therefore, we can apply the
generalized Kolmogorov inequality. For any F-measurable m > 1

J

Z (i7'Y; — E [i 'Yy F])| <

!
_1|]:> >1-m? ZV(M" [i71Y;|F] a.s..
i=k

max
k<i<l

oo}
Since Y Var [i7'Y;|F] is convergent a.s., we must have
i=1

J
. . 1y 1y
Jz&#&gzp@?i‘z 2 T ) <

m1|}'> =1 a.s..

Thus, the tail of Z ( v, - E [ *1Y|}"]) converges to zero a.s. conditional on F and consequently
=1

> (i7'Y; — E [i7'Y;|F]) converges a.s. conditional on F. Second, we prove that Y. E [i~'Y;|F| converges

i=1 =1

a.s.. Notice that for each real number |y| > i and 0 < § < 1, |y| /i < y'+9/i'+°, so

Ir

s
Il
_

SEFWIF < SB[ 02— wl 1{1Zi - il < i} 7]

/A
]2

E [i_1_6|Zi - ui|1+6|]:} < o0 a.s..
1

.
Il

Since E (i7'Y; — E[i7'Y;|F]) and Y} E [i7'Y;|F| converge a.s. conditional on F, > i~'Y; converges a.s.

=1 =1 i=1

[o ]
conditional on F, too. It remains to show that a.s. convergence of > i~'Y; conditional on F implies a.s.
i=1

o0
convergence of > i7!(Z; — u;) conditional on F. It is easy to check that
i=1

NP (Y # Zi - wilF) =ZE[1{\Zi—ui| > i} | F]

=1
ZE{* 5% — s {2 — | > i) |]-‘} <ZE[¢‘1“5|Zi—Mi|1+6|}‘} <o as.
=1 1=

If we define a sequence of events & = {w:Y; # Z; — u;} for i > 1, we know that &; is a sequence of F-
independent events. Due to part (3) of the conditional Borel-Cantelli lemma, the conditional probability of the

(o]
event that Y; # Z; — p; holds infinitely often is zero conditional on F. Thus, conditional on F, > i1 (Z;i — i)
i=1
[ee] —
converges a.s.. The application of Kronecker’s lemma to 3 =% (Z; — ;) for each w € €, implies that Z,, — i, — 0
i=1
a.s. conditional on F. [ ]

Theorem C.2 (Conditional Lindeberg central limit theorem). Let {Z; :i > 1} be a sequence of F-
independent  random  variables with conditional means FE[Z;|F] and conditional variances

n
o? = FE|(Z —E[Z¢|.7-'])2\}"} for i = 1,2,.... If there is 7 F-measurable such that 62 = 1 3 62 > n > 0
i=1

a.s. and the following conditional Lindeberg condition holds
nh_}n;OﬁZE[Z E(Z]|F)?-1{|Z - E[2Z:|F)| >fan£}|_7-'} =0 as.

n

for any F-measurable ¢ > 0, then conditional on F, - 1\/5 (Z E[Z;|F])=PN(0,1) as.. Moreover,

mlfi(z E[Z,|F])=PN(0,1) (F-stably).

=1
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Proof of Theorem C.2:
The theorem is proved similarly to the classical version (see, for example, |Chow and Teicher| (1997, pp. 314-
315)) with appropriate modifications. Let X} = Zi=t where p; = E [Z;|F]. For any fixed real number ¢ € R,

Vnan
) 2| )42
write Yy (t) = eitXe _ 1 — it X _|_ ;f and yi(t) = 6—E[X,3|J:}t2/2 14 E[Xgl]:]t

characteristic function summarized above with 6 =1 and n = 1,2, one obtains

Using the bound on the

PXE _ X3 N 2XE X2

[Ye(t)] < e — 1 — it Xy | +

2 = 2 2
and
' X2 _ [tXf
i) = o - 1 i+ B 1L

So, |Yi(t)] < Min {th,f,%}. Moreover, |y (t)| < %
e > 0, noticing that F [X|F] =0,

. As a result, for arbitrary F-measurable

B[] = 2] = B [Y(1F] - wn(8)] < [ ()17 + [y (1)

E[X2|F])%
<FE [t2X,3 CL{|Xk] > e} 4 |EXE - 1{|Xk| < e} |]—"} + ([’“8”) a.s..

