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Abstract: This paper provides some test cases, called circuits, for the evaluation of Gaussian likelihood
maximization algorithms of the cointegrated vector autoregressive model. Both I(1) and I(2) models
are considered. The performance of algorithms is compared first in terms of effectiveness, defined as
the ability to find the overall maximum. The next step is to compare their efficiency and reliability across
experiments. The aim of the paper is to commence a collective learning project by the profession on
the actual properties of algorithms for cointegrated vector autoregressive model estimation, in order
to improve their quality and, as a consequence, also the reliability of empirical research.
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1. Introduction

Since the late 1980s, cointegrated vector autoregressive models (CVAR) have been extensively
used to analyze nonstationary macro-economic data with stochastic trends. Estimation of these models
often requires numerical optimization, both for stochastic trends integrated of order 1, I(1), and of
order 2, I(2). This paper proposes a set of test cases to analyze the properties of the numerical algorithms
for likelihood maximization of CVAR models. This is an attempt to start a collective learning project
by the profession about the actual properties of algorithms, in order to improve their quality and, as a
consequence, the reliability of empirical research using CVAR models.

The statistical analysis of CVAR models for data with I(1) stochastic trends was developed in
Johansen (1988, 1991). The I(1) CVAR model is characterized by a reduced rank restriction of the
autoregressive impact matrix. Gaussian maximum likelihood estimation (MLE) in this model can be
performed by Reduced Rank Regression (RRR, see Anderson 1951), which requires the solution of a
generalized eigenvalue problem.

Simple common restrictions on the cointegrating vectors can be estimated explicitly by
modifications of RRR, see Johansen and Juselius (1992). However, MLE under more general restrictions,
such as equation-by-equation overidentifying restrictions on the cointegration parameters, cannot be
reduced to RRR; here several algorithms can be applied to maximize the likelihood. Johansen and
Juselius (1994) and Johansen (1995a) provided an algorithm that alternates RRR over each cointegrating
vector in turn, keeping the others fixed. They called this a ‘switching algorithm’, and since then this
label has been used for the alternating variables algorithms in the CVAR literature. Boswijk and
Doornik (2004) provides an overview.
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Switching algorithms have some advantages over quasi-Newton methods: they don’t require
derivatives, they are easy to implement and each step uses expressions whose numerical properties
and accuracy are well known, such as ordinary least squares (OLS), RRR, or generalized least squares
(GLS). The downside is that convergence of switching algorithms can be very slow, see Doornik (2017a),
and there is a danger of prematurely deciding upon convergence. Doornik (2017a) also showed that
adding a line search to switching algorithms can greatly improve their speed and reliability.

The I(2) CVAR is characterized by two reduced rank restrictions, and Gaussian maximum
likelihood cannot be reduced to RRR, except in the specific case where it really reduces to an
(unrestricted) I(1) model. Initially, estimation was performed by a two-step method, Johansen (1995b).
Subsequently, Johansen (1997) proposed a switching algorithm for MLE. Estimation of the I(2) model
with restrictions on the cointegration parameters appears harder than in the I(1) case, and it is still
under active development, as can be seen below.

While several algorithms exist that estimate the restricted I(1) and I(2) CVAR models, with some
of them readily available in software packages, there has been very little research into the effectiveness
of these algorithms. No comparative analysis is available either. This paper aims to improve upon
this situation; to this effect, it proposes a set of experimental designs that will allow researchers to
benefit from the results of alternative algorithms implemented by peers. This should ultimately lead to
more effective algorithms, which, in turn, will provide more confidence in the numerical results of
empirical analyses.

This paper defines two classes of exercises, called Formula I(1) and I(2), in a playful allusion to
Grand Prix car racing championships. Formula I(1) defines a set of precise rules involving I(1) data
generation processes (DGP) and models, while Formula I(2) does the same for I(2) DGPs and models.
The proposed experiments control for common sources of variability; this improves comparability and
efficiency of results. A simple way to control for Monte Carlo variability is to use the same realization
of the innovations in the experiments. This is achieved here by sharing a file of innovations and
providing instructions on how to build the time series from them.

Econometricians are invited to implement alternative algorithms with respect to the ones
employed here, and to test them by running one or more of the exercises proposed in this paper.
A companion website https://sites.google.com/view/race-i1 has been created, where researchers
interested in checking the performance of their algorithms are invited to follow instruction on how to
upload their results, to be compared with constantly-updated benchmarks. Guidelines are illustrated
below. The results for all algorithms are by design comparable; moreover, the participation of an
additional algorithm may improve the overall confidence in the comparisons, as explained below.

Results from different implementations of algorithms reflect both the properties of the algorithms
sensu stricto and of their implementation, where one expects different implementations of the same
algorithm to lead to different results. Because of this, econometricians are encouraged to participate in
the races also with their own implementation of algorithms already entertained by others. This will
increase information on the degree of reproducibility of results and on the relative importance of the
implementation versus the algorithm sensu stricto.1

Recent advances in computational technology have fuelled the Reproducible Research movement;
the present paper can be seen as a contribution to this movement.2 The Reproducible Research
movement makes use of replication testbeds and Docker containers for replication of results, see
e.g., Boettiger (2015). The present project has chosen to keep requirements for researchers at a minimum
and it is not demanding the use of these solutions, at least in the current starting configuration.

1 In the rest of the paper the word algorithm is used to represent the combination of the algorithm sensu stricto and its
implementation; hence two implementations of the same algorithm are referred to as two algorithms.

2 The reference to the Reproducible Research movement was suggested by one referee; see e.g., the bibliography and links at
http://reproducibleresearch.net.

https://sites.google.com/view/race-i1
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The rest of the paper is organized as follows. Section 2 discusses design and evaluation of
algorithms in general terms. Section 3 provides definitions, while Section 4 describes precise measures
of algorithmic performance. Section 5 describes the Formula I(1) DGP-model pairs, while Section 6
does so for the Formula I(2) DGP-model pairs. The Formula I(1) races are illustrated in Section 7, the
Formula I(2) races are illustrated in Section 8; Section 9 concludes. The Appendix A contains practical
implementation instructions.

2. Design and evaluation principles

Each exercise in Formula I(1) and I(2) is built around a DGP-model pair. The chosen DGPs
have a simple design, with a few coefficients that govern persistence, dimensionality and adjustment
towards equilibrium. Aggregating algorithmic performance across runs of the same single DGP
appears reasonable, because one expects the frequency of difficult maximization problems to be a
function of the characteristics of the given DGP-model pair.

Two main criteria are used for the evaluation of the output from different algorithms. The first one,
called effectiveness, regards the ability of an algorithm to find a maximum of the likelihood function.
Algorithms are expected either to fail, or to converge to a stationary point. This, with some further
inspection, may be established as a local maximum. A comparison of local maxima between methods
will provide useful insights.

The second one, conditional on the first, is the efficiency of the algorithm to find the maximum,
which is closely related to its speed. Effectiveness is considered here to be of paramount importance: it
is not much use having an algorithm that runs quickly but fails to find the maximum. Actual speeds
can be difficult to compare in heterogenous hardware and software environments: however, measures
of efficiency can be informative for an implementation in a fixed environment using different designs.

There are many examples of comparisons of optimization algorithms in the numerical analysis
literature. Beiranvand et al. (2017) provides an extensive list, together with a generic discussion of
how to benchmark optimization algorithms.3 In the light of this, only advantages and shortcomings
of the present approach with respect to Beiranvand et al. (2017) are discussed here, as well as future
extensions that are worth considering.

One important specificity here is the focus on the evaluation of estimation procedures for statistical
models. These have numerical optimization at their core, but they are applied to maximize specific
likelihoods. In the present setting the exact maximum of the likelihood is not known. Moreover, while
the asymptotic properties of the MLE are well understood, these will only be approximate at best in
any finite sample.

2.1. Race Design

The race design refers to the DGP-model pair, as well as the rules for the implementation of
estimators. Because iterative maximization will be used in all cases, algorithms need starting values
and decision rules as to when to terminate.

2.1.1. Starting Values

Formula I(1) and I(2) treat the choice of starting value as part of the algorithm. This is the most
significant difference with common practice in optimization benchmarking. The starting values may
have an important impact on the performance, and, ideally but unfeasibly, one would like to start at
the maximum. Optimization benchmarks prescribe specific starting values to create a level playing
field for algorithms. This is not done here because implementations may have statistical reasons for

3 The idea to create public domain test cases based on which programmers may test the performances of their algorithms
according to rigorous rules is also not new. For example, the National Institute of Standards and Technology started a
website in the late 1990s of the project StRD - Statistical Reference Datasets, see http://www.itl.nist.gov/div898/strd/.

http://www.itl.nist.gov/div898/strd/
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their starting value routine, e.g., there may be a simple estimator that is consistent or an approximation
that is reasonable.

Some implementations use a small set of randomized starting values, then pick the best.
This approach is general, so could be used by all algorithms. The advantage of the present approach is
that one evaluates estimation as it is presented to the user. The drawback is that it will be harder to
determine the source of performance differences.4

2.1.2. Convergence

The termination decision rule is also left to the algorithm, so it presents a further source of
difference between implementations. One expects this to have a small impact: participants in the races
should ensure that convergence is tight enough not to change the computed evaluation statistics. If it
is set too loose, the algorithm will score worse on reliability. However, setting convergence too tightly
will increase the required number of iterations, sometimes substantially if convergence is linear or
rounding errors prevent achieving the desired accuracy.

2.1.3. DGP-Model Pair

The chosen DGPs generate I(1) or I(2) processes, as presented in Sections 5 and 6 below; the
associated statistical models are (possibly restricted) I(1) or I(2) models, defined in Section 3. Exercises
include both cases with correct specification, i.e. when the DGP is contained in the model, as well as
cases with mis-specification, i.e., when the DGP is not contained in the model.

Mis-specification is limited here, in the sense that all models still belong to the appropriate model
class: an I(1) DGP is always analyzed with an I(1) (sub-)model, and similarly for an I(2) DGP and
(sub-)model. Indeed, the sources of mis-specification present here are a subset of the ones faced by
econometricians in real applications. The hope is that results for the mis-specification cases covered
here can give some lower bounds on the effects of mis-specification for real applications.

Common econometric wisdom says that algorithms tend to be less successful when the model is
mis-specified. The present design provides insights as to what extent this is the case in I(1) and I(2)
CVAR models, within the limited degree of mis-specification present in these races.

2.1.4. Construction of Test Cases

Different approaches can be used to create test cases:

1. Estimate models on real data

This is the most realistic setting, because it reflects the complexities of data sets that are used for
empirical analyses. On the other hand, it could be hard to study causes of poor performance as
there can be many sources such as unmodelled correlations or heteroscedasticities. Aggregating
performance over different real datasets may hide heterogeneity in performance due to the
different DGPs that have generated the real data.

2. Generate artificial data from models estimated on real data

This is a semi-realistic setting where it is known from which structure the data are generated.
Coefficient matrices of the DGP will normally be dense, with a non-diagonal error variance matrix.

3. Use a purely artificial DGP

This usually differs from the previous case in that the DGPs are controlled by only a few
coefficients that are deemed important. So it is the least realistic case, but offers the possibility to
determine the main causes of performance differences.

4 A future extension would be to include some experiments that start from prespecified starting values, as well as storing the
initial log-likelihood in the results file.
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Formula I(1) and I(2) adopt the artificial DGP approach with sparse design as a method to
construct test data. The drawback is that it can only cover a limited number of DGPs, which may
not reflect all empirically-relevant situations. The present set of designs is no exception to this rule;
however, it improves on the current state of play where no agreed common design of experiments
has been proposed in this area. A future extension will be to include a set of tests based on real-world
data sets.

2.1.5. Generation of Test Data

All experiments are run with errors that are fixed in advance to ensure that every participant
generates exactly the same artificial data sets. The sample size is an important design characteristic;
test data are provided for up to 1000 observations, but only races that use 100 or 1000 are included here.

In terms of comparability of results for different algorithms, the possibility to fix the innovations,
and hence the data in each lap, controls for one known source of Monte Carlo variability when
estimating difference in behavior; see Abadir and Paruolo (2009), Paruolo (2002) or Hendry (1984, §4.1)
on the use of common random numbers.

