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Abstract: This paper considers a linear panel data model with time varying heterogeneity. Bayesian
inference techniques organized around Markov chain Monte Carlo (MCMC) are applied to implement
new estimators that combine smoothness priors on unobserved heterogeneity and priors on the factor
structure of unobserved effects. The latter have been addressed in a non-Bayesian framework by
Bai (2009) and Kneip et al. (2012), among others. Monte Carlo experiments are used to examine the
finite-sample performance of our estimators. An empirical study of efficiency trends in the largest
banks operating in the U.S. from 1990 to 2009 illustrates our new estimators. The study concludes
that scale economies in intermediation services have been largely exploited by these large U.S. banks.
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1. Introduction

In this paper, we consider two panel data models with unobserved heterogeneous time-varying
effects; one with individual effects treated as random functions of time, and the other with common
factors whose number is unknown and whose effects are firm-specific. This paper has two distinctive
features and can be considered as a generalization of traditional panel data models. First, the individual
effects that are assumed to be heterogeneous across units, as well as to be time varying, are
treated non-parametrically, following the spirit of the models of Bai (2009, 2013), Li et al. (2011),
Kneip et al. (2012), Ahn et al. (2013), and Bai and Carrion-i-Silverstre (2013). Second, we develop
methods that allow us to interpret the effects as measures of technical efficiency in the spirit of the
structural productivity approaches of Olley and Pakes (1996) and non-structural approaches from
the stochastic frontier literature (Kumbhakar and Lovell 2000; Fried et al. 2008). Levinsohn and
Petrin (2003), Kim et al. (2016), and Ackerberg et al. (2015) have provided rationales for various
treatments for the endogeneity of inputs and the appropriate instruments or control functions to deal
with the potential endogeneity of inputs and of technical change based on variants of the Olley-Pakes
basic model set up. Although we do not explicitly address entry/exit in this paper, we do address
dynamics, as well as the potential endogeneity of inputs and the correlation of technical efficiency
with input choice (Amsler et al. 2016). The general factor structure we utilize can pick up potential
nonlinear selection effects that may be introduced when using a balanced panel of firms. Our dynamic
heterogeneity estimators could be interpreted as general controls for any mis-specified factors, such as
selectivity due to entry/exit, that are correlated with the regressors and could ultimately bias slope
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coefficients. Olley and Pakes (1996) utilize series expansions and kernel smoothers to model such
selectivity. Our second estimator instead utilizes a general factor structure, which is a series expansion
with a different set of basis functions than those used in the polynomial expansions employed by
Olley-Pakes. Alternatively, we can interpret the effects based on a panel stochastic frontier production
specification that formally models productive efficiency as a stochastic shortfall in production, given
the input use. Van den Broeck et al. (1994) formulate a Bayesian approach under a random effects
composed error model, while Koop et al. (1997) and Osiewalski and Steel (1998) provided extensions
to the fixed effect model utilizing Gibbs sampling and Bayesian numerical methods, but these studies
assumed that the individual effects were time invariant. Comparisons between the Bayes and classical
stochastic frontier estimators have been made by Kim and Schmidt (2000). The estimators we consider
are specified in the same spirit as Tsionas (2006), who assumed that the effects evolve log-linearly.
We do not force the time-varying effects to follow a specific parametric functional form and utilize
Bayesian integration methods and a Markov chain-based sampler to provide the slope parameter
and heterogeneous individual effects inferences based on estimators of the posterior means of the
model parameters.

The paper is organized as follows. Section 2 describes the first model setup and parameter
priors. Section 3 introduces the second model and the corresponding Bayesian inferences, followed
by Section 4, presenting the Monte Carlo simulations results. The estimation of the translog distance
function is briefly discussed and the empirical application results of the Bayesian estimation of
the multi-output/multi-input technology employed by the U.S. banking industry in providing
intermediation services are presented in Section 5. Section 6 provides the concluding remarks.

2. Model 1: A Panel Data Model with Nonparametric Time Effects

Our first model is based on a balanced design with T observations for n individual units.
Observations in the panel can be represented in the form (yit, xit), i = 1, . . . , n; t = 1, . . . , T, where the
index i denotes the ith individual unit, and the index t denotes the tth time period.

A panel data model with heterogeneous time-varying effects is:

yit = xitβ + γit + vit (1)

where yit is the response variable, xit is a 1× p vector of the explanatory variables, β is a p× 1 vector
of the parameters, and γit is a nonconstant and unknown individual effect. We make a standard
assumption that the measurement error vit ∼ NID(0, σ2). The time-varying heterogeneity is assumed
to be independent across units. This assumption is quite reasonable in many applications, particularly
in production/cost stochastic frontier models where the effects are measuring technical efficiency
levels. A firm’s efficiency level primarily relies on its own factors such as its executives’ managerial
skills, the firm size, and the operational structure, etc., and should thus be heterogeneous across firms.
These factors usually change over time, as does the firm’s efficiency level.

For the ith unit, the model is:

Yi = Xiβ + γi + vi, i = 1, . . . , n (2)

where Yi, Xi, and γi contain the stacked vectors of dimension T for cross-section i.
When interpreting the effects as firm efficiencies, as is done in stochastic frontier analysis

(Pitt and Lee 1981; Schmidt and Sickles 1984), the estimation of time-varying technical efficiency
levels is as important as that of the slope parameters.

A difference between our model and many other Bayesian approaches in the literature is that
no functional form for the prior distribution of the unobserved heterogeneous individual effects is
imposed. Instead of resorting to the classical nonparametric regression techniques (Kneip et al. 2012),
a Markov chain Monte Carlo (MCMC) algorithm is implemented to estimate the model. We can
consider this to be a generalization of Koop and Poirier (2004) in the case of panel data, including
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both individual-specific and time-varying effects. Moreover, our model does not rely on the restrictive
conjugate prior formulation for the time varying individual-effects.

A Bayesian analysis of the panel data model set up above requires specification of the prior
distributions over the parameters (γ, β, σ) and computation of the posterior using a Bayesian
learning process:

p(β, γ, σ|Y, X, ω) ∝ p(β, σ, γ) · l(Y, X; β, γ, σ). (3)

The prior for the individual effect γi is not assumed to follow a normal distribution; instead, it is
only assumed that the first-order or second-order difference of γi follows a normal prior.

p(γ) ∝
n

∏
i=1

exp
(
−

γ′iQγi

2ω2

)
= exp

(
− 1

2ω2 γ′(In ⊗Q)γ

)
(4)

where Q = D′D, and D is the (T − 1)× T matrix whose elements are Dtt = 1, for t = 1, . . . ,T −1;
Dt−1,t = −1 for all t = 2, . . . ,T and zero otherwise. The information implied by this prior is that

γi,t − γi,t−1 ∼ N
(
0, ω2), or Dγi

I ID∼ N
(
0, ω2 IT−1

)
. ω is the smoothness parameter that indexes the

degree of smoothness. ω can be considered as a hyper-parameter, or it can be assumed to have its own
prior, which is explained in the next section. Provided the continuity and first-order differentiability
of γi,t, this assumption says that the first derivative of the time-varying function γi,t in (4) is a smooth
function of time. One can assume second-order differentiability instead, which is implied by the

condition that γit − 2γi,t−1 + γi,t−2 ∼ N
(
0, ω2), or D(2)γi

I ID∼ N
(
0, ω2 IT−2

)
and Q = D(2)′D(2).

A non-informative distribution is assumed for the joint prior of the slope parameter β and the
unknown variance term σ2.

p(β, σ, γ) ∝ σ−1 (5)

This is equivalent to assuming that the prior distribution is uniform on (β, log σ).
With the assumptions of the priors above, the joint prior of the model parameters is:

p(β, σ, γ) ∝ σ−1
n

∏
i=1

exp
(
−

γ′iQγi

2ω2

)
= σ−1 exp

(
− 1

2ω2 γ′(In ⊗Q)γ

)
(6)

The corresponding sample likelihood function is:

l(Y, X, β, γ, σ) ∝ σ−nT exp {− 1
2σ2 (Y− Xβ− γ)′(Y− Xβ− γ)} (7)

The likelihood is formed by the product of the nT independent disturbance terms, which follow the
normal distribution for the idiosyncratic error, assumed to be NID (0, σ2). Applying Bayes’ theorem,
the probability density function is updated utilizing the information from the data and to form the
joint posterior distribution given by:

p(β, γ, σ|Y, X, ω) ∝σ−(nT+1) exp{− 1
2σ2 (Y− Xβ− γ)′(Y− Xβ− γ)}

× exp{− 1
2ω2 γ′(In ⊗Q)γ}

(8)

The model in (1) and (2) is identified provided we have a proper prior for the γi
′s. To accomplish

this, we use (4) with a proper prior for ω: p(ω) ∝ ω−(n+1) exp
(
− q

2ω2

)
, n ≥ 0, q > 0 (see (17) below),

where q is the sum of squares with n observations. The “non-informative” case is to let n, q→ 0 . We
use n = 1 and q = 10−6 following standard practice (Geweke 1993). The posterior is well-defined
and integrable. Such issues have been dealt with by Koop and Poirier (2004), whose spline method is
equivalent to the difference prior we adopt.
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To proceed with further inference, we need to solve this analytically. However, the joint posterior
distribution does not have a standard form and taking draws directly from it is problematic. Therefore,
we utilize Gibbs sampling to perform Bayesian inference. The Gibbs sampler is commonly used in such
situations because of the desirable result that iterative sampling from the conditional distributions will
lead to a sequence of random variables converging to the joint distribution. A general discussion on the
use of Gibbs sampling is provided by Gelfand and Smith (1990), who compare the Gibbs sampler with
alternative sampling-based algorithms. A more detailed discussion is given in Gelman et al. (2003).
Gibbs sampling is well-adapted to sampling the posterior distributions for our model since it is possible
to derive the collection of distributions.