Notice that for 0 < j < n,
J
(ZXk> ZE Xi|F] < Z {Zk_lffk \}-]21 a.s.,
k=1 1

because the X}’s are F-independent. Notice that this implies that > F [XJQ\]:] =1 a.s.. Thus,
j=1

I J J
E |exp {z’tZXk + %tQ Y E [X,f]—"]} |\ F

k=1

- |E exp{thX + tQZE Xk]-‘}
el 1exp{32imf}w |
k=1

j-1 jo1
) 1
- F exp{zti Xk—|—§t2g E[Xilf]}lfH

k=1 k=1

{ tX; 6E[Xf]—']t"’/2|]:}|

J
< exp | it X; - lex 1t2 F X .7-' E |t —eiE[X?‘F]ﬁ/Z}' a.s.
p Z p i :
=1
) wolie w sl -]
< t2/2‘E[ E[X2|F]t? /2‘]_-” a.s.,
E[X2|F])*
< 'I’E {tQXJ? XG> ey + PGP 1 {1XG] < e} |]-‘} + ([Js]) a.s.,
< ¢'I’E {tQXJ? L{|X] > e} +eltPIXG P 1{]X] < e} \]—‘] +E[XF|IF] ¢! max E[XP|F]  as.,

Thus, we have
E |exp {itZXk} |]-'1 —e /2
k=1
2 1y J J 2
= |72 E |exp <itZXk +Y E [X,§|f]> (thXk +ZE X?|F) ) \ ]
j=1 k=1 k=1

J J 2 J— j—1 2
E |exp (itZXk +3" B [X}|F] ’;) —exp <itZXk +Y  E[X}|F] ’;) F] ‘
k=1 k=1 k=1 k=1

14



< t2ZE (X2 1{|X;| > e} |F] +elt)? ZE (X7 1{|X;| < e} |F]
Jj=1 j=1
+t ax £ (X2 F] - ZE [X2|F]
< t2ZE (X2 1{|X;| > e} |F] +elt)? ZE [X2|7] +t4 max (X2 F] - ZE [X2|7]

Jj=1 j=1
< tzzE (X2 1{|X;| > e} |F] +elt)? +t4 max E[Xz\]-']
7=1
The last term tends to zero almost surely when n is large since for arbitrarily small F-measurable £ > 0 and
1 <4< n,one has X? <&+ X2 1{|X;| > ¢} a.s. implying
E[X}|F] <+ E[X7 - 1{|Xi| > e} |F] a.s.,

which entails

E[X}F]<e +ZE (X2 1{Xi| > e} |F]  as.

=1

Noticing that the right-hand side does not depend on i and the conditional Lindeberg condition implies that
n

max E [X?|F] < e+ Y E[X? 1{|Xi| >¢c}|F] = 0 as. as n — oo and € — 0. The terms in the middle
i=1

1<ign
converges to zero a.s. as € — 0 a.s., and the first term also converges to zero a.s. as n — oo and € — 0 a.s.

because of the conditional Lindeberg condition. Therefore, it follows that

n
E |exp {itZXk} |F| =E [exp {it&;l\/ﬁ (Zn - ﬂn)} |f] e t'/2 a.s.,
k=1
when n tends to infinity. Hence, the Levy continuity theorem implies that conditionally on F,

N (Zn — ﬂn) —PN(0,1). Since the right-hand side above does not depend on the conditioning sigma-
algebra. The result must hold unconditionally. Due to equation (1.5) of |[Rényi (1963, p. 294) we observe that
this convergence is also F-stable. The result is proved. |

As can be seen, Theorems A.1 and A.2 are in fact special cases of Theorems C.1 and C.2 respectively.
Therefore, the proofs of Theorems A.1 and A.2 can be also easily derived following those of Theorems C.1 and
C.2 and are given as follows.

Proof of Theorem A.1: Notice first that the ¢, inequality (e.g. White (2001, Proposition 3.8, p. 35)) ensures
that

E (|Zi - E(Zi|}')|1+5\}') <2 (E (\Zi|1+5|}') +|E (Zi|}')\1+5) a.s..