The choice of common random numbers permits to find (significant) differences in behavior of
algorithms with a smaller number of cases, and hence computer time, than when innovations vary
across teams. Moreover, it also allows the possibility to investigate the presence of multiple maxima.

2.2. Evaluation

Each estimation, unless it ends in failure, results in a set of coefficient estimates with corresponding
log-likelihood. Ideally, all algorithms converge to the same stationary point, which is also the global
maximum of the likelihood. This will not always happen: it is not known whether these models have
unimodal likelihoods, and there is evidence to the contrary in many experiments considered. Moreover,
the global maximum is not known, and this is the target of each estimation. As a consequence,
evaluation is largely based on a comparison with the best solution.

2.2.1. Effectiveness

The overall maximum is the best function value of all algorithms that have been applied to the
same problem. This is the best attempt at finding the global maximum, but remains open to revision.
Consensus is informative: the more algorithms agree on the maximum, the more confident one is that
the global maximum has been found. Similarly, disagreement may indicate multimodality. This is one
of the advantages of pooling the results of different algorithms.

If one algorithm finds a lower log-likelihood than another, this indicates that it either found
a different local maximum, converged prematurely, or ended up in a saddle point, or, hopefully
not so common, there is a programming error. Differences may be the result of the adopted initial
parameter values, or owing to the path that is taken, or to the terminal conditions, or a combination of
all the above.

However, algorithms that systematically fail to reach the overall maximum should be considered
inferior to the ones that find it. Inability to find the global maximum may have serious implications for
inference, leading to over-rejection or under-rejection of the null hypothesis for likelihood ratio (LR)
tests, depending on whether the maximization error affects the restricted or the unrestricted model.

2.2.2. Efficiency

Efficiency can be expressed in terms of a measure of the number of operations involved, or a
measure of time. Time can be expressed as CPU time or as the total time to complete an estimation.
While lapsed time is very useful information for a user of the software, it is difficult to use in the
present setting. First, the same algorithm implemented in two different languages (say Ox and Matlab)
may have very different timings on identical hardware. Next, this project expects submissions of
completed results, where the referee team has no control over the hardware.
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Even if the referee team were to rerun the experiments, this would be done on different computers
with different (versions of) operating systems. Finally, the level of parallelism and number of cores
plays a role: even when the considered algorithms cannot be parallelized, matrix operations inside
them may be. When running one thousand replications, one could normally do replications in parallel.
This suggests not to use time to measure efficiency.

With time measurements ruled out, one is left with counting some aspects of the algorithm.
This could be the number of times the objective function is evaluated, the number of parameter update
steps, or some other measure. All these measures have a (loose) connection to clock time. E.g., a
quadratically convergent algorithm will require fewer function calls and parameter updates than
a linearly convergent algorithm, and usually be much faster as well. However, the actual speed
advantage can be undermined if the former requires very costly hessian computations (say).

For the switching algorithms that are most commonly used in CVARs when RRR is not possible,
the number of parameter update steps is a better metric to express efficiency. An analysis of all the
timings reported in Doornik (2017b) shows that, after allowing for two outlying experiments, the
number of updates can largely explain CPU time, while the number of objective function evaluations
is insignificant. Both the intercept and the coefficient that maps the update count to CPU time are
influenced by CPU type, amount of memory, software environment, etc.

In line with common practice, an iteration is defined as a one parameter update step.
This definition also applies to quasi-Newton methods, although, unlike switching algorithms, each
iteration then also involves the computation of first derivatives. As a consequence, an iteration could
be slower than a switching update step, but in many situations a comparison would still be informative.
When comparing efficiency of algorithms, the number of iterations appears to be of more fundamental
value than CPU time, and it is certainly useful when comparing the same implementation for different
experiments when these have been run on a variety of hardware.

There remains one small caveat: changing compiler can affect the number of iterations. When
code generation differences mean that rounding errors accumulate differently, this can impact the
convergence decision. This effect to be expected to be small.

Summing up, the remainder of the paper uses number of iterations as a measure of efficiency. An
update of the parameter vector is understood to define an iteration, and each team participating to
Formula I(1) and I(2) is expected to use the same definition.

3. Definitions and Statistical Models

This section introduces the car racing terminology and defines more precisely the notions of DGP
and statistical model.

3.1. Terminology

Analogous to car racing terminology, a circuit refers to a specific DGP-model pair, i.e. a DGP
coupled with a model specification, characterized by given restrictions on the parameters. Each circuit
needs to be completed a certain number of times, i.e. laps (replications).

Circuits are grouped in two championships, called ‘Formula I(1)’ and ‘Formula I(2)’.
The implementation of an algorithm corresponds to a driver with a constructor team, which is called a
team for simplicity. The definition of an algorithm is taken to include everything that it is required to
maximize the likelihood function; in particular it includes the choice of the starting value and of the
convergence criterion or termination rule.

In the following there are 96 Formula I(1) circuits and 1456 Formula I(2) circuits. Teams do not
have to participate in all circuits. For each circuit, a participating team has to:

(i) reconstruct N = 1000 datasets (one for each lap) using the innovations provided and the DGP
documented below;

(ii) for each dataset, estimate the specified model(s);
(iii) report the results in a given format, described in the Appendix A.
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An econometrician may implement more than one algorithm, so enter multiple teams in the races.

3.2. Definitions

This subsection is devoted to more technical definitions of a DGP, a statistical model and its
parametrization. A DGP is a completely specified stochastic process that generates the sample data
X1:T := (X1 : · · · : XT). Here : is used to indicate horizontal concatenation, with the exception for
expressions involving indices, such as (1 : T), which is a shorthand for (1 : · · · : T). For example Xt

i.i.d N(0, 1), t = 1, . . . , T is a DGP.
The present design of experiments considers a finite number of DGPs; these are grouped into

two classes, called the I(1) DGP class and the I(2) DGP class. Each DGP class is indexed by a set of
coefficients; for example Xt i.i.d N(0, 1), t = 1, . . . , T, with T ∈ {100, 1000} is a DGP class.

A parametric statistical model is a collection of stochastic processes indexed by a vector of parameters
ϕ, which belongs to a parameter space Φ, usually an open subset of Rm, where m is the number of
parameters. A model is said to be correctly specified if its parameter space contains one value of the
parameters that characterizes the DGP which has generated the data, and it is mis-specified otherwise.
E.g. Xt i.i.d N(µ, σ2), t = 1, . . . , T, −∞ < µ < ∞, 0 ≤ σ < ∞ is a parametric statistical model, when Xt

is a scalar and ϕ = (µ : σ2)′. The parameter space Φ is given here by R×R+. Note that a parametric
statistical model is needed in order to write the likelihood function for the sample data X1:T . In the
case above, the likelihood is f (X1:T ; µ, σ2) = π−T/2σ−T exp(− 1

2 ∑T
t=1(Xt − µ)2/σ2).

Consider now one model A for X1:T , indexed by the parameter vector ϕ with parameter space ΦA.
Assume also that model B is the same, except that the parameter vector ϕ lies in the parameter space
ΦB with ΦA ⊂ ΦB. The two models differ by the parameter points that are contained in ΦB but not in
ΦA (i.e. points in the set ΦB\ΦA). If some points in ΦB\ΦA cannot be obtained as limits of sequences
in ΦA, (i.e., ΦB does not coincide with the closure of ΦA) then model A is said to be a submodel of
model B. For example, model A can be Xt i.i.d N(µ, 1), t = 1, . . . , T, ΦA := {µ : 0 ≤ µ < ∞} while
model B can be ΦB := {µ : −∞ < µ < ∞}. Here ΦB\ΦA = {µ : −∞ < µ < 0} whose points cannot
be obtained as limits of sequences in ΦA. Hence model A is a submodel of model B.

When all the parameter values in ΦB\ΦA can be obtained as limits of sequences in ΦA, then
model A and B are essentially the same, and no distinction between them is made here. In this
case, or in case the mappings between parametrizations are bijective, it is said that A and B provide
equivalent parametrizations of the same model. As an example, let ΦA := {µ : 0 ≤ µ < ∞} as
above and let ΦB := {µ = exp η : −∞ < η < ∞}; the two models are essentially the same, and
their parametrizations are equivalent. This is because, despite µ = 0 being present only in the µ

parametrization, µ = 0 can be obtained as a limit of points in µ = exp η, η ∈ (−∞, ∞), e.g., by
choosing ηi = −i, i = 1, 2, 3 . . . Hence in this case the η and µ parametrizations are equivalent, as they
essentially describe the same model.

In the present design of experiments all models are (restricted versions of) the I(1) and the I(2)
models, defined below. The case of equivalent models in the above sense is relevant for different
parametrizations of the I(2) statistical model, see Noack Jensen (2014).

3.3. The Cointegrated VAR

Both the I(1) and I(2) statistical models are sub-models of the Gaussian VAR model with k lags

Xt =
k

∑
i=1

AiXt−i + µ0 + µ1t + εt, εt i.i.d. N(0, Ω), t = k + 1, ..., T, (1)

where Xt, εt, µ0, µ1 are p × 1, Ai and Ω are p × p, and Ω is symmetric and positive definite.
The presample values X1, ..., Xk are fixed and given. The (possibly restricted) parameters associated
with µ0, µ1, Ai, i = 1, . . . , k are called the mean-parameters and are indicated by θ. The ones associated
with Ω are called the variance parameters, and they are here always unrestricted, except for the
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requirement of Ω to be positive definite. The parameter vector is made of the unrestricted entries in θ

and Ω.
The Gaussian loglikelihood (excluding a constant term) is given by:

−T − k
2

log det Ω− 1
2

T

∑
t=k+1

ε′t (θ)Ω−1εt (θ) ,

where εt(θ) equal to εt in (1) considered as a function of θ. Maximizing the loglikelihood with respect
to Ω, one finds Ω = Ω(θ) := (T − k)−1 ∑T

t=k+1 εt(θ)ε′t(θ), which, when substituted back into the
loglikelihood gives −(T − k)p/2 + `(θ) where

` (θ) := −T − k
2

log det Ω(θ), Ω (θ) :=
1

T − k

T

∑
t=k+1

εt (θ) ε′t (θ) . (2)

The loglikelihood is here defined as `(θ), calculated as in (2).
The I(1) and I(2) models are submodels of (1).

I(1) statistical models The unrestricted I(1) statistical model under consideration is given by:

∆Xt = αβ′
(

Xt−1

t

)
+

k−1

∑
i=1

Γi∆Xt−i + µ0 + εt. (3)

Here α and β = (β?′ : β′D)
′ are respectively p × r and (p + 1) × r parameter

matrices, r < p, with βD a 1 × r vector. The long-run autoregressive matrix
Π = −I + ∑k

i=1 Ai is here restricted to satisfy rank(Π) ≤ r, because it is expressed as a product
Π = αβ?′, where α and β? have r columns. The coefficient µ1 is restricted as µ1 = αβ′D. The Γi matrices
are unconstrained. Some Formula I(1) races have restrictions on the columns of α and β.

The I(1) model is indicated asM(r) in what follows. The likelihood of the I(1) modelM(r) has
to be maximized with respect to the parameters α, β, Γ1, ..., Γk−1, µ0 and Ω.

I(2) statistical models The unrestricted I(2) statistical model under consideration is given by:

∆2Xt = αβ′
(

Xt−1

t− 1

)
+ (Γ : µ0)

(
∆Xt−i

1

)
+

k−2

∑
i=1

Φi∆2Xt−i + εt, (4)

with α′⊥(Γ : µ0)β⊥ = ϕη′. (5)

Here α⊥ indicates a basis of the orthogonal complement of the space spanned by the columns of
α; similarly for β⊥ with respect to β. The I(2) model is a submodel of I(1) model; in fact in (4), as in (3),
α and β = (β?′ : β′D)

′ are p× r and (p + 1)× r parameter matrices, r < p, with βD a 1× r vector, and
µ1 is restricted as µ1 = αβ′D. In (5), ϕ is (p− r)× s and η = (η?′ : η′D)

′ is (p− r + 1)× s, s < p− r
with ηD a 1× s vector.5 The Φi parameter matrices are unrestricted.