The Gibbs sampling algorithm we employ generates a sequence of random samples from the
conditional posterior distributions of each block of parameters, in turn conditional on the current
values of the other blocks of parameters, and it thus generates a sequence of samples that constitute a
Markov Chain, where the stationary distribution of that Markov chain is the desired joint distribution
of all the parameters.

In order to derive the conditional posterior distributions of β, γ, and σ, we first rewrite the joint
posterior in (8) as:

p(Y|β, γ, σ) ∝ σ−nT exp
{
− 1

2σ2 (Y− Xβ− γ)′(Y− Xβ− γ)
}

∝ σ−nT exp
{
− 1

2σ2 [(Y− Xβ̂− γ)
′
(Y− Xβ̂− γ) + (β− β̂)

′
(X′X)

(
β− β̂

)
]
} (9)

where β̂ = (X′X)−1X′(Y− γ).
The joint posterior can be rewritten as:

p(β, γ, σ|Y, X, ω) ∝ σ−(nT+1) exp{− 1
2ω2 γ′(In ⊗Q)γ}

× exp{− 1
2σ2 [(Y− Xβ̂− γ)

′
(Y− Xβ̂− γ) + (β− β̂)

′
(X′X)(β− β̂)]}.

(10)

From (10), the conditional distribution of β can be shown to follow the multivariate normal
distribution with the mean β̂ and covariance matrix σ2(X′X)−1.

p(β|Y, X, γ, σ, ω) ∝ exp{− 1
2σ2 (β− β̂)

′
(X′X)(β− β̂)} (11)

The conditional distribution of β, therefore, is given by:

β
∣∣∣σ, γ, ω, Y, X ∝ fk

(
β|β̂, σ2(X′X)−1

)
(12)

In order to derive the conditional distribution of the individual effect γi, we rewrite the joint
posterior distribution as:

p(β, γ, σ|Y, X, ω) ∝
σ−(nT+1) exp{− 1

2σ2 (γ−Y + Xβ)′(γ−Y + Xβ)− 1
2ω2 γ′(In ⊗Q)γ} ∝

σ−(nT+1) exp{− 1
2σ2 ∑n

i=1 (γi −Yi + Xiβ)
′(γi −Yi + Xiβ)− 1

2ω2 ∑n
i=1 γi

′Qγi}
(13)

Under the assumption that the effects, the γi
′s are independent across units, the conditional

posterior distribution of γi|β, σ, ω,
{

γj, j 6= i
}

, Y, X is the same as that of γi|β, σ, ω, Y, X, and is
distributed as a multivariate normal.

γi|β, σ, ω,
{

γj, j 6= i
}

, Y, X ∼ γi|β, σ, ω, Y, X ∝ φT

(
γi|γ̂i, σ2ω2V

)
(14)

where the mean γ̂i and covariance matrix V are γ̂i = ω2V(yi − Xiβ) and V =
(
σ2Q + ω2 IT

)−1 for
i = 1, . . . , n. The detailed derivation is presented in Appendix A.
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The conditional posterior distribution for σ2 is given below in (15). It is clear that the sum of the
squared residuals (Y− Xβ− γ)′(Y− Xβ− γ)/σ2 has a conditional chi-squared distribution with nT
degrees of freedom, as shown in (16):

p
(

σ2|β, γ, Y, X, ω
)

∝ (σ−2)
nT/2−1

exp{− 1
2σ2 (Y− Xβ− γ)′(Y− Xβ− γ)} (15)

(Y− Xβ− γ)′(Y− Xβ− γ)

σ2 |β, γ, ω, Y, X ∼ χ2
nT . (16)

If the smoothing parameter ω is also assumed to follow its own prior instead of being treated as a
constant, then its conditional posterior distribution can also be derived. Suppose that q

ω2 ∼ χ2
n, where

n, q ≥ 0 are hyper-parameters that control the prior degree of smoothness that is imposed on the γit
′s.

Then, the conditional posterior distribution of ω2 is derived as:

q + ∑n
i=1 γ′iQγi

ω2 |β, σ, γ, Y, X ∼
q + ∑n

i=1 γ′iQγi

ω2 |γ, Y, X ∼ χ2
n+n (17)

Generally, small values of the prior “sum of squares” q/n correspond to smaller values of ω

and thus a higher degree of smoothness. Alternatively, we can choose the smoothing parameter ω

using cross validation, which in a Bayesian context is similar to cross validation for tuning parameters
in classical nonparametric regression. We choose the smoothing parameter ω so that the marginal
likelihood (Perrakis et al. 2014) is maximized.

A Gibbs sampler is then used to draw observations from the conditional posteriors based on (11)
through (17). Draws from these conditional posteriors will eventually converge to the joint posterior
in (8). Since the conditional posterior distribution of β follows the multivariate normal distribution
displayed in (12), it will be straightforward to sample from it. For the individual effects γi, sampling is
also straightforward since its conditional posterior follows a multivariate normal distribution with a
mean vector γ̂i and covariance matrix σ2ω2V, as expressed in (14).

Finally, to draw samples from the conditional posterior distribution function for the unobserved
variance of the measurement error σ term, we have two simple steps. First, we draw samples directly
from (Y− Xβ− γ)′(Y− Xβ− γ)/σ2, which is shown in (16) to follow a chi-squared distribution with
the degree of freedom nT. Next, we assign the values of (Y− Xβ− γ)′(Y− Xβ− γ)/(Chi− rnd) to
σ2, where (Chi− rnd) is the random generated variable that follows a χ2

nT in the first step.

3. Model 2: A Panel Data Model with Factors

We next consider a somewhat different specification for the panel data model, wherein the effects
are treated as a linear combination of unknown basis functions or factors:

yit = αi + xitβ + φtγi + vit = xitβ +
G

∑
g=1

φtgγig + vit. (18)

Here, φt is a 1 × G vector of common factors, γi is a G × 1 vector of individual-specific factor
loadings, and αi represents the firm-specific and time invariant effects. For these effects, we retain
the Schmidt and Sickles (1984) interpretation of the fixed effects as measures of unit specific time
invariant productivity (inefficiency), but we embed it in a Bayesian framework using the Bayesian
Fixed Effects Specification (BFES) of Koop et al. (1997). Following their model specification, the BFES
is characterized by marginal prior independence between the individual effects. Therefore, the effects
are assumed not to be linked across firms, as would be the case for the spatial stochastic frontier
considered by Glass et al. (2016).

As for measuring the inefficiency, the essence of the Schmidt and Sickles (1984) device in the
Bayesian context is that, during the sth of the total S (MCMC) iterations or paths, inefficiency
is constructed as the difference of the individual effect from the maximum effect across firms:
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u(s)
i = α

(s)
i − max

j=1,...,n
α
(s)
j . Thus, one counts the most efficient firm in the sample as 100% efficient.

However, there is uncertainty as to which firm we should use for benchmarking and this is resolved by

averaging: ûi = S−1
S
∑

s=1
u(s)

i to account for both the parameter uncertainty, as well as the uncertainty

regarding the best performing firm. The efficiency level of the most efficient firm in the sample
approaches 1 when S→ ∞. This method has much in common with the Cornwell et al. (1990) (CSS)
estimator of time and firm specific productivity effects. The difference is that at each path of the
Gibbs sampler, we have new draws for the αi

′s, a new value for max
j=1,...,n

α
(s)
j , and thus a new value for

u(s)
i . While CSS have one set of estimates and therefore a single firm to use as the benchmark, in the

Bayesian approach, we have draws from the posterior of the αi
′s. There is also uncertainty as to which

firm is the benchmark since we are simulating from the finite sample distribution of the αi
′s and thus,

we re-compute max
j=1,...,n

α
(s)
j and the value of u(s)

i each time.