By noting that F <|Z¢\1+§|}- ) < A a.s. and applying Jensen’s inequality for conditional expectations, we have
E(Z|F)|'° < E (|ZZ-\1+5|}-) < A as. so that E (\Zi - E(Zi|.7:)|1+5|]:) < 29 . A a.s.. Then, the moment

condition given in Theorem C.1 can be easily verified and the proof is complete. |

Proof of Theorem A.2: The proof follows immediately by verifying the conditional Lindeberg condition given
in Theorem C.2. |

Proof of Lemma B.1:
It should be noted that throughout this proof we set 0 < § < 1 and that all results are conditional on F. We
frequently make use of Cramer-Wold device and Theorem A.1.

N
1. Let ¢; and ¢, be arbitrary (hi + hs) x 1 vectors. =~ > (i'w;'w;(> is a sum of F-independent random
i=1
variables and each term satisfies the following inequality a.s.

140 5 5 §
B (|6 wiwiGa] FIF] <Gl Gl B [l 1 F]
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The term on the right-hand side is a.s. uniformly bounded because of Assumption 1. Thus, from the use of the
Cramer-Wold device and Theorem A.1 one has

N—oco N

N

1

NZUJZ w; — lim —ZE w;'w;|F] =W (Fr) a.s..
i=1

N
2. Let ¢; and (s be arbitrary (hs + hg) X 1 vectors. % S G'xi'2i¢o is a sum of F-independent random
i=1
variables and each term satisfies the following inequality a.s.
146 146 146 2428
B [|a'aswical TIF] < il Gl B [l F]

1446 1446 2425 2426 2425
< 220G Gl, (B (ol 0F] 1P, B (I, 1 F]),

where the last line follows the ¢, inequality. The right-hand side is bounded uniformly due to Assumption 1.ii
and v. Therefore,

N
%inlazi = Zuz v+ — Zr "Fr' Frl; + — ZUZ/FTF + = ZF’FT v

7,1 zl

— V(Fp)+ lim —ZE i Fr' FrT;| F|

N—oco N
1 X N
. - '/ i ! .
+]\/IE>I}>0 N igl Ev/|F|FrT (Fr)+ T (Fr) Fr ngn Eﬁ [vs|F]

= X(Fr)

a.s., which gives the result.

N
3. Let ¢1 and (s be respectively arbitrary (h; + hg) x 1 and (he + hyg) X 1 vectors. % S G'wi'wils is a sum
i=1
of F-independent random variables and each term satisfies the following inequality a.s.

B (|6 wiwico 1] <Gl 16N, B (il 1] B i), 1 F]
< 2Pl Nl [l 7] (2 [Hvin;”lf} FEl, [Hnn;”lﬂ) -

the use of the Cramer-Wold device and Theorem A.1 by noting that

RV IR S
N;wz%fﬁzwz TiJFNZwiUi

— lim —ZE w/|FIFrD (Fr) + lim —ZE w;'v;|[F] = WX (Fr) as..

N—oco N

N
4. Let (7 and (2 be respectively arbitrary (h; + hg) x 1 and (1 + p) x 1 vectors. % S G'wi'eiCs is a sum of
i=1
F-independent random variables and each term satisfies the following inequality a.s.

B (|6 wieica| ' 1F] < Nl Gl B [lwilly 0 1F] B {lleill, 1]

1446 146 146 1446 146 146
<2l NGl B (il 1 F] (B leill, 0 1F] + 1P, B Il 1 7] )

The right hand side is bounded uniformly due to Assumptions 1.i, iii and iv. Therefore, the result follows since

=

N N N

1 1 1

N E wi'ei = N E w/FT’yi + N E U}i/& — ]\;E}n E wl |JT FT’}/ (FT) a.s..
i=1 i=1 i=1
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N
5. Let (7 and (3 be respectively arbitrary (hg + hg) x 1 and (1 + p) x 1 vectors. % S G'xi'eiy is a sum of
i=1
F-independent random variables and each term satisfies the following inequality a.s.