The I(2) model in (4) and (5) is indicated as M(r, s) in the following. In the I(2) model there
are two rank restrictions, namely rank(αβ′) ≤ r and rank(α′⊥(Γ : µ0)β⊥) ≤ s. Several different
parametrizations exist of the I(2) model M(r, s), see Johansen (1997), Paruolo and Rahbek (1999),

5 One can observe that β⊥ can be chosen as

β⊥ =

(
β?
⊥ β̄?β′D
0 −1

)
so that α′⊥(Γ : µ0)β⊥ can be written as α′⊥(Γ : µ0)β⊥ = (α′⊥Γβ?

⊥ : α′⊥Γβ̄?β′D − α′⊥µ0). Using the partition η′ = (η?′ : η′D),
Equation (5) can be written as

α′⊥Γβ?
⊥ = ϕη?′ and α′⊥µ0 = α′⊥Γβ̄?β′D + ϕη′D

which is the form of the restrictions (5) used in Rahbek et al. (1999) Equation (2.4) (2.5).
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Rahbek et al. (1999), Boswijk (2000), Doornik (2017b), Mosconi and Paruolo (2016, 2017), Boswijk and
Paruolo (2017). They all satisfy rank(αβ′) ≤ r and rank(α′⊥(Γ : µ0)β⊥) ≤ s.6 Teams can choose their
preferred parametrization, but, whichever is adopted, the estimated parameters must be reported in
terms of α, β, (Γ : µ0), Φ1, ..., Φk−2 and Ω.

Some races have restrictions on columns of α, β or τ, where τ is defined as a (p + 1)× (r + s)
matrix that spans the column space of (β : β̄⊥η), where ā := a(a′a)−1.

4. Performance Evaluation

This section defines a number of indicators later employed to measure the performance of
algorithms. As introduced above, θ indicates the parameter vector of mean parameters and Ω the
variance covariance matrix of the innovations.

4.1. Elementary Information to Be Reported by Each Team

Each lap is indexed by i = 1, ..., N, each circuit by c = 1, . . . , C, and each team (i.e., algorithm)
by a. The set of teams participating in the race on circuit c is indicated as Ac; this set contains nc

algorithms. The subscript c indicates that Ac and nc depend on c, because a team might not participate
in all circuits. The following subsections describe the results that each team a has to report, as well as
the calculations that the referee team of the race will make on the basis of it.

For each lap i of circuit c, when team a terminates optimization, it produces the optimized value
θa,c,i of the parameter vector θ. The team should also set the convergence indicator Sa,c,i equal to 1 if
the algorithm has satisfied the (self-selected) convergence criterion, and set Sa,c,i to 0 if no convergence
was achieved. Teams should report the loglikelihood value obtained at the maximum `a,c,i := `(θa,c,i)

using (2).
In case Sa,c,i = 0, θa,c,i indicates the last value of θ before failure of algorithm a. Algorithm

a may not have converged either because ` (θ) cannot be evaluated numerically anymore (as e.g.,
when Ω (θ) becomes numerically singular) or because a maximum number of iterations has been
reached. In the latter case the final loglikelihood should be reported. In the former case, when the
likelihood evaluation failed, the team should report `a,c,i = −∞.7 So, regardless of success or failure in
convergence, a loglikelihood is always reported.

For each lap i in circuit c, team a should also report the number of performed iterations Na,c,i.
This number equals the maximum number of iterations if this is the reason why the algorithm
terminated. Choosing smaller or larger maximum numbers of iterations will affect result of each team
in an obvious way. Teams are asked to choose their own maximum numbers of iterations.

Na,c,i is assumed here to be inversely proportional to the speed of the algorithm. In practice, the
speed of the algorithm depends by the average time spent in each iteration, which is influenced by many
factors, such as the hardware and software specifications in the implementation. However, because
these additional factors vary among teams, the number Na,c,i is taken to provide an approximate
indicator of the slowness of the algorithm.

The choice of starting value of the algorithm a is taken to be an integral part of the definition of
the algorithm itself. Starting values cannot be based on the results of other teams. It is recommended
that the teams document their algorithm in a way that facilitates replication of their results, including
providing the computer code used in the calculations and a description of the choice of initial values.

Reported results from the races should be organised in a file, whose name indicates the circuit,
and where each row should contain the following information:

(i : `u
a,c,i : `a,c,i : Na,c,i : Sa,c,i : θR′

a,c,i),

6 In case of no deterministics, the satisfied inequalities are rank(αβ?′) ≤ r and rank(α′⊥Γβ?
⊥) ≤ s.

7 Because there is no clear convention on writing −∞, any value of −10308 or lower is interpreted as −∞.



Econometrics 2017, 5, 49 10 of 30

where `u
a,c,i is the maximum of the loglikelihood of a reference unrestricted model detailed in the

Appendix A, and the reported part of the coefficient vector, θR
a,c,i, is defined as

θR′
a,c,i :=

(
vec(αa,c,i)

′ : vec(βa,c,i)
′)

for the Formula I(1) circuits. For the Formula I(2) circuits instead:

θR′
a,c,i :=

(
vec(αa,c,i)

′ : vec(βa,c,i)
′ : vec(Γ : µ0)

′
a,c,i
)

.

The reported part of the θa,c,i includes the estimated parameters except for the parameters Φi
of the short term dynamics and the covariance of the innovations Ω. More details on the reporting
conventions are given in the Appendix A.

4.2. Indicators of Teams’ Performance

After completion of lap i of circuit c by a set of teamsAc, the referee team will compute the overall
maximum `?c,i and deviations Da,c,i from it as:

`?c,i = max
{a∈Ac : Sa,c,i=1}

`a,c,i, Da,c,i = `?c,i − `a,c,i. (6)

If all a ∈ Ac report failed convergence Sa,c,i = 0, then `?c,i will be set equal to −∞ and Da,c,i will
be set equal to 0. Observe that Da,c,i ≥ 0 by construction; Da,c,i is considered small if less than 10−7,
moderately small if between 10−7 and 10−2, and large if greater than 10−2.8

Next define the indicators

SCa,c,i := 11(Da,c,i < 10−7)Sa,c,i, WCa,c,i := 11(10−7 ≤ Da,c,i < 10−2)Sa,c,i

DCa,c,i := 11(Da,c,i ≥ 10−2)Sa,c,i, FCa,c,i := 1− Sa,c,i,

where 11(·) is the indicator function, SC stands for ‘strong’ convergence, WC stands for ‘weak’
convergence, DC stands for ‘distant’ convergence – i.e. convergence to a distant point from the overall
maximum – and FC stands for failed convergence. Note that SCa,c,i + WCa,c,i + DCa,c,i + FCa,c,i = 1 by
construction. When `?c,i = −∞, note that SCa,c,i = WCa,c,i = DCa,c,i = Sa,c,i = 0 and FCa,c,i = 1.

A summary across laps of the performance of algorithm a in circuit c is given by the quantities

SCa,c := 100 · N−1
N

∑
i=1

SCa,c,i, WCa,c := 100 · N−1
N

∑
i=1

WCa,c,i,

DCa,c := 100 · N−1
N

∑
i=1

DCa,c,i, FCa,c := 100 · N−1
N

∑
i=1

FCa,c,i.

These indicators deliver information on the % of times each algorithm reached strong convergence,
weak convergence, convergence to a point which is not the overall maximum, or did not converge.9

The set of pairs {(`?c,i, `a,c,i) : DCa,c,i = 1}a∈Ac ,i=1:N contain the detailed information on the effects
of convergence to a point that is distant from the overall maximum. They are later plotted, together
with the distribution of the relevant test statistics. Focusing on the laps where DCa,c,i = 1, it is also
interesting to calculate the average distance of `a,c,i to `?c,i. This is given by

8 As all reference values, the present ones of 10−2 and 10−7 are chosen in an ad-hoc way. In the opinion of the proponents
they reflect reasonable values for the differences between loglikelihoods, which can be interpreted approximately as relative
differences. Hence a difference of 10−2 means roughly that the two likelihoods differ by 1%, while a difference of 10−7

means roughly that the two likelihoods differ by 0.1 in a million, in relative terms.
9 One may wish to consider these indicators conditionally on the number of converged cases. To do this, one can replace the

division by N in the above formulae for SCa,c, WCa,c, DCa,c with division by ∑N
i=1 Sa,c,i .
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ADa,c =
N

∑
i=1

Da,c,i · DCa,c,i

(
N

∑
i=1

DCa,c,i

)−1

.

Conditionally on convergence, the average number of iterations is defined as

ITa,c :=
N

∑
i=1

Na,c,i · Sa,c,i

(
N

∑
i=1

Sa,c,i

)−1

.

4.3. Summary Analysis of Circuits and Laps

The referee team will compute summary statistics for each circuit. First, in order to identify laps
where all algorithms fail, the following DNF indicator is defined:

DNFc,i = ∏
a∈Ac

(1− Sa,c,i),

which equals 1 if all algorithms fail to converge.
In order to harvest information on the number of different maxima reported by the teams, the

following indicator is constructed. Let `(1),c,i ≥ `(2),c,i ≥ · · · ≥ `(mc),c,i be the ordered log-likelihood
values reported by those algorithms a ∈ Ac that have reported convergence, i.e., for which Sa,c,i = 1.
This list can be used to define the ‘number of reported optima’ indicator, NOR, as follows

NORc,i = 1 +
mc

∑
j=2

11(`(j−1),c,i − `(j),c,i > 10−2).

Note that for each j = 2, . . . , mc, the difference `(j−1),c,i − `(j),c,i ≥ 0 is the decrement of successive
reported log-likelihood values; if this decrement is smaller than a selected numerical threshold, here
taken to be 10−2, this means that the two algorithms corresponding to (j− 1) and (j) have reported
the same log-likelihood in practice. In this case, the counter NOR is not increased. If this difference is
greater than the numerical threshold of 10−2, then the two reported log-likelihood are classified as
different, and the counter NOR is incremented. Overall, NOR counts the number of maxima found by
different algorithms that are separated at least by distance of 10−2. NOR is influenced by the number
of participating teams.

Observe that the reported log-likelihood value `(j),c,i can correspond to an actual maximum or to
any other point judged as stationary by the termination criterion used in each algorithm. No check is
made by the referee team to distinguish between these situations; NOR should hence be interpreted as
an indicator of potential presence of multiple maxima; a proper check of the number of maxima would
require a more dedicated analysis.10

Especially for a difficult lap i, it is interesting to pool information obtained by different algorithms
on convergence to points that are distant from the overall maximum, i.e., when Da,c,i is large. This can
be averaged across the set of algorithms Ac that participate to circuit c in the indicator

DDc,i = ∑
a∈Ac

Da,c,iDCa,c,i

(
∑

a∈Ac

DCa,c,i

)−1

.

The indicators DDc,i and ADa,c are obviously related, and they differ in how they are averaged,
either across laps or algorithms.

10 This further analysis is not performed in this paper, but may be considered in later developments of the Formula I(1) and
I(2) project.
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The DNF and NOR indicators are also aggregated over all laps in a circuit, giving:

DNFc = N−1 ∑N
i=1 DNFc,i, NORc = N−1 ∑N

i=1 NORc,i.

5. Formula I(1) Circuits

This section introduces Formula I(1) circuits, i.e. DGP-model pairs where the DGP produces I(1)
variables. The model is the I(1) modelM(r) or a submodel of it. For some circuits the statistical model
is correctly specified, whereas for others it is mis-specified, as discussed in Section 3.2.