The method can be extended to the case in which the time effects are nonlinear, e.g., where
αit = ∑L

l=1 ωiltl . With this specification, we can allow for a firm-specific polynomial trend, where ωil
represents the firm-specific coefficients. Of course other covariates can also be included in the time
effects if so desired.

The model can be written for the ith unit as:

Yi
(T×1)

= αiιT + Xi
(T×k)

β
(k×1)

+ Φ
(T×G)

γi
(G×1)

+ vi
(T×1)

, i = 1, 2, . . . , n (19)

or for the tth time period as:

Yt
(n×1)

= α
(n×1)

+ Xt
(n×k)

β
(k×1)

+ Γ
(n×G)

φt
(G×1)

+ vt
(n×1)

, t = 1, 2, . . . T (20)

where Φ =

 φ′1
...

φ′T

, and Γ =

 γ′1
...

γ′n

. If we set φ1t then γit acts as an individual-specific intercept.

Effectively, the first column of Φ contains ones. The model for all observations can be written as
Y = Xβ + (In ⊗Φ)γ + v = Xβ + (IT ⊗ Γ)φ + v, where γ = vec(Γ) and φ = vec(Φ).

This model setting follows that in Kneip et al. (2012), and it satisfies the following structural
assumption, which is Assumption 1 from Kneip et al:

Assumption 1: For some fixed L ∈ {0, 1, 2, . . .} < T, there exists an L-dimensional space LT , where,
{φi(1), φi(2), . . . , φi(T)} ∈ LT such that the time-varying individual effect φi(t) = φtγi holds with
probability 1.

We define the priors similarly to Model 1. Regarding the slope parameter β and variance of the
noise term σ, we continue to assume a non-informative prior: p(β, σ) ∝ σ−1. For the common factors,
it is reasonable to assume that:

p(φ1, φ2, . . . , φT) ∝ exp

(
−∑T

t=1 (φt − φt−1)
′(φt − φt−1)

2ω2

)
= exp

(
− 1

2ω2 trΦ′QΦ
)

. (21)

This prior is consistent with the presence of common factors that evolve smoothly over time.
The degree of smoothness is controlled by the parameter ω and by setting φ0 = 0. Smoothness in this
context then comes from the specification of the random walk prior above as essentially a spline.

For the loadings, we assume γi
I ID∼ NG(γ, Σ). An alternative that we do not pursue but which may

attenuate the proliferation of factors would be to stochastically constrain the loadings to approach zero
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in the following sense: if Γ
(n×G)

=
[
γ(1), . . . , γ(G)

]
, then γ(1) ∼ Nn(γ, ψ2 In), γ(g) ∼ Nn(αgγ, λgψ2 In),

for g = 1, . . . , G, where α, λ are parameters between zero and one. The posterior kernel distribution is:

p(β, σ, φ, γ|Y, X) ∝ σ−(nT+1) exp
[
−∑n

i=1 ∑T
t=1(yit−x′it β−φ′tγi)

2

2σ2 − ∑T
t=2 (φt−φt−1)

′(φt−φt−1)
2ω2

]
∏n

i=1 p(γi|ζ) (22)

where ζ denotes any hyper-parameters that are present in the prior of γ(i)
′s. When γ(i)

I ID∼ NG(γ, Σ),
we have:

p(β, σ, φ, γ, γ, Σ|Y, X) ∝

σ−(nT+1) exp
[
−∑n

i=1 ∑T
t=1(yit−x′it β−φ′tγi)

2

2σ2 − ∑T
t=1 (φt−φt−1)

′(φt−φt−1)

2ω2

]
×|Σ|−n/2 exp

[
− 1

2 ∑n
i=1 (γi − γ)′Σ−1(γi − γ)

]
p(γ, Σ)

(23)

where p(γ, Σ) denotes the prior on the hyper-parameters. A reasonable choice is the p(γ|Σ) ∝ constant
and p(Σ) ∝ |Σ|−(ν+1)/2 exp

(
− 1

2 AΣ−1
)

, which leads to:

p(β, σ, φ, γ, γ, Σ|Y, X) ∝

σ−(nT+1)|Σ|−(n+ν+1)/2 exp
[
−∑n

i=1 ∑T
t=1(yit−x′it β−φ′tγi)

2

2σ2 − ∑T
t=1 (φt−φt−1)

′(φt−φt−1)

2ω2 − 1
2 tr
(

AΣ−1
)] (24)

where A = A + ∑n
i=1(γi − γ)(γi − γ)′.

In order to proceed with Bayesian inference, we again use the Gibbs Sampling algorithm. For our
model 2 specification, the implementation of Gibbs sampling is rather straightforward since we can
analytically derive the conditional posteriors for the parameters in which we are interested. In what
follows, we use the notation Y := Y− α⊗ ιT . The conditional posteriors are:

β|σ, φ, γ, γ, Σ, Y, X ∼ Nk

(
β, σ2(X′X)−1

)
, where β =

(
X′X

)−1X′(Y− (In ⊗Φ)γ) (25)

(Y− Xβ− (In ⊗Φ)γ)′(Y− Xβ− (In ⊗Φ)γ)

σ2 |β, γ, φ, γ, Σ ∼ χ2
nT (26)

γ|β, σ, φ, γ, γ, Σ, Y, X ∼ γ|γ, Σ, Y, X ∼ NG

(
n−1

n

∑
i=1

γi, n−1Σ

)
(27)

γi|β, σ, γ, Σ, Y, X ∼ NG

(
γ̂i, σ2

(
Φ′Φ + σ2Σ−1

)−1
)

(28)

where γ̂i =
(

Φ′Φ + σ2Σ−1
)−1(

Φ′ei + σ2Σ−1γ
)

, ei = yi − Xiβ, for each i = 1, . . . , n,

φt|β, σ, γ, γ, Σ, Y, X, {φτ , τ 6= t} ∼ NG

(
φ̂t, σ2ω2

(
ω2Γ′Γ + 2σ2 IG

)−1
)

(29)

where φ̂t =
(
ω2Γ′Γ + 2σ2 IG

)−1(
ω2Γ′et + σ2(φt−1 + φt+1)

)
, et = yt − Xtβ for each t = 1, . . . , T.

Using a Gibbs sampler, we draw observations from the conditional posteriors from (25)
to (29). Draws from the conditional posteriors will eventually converge to the joint posterior (24).
The conditional posterior distribution of β follows the multivariate normal (25) and it is straightforward
to sample from that distribution. To draw samples from the conditional posterior distribution
function for the unobserved variance of the measurement error σ term, we first draw samples
directly from the distribution of (Y− Xβ− γ)′(Y− Xβ− γ)/σ2, which is shown in (26) to
follow a chi-squared distribution with the degree of freedom nT, and then assign the values of
(Y− Xβ− γ)′(Y− Xβ− γ)/(Chi− rnd) to σ2, where (Chi− rnd) is the generated random variable
that follows χ2

nT in the first step.
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For the mean parameter γ, sampling is also straightforward since its conditional posterior follows
a multivariate normal distribution. The variance matrix Σ follows an inverted Wishart distribution. For
the unknown common factors γi and the corresponding factor loadings φt we can draw directly from
multivariate normal distribution following (28) and (29). Finally, the individual firm effects αi can be
drawn using the procedure in Koop et al. (1997). This involves standard computations as the Bayesian
fixed effects are drawn for normal posterior conditional distributions. The difficult distributional
issues involved in deriving the analytical finite sample distribution of the parameters and estimates of
relative efficiency are resolved through the MCMC procedure used to generate u(s)

i = α
(s)
i − max

j=1,...,n
α
(s)
j ,

a fact that has been mentioned by Koop et al. (1997). α
(s)
i can be calculated from the posterior of β

(s)
i

and γ
(s)
i and thus u(s)

i can also be calculated.
In our discussion of Model 2, we have treated the number of finite factors (G) as known. However,

we can also utilize Bayesian techniques to develop inferences on G. Classical inferential approaches
have been proposed by Bai and Ng (2007), Onatski (2009), and Kneip et al. (2012). We consider models
with at most L finite factors G = 1, 2, . . . ,L. Suppose p(θ, ΓG) and L(θ, ΓG; Y, G) denote the prior and
likelihood, respectively, of a model with G factors, where θ is the vector of parameters common to
all models (such as β and σ) and ΓG denotes a vector of parameters related to the factors and their
loadings, ϕ and γ. The marginal likelihood is MG(Y) =

∫
L(θ, ΓG; Y, G)p(θ, ΓG)dΓGdθ. For models

with different numbers of factors, say G and G’, we can consider the Bayes factor in favor of the first
model and against the second:

BF =

∫
L(θ, ΓG; Y, G)p(θ, ΓG)dΓGdθ∫

L(θ, ΓG′ ; Y, G′)p(θ, ΓG′)dΓG′dθ
=

MG(Y)
MG′(Y)

(30)

Computation of the marginal likelihood requires the computation of the integral in the
numerator P(θ|Y, G) with respect to φ and γ. As this is not available analytically, we adopt the
following approach.