B [z eca] T 1F] <11, Gl B [, 1] B (e, 1 7]

< lcully el B [(willy + 1Pl 1| B [(leilly + 1 Prllill) 1]
<ANcilly Gl (B [leilly™1F] + 1Fel, B I, 1 F))

(B Il ™1 F ]+ 1Frl, B [l 1] )

The right-hand side is bounded uniformly due to Assumption 1.i, ii, iv and v. Therefore, the result follows from
the use of the Cramer-Wold device and Theorem A.1 by noticing that

1< 1 & 1 & 1 & 1 &
2: o 2: I X 1 ) X ) X I’
Ni:1xi ei—Ni:]AUzEz'i_NE FZFTFT'%"'NE UZFTPYz""Ni}:lFZFTEz

— F(FT) FT FT’}/ (FT + hm ’Ul |JT" FT’)/ (FT)

an

N
6. Let (1 and (5 be arbitrary (1 4 p) x 1 vectors. % 3" ¢i'ei’eiCy is a sum of F-independent random variables
i=1

and each term satisfies the following inequality a.s.
144 146 146 2425
B |[0'e/eial TIF] < Gl Gl OB e, 7]
146 146 2425 2426 2425
<226y, NGl (B [llallo™ 2 1F] + 1P, 2B [ill,* 1 F] ) ase

The right-hand side is bounded uniformly due to Assumption 1.i and iv. Therefore, we have
1 & 1 & 1 & 1 & 1 &
v ; ei'e; = N ;6/&' N ;%/FT/FT%’ N ;51‘/FT% N ; vi' Fr'e;

N
. 1
— Y. (Fr) + A}gnoo N ; E [%'FT'FT%LF] a.s.
from the use of Cramer-Wold device and Theorem A.1.

N
7. Let ¢; and (y be respectively arbitrary T x 1 and (hy + h3) x 1 vectors. % > ¢G'wily is a sum of F-
i=1

independent random variables and each term satisfies the following inequality a.s.

B (|6 wial TIF] <l Gl B [l 1]

The term on the right-hand side is a.s. uniformly bounded because of Assumption 1.iii. Thus,

(B.1.) —sz — 151100—ng [w;|F] a.s..
Notice that
| X N | X | X
—\/ —] —
N;(wi—w) (w; — w) NZwaZ w'w = N;wllwz_ﬁzwzlﬁgwl

We can use result 1 and (B.1) to conclude that this converges a.s. to

W* (Fr) = lim —ZE w;'w;| F] — lim —ZE w;'|F] lim E [w;|F].

N—oco N N—oco N N—>oo

||Mz

N
8. Let ¢; and ( be respectively arbitrary T x 1 and (he 4 hs) x 1 vectors. =+ > (i'w;(2 is a sum of F-
=1

independent random variables and each term satisfies the following inequality a.s.
1+6 1+6 1+6 146
B [[a'wical T1F] < il ol B [l 1]

1446 1446 1446 1446 1446
<2cilly lcally" (B llilly1F] + 1Fr B i), 7] ) -
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The right hand side is bounded uniformly due to Assumption 1.ii and v. Therefore,
X
(B2) — Zx = lim z; E[z;|F) = Pyl (Fr) + lim ; E[v|F]  as.

Write

1 & 1 &
N2 o) @ a) = ) e -t
=1 =1

N
The limit for % > x;'x; is given by result 2. Based on the above, the result follows immediately.

i=1
9. Write
- Z (wi - 71)), (iEi - f) = — wi’xi - = wi’— ZTj.
N= N= NZ NI
The a.s. limits for the three terms are given respectively by result 3, and noting (B.1) and (B.2).

N
10. Let ¢; and (5 be respectively arbitrary T'x 1 and (1 + p) x 1 vectors. % 3" ¢1'eio is a sum of F-independent
i=1

random variables and each term satisfies the following inequality a.s.

B [|a'eical T 1F] <l 6l B e, 1]

é é 8 é 8
<2Gil, NGl (B [leilly ™ 1F] + 1Pzl B [l 7] )

The right hand side is bounded uniformly due to Assumption 1.i and iv. Therefore,
XN | X N
B3) Zle - lim ;E le:| F] = Fr lim Z [vilFl = Fry (Fr)  a.s..

Then the result holds because of result 4, (B.1) and (B.3).
11. Similarly to 10, we can write

1 N . N 1 N 1 N
_ /
N;(mi—x)( Z e Ngxiﬁgei

=1

N
1
— T (Fp) Fp'Frvy (Fr) — Jim NZ [T)/|F)Fr' Fry (Fr) = 0 as.

because of result 5, (B.2) and (B.3).
12. Similar to result 10 and 11 of this lemma,
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