In the specification of the I(1) and I(2) DGPs, the innovations εt are chosen uncorrelated (and
independent given normality). This choice is made to represent the simplest possible case; this can be
changed in future development of the project.11

5.1. I(1) DGPs

The I(1) DGP class for lap i is indexed on the scalars (p, T, ρ0, ρ1):{
∆X(i)

1,t = ρ1∆X(i)
1,t−1 + ε

(i)
1,t

X(i)
2,t = ρ0X(i)

2,t−1 + ε
(i)
2,t

ε
(i)
t =

(
ε
(i)
1,t

ε
(i)
2,t

)
∼ i.i.d. N

(
0, Ip

)
, (7)

for t = 1 : T, i = 1 : N, X(i)
t = (X(i)′

1,t : X(i)′
2,t )

′, X(i)
0 = X(i)

−1 = 0p, where ε
(i)
j,t is of dimension p/2× 1,

j = 1, 2. Here Ip is the identity matrix of order p. All possible combinations are considered of the
following indices and coefficients:

p ∈ {6, 12} ; T ∈ {100, 1000} ; ρ0 ∈ {0, 0.9} ; ρ1 ∈ {0, 0.9} .

Note that in these DGPs,

• the first p/2 variables in X(i)
t are either random walks (when ρ1 = 0), or I(1) AR(2) processes

whose first difference is persistent (when ρ1 = 0.9). Therefore, ρ1 is interpreted as ‘a near
I(2)-ness’ coefficient.

• The last p/2 variables in X(i)
t are either white noise (when ρ0 = 0), or persistent stationary AR(1)

processes (when ρ0 = 0.9). Therefore, ρ0 is a ‘near I(1)-ness’ or ‘weak mean reversion’ coefficient.
For simplicity, in the following it is referred to as the ‘weak mean reversion’ coefficient.

The DGPs can be written as follows, see (3):

∆Xt =

(
0r

(ρ0 − 1)Ir

)(
0r Ir

)
Xt−1 +

(
ρ1 Ir 0r

0r 0r

)
∆Xt−1 + εt,

where µ0 = µ1 = 0, r = p/2, and 0r is a square block of zeros of dimension r.
To create the Monte Carlo datasets X(i)

1:T , each team has to use the DGP (7) with relevant values
of (p, T, ρ0, ρ1), together with the realizations of the ε’s as determined by the race organizers. Further
details are in the Appendix A.

5.2. I(1) Statistical Models

Using the generated data X(i)
1:T as a realization for X1:T , the I(1) model M(r) in (3) has to be

estimated on each lap i = 1, ..., N; as noted above, MLE of the unrestricted I(1) modelsM(r) in (3) is

11 In theory, the chosen DGPs can represent a wider class of DGPs, exploiting invariance of some statistical models with respect
to invertible transformation of the variables; see e.g., Paruolo (2005). In practice, however, algorithms may be sensitive
to scaling.
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obtained by RRR. The estimation sample starts at t = k + 1, so uses T− k observations. Two alternative
values for lag length k are used: k ∈ {2, 5}.

All I(1) circuits use the correct rank r = p/2 and are subject to further restrictions on the
cointegrating vectors, with or without restrictions on their loadings. To express these restrictions, the
following matrix structures are introduced, where an ∗ stands for any value, indicating an unrestricted
coefficient:

R0,m
m×m

=


∗ 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 ∗

 , R1,m
m×m

=


∗ 1 ∗ ∗

1
. . . . . . ∗

∗ . . . . . . 1
∗ ∗ 1 ∗

 , R2,m
m×m

=


1 ∗ ∗ ∗

∗ . . . . . . ∗

∗ . . . . . . ∗
∗ ∗ ∗ 1

 . (8)

Remark that R0,m sets all elements except the diagonal to zero; R1,m has two bands of unity
along the diagonal; R2,m fixes the diagonal to unity, but is otherwise unrestricted. All these matrices
are square.

Finally, Um,n stands for an unrestricted m× n dimensional matrix:

Um,n
m×n

=

(
∗ ∗ ... ∗
∗ ∗ ... ∗

)
. (9)

Restriction I(1)-A Model A has the following overidentifying restrictions on β:

β′ = (R0,r : Ir : Ur,1) . (10)

Specification (10) imposes r (r− 1) correctly specified overidentifying restrictions on β.
Restriction I(1)-B Model B has over-identifying restrictions that are mis-specified:

β′ = (R1,r : Ir : Ur,1) . (11)

This imposes 2(r− 1) overidentifying restrictions on β. These restrictions are mis-specified, in
the sense that the DGP is outside the parameters space of the statistical model, see Section 3.

Restriction I(1)-C Model C imposes the following, correctly specified, overidentifying restrictions on
α and β:

α′ = (Ur,r : R0,r) , β′ = (R0,r : R2,r : Ur,1) . (12)

Specification (12) imposes 2r (r− 1) restrictions on α and β. r (r− 1) of them would be enough
to obtain just-identification, therefore r (r− 1) are over-identifying.

6. Formula I(2) Circuits

This section introduces Formula I(2) circuits, following a similar approach to Formula I(1).

6.1. I(2) DGPs

The I(2) DGP class is indexed by the scalars (p, T, ω, ρ1); the data X(i)
1:T is generated as follows:

∆2X(i)
1,t = ε

(i)
1,t

∆X(i)
2,t = ρ1∆X(i)

2,t−1 + ε
(i)
2,t

X(i)
3,t = ωX(i)

3,t−1 + ∆X(i)
1,t−1 + ε

(i)
3,t

ε
(i)
t =


ε
(i)
1,t

ε
(i)
2,t

ε
(i)
3,t

 ∼ i.i.d. N
(
0, Ip

)
(13)
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where X(i)
0 = X(i)

−1 = 0p, X(i)
t = (X(i)′

1,t : X(i)′
2,t : X(i)′

3,t )
′, t = 1, ..., T, i = 1, ..., N, and ε

(i)
j,t is p/3× 1. As in

the I(1) case, all possible combinations are considered of the following indices and coefficients:

p ∈ {6, 12} ; T ∈ {100, 1000} ; ω ∈ {0, 0.9} ; ρ1 ∈ {0, 0.9} .

The DGPs can be written as follows, see (4):

∆2Xt =

(
02r,r

Ir

)(
0r,2r (ω− 1)Ir

)
Xt−1 +

 0r 0r 0r

0r (ρ1 − 1)Ir 0r

Ir 0r −Ir

∆Xt−1 + εt,

with µ0 = µ1 = 0. Note that in these DGPs,

• X1,t is a pure cumulated random walk, and hence I(2);
• X2,t is I(1), and does not cointegrate with any other variable in Xt. Moreover, X2,t is a pure

random walk when ρ1 = 0, and it is I(1) – near I(2) when ρ1 = 0.9; therefore, as in the I(1) case,
the parameter ρ1 is interpreted as a ‘near I(2)-ness’ coefficient.

• X3,t is the block of variables that reacts to the multi-cointegration relations, which are given by
(ω − 1)X3,t + ∆X1,t − ∆X3,t. These relations can be read off as the last block in the equilibrium
correction formulation in the last display. When ω = 0 one has that the levels X3,t and differences
∆X1,t, ∆X3,t have the same weight (apart from the sign) in the multi-cointegration relations; when
ω = 0.9 the weight of the levels 1−ω = 0.1 is smaller than the ones of the first differences. Hence
ω can be interpreted as the ‘relative weight of first differences in the multi-cointegrating relation’.

One can see that in this case:

α⊥ = β?
⊥ =

Ir 0
0 Ir

0 0

 ,

so for the I(2) rank condition:

α′⊥Γβ?
⊥ =

(
0 0
0 (ρ1 − 1)Ir

)
=

(
0r

(ρ1 − 1)Ir

)(
0r Ir

)
= ϕη?′.

To create the Monte Carlo dataset X(i)
1:T , each team has to use the DGP (13) with relevant values

of (p, T, ω, ρ1), together with the drawings of ε as determined by the race organisers. Details are in
the Appendix A.

6.2. I(2) Statistical Models

Using the generated data X(i)
1:T as a realization for X1:T , the I(2) modelM(r, s) in (4) has to be

estimated on each lap i = 1, ..., N. The estimation sample starts at t = k + 1, so uses T− k observations.
Two alternative values for the lag k are used, namely k ∈ {2, 5}.

An I(2) analysis usually starts with a procedure to determine the rank indices r, s. This requires
estimating theM(r, s) model under all combinations of (r, s), and computing all LR test statistics.
Usually, a table is produced with r along the rows and s2 = p− r− s along the columns.

In the I(2) modelM(r, s), the MLE does not reduce to RRR or OLS except when:

(i) r = 0, corresponding to an I(1) model for ∆Xt, or
(ii) p− r− s = 0, corresponding to I(1) models for Xt, or

(iii) r = p, corresponding to an unrestricted VAR for Xt.

All restricted I(2) circuits use the correct rank indices r = s = p/3. Restrictions are expressed
using the matrix structures (8) and (9). In addition to restrictions on β and α in (4), there are circuits
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with restrictions on τ, which is a basis of the space spanned by (β : β̄⊥η). Under DGP (13), the correctly
specified τ is any matrix of the type

τ =


0r 0r

0r Ir

Ir 0r

01,r 01,r

 A

with r = s = p/3 and A any full rank (r + s)× (r + s) matrix. Recall that 0r indicates a square matrix
of zeros of dimension r; the 01,r vectors are added in the last row to account from the presence of the
trend in I(2) model (4).

Unrestricted I(2) models are estimated for

1 ≤ r ≤ p− 1, 0 ≤ s ≤ p− r− 1.

The number of models satisfying these inequalities is p(p − 1)/2. Obviously, some of these
models are correctly specified, some are mis-specified.

Restriction I(2)-A Model A is estimated with r = s = p/3 under the following overidentifying
restrictions on β

β′ = (R0,r : Ur,r : Ir : Ur,1) . (14)

This imposes r (r− 1) overidentifying restrictions on β. These restrictions are correctly specified.
Restriction I(2)-B The following overidentifying restrictions on β are mis-specified:

β′ = (R1,r : Ur,r : Ir : Ur,1) . (15)

This imposes r (r− 1) overidentifying restrictions on β, where r = s = p/3 .
Restriction I(2)-C Overidentifying restrictions on α and β are used in estimation with r = s = p/3:

α′ = (Ur,2r : R0,r) , β′ = (R0,r : Ur,r : R2,r : Ur,1) . (16)

Specification (16) imposes 2r (r− 1) correctly specified restrictions on α and β; r (r− 1) of them
would be enough to just reach identification of α and β, and hence r (r− 1) restrictions are
overidentifying.

Restriction I(2)-D Model D has r = s = p/3 and 2r(r − 1) correctly specified overidentifying
restrictions on τ of the type:

τ′ =

(
R0,r Ir 0r,r Ur,1

R0,r 0r,r Ir Ur,1

)
. (17)

This imposes 2r (r− 1) overidentifying restrictions on τ.
Restriction I(2)-E The following 2(r− 1) + 2 (s− 1) mis-specified overidentifying restrictions on τ

are imposed in estimation with r = s = p/3:

τ′ =

(
R1,r Ir 0r,r Ur,1

R1,r 0r,r Ir Ur,1

)
. (18)

7. Test Drive on Formula I(1) Circuits

To illustrate the type of information one can obtain by participating in the Formula I(1) circuits,
this Section illustrates a ‘test drive’ for four algorithms, i.e., teams. The results of these teams also
provide a benchmark for other teams willing to participate at a later stage.

Four teams participated in the first Formula I(1) races:
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• Team 1: the switching algorithm proposed in Boswijk and Doornik (2004) as implemented in
Mosconi and Paruolo (2016) that alternates maximization between β and α. The algorithm is
initialized using the unrestricted estimates obtained by RRR. Normalizations are not maintained
during optimization, but applied after convergence. The algorithm was implemented in RATS
version 9.10.

• Team 2: CATS3 ‘alpha-beta switching’ algorithm as described in Doornik (2017b, §2.2) using the
LBeta acceleration procedure. CATS3 is an Ox 7 (Doornik (2013)) class for estimation of I(1) and
I(2) models, including bootstrapping.

• Team 3: CATS3 ‘alpha-beta hybrid’ algorithm is an enhanced version of alpha-beta switching:

1. Using standard starting values, as well as twenty randomized starting values, then
2. alpha-beta switching, followed by
3. BFGS iteration for a maximum of 200 iterations, followed by
4. alpha-beta switching.

This offers some protection against false convergence, because BFGS is based on first derivatives
combined with an approximation to the inverse Hessian.