We first specify:

P(θ|Y, G) =
∫

L(θ, ΓG; Y, G)p(θ, ΓG)dΓG =
∫ L(θ, ΓG; Y, G)p(θ, ΓG)

q(ΓG)
q(ΓG)dΓG, (31)

where q(ΓG) is a convenient importance sampling density. We factor the importance density as
q(ΓG) = ∏T

t=1 qφ
t (φt)∏n

i=1 qγ
i (γi), where qφ

t and qγ
i are univariate densities. The densities are chosen

to be univariate Student’s t-distributions with five degrees of freedom, with parameters matched to
the posterior mean and standard deviation of MCMC draws for φ and γ, respectively. The integral is
then calculated using standard importance sampling, which is quite robust. The standard deviations
are multiplied by constants hφ and hγ, which are selected so that the importance weights are as
close to uniform as possible. We use 100 random pairs in the interval 0.1 to 10 and select the values
of h for which the Kolmogorov-Smirnov test is the lowest. We truncate the weights to their 99.5%
confidence interval, but in very few instances was this found necessary as extreme values are rarely
observed. There is evidence that changing the degrees of freedom of the Student’s t provides some
improvement, but we did not pursue this further as the final results for the Bayes factors were not
found to differ significantly.
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Given marginal likelihoods Mg(Y), g = 1, . . . , G, the posterior model probabilities can be
estimated as1:

pg(Y) =
Mg(Y)

∑G
g=1 Mg(Y)

, g = 1, . . . , G (32)

The posterior model probabilities summarize the evidence in favor of a model with a given number
of factors.

4. Monte Carlo Simulations

In order to illustrate the model and examine the finite sample performance of the new Bayesian
estimators with nonparametric individual effects (BE1) and with the factor model specification for the
individual effects (BE2), we carry out a series of Monte Carlo experiments. The performance of the
Bayesian estimator is compared with the parametric time-variant estimator of Battese and Coelli (1992)
(BC), the estimators proposed by (Cornwell et al. 1990)—within (CSSW) and random effects GLS
(CSSG)—and the Kneip et al. (2012) estimator that utilizes a combination of nonparametric regression
techniques (smoothing splines) and factor analysis (Bada and Liebl 2014) to model the time-varying
unit specific effects. The BC estimates are based on the model (1) where the time-varying effects are
given by γit = −e−η(t−T)ui. The temporal pattern of firm-specific effects γit depends on the sign of η.
The time-invariant case corresponds to η = 0. The disturbances ui are i.i.d. and are assumed to follow
a non-negative truncated normal distribution. Estimation of the BC model is carried out by parametric
MLE. The CSSW and CSSG estimates are also based on model (1) and specify the time varying effects
as γit = θi1 + θi2t + θi3t2. Derivations of the within, GLS, and efficient Hausman-Taylor type IV
estimators can be found in Cornwell et al. (1990). The KSS estimator requires a bit more discussion.

They assume that γit is a linear combination of some basis functions γit =
L
∑

r=1
ζirgr(t). In the first

step of their three step procedure, they obtain estimates of the slope parameters and nonparametric
approximations to γit by a least squares regression of Y on X and an approximation of the effects using
smoothing splines. In the second step, they obtain the empirical covariance matrix of residuals and in
the third step they determine the basis functions and corresponding coefficients. Details can be found
in Kneip et al. (2012). Point estimates and standard errors for BE1 and BE2 are posterior moments
whose derivation we detailed in Sections 2 and 3. We averaged the point estimates and the standard
deviations of the parameter estimates from all of the simulated paths.

We consider a panel data model with two regressors written as yit = β1x(1)it + β2x(2)it +γit + vit. We

generate samples of size n = 50, 100, 200, with T = 20, 50. In each experiment, the regressors x(j)
it (j = 1, 2)

are randomly drawn from a standard multivariate normal distribution N(0,Ip) The i.i.d. disturbance
term vit is drawn from a standardized N(0, 1). Time-varying individual effects are generated by four
different DGPs, which specify the effects as following a unit specific quadratic function of a time trend
(DGP1), random walk (DGP2) oscillating function given by a linear combination of sine and cosine
functions (DGP3), and finally a simple additive mixture of the previous three data generating processes
(DGP4). The parameterizations are:

DGP1 : γit = θi0 + θi1(t/T) + θi2(t/T)2

DGP2 : γit = φirt

DGP3 : γit = νi1t/t cos(4πt/T) + νi2t/T sin(4πt/T)

1 Prior model probabilities are assumed to be equal so that the Bayes factor is equal to the posterior odds ratio. As pointed
out by an anonymous referee, one could consider how prior model probabilities may favor a small g, and we find this issue
an interesting question to study in future work. An exponential prior can be used, for example, with p(g) proportional to
exp(-ag) for a = 1.
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DGP4 : γit = θi0 + θi1(t/T) + θi2(t/T)2 + νi1t/t cos(4πt/T) + νi2t/T sin(4πt/T).

Here θij(j = 0, 1, 2) and φi are i.i.d N(0, 1), rt+1 = rt + δt, δt ∼ i.i.d. N(0, 1), and νij(j = 1, 2) ∼
i.i.d.N(0, 1).

Gibbs sampling was implemented using 55,000 iterations with a burn-in period of 5000 samples.
We only consider every other 10th draw to mitigate the impact of autocorrelation from successive
samples from the Markov chain. With regard to the selection of the number of factors, Gibbs samplers
for all DGPs rely on an MCMC simulation from models with a G value ranging from one to eight. The
true number of factors is 3, 2, 1, and 6 for the four respective DGPs.

The simulation results for all the DGPs are displayed in Tables 1–4. Estimates and standard errors
of the slope coefficients β1 and β2 are presented in the upper panel of each table, while estimates of
the individual effects γit and their normalized MSE are displayed in the lower panel of each table.
The normalized MSE of the individual effects γit is calculated as:

R(γ̂it, γit) =
∑n

i=1 ∑T
t=1 (γ̂it − γit)

2

∑n
i=1 ∑T

t=1 γit
2

(33)

Since we have not analyzed the role of correlated effects in these experiments, estimates of the
slope parameters should be consistent for CSSW, CSSG, and KSS. Moreover, the BC model utilizes
parametric MLE based on i.i.d. normally distributed random disturbances and thus should also yield
consistent slope parameter estimates. Results from the four different specifications of the effects
clearly demonstrate that point estimates of the slope coefficients for BC, CSSW, CSSG, and KSS are
comparable across the various dgps, although variances will of course be smaller for estimators that
do a better job of modeling the effects. The BC estimator does a poor job of estimating the effects since
the specification we utilize assumes that the effects have the same temporal pattern for the different
units. Generalizations of the BC estimator are available that allow the effects to be functions of selected
regressors that may change over units, but we do not utilize these extensions in our experiments. Since
DGP1 is consistent with the assumptions for the time-varying effects in the CSS model (we use the
version of the CSS estimator utilized in the Cornwell et al. (1990) application wherein the unit specific
effects were given by a second-order polynomial in the time trend), it is no surprise that the CSSW
and CSSG estimators have the best performance compared with the other estimators for this dgp.
However, it is also clear from the results of Table 1 that the Bayesian estimators are comparable to
those of the CSSW, CSSG, and KSS estimators in terms of the estimates of individual effects. Moreover,
for the sample sizes of n = 50, T = 50, and n = 100, T = 50, the Bayesian estimators provide more
accurate estimates of individual effects than the KSS estimator. This implies that the performance of
the Bayesian estimators is quite effective in estimating the time-varying effects of the smoothed-curve
forms, like the second-order polynomials. It is not surprising that the mean squared errors of the
Bayesian estimators are consistently much lower than those of the BC estimator for all sample sizes.
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Table 1. Monte Carlo simulations for DGP1.