More important is the randomized search for better starting values as perturbations of the default
starting values. Twenty versions of starting values are created this way, and each is followed for
ten iterations. Then half are discarded, and they are merged with (almost) identical ones; this is
then run for another ten iterations. This is repeated until a single one is left. The iterations used in
this start-up process are included in the iteration count.

• Team 4: PcGive algorithm, see Doornik and Hendry (2013, §12.9). This algorithm allows for
nonlinear restrictions on α and β, based on switching between the two after a Gauss-Newton
warm-up. This is implemented in Ox, Doornik (2013). The iteration count for Team 4 cannot
be extracted.

The Formula I(1) circuits are fully described by four features related to the DGP (p = {6, 12},
T = {100, 1000}, ρ0 = {0, 0.9}, ρ1 = {0, 0.9}), and two features related to the statistical model: the lag
length k = {2, 5} and the type of restrictions A, B or C. There are 16 DGPs and 6 model specifications,
making a total of 96 circuits.

In the circuits with T = 1000, there is not much difference between k = 2 and k = 5, so the
presentation is limited to only one of these values. Combining a long lag length with a small sample
size is more problematic. Onatski and Uhlig (2012) consider that situation. They find that the roots
of the characteristic polynomial of the VAR tend to a uniform distribution on the unit circle when
log(T)/k and k3/T tend to zero.

Before analyzing the Formula I(1) races, the tests for cointegration rank are used as ‘qualifying
races’; this only requires RRR. The qualifying races for Formula I(1) parallel the ones for Formula I(2),
reported later. The overall results for the qualifying races show that:

(i) Even when MLE is performed with RRR, inference on the cointegration rank is not easy (not even
at T = 1000).

(ii) Large VAR dimension, lag length, near-I(2) ness, weak mean reversion are all complicating factors
for the use of asymptotic results.

In more detail, Table 1 records the acceptance frequency at 5% significance level of the trace
test, using p-values from the Gamma approximation of (Doornik 1998); the null is that the rank is
less or equal to r against the alternative of unrestricted rank up to p, where the true rank equals p/2.
For T = 1000 and p = 6, the tests behave as expected. When p = 12, they tend to favour lower rank
values for slow mean-reversion and higher ranks for near-I(2) behaviour.

The results for T = 100 are more problematic. When p = 12, a lag length of five is excessive
relative to the sample size, and leads to overfitting. This is shown in the selection of a too-large rank
with frequency close to 1. A lag length of 2 gives opposite results, where a too low rank tends to be
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selected away from the near-I(2) cases, and a too high rank is chosen in the near-I(2) cases. In the
remainder only k = 2 is considered, as this already illustrates an interesting range of results.

Table 1. Formula I(1). Acceptance frequencies at 5% significance level of LR test for rank r against rank
p. – indicates exactly zero; other entries rounded to two decimal digits. Bold entries correspond to the
true rank p/2.

k T p ρ0, ρ1 r = 0 1 2 3 4 5

2 100 6 0.0, 0.0 – – 0.20 0.94 1.00 1.00
2 100 6 0.0, 0.9 – – 0.01 0.57 0.91 0.99
2 100 6 0.9, 0.0 0.81 0.98 1.00 1.00 1.00 1.00
2 100 6 0.9, 0.9 0.18 0.52 0.82 0.94 0.99 1.00
5 100 6 0.0, 0.0 0.08 0.41 0.81 0.96 1.00 1.00
5 100 6 0.0, 0.9 – 0.03 0.19 0.52 0.84 0.97
5 100 6 0.9, 0.0 0.22 0.68 0.92 0.98 1.00 1.00
5 100 6 0.9, 0.9 – 0.04 0.23 0.54 0.82 0.96
2 1000 6 0.0, 0.0 – – – 0.94 0.99 1.00
2 1000 6 0.0, 0.9 – – – 0.92 0.99 1.00
2 1000 6 0.9, 0.0 – – 0.04 0.95 1.00 1.00
2 1000 6 0.9, 0.9 – – 0.02 0.93 0.99 1.00
5 1000 6 0.0, 0.0 – – – 0.94 1.00 1.00
5 1000 6 0.0, 0.9 – – – 0.92 0.99 1.00
5 1000 6 0.9, 0.0 – – 0.13 0.95 1.00 1.00
5 1000 6 0.9, 0.9 – – 0.08 0.93 0.99 1.00

k T p ρ0, ρ1 r = 0 1 2 3 4 5 6 7 8 9 10 11

2 100 12 0.0, 0.0 – – 0.00 0.06 0.31 0.74 0.94 0.98 1.00 1.00 1.00 1.00
2 100 12 0.0, 0.9 – – – – – – 0.01 0.06 0.19 0.40 0.65 0.90
2 100 12 0.9, 0.0 0.11 0.48 0.81 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 100 12 0.9, 0.9 – – – – 0.00 0.02 0.05 0.13 0.27 0.42 0.62 0.87
5 100 12 0.0, 0.0 – – – – 0.01 0.05 0.21 0.47 0.74 0.90 0.97 0.99
5 100 12 0.0, 0.9 – – – – – – – – 0.00 0.01 0.06 0.39
5 100 12 0.9, 0.0 – – – – – – 0.00 0.01 0.05 0.21 0.50 0.82
5 100 12 0.9, 0.9 – – – – – – – – – – – 0.06
2 1000 12 0.0, 0.0 – – – – – – 0.94 0.99 1.00 1.00 1.00 1.00
2 1000 12 0.0, 0.9 – – – – – – 0.77 0.97 0.99 1.00 1.00 1.00
2 1000 12 0.9, 0.0 – – 0.00 0.01 0.16 0.71 0.98 1.00 1.00 1.00 1.00 1.00
2 1000 12 0.9, 0.9 – – – 0.00 0.02 0.36 0.88 0.98 1.00 1.00 1.00 1.00
5 1000 12 0.0, 0.0 – – – – – – 0.94 0.99 1.00 1.00 1.00 1.00
5 1000 12 0.0, 0.9 – – – – – – 0.72 0.96 0.99 1.00 1.00 1.00
5 1000 12 0.9, 0.0 – – 0.01 0.08 0.39 0.84 0.98 1.00 1.00 1.00 1.00 1.00
5 1000 12 0.9, 0.9 – – – 0.00 0.11 0.51 0.87 0.98 1.00 1.00 1.00 1.00

Table 2 presents the Formula I(1) results for the four teams. For each team, the table reports the
convergence quality (SC, WC, DC, for strong, weak, and distant convergence) as percentage of laps,
followed by the percentage of laps that failed (FC), the average error distance (AD) and the average
iteration count for converged laps only (IT). Team 4 does not report the iteration count. The last two
columns are averages over all teams and laps. NOR is the indicator of average number of optima
reported, where unity means that in all laps all teams have reported the same maximum.
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Table 2. Formula I(1). Selected circuits for 1000 laps. k = 2 in all cases. ‘-’ means exactly zero, the other figures are percentages rounded to two decimals and multiplied
by 100.

Team 1 Team 2 Team 3 Team 4 All
T p ρ0, ρ1 SC WC DC FC AD IT SC WC DC FC AD IT SC WC DC FC AD IT SC WC DC FC AD IT NOR

Restriction I(1)-A (correctly specified)
100 6 0.0,0.0 100 – – – – 16 100 – – – – 4 100 – – – – 4 100 – – – – – 1
100 6 0.0,0.9 100 – – – – 19 100 – – – – 4 100 – – – – 5 100 – – – – – 1
100 6 0.9,0.0 92 0 3 5 1 77 95 0 5 – 2 15 96 0 4 – 1 35 96 0 3 1 2 – 1.08
100 12 0.0,0.0 100 – – 0 – 40 100 – 0 – 3 8 100 – 0 – 3 13 100 – 0 – 2 – 1.00
100 12 0.0,0.9 97 – 2 1 2 74 97 – 3 – 2 15 99 – 1 – 2 50 97 0 2 1 4 – 1.03
100 12 0.9,0.0 72 – 13 15 3 263 77 2 21 – 3 61 85 2 13 – 2 115 77 3 14 7 3 – 1.36

1000 6 0.0,0.0 100 – – – – 6 100 – – – – 1 100 – – – – 2 100 – – – – – 1
1000 6 0.0,0.9 100 – – – – 6 100 – – – – 1 100 – – – – 2 100 – – – – – 1
1000 6 0.9,0.0 100 – – – – 11 100 – – – – 3 100 – – – – 4 100 – – – – – 1
1000 12 0.0,0.0 100 – – – – 7 100 – – – – 2 100 – – – – 3 100 – – – – – 1
1000 12 0.0,0.9 100 – – – – 7 100 – – – – 2 100 – – – – 3 100 – – – – – 1
1000 12 0.9,0.0 100 – – 0 – 20 100 – – – – 5 100 – – – – 5 100 – – – – – 1

Restriction I(1)-B (mis-specified)
100 6 0.0,0.0 82 – 4 14 2 227 91 1 8 – 5 32 96 1 3 – 4 145 74 0 4 22 2 – 1.12
100 6 0.0,0.9 69 – 8 23 4 336 72 1 28 – 10 84 95 1 4 – 5 225 70 – 8 23 3 – 1.36
100 6 0.9,0.0 81 – 5 13 1 350 81 1 18 – 2 33 86 1 13 – 2 110 71 2 9 19 3 – 1.24
100 12 0.0,0.0 14 – 7 79 3 1839 25 5 69 – 5 790 56 3 40 – 3 1456 10 7 13 70 4 – 1.93
100 12 0.0,0.9 2 – 4 95 9 2286 18 8 73 1 8 1428 66 3 31 – 4 2683 3 2 4 91 5 – 1.89
100 12 0.9,0.0 23 0 10 67 2 2034 28 4 68 – 4 589 45 3 52 – 2 977 10 13 19 57 2 – 1.89

1000 6 0.0,0.0 70 – 2 28 7 546 90 2 8 – 51 32 99 0 1 – 39 136 75 3 2 21 3 – 1.10
1000 6 0.0,0.9 68 0 4 28 41 703 69 1 30 – 163 68 96 1 3 – 127 150 77 0 2 21 102 – 1.35
1000 6 0.9,0.0 85 – 4 11 3 191 93 1 6 – 6 20 96 1 4 – 2 117 76 1 3 21 2 – 1.08
1000 12 0.0,0.0 12 – 10 78 48 1974 18 4 78 1 78 1663 62 3 35 – 104 2434 11 1 3 85 80 – 2.08
1000 12 0.0,0.9 3 – 22 76 79 2542 11 3 80 6 110 1801 66 1 32 2 94 4709 6 – 1 93 62 – 2.18
1000 12 0.9,0.0 22 0 9 68 3 1563 25 6 69 – 5 600 48 4 48 – 4 1177 15 7 14 64 4 – 1.95

Restriction I(1)-C (correctly specified)
100 6 0.0,0.0 99 – 0 0 2 17 100 – 0 – 2 8 100 – 0 – 2 73 94 0 3 3 6 – 1.03
100 6 0.0,0.9 99 – 1 0 2 29 99 – 1 – 2 9 99 – 1 – 1 100 92 – 4 4 5 – 1.05
100 6 0.9,0.0 51 0 15 34 1 396 78 2 20 – 1 55 87 2 10 – 1 182 60 1 15 25 1 – 1.38
100 12 0.0,0.0 65 0 21 15 4 268 68 2 30 – 4 70 71 2 27 – 4 202 59 5 9 28 4 – 1.22
100 12 0.0,0.9 49 – 23 28 6 515 59 3 38 – 5 146 68 3 29 – 5 379 43 9 13 35 6 – 1.35
100 12 0.9,0.0 9 – 13 78 5 2068 38 7 54 0 3 452 63 5 32 – 2 826 16 7 17 60 3 – 1.80

1000 6 0.0,0.0 100 – – – – 6 100 – – – – 4 100 – – – – 89 100 – – 0 – – 1
1000 6 0.0,0.9 100 – – – – 6 100 – – – – 4 100 – – – – 107 100 – – – – – 1
1000 6 0.9,0.0 100 – – – – 11 100 – – – – 6 100 – – – – 30 98 – 1 2 12 – 1.01
1000 12 0.0,0.0 100 – – – – 7 100 – – – – 4 100 – – – – 114 98 – – 2 – – 1
1000 12 0.0,0.9 100 – – – – 7 100 – – – – 5 100 – – – – 131 98 – 0 2 160 – 1.00
1000 12 0.9,0.0 95 – 4 1 3 20 95 0 5 – 2 10 95 0 5 – 2 55 72 – 9 19 6 – 1.12
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Turning attention to some specific circuits, consider I(1)-A, which has valid overidentifying
restrictions on β. For a large enough sample, T = 1000, all teams finish equally and quickly.
This suggests that any estimation problem for T = 100 is a small sample issue.

Consider now the circuits with p = 6, ρ0 = 0.9, ρ1 = 0, i.e., the third and ninth row of results in
Table 2, panel 1. Figure 1 plots three densities: the empirical densities (kernel density estimates) of
the likelihood ratio test LR?

c,i := 2(`u
c,i − `?c,i) for T = 100, 1000, where `u

c,i is the maximized likelihood
under the cointegration rank restriction only, along with the χ2 (6) reference asymptotic distribution.
Notice that when T = 100 the empirical distribution is very different from the asymptotic one: using
the asymptotic 95th percentile of the asymptotic distribution as critical value would lead to severe
over-rejection (more than 70%). Finite sample corrections would therefore be very important. Notice
that even when T = 1000, although the distribution approaches the asymptotic one, the difference is
still substantial (the rejection rate is about 10%).

To gain some understanding of the implications of ‘distant convergence’, for T = 100
all laps where any of the teams obtained a distant maximum were pooled, obtaining pairs{
(`?c,i, `a,c,i) : DCa,c,i = 1

}
a∈Ac ,i=1:N

. Figure 1 plots in blue the cdf of the LR test based on the overall

maximum, LR?
c,i, as the left endpoint of the horizontal lines; the right endpoint represents the LR test

based on the distant maximum, i.e., LRa,c,i = 2(`u
c,i − `a,c,i). Considering the χ2(6), distant convergence

has almost no practical implications, since the inappropriate asymptotic distribution would lead to
over-rejection anyway. Conversely, relative to the empirical density, in several cases one would
(correctly) accept using LR?

c,i, and (wrongly) reject using LRa,c,i). Distant convergence has therefore
implications for hypothesis testing, at least if one takes finite sample problems into account.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0

0.025

0.050

0.075

0.100

0.125 χ2(6)
5% 1% 0.1%

T=1000

T=100

Figure 1. Formula I(1): I(1)-A, p = 6, ρ0 = 0.9, ρ1 = 0 circuits. Red: pdfs (on the left scale):
kernel-estimate pdfs of 2(`u

c,i − `?c,i) for T = 100 and T = 1000 based on 1000 laps, along with the
asymptotic χ2(6). Blue: empirical cdf of 2(`u

c,i − `?c,i) for T = 100, considering only laps and algorithms
where distant convergence has been reported. The blue filled diamond denotes the LR calculated
using the overall maximum 2(`u

c,i − `?c,i), the empty circle the LR calculated using the distant maximum
2(`u

c,i − `a,c,i).

Consider now the mis-specified restrictions I(1)-B. Table 2 clearly shows that, whichever the
DGP, maximizing the likelihood under mis-specified restrictions induces optimization problems.
The number of iterations is, for all teams, much higher than under restrictions I(1)-A, and it does not
decrease even when T = 1000. Failure to converge (FC) becomes a serious problem for teams 1 and
4, whereas teams 2 and 3 do not suffer this problem, but have a much higher percentage of distant
convergence (DC). Whether distant convergence is a nuisance or an advantage in this case is however
debatable: since the hypothesis is false, rejecting is correct, and therefore distant convergence increases
the power of the test (see below).
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Figure 2, in analogy with Figure 1, illustrates the challenging ‘weak mean reverting’ circuits with
p = 6, ρ0 = 0.9, ρ1 = 0, i.e., the third and ninth row of results in Table 2, panel 3. The asymptotic
distribution of the LR test is χ2(4), whose 95th percentile is 9.48. Using this as a critical value,
LR?

c,i = 2(`u
c,i − `?c,i) would reject about 70% of the times when T = 100, and 100% of the times when

T = 1000. The power seems reasonably good also in small samples, but one needs to keep in mind
that, as illustrated when discussing Figure 1, the asymptotic distribution is very inappropriate here.12

Figure 2 also illustrates the impact of distant convergence. Using LRa,c,i = 2(`u
c,i − `a,c,i) instead of

LR?
c,i = 2(`u

c,i − `?c,i) has no practical implication for large samples (T = 1000), where the power would
be 1 anyway. Conversely, in small samples (T = 100) distant convergence has a somewhat beneficial
effect on power, increasing the rejection rate. Notice that distant convergence seems to occur more
frequently when the null hypothesis is false, like I(1)-B, than when it is true, like I(1)-A; therefore, a
tentative optimistic conclusion is that the gain in power due to distant convergence seems to be more
relevant than the loss in size.

0 10 20 30 40

0.05

0.10

0.15 χ2(4)

5% 1% 0.1%

0 20 40 60 80 100

0.05

0.10

0.15

χ2(4)
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0.1%

Figure 2. Formula I(1): I(1)-B, p = 6, ρ0 = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. See caption of Figure 1.

I(1)-C imposes valid over-identifying restrictions on α and β. The first two circuits for I(1)-C are
similar to I(1)-A, except that Team 4 has a higher percentage of low and failed convergence. The third
circuit shows a more dramatic difference. The effect of the persistent autoregressive effect when
ρ0 = 0.9 is to reduce the significance of the α coefficients. As a consequence, some laps yield solutions
where some coefficients in α get very large, offset by almost zeros in β. The product Π still looks
reasonable, but computation of standard errors of α and β fails (giving huge values), suggesting this
may be towards a boundary of the parameter space.

Lap 999 of the third circuit for I(1)-C provides an illustration. Team 1 fails, Teams 2 and 4 have
distant convergence. Team 3 has the best results with the following coefficients:

α̂ =



0.0369163 362.772 599.137
−0.00890223 −17858.0 −29502.9

0.0101925 11995.8 19817.9
−0.0309902 0 0

0 −0.0848045 0
0 0 −0.0545074

 , β̂ =



−4.13543 0 0
0 1.24557 · 10−5 0
0 0 8.96396 · 10−7

1 −0.41946 0.253898
−6.55434 1 −0.605302
1.83937 −1.65209 1
0.664556 0.0224937 −0.013616


,

12 Figure 1 shows that, when testing I(1)-A, the asymptotic critical values leads to a 70% rejection rate even if the null hypothesis
is true.
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where α is numerically close to reduced rank. This model has a loglikelihood that is below the
unrestricted I(1) model with rank 2. Because the switching algorithms are really for rank(Π) ≤ r rather
than rank(Π) = r, they occasionally fail or yield unattractive results when α is statistically weakly
determined. Team 4 provides more attractive estimates with reasonable standard errors, albeit with a
lower loglikelihood.

These characteristics are compatible with several scenarios, including the possibility that in this
part of the parameter space the likelihood has a horizontal asymptote. A proper detailed analysis of
these and other difficult cases is however beyond the scope of the present paper and it is left for future
research.

8. Test Drive on Formula I(2) Circuits

As for Formula I(1), Formula I(2) circuits are illustrated through a test drive for three teams.
The following teams participated in the races:

• Team 1: CATS3 ‘delta switching’ algorithm proposed in Doornik (2017b);
• Team 2: CATS3 ‘triangular switching’ algorithm proposed in Doornik (2017b);
• Team 3: CATS3 ‘tau switching’ algorithm proposed in Johansen (1997, §8), implemented as

discussed in Doornik (2017b).

As previously illustrated, Formula I(2) is based on 1456 circuits. Although results for all circuits
were obtained and stored to serve as benchmark for future comparisons, Formula I(2) circuits and
results are too numerous to present in tabular form here; hence only the cases where p = 6 and k = 2
are shown here.

The first group of circuits are called ’qualifying races’, as in Formula I(1). They are designed to:

(i) check the ability of the numerical algorithms to maximize the likelihood of the I(2) modelM(r, s)
with no restrictions except for the specification of r and s13

(ii) analyze the difficulties of the cointegration ranks tests in spotting the correct r and s in the
different DGPs.

Results for task (i) are illustrated in Table 3. For this part of the analysis, only the cases
r = 1, ..., p− 1 and s = 1, ..., p − r − 1 are considered. This excludes all cases with r = 0 and/or
s = p− r (i.e., s2 = p− r− s = 0) since in these cases the likelihood of the I(2) model can be maximized
exactly by RRR. Preliminary analysis of the results shows that there is relatively little variation for
different values of ω and ρ1. As a consequence, in Table 3 all circuits with the same p, k, T, r, s are
analyzed together, irrespective of ω and ρ1. On the whole, Table 3 shows that the teams perform well.
The percentage of ‘distant convergence’ (DC) is very small, and there are almost no failures. There are
a few cases with large ‘average distance’ (AD), but only when the ranks are smaller than in the DGP.14

Convergence is quick, usually in about 10 iterations. For T = 1000 ‘weak convergence’ (WC) occurs
quite frequently, especially in misspecified (overrestricted) models, and sometimes one observes some
large ‘average distance’ (AD).

13 This aspect of the qualifying races is specific of Formula I(2), since the qualifying races in Formula I(1) can be reduced
to RRR.

14 In the DGP r = s = s2 = p/3 = 2, and the corresponding row is highlighted in boldface in Table 3. See Noack Jensen (2014)
for a discussion of the nesting structure of the I(2) models. As illustrated there, all models listed above r = s = 2 are
misspecified (i.e., overrestricted), whereas all models listed below r = s = 2 are correctly specified, since they nest the DGP.
Observe that, for example, r = 2, s = 2 is nested in r = 3, s = 0.
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Table 3. Formula I(2). Qualifying races. Performance for I(2) rank-test table, averaged for different values of ρ1, ω, with a total of 4000 laps. 0: zero to 2 decimals; ‘-’
means exactly zero, the other figures are percentages rounded to two decimals and multiplied by 100.

Team 1 Team 2 Team 3
r, s, s2 k T p ρ0, ρ1 SC WC DC FC AD IT SC WC DC FC AD IT SC WC DC FC AD IT DNF NOR

1,0,5 2 100 6 99 0 1 – 2 13 99 1 1 0 2 17 99 0 1 – 2 13 – 1.02
1,1,4 2 100 6 100 0 0 – 1 12 100 0 0 – 1 12 99 0 1 – 2 13 – 1.01
1,2,3 2 100 6 100 0 0 – 1 12 100 0 0 – 1 12 99 0 0 – 1 14 – 1.00
1,3,2 2 100 6 100 0 – – – 9 100 0 – – – 8 100 0 – – – 11 – 1
1,4,1 2 100 6 100 0 0 – 0 8 100 – 0 – 0 6 100 – – 0 – 9 – 1.00
2,0,4 2 100 6 100 0 0 – 1 9 100 – 0 0 1 10 99 – 1 – 1 9 – 1.01
2,1,3 2 100 6 100 – 0 – 0 11 100 – 0 – 1 10 100 0 0 – 1 11 – 1.01
2,2,2 2 100 6 100 – 0 – 0 6 100 – 0 – 0 5 100 0 0 – 0 8 – 1.00
2,3,1 2 100 6 100 – 0 – 0 5 100 – 0 – 0 4 100 – – – – 6 – 1.00
3,0,3 2 100 6 99 1 0 – 0 12 98 2 0 0 0 15 99 1 0 – 1 12 – 1.00
3,1,2 2 100 6 100 0 0 – 0 10 100 0 0 – 0 11 100 0 0 – 0 10 – 1.00
3,2,1 2 100 6 100 – 0 – 0 8 99 1 0 – 0 16 100 0 0 – 0 8 – 1.00
4,0,2 2 100 6 100 0 0 – 0 9 99 1 0 0 0 18 99 0 0 – 1 10 – 1.00
4,1,1 2 100 6 100 0 0 – 0 9 96 4 0 – 0 22 100 0 0 – 0 8 – 1.00
5,0,1 2 100 6 100 0 0 – 0 6 97 3 0 – 0 18 100 – 0 – 1 7 – 1.00