Mean Squared Error for the Individual Effects

n T BC CSSW CSSG KSS BE1 BE2

50 20 0.7284 0.0012 0.0012 0.0039 0.0053 0.0671
50 0.9371 0.0005 0.0005 0.1255 0.0021 0.0323

100 20 0.8222 0.0008 0.0008 0.0033 0.0031 0.0183
50 0.8245 0.0003 0.0003 0.0220 0.0018 0.0115

200 20 0.8451 0.0008 0.0008 0.0023 0.0027 0.0101
50 0.8823 0.0003 0.0003 0.0021 0.0011 0.0083

Estimate and Standard Error for the Slope Coefficients

T = 20 T = 50

BC CSSW CSSG KSS BE1 BE2 BC CSSW CSSG KSS BE1 BE2

n = 50
EST1 0.5250 0.4961 0.4965 0.4954 0.4981 0.5017 0.5105 0.4991 0.4992 0.4999 0.5013 0.4998
SE1 0.0130 0.0033 0.0032 0.0029 0.0057 0.0042 0.0073 0.0021 0.0020 0.0019 0.0035 0.0027

EST2 0.4856 0.4949 0.4948 0.4919 0.4985 0.5020 0.4969 0.5048 0.5047 0.5053 0.5001 0.5002
SE2 0.0139 0.0035 0.0033 0.0031 0.0055 0.0041 0.0073 0.0020 0.0020 0.0018 0.0032 0.0024

n = 100
EST1 0.4973 0.5018 0.5013 0.5045 0.5023 0.5002 0.4843 0.4999 0.4998 0.4991 0.4999 0.5001
STD1 0.0099 0.0023 0.0022 0.0021 0.0032 0.0027 0.0066 0.0014 0.0014 0.0014 0.0023 0.0018
EST2 0.5047 0.5009 0.5012 0.5022 0.5016 0.5001 0.4995 0.5001 0.5000 0.4990 0.5003 0.5001
STD2 0.0098 0.0022 0.0022 0.0020 0.0032 0.0028 0.0066 0.0014 0.0014 0.0013 0.0022 0.0017

n = 200
EST1 0.4936 0.5013 0.5015 0.5009 0.5000 0.4981 0.5000 0.5007 0.5007 0.5000 0.5012 0.5001
STD1 0.0071 0.0016 0.0016 0.0016 0.0027 0.0022 0.0042 0.0010 0.0010 0.0010 0.0019 0.0015
EST2 0.4983 0.5016 0.5020 0.5019 0.5002 0.4993 0.5027 0.4972 0.4972 0.4969 0.5003 0.5004
STD2 0.0071 0.0016 0.0016 0.0016 0.0027 0.0022 0.0042 0.0010 0.0010 0.0010 0.0018 0.0014

Table 2. Monte Carlo simulations for DGP2.

Mean Squared Error for the Individual Effects

n T BC CSSW CSSG KSS BE1 BE2

50 20 0.9202 0.1266 0.1266 0.0182 0.0071 0.0048
50 0.9052 0.2996 0.2996 0.0238 0.0053 0.0025

100 20 0.8588 0.4553 0.4553 0.0531 0.0040 0.0037
50 0.9884 0.1065 0.1065 0.0046 0.0028 0.0013

200 20 0.9183 0.6376 0.6375 0.0706 0.0022 0.0027
50 0.9526 0.0616 0.0616 0.0028 0.0009 0.0008

Estimate and Standard Error for the Slope Coefficients

T = 20 T = 50

BC CSSW CSSG KSS BE1 BE2 BC CSSW CSSG KSS BE1 BE2

n = 50
EST1 0.4786 0.4857 0.4904 0.5059 0.5010 0.4993 0.4820 0.4811 0.4938 0.4972 0.5052 0.4983
SE1 0.0460 0.0308 0.0298 0.0136 0.0262 0.0037 0.0243 0.0230 0.0227 0.0059 0.0177 0.0029

EST2 0.4664 0.4414 0.4854 0.4599 0.5031 0.4992 0.4840 0.4660 0.4848 0.4988 0.5001 0.4999
SE2 0.0491 0.0326 0.0314 0.0146 0.0261 0.0035 0.0241 0.0226 0.0225 0.0059 0.0174 0.0028

n = 100
EST1 0.4854 0.4818 0.4898 0.5065 0.4997 0.5002 0.5137 0.5360 0.5089 0.4950 0.5101 0.4987
STD1 0.0200 0.0195 0.0188 0.0075 0.0163 0.0028 0.0415 0.0257 0.0254 0.0055 0.0128 0.0018
EST2 0.5005 0.4996 0.5115 0.5101 0.4993 0.5001 0.4482 0.5283 0.5143 0.5127 0.5002 0.4992
STD2 0.0198 0.0189 0.0186 0.0073 0.0164 0.0029 0.0415 0.0256 0.0254 0.0055 0.0130 0.0018

n = 200
EST1 0.5051 0.4995 0.5015 0.4864 0.4927 0.5013 0.4274 0.5097 0.4968 0.5018 0.5032 0.5011
STD1 0.0169 0.0175 0.0171 0.0067 0.0120 0.0021 0.0527 0.0202 0.0200 0.0032 0.0078 0.0013
EST2 0.4895 0.4898 0.5147 0.4951 0.4901 0.5020 0.3996 0.4930 0.5015 0.5042 0.5021 0.5031
STD2 0.0170 0.0175 0.0171 0.0067 0.0121 0.0020 0.0531 0.0204 0.0202 0.0033 0.0077 0.0014
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Table 3. Monte Carlo simulations for DGP3.

Mean Squared Error for the Individual Effects

n T BC CSSW CSSG KSS BE1 BE2

50 20 3.3477 0.8816 0.8816 0.0130 0.0244 0.0356
50 3.3639 0.8469 0.8468 0.0082 0.0134 0.0152

100 20 3.5102 0.8309 0.8303 0.0123 0.0116 0.0282
50 3.7625 0.8357 0.8356 0.0072 0.0028 0.0053

200 20 3.8433 0.8335 0.8333 0.0121 0.0083 0.0116
50 3.8513 0.8393 0.8392 0.0063 0.0014 0.0019

Estimate and Standard Error for the Slope Coefficients

T = 20 T = 50

BC CSSW CSSG KSS BE1 BE2 BC CSSW CSSG KSS BE1 BE2

n = 50
EST1 0.5277 0.5250 0.4994 0.4989 0.5012 0.5002 0.4868 0.4871 0.4976 0.5005 0.4991 0.5001
SE1 0.0188 0.0203 0.0197 0.0029 0.0081 0.0038 0.0122 0.0122 0.0120 0.0018 0.0041 0.0025

EST2 0.4905 0.4998 0.5062 0.4930 0.4981 0.4997 0.5259 0.5255 0.5207 0.5052 0.4994 0.5003
SE2 0.0198 0.0215 0.0207 0.0031 0.0078 0.0035 0.0121 0.0120 0.0119 0.0018 0.0042 0.0023

n = 100
EST1 0.4816 0.4768 0.4998 0.5030 0.4961 0.4992 0.4877 0.4863 0.4972 0.4986 0.4995 0.5002
STD1 0.0132 0.0139 0.0134 0.0021 0.0058 0.0025 0.0076 0.0077 0.0076 0.0013 0.0022 0.0017
EST2 0.4907 0.4816 0.5088 0.5028 0.4971 0.4985 0.5024 0.5118 0.5089 0.4993 0.4990 0.5004
STD2 0.0131 0.0135 0.0133 0.0021 0.0057 0.0024 0.0076 0.0077 0.0076 0.0013 0.0023 0.0018

n = 200
EST1 0.5120 0.5103 0.5110 0.5016 0.5012 0.5011 0.4976 0.5012 0.4962 0.4999 0.4981 0.5052
STD1 0.0088 0.0091 0.0089 0.0016 0.0042 0.0013 0.0055 0.0054 0.0054 0.0010 0.0015 0.0011
EST2 0.4885 0.4892 0.5019 0.5029 0.5015 0.5014 0.4874 0.4883 0.4957 0.4973 0.4992 0.4994
STD2 0.0088 0.0091 0.0089 0.0016 0.0041 0.0012 0.0055 0.0055 0.0054 0.0010 0.0016 0.0012

Table 4. Monte Carlo simulations for DGP4.

Mean Squared Error for the Individual Effects

n T BC CSSW CSSG KSS BE1 BE2

50 20 0.8042 0.2161 0.2161 0.0030 0.0130 0.0445
50 0.9478 0.2056 0.2056 0.0890 0.0045 0.0141

100 20 0.8770 0.1382 0.1382 0.0026 0.0112 0.0291
50 0.8626 0.1337 0.1337 0.0193 0.0028 0.0055

200 20 0.8764 0.1301 0.1301 0.0020 0.0098 0.0108
50 0.9111 0.1445 0.1445 0.0015 0.0015 0.0021

Estimate and Standard Error for the Slope Coefficients

T = 20 T = 50

BC CSSW CSSG KSS BE1 BE2 BC CSSW CSSG KSS BE1 BE2

n =50
EST1 0.5521 0.5250 0.5329 0.4995 0.4922 0.4951 0.5031 0.4871 0.4901 0.4999 0.5051 0.5010
SE1 0.0233 0.0203 0.0197 0.0030 0.0039 0.0031 0.0148 0.0122 0.0120 0.0019 0.0032 0.0025