1,0,5 2 1000 6 78 22 1 – 21 13 46 54 1 – 16 21 78 21 1 – 23 14 – 1.01
1,1,4 2 1000 6 80 20 – – – 8 74 26 0 – 0 10 78 22 – – – 10 – 1.00
1,2,3 2 1000 6 83 17 – – – 8 77 23 – – – 9 79 21 – – – 11 – 1
1,3,2 2 1000 6 88 12 – – – 5 86 15 – – – 4 79 21 – – – 9 – 1
1,4,1 2 1000 6 87 13 – – – 4 87 13 – – – 4 77 23 – – – 6 – 1
2,0,4 2 1000 6 99 1 0 – 20 3 98 1 0 – 16 3 99 0 1 – 26 3 – 1.01
2,1,3 2 1000 6 96 4 0 – 1 5 92 8 0 – 1 6 95 5 0 – 3 6 – 1.00
2,2,2 2 1000 6 100 – – – – 1 100 – – – – 1 100 – – – – 1 – 1
2,3,1 2 1000 6 100 0 – – – 1 100 0 – – – 1 100 0 – – – 1 – 1
3,0,3 2 1000 6 81 19 0 – 0 10 62 38 0 – 0 16 80 19 0 – 0 10 – 1.00
3,1,2 2 1000 6 91 8 1 – 1 11 91 8 1 – 1 13 99 1 0 – 1 7 – 1.01
3,2,1 2 1000 6 97 3 0 – 0 8 67 33 0 – 0 18 100 0 0 – 0 5 – 1.00
4,0,2 2 1000 6 97 3 0 – 0 9 74 26 0 0 0 26 97 2 0 – 1 10 – 1.01
4,1,1 2 1000 6 98 2 0 – 0 8 48 52 0 0 0 33 100 0 0 – 0 6 – 1.01
5,0,1 2 1000 6 100 0 – – – 6 48 52 0 0 0 29 99 0 0 – 0 6 – 1.00
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On the whole, likelihood maximization is reasonably accurate, for each circuit and lap; one
can then proceed to find the maximum of the maximized likelihoods reported by the three teams.
On this basis, the likelihood ratio tests for the cointegration ranks r and s were computed on the
overall maximum. As done in Table 1 for the I(1) case, Table 4 records the acceptance frequency at
5% significance level of the LR cointegration test, using p-values from the Gamma approximation of
(Doornik 1998); the null is that rank (αβ′) ≤ r and rank (α′⊥(Γ : µ0)β⊥) ≤ s against the alternative of
unrestricted VAR.

Table 4. Formula I(2). Qualifying race. I(2) rank-test table, p = 6, k = 2, r = 1. Acceptance frequencies
at 5% significance level of LR test for ranks (r, s) against the unrestricted VAR, with p = 6, k = 2 and
s2 = p− r− s. Bold entries correspond to the true ranks r = s = s2 = p/3 = 2. Cases with r = 0 and
r = 1 have been omitted for readability, since the acceptance rate is always zero or very close to zero.

T ρ0, ρ1
r = 2 r = 3 r = 4 r = 5

s2 = 4 3 2 1 0 s2 = 3 2 1 0 s2 = 2 1 0 s2 = 1 0

100 0.0, 0.0 0.00 0.01 0.87 0.69 0.34 0.88 0.97 0.94 0.74 0.98 0.99 0.92 0.99 0.99
100 0.0, 0.9 0.91 0.87 0.65 0.32 0.07 0.98 0.93 0.73 0.34 0.98 0.93 0.69 0.98 0.93
100 0.9, 0.0 0.01 0.25 0.50 0.28 0.06 0.52 0.76 0.66 0.33 0.83 0.87 0.64 0.92 0.91
100 0.9, 0.9 0.58 0.46 0.25 0.07 0.01 0.74 0.62 0.32 0.09 0.82 0.67 0.34 0.87 0.72

1000 0.0, 0.0 0.00 0.00 0.94 0.85 0.48 0.94 0.99 0.98 0.83 0.99 1.00 0.95 1.00 1.00
1000 0.0, 0.9 0.00 0.12 0.93 0.77 0.40 0.94 0.99 0.97 0.78 0.99 1.00 0.94 1.00 0.99
1000 0.9, 0.0 0.00 0.00 0.92 0.77 0.39 0.90 0.98 0.97 0.77 0.99 0.99 0.93 1.00 0.99
1000 0.9, 0.9 0.00 0.07 0.88 0.70 0.33 0.91 0.98 0.95 0.71 0.99 0.99 0.91 1.00 0.98

For this aspect of the analysis, all cases r = 0, ..., p− 1 and s = 1, ..., p− r are considered. However,
Table 4 does not report r = 0, since the acceptance rate is exactly zero for all values of s in that case.
Also the case r = 1 is not reported, because the acceptance rate is always zero for T = 1000 and
very close to zero for T = 100 (less than 0.02, except for ω = ρ1 = 0.9, where it is 0.06). The model
corresponding to the DGP, i.e., r = s = s2 = p/3 = 2, has been highlighted in boldface.

Note that r is almost never underestimated even when T = 100, irrespective of the value of ω.
This seems to be a major difference with respect to Formula I(1), where r is frequently underestimated
when ρ0 is 0.9. It is important to remark that the interpretation of ρ0 in Formula I(1) different from the
interpretation of ω in Formula I(2), although they both affect the magnitude of the coefficients in Π. In
fact ρ0 may be interpreted as ‘weak mean reversion’, whereas ω has no implication for the speed of
adjustment, but it is rather related to the relative weight of levels and differences in the polynomial
cointegration relations; this might be the reason why for ω = 0.9 there is no to underestimation of r.15

It is, however, surprising that when ω = 0.9 (so that the weight of the levels is reduced to 1−ω = 0.1)
one tends to overestimate r, rejecting r = 2 in favour of r = 3 or even r = 4.

The impact of the ‘near I(2)’ parameter ρ1 is linked to the form of the DGP in (13): when ρ1 = 0.9
the variables in ∆X2,t are stationary but slowly mean reverting, so that X2,t is almost I(2). Not
surprisingly then, when ρ1 = 0.9 the tests tend to underestimate s (i.e., overestimate s2 = p− r− s)
at least when T = 100, so that very frequently r = 2, s = 0 is selected. When T = 1000 the power vs
s = 0 goes to 1, but one would still select r = 2, s = 1 about 10% of the times.

The results on the Formula I(2) circuits with restrictions on the cointegration parameters (in
addition to the restrictions on the ranks) are illustrated in Table 5. The cases I(2)-A, I(2)-B and I(2)-C
involve only the matrix Π; more specifically, as in Formula I(1), models I(2)-A involve correctly

15 Formula I(2) circuits may be extended in the future introducing another coefficient in analogy with ρ0 of Formula I(1). This
would amount at replacing the third equation in (13) with

∆2X(i)
3,t = (ρ0 − 1)((ω− 1)X(i)

3,t−1 + ∆X(i)
1,t−1 − ∆X(i)

3,t−1) + ε
(i)
3,t.
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specified restrictions on β, models I(2)-B contain misspecified restrictions on β, while models I(2)-C
contain correctly specified restriction on α and β. All three algorithms seem to perform quite well
in maximizing the likelihood of the I(2) model under restrictions on Π only, with Triangular-hybrid
beating the others. In particular, under the correctly specified restrictions A and C the likelihood is
easily and quickly maximized (especially when T = 1000), with almost no case of distant convergence.

Conversely, the misspecified restrictions in model I(2)-B require more iterations and, for the first
two teams, induce distant convergence quite frequently. However, as observed when discussing
Formula I(1) results, it is important to keep in mind that distant convergence is indeed a problem when
the restriction is correctly specified since it leads to over-rejection, whereas for misspecified restrictions
it can be seen as beneficial, since it increases the power of the test.

More generally, the analysis of restrictions A, B, C, seems to suggest that estimation of restricted
α and β is easier in the I(2) case with respect to the I(1) case. Note however that the comparison is
not completely fair, since most of the difficulties in the I(1) case are found when ρ0 = 0.9 (weak mean
reversion), and this coefficient does not appear in the current Formula I(2) design.

Consider finally the restrictions I(2)-D and I(2)-E, reported in the last two panels of Table 5.
Remember that I(2)-D is a correctly specified model with restrictions on τ, while I(2)-E is a misspecified
model with restrictions on τ. Table 5 shows serious difficulties in maximizing the likelihood under
restrictions on τ; in both cases (i.e., whether the hypothesis is true or false), the number of iterations
is much higher than under restrictions A, B and C and it does not decrease even when T = 1000.
Failure to converge (FC) becomes a serious problem for triangular switching (and to some extent
delta switching), and there is an high percentage of distant convergence (DC) for all three algorithms;
Triangular hybrid performs better, having a smaller average distance (AD). Notice that for model
I(2)-D (where the null hypothesis is true) distant convergence is more problematic since it leads to
over-rejection.

To analyze this problem, as done in Formula I(1), Figure 3 illustrates the impact of distant
convergence. It is apparent from the figure that over-rejection is substantial here. Since the 5% critical
value of the asymptotic χ2 (4) distribution is 9.49, the analysis clearly shows several cases where one
would (correctly) accept using the overall maximum, and (wrongly) reject using the distant maximum.
The striking difference with respect to Formula I(1) is that here the over-rejection due to distant
convergence remains even when T = 1000.

0 5 10 15 20 25
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0.10

0.15

0.20

T=100

χ2(4)

0 10 20 30 40 50 60 70

0.05

0.10

0.15

0.20

T=1000

Figure 3. Formula I(2): I(2)-D, p = 6, ω = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. Three extreme outliers for T = 1000 have been removed for readability. See caption
of Figure 1 for more details.
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Table 5. Formula I(2). Performance for restrictions I(2)-A, ..., I(2)-E, for 1000 laps. ‘-’ means exactly zero, the other figures are percentages rounded to two decimals and
multiplied by 100. Empty cells mean that the team did not take part in the race.

Team 1 Team 2 Team 3
Res k T p ρ0, ρ1 SC WC DC FC AD IT SC WC DC FC AD IT SC WC DC FC AD IT DNF NOR

A 2 100 6 0.0,0.0 100 – – – – 3 100 – – – – 3 100 – – – – 40 – 1
A 2 100 6 0.0,0.9 100 – – – – 5 100 – – – – 5 100 – – – – 49 – 1
A 2 100 6 0.9,0.0 100 – 0 – 2 11 100 – 0 – 2 14 100 – – – – 71 – 1.00
A 2 100 6 0.9,0.9 99 – 1 – 1 14 99 – 1 0 1 17 100 0 – – – 75 – 1.01
A 2 1000 6 all 100 – – – – 1 100 – – – – 1 100 – – – – 32 – 1

B 2 100 6 0.0,0.0 73 0 27 – 3 40 69 1 30 0 3 128 98 1 1 – 1 184 – 1.33
B 2 100 6 0.0,0.9 79 1 20 – 3 27 76 2 22 – 3 78 98 2 0 – 6 158 – 1.23
B 2 100 6 0.9,0.0 95 0 5 – 2 19 93 1 6 1 2 35 99 1 0 – 1 134 – 1.06
B 2 100 6 0.9,0.9 96 0 3 – 2 19 95 1 4 0 2 39 99 1 0 – 1 117 – 1.04
B 2 1000 6 0.0,0.0 71 3 26 0 4 100 67 6 27 1 3 184 89 5 6 – 2 252 – 1.41
B 2 1000 6 0.0,0.9 71 3 26 – 3 50 70 3 28 – 4 105 95 2 2 – 0 182 – 1.37
B 2 1000 6 0.9,0.0 74 2 24 – 10 56 71 2 26 1 10 135 97 2 1 – 3 195 – 1.30
B 2 1000 6 0.9,0.9 73 1 26 – 10 33 73 1 27 0 10 85 99 1 – – – 160 – 1.28