EST2 0.4788 0.4998 0.5014 0.4907 0.5011 0.4977 0.5201 0.5255 0.5246 0.5053 0.5001 0.5003
SE2 0.0248 0.0215 0.0207 0.0031 0.0036 0.0032 0.0147 0.0120 0.0119 0.0018 0.0031 0.0028

n = 100
EST1 0.4732 0.4768 0.4713 0.5017 0.5001 0.5052 0.4720 0.4863 0.4867 0.4985 0.5003 0.5001
STD1 0.0169 0.0139 0.0134 0.0022 0.0031 0.0027 0.0103 0.0077 0.0076 0.0014 0.0021 0.0017
EST2 0.4880 0.4816 0.4836 0.5018 0.5000 0.5041 0.5077 0.5118 0.5117 0.4998 0.5002 0.5003
STD2 0.0167 0.0135 0.0133 0.0021 0.0032 0.0025 0.0103 0.0077 0.0076 0.0014 0.0020 0.0015

n = 200
EST1 0.5029 0.5103 0.5112 0.5011 0.5032 0.5001 0.4891 0.5012 0.5012 0.5003 0.4991 0.5002
STD1 0.0116 0.0091 0.0089 0.0016 0.0028 0.0020 0.0069 0.0054 0.0054 0.0010 0.0018 0.0014
EST2 0.4892 0.4892 0.4934 0.5021 0.5013 0.5020 0.4940 0.4883 0.4886 0.4970 0.4987 0.5013
STD2 0.0116 0.0091 0.0089 0.0016 0.0025 0.0022 0.0070 0.0055 0.0054 0.0010 0.0017 0.0013

DGP2 considers the case where the individual effects are generated by a random walk and
the results for these experiments are shown in Table 2. CSSW and CSSG are over-parameterized as
they assume that the individual effects are quadratic functions of the time trend and have relatively
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poorer performances for this dgp. BE1 and BE2 are mostly data driven and impose no functional
forms on the temporal pattern of the individual effects. For this relatively simple random walk
specification, they outperform the other estimators that rely on functional form assumptions and
also have a better estimation performance in terms of the MSE of individual effects than KSS. DGP3
characterizes significant time variations in the individual effects. As we can see from Table 3, the BE1
and BE 2 estimators have a comparable performance to the KSS estimator and outperform it again
for experiments with relatively large panels such as (n = 100 and 200). The other estimators, whose
effects rely on parametric assumptions of simple functional forms, are largely dominated by the
Bayesian estimators.

DGP4 is a mixture of the scenarios for the time varying effects used in DGP1–DGP4. Table 4
indicates that that BE1 and BE2 outperform the BC, CSSW, and CSSG estimators in terms of the MSE
of the individual effects and are comparable to KSS.

As we have pointed out, for all the DGPs, the slope parameter estimates are comparable across
the six different estimators. However, this is not the case for the individual effects. This is a drawback
for the estimation of technical or efficiency change since such measures are usually based on an
unobserved latent variable that is estimated using some function of the model residuals. For example,
the individual effects correspond to the technical efficiencies in stochastic frontier analysis. Our
new Bayesian estimators for the stochastic frontier would appear to be excellent candidates among
competing estimators for modeling a production or cost frontier and it is to topic that we now turn to
in our empirical model of banking efficiency.

5. Empirical Application: Efficiency Analysis of the U.S. Banking Industry

5.1. Empirical Models

In this section, the two Bayesian estimators we have introduced are used to estimate temporal
changes in the efficiency levels of 40 of the top 50 banks in the U.S. ranked by their book value of
assets. We consider only 40 of these banks due to missing observations and other data anomalies. The
empirical model is borrowed from Inanoglu et al. (2015), who use a suite of econometric specifications,
including time-invariant panel data models, time-variant models, and quantile regression methods,
to examine issues of “too big to fail” in the banking industry. In our illustration of the new Bayesian
estimators, we will only compare the results across the different time-varying stochastic frontier panel
estimators we discussed in the last section, along with modifications in the Bayesian estimators, to
deal with potential issues of endogeneity. The estimators we utilize are based on different assumptions
on the functional form of the time varying effects and provide various treatments for the unobserved
heterogeneity, but they are all based on (1), which characterizes a single output with panel data
assuming unobserved individual effects.

We will estimate a second order approximation in logs (the translog specification) to a
multi-output/multi-input distance function (Caves et al. 1982). The output-distance function
DO(Y, X) is non-decreasing, homogeneous, and convex in multiple outputs Y and non-increasing and
quasi-convex in multiple inputs X. The translog output distance function takes the following form:

−y1it = ηit +
m
∑

j=2
γjy∗jit +

1
2

m
∑

j=2

m
∑

l=2
γjly∗jity

∗
lit +

n
∑

k=1
δkxkit +

1
2

n
∑

k=1

n
∑

p=1
δkpxkitxpit

+
m
∑

j=2

n
∑

k=1
θjky∗jitxkit + vit, i = 1, . . . , N; t = 1, . . . , T.

(34)

Here y∗
jit,j=2,...,m

= ln(Yjit/Y1it), xkit = ln(Xkit), and the normalization
m
∑

j=1
γj =1 results from

the homogeneity property of the output distance function in outputs. If we denote Z =
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[xNT×n, y∗NT×(m−1), xxNT×(n×(n+1)/2), y∗y∗NT×((m−1)×m/2), xy∗NT×(m−1)×n)] then the model can be
written as a simple re-parameterized version of (1):

y1,it = z′itβ
∗ + γ∗ it + v∗ it (35)

To allow for the endogeneity of the regressors in z we use the model:

zit = Πzi,t−1 + εit (36)

where [vit, εit]
′ ∼ N(0, Σ). That is, we complete the model with a panel VAR reduced form for the

potentially endogenous variables. The likelihood and the posterior distributions are straightforward
to derive using the methods we discussed in Sections 2 and 3. Moreover, since the output distance
function is bounded from above by 1, the logarithmic transformation used in specifying the estimating
equation in (34) provides a natural justification for the bounded support of the unobserved technical
efficiency term specified in the stochastic frontier literature for the unit specific time varying effects
γ∗ it.

The elasticities of the distance function with respect to the input and output variables are:

sp = δp +
n

∑
k=1

δkpxk +
m

∑
j=2

θpjy∗j , p = 1, 2, . . . , n (37)

rj = γj +
m

∑
l=2

γjly∗j +
n

∑
k=1

θkjxk, j = 2, . . . , m. (38)

The individual effects are transformed into relative efficiency levels using the standard order
statistics device in Schmidt and Sickles (1984):

TEit = exp{γ∗ it −maxi=1,...nγ∗ it}. (39)

For the BC estimator, technical efficiency levels can differ, but parsimony is achieved by assuming
that all firms have the same temporal pattern.

Clearly, the levels of efficiency can vary substantially for the methods that use the order statistics
(the firm with the largest effect) to benchmark the most efficient firm and thus the relative efficiencies
of the remaining firms. Typically, this impact is mitigated by data trimming, but with only 40 firms in
our study, we decided to avoid doing so when presenting the results below. The BC estimator has no
such potential drawback.

5.2. Data

The dataset analyzed is a balanced panel of 40 out of the top 50 U.S. commercial banks based
on the yearly data of their Book Value of Assets from 1990 through 2009. The panel size is thus 40
by 20. Missing observations and data anomalies reduced the sample from 50 to 40 firms. The data
is merged on a pro-forma basis wherein the non-surviving bank’s data is represented as part of the
surviving bank going back in time. The three output and six input variables used to estimate the
translog output distance function are: Real Estate Loans (“REL”), Commercial and Industrial Loans
(“CIL”), Consumer Loans (“CL”), Premises & Fixed Assets (“PFA”) , Number of Employees (“NOE”),
Purchased Funds (“PF”), Savings Accounts (“SA”), Certificates of Deposit (“CD”), and Demand
Deposits (“DD”). Additionally, three types of risk proxies are considered: Credit Risk (“CR”), which is
approximated by the Gross Charge-off Ratio; Liquidity Risk (“LR”), which is proxied by the Liquidity
Ratio; and Market Risk (“MR”), which is proxied by the standard deviation of Trading Returns.
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5.3. Empirical Results

The input and output elasticities evaluated at the geometric mean of the sample are displayed
in Table 5.2 For the BE2 estimates, the BF for two factors versus one factor is 35.12, while the BF for
three versus one factor is 2.23 and the BF for four versus one factor is 1.10. For the KSS estimates,
we use the procedure outlined in Kneip et al. (2012, pp. 607–8) with α = 0.05. The KSS procedure
estimates two factors. Thus, we have two factors in our empirical illustration for BE2, and KSS. BE1*
and BE2* are the Bayesian estimators corrected for endogeneity of the terms that are interacted with
the endogenous multiple outputs. From Table 5, we can see that magnitudes and signs of the elasticity
estimates across different models are comparable, except for the Demand Deposit, where CSSW gives
a significantly lower estimate than all of the other estimators. All of the estimators suggest decreasing
returns to scale except BC. However, the returns-to-scale estimate suggested by BC is 1.0165, which
is not significantly different from 1. Alternatively, we can say that there is no evidence of increasing
returns to scales based on the estimation results. The largest US banks appear to have fully exploited
their scale economies in generating intermediation services.

Table 5. Estimation results.

Model BC CSSW CSSG KSS BE1 BE2 BE1* BE2*

PFA −0.1267 −0.1067 −0.1243 −0.0448 −0.1221 −0.0505 −0.0972 −0.0555
NOE −0.1518 −0.2750 −0.2731 −0.2195 −0.1520 −0.0666 −0.1145 −0.0424

PF −0.1088 −0.0571 −0.0628 −0.0679 −0.0570 −0.1387 −0.0930 −0.1003
SA −0.3058 −0.1026 −0.1413 −0.1289 −0.1700 −0.3042 −0.1030 −0.2542
CD −0.2938 −0.2422 −0.2492 −0.1526 −0.2363 −0.2867 −0.1541 −0.2012
DD −0.0295 −0.0055 −0.0297 −0.0321 −0.0259 −0.0636 −0.0715 −0.0335
REL 0.6302 0.6267 0.6254 0.5468 0.6182 0.6099 0.4103 0.4242
CIL 0.2674 0.2116 0.2053 0.3200 0.2300 0.2630 0.2415 0.2208
CL 0.1024 0.1617 0.1693 0.1332 0.1518 0.1271 0.1013 0.1212
RTS 1.0165 0.7891 0.8804 0.6459 0.7634 0.9102 0.6333 0.6871

Avg.TE 0.7576 0.6094 0.6608 0.5552 0.4584 0.6937 0.7944 0.7889

Variations in the temporal pattern of the individual effects are displayed in Figure 1. The BC
estimator provides higher efficiency estimates, but also efficiencies that decline through the sample
period, while all the other estimators find efficiencies of similar magnitudes that increase slightly and
then decline, anticipating the meltdowns of financial institutions beginning around 2007 that led to the
Great Recession.

As we can see from the last row in Table 5 and in Figure 1, the scale of the average technical
efficiency levels ranges from around 0.63 to 0.73. Turning our attention to the estimated temporal
pattern of the technical efficiencies using the Bayesian estimators, we notice that the BE1 and BE2
models display similar trends, but the efficiency levels suggested by BE2 are consistently higher than
those by BE1. The same pattern exists for the estimators BE1* and BE2*. The efficiencies are higher
when endogeneity is considered in the model. The Bayesian estimators all display an initial slowly
increasing pattern in the 1990s, and a decreasing one in the 2000s. The increasing trend in efficiency
levels at the beginning of 1990s is probably because of the increased competitive pressure in the
financial industry due to the deregulations introduced in the 1980s. The decreasing trend in efficiency
levels started before the Great Recession, perhaps because the financial institutions were taking on
riskier activities and became less focused on their traditional roles as financial intermediaries when the
global pool of fixed-income securities substantially increased.

2 The estimation results for all first-order and second-order terms are displayed in Table A1 in Appendix A. Since our dataset
is geometric mean corrected (each of the data points have been divided by their geometric sample mean), the second-order
term in the elasticities expressed in (37) and (38) will diminish to zero when evaluated at the geometric mean of the sample.
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In order to evaluate the significance of endogeneity in the model, we have calculated the Bayes
Factors (BF) in favor of the model with endogeneity. These results are in Table 6, along with the
corresponding Bayes Factors (BF). The level of the Bayes Factor is higher in recent years than it is in
early years and is clearly in favor of endogeneity as all Bayes factors exceed 3.5.

Table 6. Estimated efficiencies (evaluated at means) and Bayes factor in favor of endogeneity.

Without Endogeneity With Endogeneity BF†

BE1 BE2 BE1* BE2*
1990 0.6216 0.7125 0.7189 0.7192 3.672
1992 0.5915 0.7317 0.6179 0.7003 3.855
1994 0.6718 0.7106 0.7283 0.7146 3.781
1996 0.7103 0.7325 0.7781 0.7613 4.038
1998 0.7317 0.7716 0.7925 0.7845 4.129
2000 0.7612 0.7815 0.8105 0.8006 4.217
2003 0.7120 0.7451 0.8023 0.7942 5.333
2005 0.7101 0.7222 0.7945 0.7943 5.885
2007 0.6787 0.7104 0.7824 0.7745 6.452
2009 0.6513 0.6817 0.7748 0.7663 6.812

†BF calculation, see Perrakis et al. (2014).

6. Conclusions

This paper has proposed a Bayesian approach to treat time-varying heterogeneity in a panel data
stochastic frontier model setting. We introduce two new models: one with nonparametric time effects
and one with effects that are driven by a number of unknown common factors. In both of the models,
we do not impose parametric assumptions on the individual effects other than smoothness and we
utilize the Gibbs sampler to implement our Bayesian inferences. The Monte Carlo experiments indicate
that the new Bayesian estimators tend to outperform the non-Bayesian alternatives we consider,
including the BC, CSS, and the KSS models, under various data generating processes. The new
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Bayesian estimators are used to analyze the temporal pattern of the technical efficiencies of the largest
40 U.S. banks from 1990 to 2009. The results indicate that the largest banks experienced a decrease in the
efficiency with which they provided intermediation services around the time of the Great Recession.
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Appendix A

A.1. Detailed Derivation of the Conditional Posterior Distribution of γi|β, σ, ω, Y, X

p(γi|β, σ, ω, Y, X) ∝ σ−(nT+1) exp{− 1
2σ2 (γi −Yi + Xiβ)

′(γi −Yi + Xiβ)− 1
2ω2 γi

′Qγi}
∝ σ−(nT+1) exp{− 1

2 γi
′(σ−2 IT + ω−2Q)γi − (Yi − Xiβ)

′σ−2γi − γi
′σ−2(Yi − Xiβ) + (Yi − Xiβ)

′(Yi − Xiβ)}
∝ σ−(nT+1) exp{− 1

2 γi
′(σ−2 IT + ω−2Q)γi − (Yi − Xiβ)

′σ−2γi − γi
′σ−2(Yi − Xiβ)}

∝ σ−(nT+1) exp{− 1
2 γi
′(σ2ω2V)−1γi − (Yi − Xiβ)

′ω2V(σ2ω2V)−1γi − γi
′ω2V(σ2ω2V)−1(Yi − Xiβ)}

∝ σ−(nT+1) exp{− 1
2 γi
′(σ2ω2V)

−1
γi − (Yi − Xiβ)

′ω2V(σ2ω2V)
−1

γi − γi
′ω2V(σ2ω2V)

−1
(Yi − Xiβ)

+(Yi − Xiβ)ω
2V′ω2V(Yi − Xiβ)}

∝ σ−(nT+1) exp{− 1
2 (γi −ω2V(Yi − Xiβ))

′
(σ2ω2V)

−1
(γi −ω2V(Yi − Xiβ))}

= σ−(nT+1) exp{− 1
2 (γi − γ̂i)

′(σ2ω2V)
−1

(γi − γ̂i)}

where γ̂i = ω2V(Yi − Xiβ) and V = (ω2 IT + σ2Q)
−1

A.2. Derivations of the Posterior Distribution of the Smoothing Parameter ω

If the smoothing parameter is assumed to follow its prior distribution: q
ω2 ∼ χ2

n, or equivalently:

p(ω) ∝ (
q

ω2 )
n/2−1

exp{− q
2ω2 }ω

−3 ∝ (
q

ω2 )
n/2+1/2

exp{− q
2ω2 }

The joint prior will take the form below:

p(β, γ, σ, ω|Y, X, n, q)∝ σ−(nT+1) exp{− 1
2σ2 (Y− Xβ− γ)′(Y− Xβ− γ)}

× exp{− 1
2ω2 γ′(In ⊗Q)γ} × (

q
ω2 )

n/2+1/2
exp{− q

2ω2 }

Therefore, the conditional posterior distribution of ω can be derived through the following:

p(ω|β, γ, σ, Y, X, n, q) ∝ exp{− 1
2ω2 γ′(In ⊗Q)γ} × ( q

ω2 )
n/2+1/2

exp{− q
2ω2 }

∝ ( q
ω2 )

n/2+1/2
exp{− q+∑n

i=1 γi
′Qγi

2ω2 } ∝ (
q+∑n

i=1 γi
′Qγi

ω2 )
n/2+1/2

exp{− q+∑n
i=1 γi

′Qγi
2ω2 }

Therefore, the transformation of the smoothing parameter q+∑n
i=1 γi

′Qγi
ω2 follows χ2

n.
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Table A1. The slope parameter estimates for the translog distance function.