C 2 100 6 0.0,0.0 100 – – – – 4 100 – – – – 35 – 1
C 2 100 6 0.0,0.9 100 – – – – 7 100 – – – – 39 – 1
C 2 100 6 0.9,0.0 100 – 0 – 2 11 100 – – – – 35 – 1.00
C 2 100 6 0.9,0.9 99 0 1 – 2 11 100 – 0 – 0 32 – 1.01
C 2 1000 6 all 100 – – – – 1 100 – – – – 30 – 1

D 2 100 6 0.0,0.0 74 4 12 10 8 212 61 1 4 34 12 136 90 4 6 0 0 416 – 1.21
D 2 100 6 0.0,0.9 77 4 17 2 19 163 59 2 14 26 14 210 73 8 19 0 6 514 – 1.43
D 2 100 6 0.9,0.0 76 5 12 7 1 174 72 1 3 24 1 134 90 4 5 0 0 390 – 1.17
D 2 100 6 0.9,0.9 72 4 21 3 1 141 59 3 13 25 1 189 79 9 12 – 1 433 – 1.38
D 2 1000 6 0.0,0.0 41 14 9 37 414 263 35 19 4 42 543 296 66 8 17 8 0 708 0.03 1.26
D 2 1000 6 0.0,0.9 66 8 18 7 25 253 48 4 17 32 30 318 63 8 26 3 5 683 0.00 1.54
D 2 1000 6 0.9,0.0 35 22 3 41 31 241 40 29 3 28 12 279 85 7 5 2 0 568 0.01 1.09
D 2 1000 6 0.9,0.9 67 8 18 7 14 230 49 5 15 31 14 258 79 6 14 0 1 522 – 1.44

E 2 100 6 0.0,0.0 46 3 42 10 2 193 36 2 38 24 3 284 79 3 15 3 1 427 0.01 1.76
E 2 100 6 0.0,0.9 61 2 35 2 4 116 57 2 27 14 4 156 85 4 9 2 1 302 0.00 1.59
E 2 100 6 0.9,0.0 75 4 15 6 2 147 64 2 12 22 2 159 84 6 9 1 1 409 0.00 1.27
E 2 100 6 0.9,0.9 73 3 22 1 2 102 61 3 22 14 2 169 81 6 13 – 1 374 – 1.44
E 2 1000 6 0.0,0.0 38 6 35 21 27 358 27 8 39 26 12 450 49 8 39 4 5 665 0.01 1.91
E 2 1000 6 0.0,0.9 49 4 41 7 7 247 33 4 47 16 6 353 52 4 41 3 3 511 0.01 2.11
E 2 1000 6 0.9,0.0 36 7 44 14 13 310 22 6 50 23 13 337 69 5 23 4 5 640 0.00 1.99
E 2 1000 6 0.9,0.9 58 3 37 2 10 130 44 5 43 9 10 235 69 5 26 1 6 374 0.00 1.84
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As the final aspect of Formula I(2), consider the misspecified restrictions on τ in model I(2)-E.
Figure 4 shows that distant convergence has no practical implication for large samples (T = 1000),
where the power would be 1 anyway. Conversely, in small samples (T = 100) distant convergence
slightly increases the rejection rate, which would be quite high in any case.
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Figure 4. Formula I(2): I(2)-E, p = 6, ω = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. See caption of Figure 1 for more details.

Overall, in the setting of Formula I(2), maximizing the likelihood under correctly specified
restrictions on α and β seems fast and accurate. Conversely, when correctly specified restrictions on
τ are introduced, finding the overall maximum of the likelihood is not easy. Since β is one of the
components of τ, one might guess that the problems arise from the complementary directions with
respect to β within τ; the issue deserves further exploration.

As in the I(1) case, maximizing the likelihood under misspecified restrictions is difficult; however,
the consequence of this difficulty are benign, because they appear to increase the power of the test for
the current design of the Formula I(2) races.

9. Conclusions

The test run of the championships shows that there is room for improving algorithms. It demonstrates
the strength of this ‘collective learning’ experiment, where other researchers may try and propose new
algorithm to improve on the existing ones. All algorithms win in the end, since each team learns where
and how to improve the algorithm design.

Other circuits may be added in the future, as algorithms improve. Races with a similar spirit
can be set up in other adjacent fields, like fractional cointegration; the same principles may in fact be
applied to any other model classes where maximizing the likelihood needs numerical optimization.

Acknowledgments: Financial support from the Robertson Foundation (Award 9907422) and the Institute for
New Economic Thinking (Grant 20029822) is gratefully acknowledged by the first author and from the Italian
Ministry of Education, University and Research (MIUR) PRIN Research Project 2010–2011, prot. 2010J3LZEN,
‘Forecasting economic and financial time series’ by the second author. The authors thank two anonymous referees
for useful comments on the first version of the paper.

Author Contributions: The authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Practical Requirements for Submission

To facilitate submission and automated processing of results, some conventions are established
that submissions to the project must adopt.
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Appendix A.1. Innovations

A file containing 12 000 i.i.d. N(0, 1) time series of length 1000 is provided (ERRORS.CSV) in
the companion website. The series are organized column-wise and labelled eps00001 to eps12000.
In other words, this file contains the 1000× 12 000 matrix E. The p-dimensional vector ε

(i)
t , t = 1, ..., T,

is obtained as the transpose of the t-th row of the submatrix E(1 : T, [i − 1]p + 1 : ip), assuming
indexation starts at element (1, 1).

Table A1 provides the first five generated observations for lap 1 of the I(1) and I(2) DGP with
p = 6, ρ0 = ρ1 = ω = 0.9.

Table A1. The first five observations of the generated data for I(1) and I(2) DGPs with p = 6, ρ0 = ρ1 =

ω = 0.9. Ten significant digits given; computation uses double precision.

t Formula I(1) X(1)′
t

1 0.2548828200 −2.009603960 0.5542620800 0.7913726500 −0.5458015100 −1.349741980
2 0.7806863280 −6.446826254 0.1020649020 −1.468146855 −1.017498239 −2.539647722
3 −0.3490545448 −9.526135279 −0.08454244820 −1.010888930 0.04508386490 −0.3954565398
4 −0.4230090503 −11.98920553 −0.6228956034 −2.179696857 −1.063624342 −1.528447976
5 −0.09820491529 −14.61563411 −1.559382683 −1.481900221 0.05204249257 −0.4856795382

t Formula I(2) X(1)′
t

1 0.2548828200 −2.009603960 0.5542620800 0.7913726500 −0.5458015100 −1.349741980
2 0.8061746100 −6.647786650 0.1020649020 −0.6767742050 −0.7626154190 −4.549251682
3 −0.2454976300 −10.37177830 −0.08454244820 −1.687663135 0.8257701929 −6.842282794
4 −0.3543575900 −13.78746208 −0.6228956034 −3.867359991 −1.412678886 −11.05458325
5 −0.07185436000 −17.61281121 −1.559382683 −5.349260212 −0.3709665578 −12.47488507

Appendix A.2. Report File Naming

For each circuit, a team needs to upload an output file on the companion website with either txt
or csv extension. The former is a text file where numbers are separated by a space, while the latter is a
csv spreadsheet file using a comma as separator (and without column headers). In all cases there will
be one lap per line in the output file.

The output file should be named FIxDGPyyyMODzzz.csv (or FIxDGPyyyMODzzz.txt), where:

x 1 for Formula I(1), 2 for Formula I(2);
yyy three digits DGP index n, as defined in Table A2;

Table A2. Definition of the DGP index n.

DGP index n := 8iT + 4ip + 2i0 + i1 + 1
iT = 0 T = 100 i0 = 0 ρ0 = 0 for Formula I(1) or ω = 0 for Formula I(2)
iT = 1 T = 1000 i0 = 1 ρ0 = 0.9 for Formula I(1) or ω = 0.9 for Formula I(2)
ip = 0 p = 6 i1 = 0 ρ1 = 0
ip = 1 p = 12 i1 = 1 ρ1 = 0.9

zzz three digits model index m, as defined in Table A3;

https://sites.google.com/view/race-i1
https://sites.google.com/view/race-i1
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Table A3. Definition of the model index m.

Model index m := 2ir + ik + 1

ir = 0 Restriction I(1)-A or I(2)-A
ir = 1 Restriction I(1)-B or I(2)-B
ir = 2 Restriction I(1)-C or I(2)-C
ir = 3 Restriction I(2)-D
ir = 4 Restriction I(2)-E

ir = 4 + r + (r + s− 1)(r + s)/2 M(r, s) with ordering as in Table A4

ik = 0 k = 2
ik = 1 k = 5

The ordering of the unrestricted I(2) estimates corresponds to the column vectorization of the
upper diagonal of the relevant part of a ranks test table. For instance, in case p = 6 the ordering of
models is the one in Table A4.

Table A4. Ordering of the models M(r, s) for case p = 6. Entries in the table correspond to the
numbering of models, where s2 = p− r− s. The ordering is similar for the case p = 12.

r\s2 5 4 3 2 1
1 1 2 4 7 11
2 3 5 8 12
3 6 9 13
4 10 14
5 15

As an example, results for the Formula I(2) circuit with n = 13 (iT = 1, ip = 1, i0 = 0 and
i1 = 0) and m = 6 (ir = 2, ik = 1), should be stored in a file named FI2DGP013MOD006.csv (or
FI2DGP013MOD006.txt).

Appendix A.3. Report File Content

Formula I(1) files have N lines with 4 + 2 (p + 1) r numbers, whereas Formula I(2) files have N
lines, each with 4 + 2 (p + 1) r + p (p + 1) numbers. Each line contains the following information:

(i : `u
a,c,i : `a,c,i : Na,c,i : Sa,c,i : θR′

a,c,i),

where:

1. i is the lap number, i = 1, ..., 1000;
2. `u

a,c,i is the unrestricted loglikelihood, reported with at least 8 significant digits:

• Formula I(1): loglikelihood of the unrestricted I(1) model;
• Formula I(2) ir > 4: loglikelihood of the VAR;
• Formula I(2) ir ≤ 4: loglikelihood of the unrestricted I(2) model.

3. `a,c,i as defined in (2) with at least 8 significant digits;
4. Na,c,i, the iteration count;
5. Sa,c,i is the integer convergence indicator, 1 for convergence, 0 for no convergence;
6. θR′

a,c,i is part of the coefficient vector, which is for Formula I(1):

θR′
a,c,i =

(
vec(αa,c,i)

′ : vec(βa,c,i)
′) .

For the Formula I(2) circuits use instead:

θR′
a,c,i =

(
vec(αa,c,i)

′ : vec(βa,c,i)
′ : vec(Γ : µ0)

′
a,c,i
)

.
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Coefficients must be reported exactly in the given order, providing at least 8 significant digits (but
15 digits is recommended). No particular normalization is required.

If the algorithm failed because likelihood evaluation failed (e.g., singular Ω), then `a,c,i = −∞
should be reported. The data is processed with Ox, so .NaN and .Inf are allowed. Because there is no
clear convention on writing −∞, any value of −10308 or lower is interpreted as −∞.

Table A5 provides the start of the first three lines of three selected output files.

Table A5. Three examples of output files. Beginning of first three lines given.

FI1DGP001MOD001.csv
1, 84.7587177451401, 82.2423190842343, 3, 1,-0.187577914295476, ...
2, 30.1177483889851, 28.6953188342152, 5, 1,0.299447436254108, ...
3, 64.5916602781794, 59.9799720330047, 4, 1,-0.0746786280148741, ...

FI1DGP001MOD001.txt
1 84.75871775 82.24231908 10 1 -1.8757787e-001 1.6004096e-002 ...
2 30.11774839 28.69531883 20 1 2.9944720e-001 -5.8528461e-002 ...
3 64.59166028 59.97997203 16 1 -7.4678444e-002 -1.5937408e-001 ...

FI2DGP001MOD001.csv
1, 76.4430824288192, 76.2400219176979, 10, 1,0.0844284641160844, ...
2, 27.5347594941493, 26.6849814069451, 19, 1,0.0711585542069055, ...
3, 48.709883495749, 48.2827756129209, 24, 1,0.12242477122602, ...
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