Model BC CSSW CSSG KSS BE1 BE2 BC CSSW CSSG KSS BE1 BE2

CIL 0.267394 0.211625 0.205296 0.320024 0.229974 0.262958 PF*CD −0.028282 −0.023417 −0.023420 −0.024378 −0.011996 −0.012073
(0.015604) (0.014842) (0.004009) (0.016490) (0.014168) (0.013784) (0.018853) (0.011323) (0.007121) (0.009834) (0.011182) (0.019844)

CL 0.102395 0.161658 0.169303 0.133170 0.151814 0.127101 PF*DD −0.114018 −0.017305 −0.024098 −0.004148 −0.015062 −0.101234
(0.012878) (0.012244) (0.003398) (0.011736) (0.010868) (0.010493) (0.015688) (0.009595) (0.006507) (0.008484) (0.008648) (0.017367)

PFA −0.126714 −0.106713 −0.124307 −0.044849 −0.122111 −0.050466 SA*CD −0.141683 −0.033535 −0.059756 −0.067716 −0.055219 −0.167241
(0.031169) (0.026743) (0.008180) (0.023470) (0.024393) (0.027912) (0.031271) (0.021438) (0.012105) (0.019169) (0.019877) (0.033330)

NOE −0.151782 −0.274994 −0.273066 −0.219497 −0.152019 −0.066570 SA*DD −0.006703 0.053747 0.061960 0.074933 0.036716 0.001257
(0.035151) (0.035071) (0.009826) (0.030924) (0.028075) (0.030319) (0.030736) (0.021559) (0.011642) (0.019549) (0.019763) (0.032234)

PF −0.108846 −0.057149 −0.062796 −0.067891 −0.057049 −0.138704 CD*DD −0.097991 −0.105554 −0.098626 −0.057446 −0.092207 −0.119194
(0.010370) (0.006407) (0.003582) (0.007493) (0.005713) (0.010614) (0.033377) (0.020702) (0.013151) (0.017910) (0.018797) (0.036201)

SA −0.305845 −0.102552 −0.141275 −0.128912 −0.170044 −0.304152 CIL*CIL 0.239373 0.197944 0.207341 0.189705 0.227465 0.287373
(0.023115) (0.017762) (0.005433) (0.022026) (0.014980) (0.016878) (0.024646) (0.018416) (0.006345) (0.015932) (0.017940) (0.019379)

CD −0.293822 −0.242206 −0.249235 −0.152578 −0.236288 −0.286715 CL*CL 0.113335 0.045183 0.052787 0.016882 0.042151 0.084385
(0.019988) (0.013899) (0.007184) (0.014208) (0.013410) (0.020398) (0.013263) (0.010120) (0.004141) (0.009309) (0.008506) (0.012036)

DD −0.029454 −0.005520 −0.029726 −0.032132 −0.025869 −0.063642 CIL*CL −0.065016 −0.045951 −0.048370 −0.040675 −0.032145 −0.058542
(0.018062) (0.014840) (0.005759) (0.014345) (0.013910) (0.016542) (0.014523) (0.011902) (0.004307) (0.010305) (0.010754) (0.012337)

PFA*PFA −0.058407 −0.076124 −0.064595 −0.027170 0.054452 −0.116818 CIL*PFA −0.030027 −0.040296 −0.030441 −0.048343 −0.000616 −0.046465
(0.105551) (0.081836) (0.035034) (0.067810) (0.079399) (0.097951) (0.040094) (0.029056) (0.012041) (0.025079) (0.030007) (0.036245)

NOE*NOE −0.350934 −0.263410 −0.254762 −0.194616 −0.317941 −0.647887 CIL*NOE 0.227956 0.032956 0.037051 0.068312 0.008093 0.245908
(0.175695) (0.111222) (0.049618) (0.096139) (0.103994) (0.170920) (0.043142) (0.032479) (0.016995) (0.028018) (0.031391) (0.046998)

PF*PF −0.030317 −0.017777 −0.021905 −0.019072 −0.028032 −0.050570 CIL*PF 0.036991 0.066231 0.066914 0.042524 0.044617 0.053115
(0.009275) (0.005224) (0.003626) (0.004633) (0.004308) (0.009989) (0.011928) (0.007423) (0.004722) (0.006691) (0.007033) (0.013064)

SA*SA 0.057266 0.111105 0.088612 0.116956 0.037492 0.051178 CIL*SA −0.197701 −0.045638 −0.058945 −0.056339 −0.043310 −0.213425
(0.039891) (0.031775) (0.015405) (0.030207) (0.026234) (0.043752) (0.021737) (0.015992) (0.007671) (0.014339) (0.016593) (0.020533)

CD*CD 0.018957 0.063958 0.076793 0.104556 0.065066 0.034873 CIL*CD 0.033169 0.040877 0.040902 0.019851 0.036181 0.021669
(0.054680) (0.033776) (0.020720) (0.028297) (0.027536) (0.057257) (0.022888) (0.013701) (0.009409) (0.011750) (0.012349) (0.025882)

DD*DD 0.008094 0.002895 −0.012089 −0.012085 −0.001555 −0.083644 CIL*DD −0.106948 −0.048120 −0.056765 −0.016793 −0.042321 −0.137545
(0.039544) (0.025435) (0.014893) (0.021706) (0.020225) (0.043597) (0.022452) (0.016474) (0.008142) (0.014246) (0.014006) (0.021770)

PFA*NOE −0.112425 0.086399 0.043034 0.070533 0.000583 0.082582 CL*PFA 0.048747 0.037970 0.032106 0.039504 0.007060 0.066231
(0.102859) (0.079549) (0.036284) (0.066471) (0.071651) (0.102329) (0.027867) (0.020247) (0.010162) (0.017601) (0.021441) (0.028297)

PFA*PF −0.023871 0.001925 0.005802 0.014807 0.032413 0.004723 CL*NOE −0.134762 −0.080639 −0.079836 −0.073912 −0.026040 −0.121342
(0.024511) (0.014311) (0.009119) (0.012065) (0.012272) (0.025037) (0.033544) (0.023290) (0.012057) (0.020149) (0.026992) (0.034329)

PFA*SA 0.181100 0.065775 0.079467 0.056101 0.069803 0.194046 CL*PF 0.024490 −0.023625 −0.022260 −0.016442 −0.018719 −0.002387
(0.043433) (0.033537) (0.015360) (0.029335) (0.032844) (0.043665) (0.009238) (0.005687) (0.003329) (0.004883) (0.005182) (0.009809)
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Table A1. Cont.

Model BC CSSW CSSG KSS BE1 BE2 BC CSSW CSSG KSS BE1 BE2

PFA*CD −0.191012 −0.036207 −0.035895 −0.098737 −0.156555 −0.235290 CL*SA 0.052008 0.062364 0.064640 0.063839 0.044966 0.064692
(0.053517) (0.035121) (0.020674) (0.029706) (0.032240) (0.055515) (0.014866) (0.011813) (0.005851) (0.010214) (0.010948) (0.015289)

PFA*DD 0.079834 −0.017070 −0.019489 −0.060602 −0.022135 0.000665 CL*CD 0.014655 0.001993 0.006427 0.000114 0.006044 −0.007961
(0.048869) (0.030405) (0.016956) (0.026224) (0.027307) (0.049371) (0.017719) (0.011504) (0.006786) (0.009937) (0.011207) (0.017886)

NOE*PF 0.137728 0.098342 0.099405 0.059733 0.049369 0.116370 CL*DD −0.057972 0.025662 0.021266 0.027790 −0.001980 −0.044490
(0.031395) (0.019230) (0.012957) (0.016994) (0.016952) (0.035380) (0.015838) (0.011538) (0.005404) (0.009853) (0.008936) (0.016080)

NOE*SA −0.121524 −0.118107 −0.112644 −0.115822 −0.068949 −0.119951 CR 0.217115 0.697573 0.622777 0.661193 0.650641 0.273590
(0.065179) (0.049241) (0.024082) (0.042867) (0.042545) (0.067800) (0.207247) (0.113233) (0.089828) (0.096325) (0.074863) (0.232643)

NOE*CD 0.417943 0.145744 0.148929 0.183621 0.245112 0.478729 LR 1.103688 0.272672 0.303568 0.359501 0.601731 1.185407
(0.083620) (0.050044) (0.029691) (0.042715) (0.045040) (0.084171) (0.174812) (0.176180) (0.057171) (0.158809) (0.152083) (0.191323)

NOE*DD 0.179106 0.083529 0.084223 0.057347 0.098175 0.329448 MR −0.002988 −0.001070 −0.000878 −0.000466 0.000008 −0.004905
(0.064194) (0.037821) (0.022992) (0.032270) (0.031018) (0.067150) (0.002167) (0.001070) (0.000974) (0.000906) (0.000728) (0.002496)

PF*SA 0.031111 −0.034051 −0.028221 −0.022330 −0.012928 0.021033
(0.016180) (0.010140) (0.006517) (0.008749) (0.009524) (0.017828)
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