
econometrics

Article

Generalized Information Matrix Tests for Detecting
Model Misspecification

Richard M. Golden 1,*, Steven S. Henley 2,3,6, Halbert White 4,† and T. Michael Kashner 3,5,6,7

1 School of Behavioral and Brain Sciences, GR4.1, 800 W. Campbell Rd., University of Texas at Dallas,
Richardson, TX 75080, USA

2 Martingale Research Corporation, 101 E. Park Blvd., Suite 600, Plano, TX 75074, USA;
stevenh@martingale-research.com

3 Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92357, USA
4 Department of Economics, University of California San Diego, La Jolla, CA 92093, USA
5 Office of Academic Affiliations (10A2D), Department of Veterans Affairs, 810 Vermont Ave. NW (10A2D),

Washington, DC 20420, USA; michael.kashner@va.gov
6 Center for Advanced Statistics in Education, VA Loma Linda Healthcare System,

Loma Linda, CA 92357, USA
7 Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
* Correspondence: golden@utdallas.edu; Tel.: +1-972-883-2423
† Halbert White sadly passed away before this article was published.

Academic Editors: Kerry Patterson and Marc S. Paolella
Received: 29 December 2015; Accepted: 26 October 2016; Published: 15 November 2016

Abstract: Generalized Information Matrix Tests (GIMTs) have recently been used for detecting
the presence of misspecification in regression models in both randomized controlled trials and
observational studies. In this paper, a unified GIMT framework is developed for the purpose
of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional
smooth probability models. These GIMTs include previously published as well as newly developed
information matrix tests. To illustrate the application of the GIMT framework, we derived and
assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs
exhibited good level and power performance for the larger sample sizes, GIMT statistics with
fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved
level and power performance.

Keywords: asymptotic theory; Information Matrix Test; specification analysis; logistic regression;
simulation study; information ratio; misspecification

JEL Classification: C12; C13; C15; C18; C52

1. Introduction

If a researcher’s probability model of the observed data is not correctly specified, then the
interpretation of its parameter estimates may not be valid, leading to incomplete or incorrect
conclusions. Thus, whether a model is correctly specified must be considered when analyzing and
interpreting data (e.g., [1,2]). This issue is critically important in econometrics as well as more
general scientific inquiry. For example, in health economics, estimates of the impact of clinical
treatments [3,4], care systems [5], and health policy interventions on health outcomes [6] are dependent
on the underlying assumption that the model to be tested is correctly specified. Further, model
misspecification testing is essential for statistical analysis of randomized control trials [7,8] and
observational studies [9,10]. For these reasons, this paper introduces a unified framework for
identifying, classifying, and developing a wide range of specification tests.
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1.1. Information Matrix Test Methods for Detection of Model Misspecification

Assume that the data x1, ..., xn observed in an experiment is a realization of a sequence of
independent and identically distributed d-dimensional random vectors X1, ..., Xn with a common
data generating process density px. LetM ≡ { f (x;θ) : θ ∈ Θ} denote a proposed probability model
that is a collection of probability densities indexed by a k-dimensional parameter vector θ. If px ∈ M,
so that px (x) = f (x;θ∗) a.e. for some θ∗ ∈ Θ, thenM is correctly specified with respect to px.

WhenM is correctly specified with respect to px, the inverse of the asymptotic covariance matrix

of the maximum likelihood estimator θ̂n ≡ argmax
n
∏
i=1

f (Xi;θ) is equal to both the inverse Hessian

covariance matrix A∗ ≡ −∇2E {log f (Xi;θ∗)} and the inverse Outer Product Gradient (OPG) covariance
matrix B∗ ≡ E

{
∇log f (Xi;θ∗) (∇log f (Xi;θ∗))

T
}

. This classic result is called the Information Matrix
Equality (see [1,2], and Theorem 4 of this paper for relevant reviews).

Let u : Rk → R . The notation ∇u refers to a k-dimensional column vector of functions called the
gradient whose ith element is ∂u

∂xi
, i = 1, ..., k. The notation ∇2u refers to a k-dimensional matrix-valued

function which is called the Hessian of u. The element in the ith row and jth column of ∇2u is ∂2u
∂xi∂xj

,
i, j = 1, ..., k.

As described by White [1,2], the information matrix equality may be used as the basis for
a test of model misspecification. White [1] proposed the Information Matrix Test (IMT) for testing
the null hypothesis that the elements of the k-dimensional Hessian and k-dimensional Outer Product
Gradient (OPG) inverse asymptotic covariance matrices (denoted by A∗ and B∗ respectively) are equal.
That is, White [1] considered the null hypothesis: Ho : vech (A∗ − B∗) = 0k(k+1)/2 where 0k(k+1)/2
denotes a k(k + 1)/2-dimensional column vector of zeros. Rejection of this null hypothesis thus
implies a violation of the information matrix equality and thus the presence of model misspecification.
Moreover, as noted by White [1], it may be helpful to also consider situations where the null hypothesis
is “directional.” If a directional null hypothesis is rejected, this implies Ho : vech (A∗ − B∗) = 0k(k+1)/2
is rejected (but the converse of this latter statement does not hold). White [1], in particular,
discussed directional IMTs that have the form: Ho : Svech (A∗ − B∗) = 0r where the selection
matrix S ∈ Rr×(k(k+1)/2) consists of r rows of a k(k + 1)/2-dimensional identity matrix. In some
cases directional IMTs may have more statistical power because they are designed to identify specific
types of model misspecification.

For many years, the IMT approach has not been widely used outside of linear regression
modeling because various instabilities (possibly associated with large degrees of freedom) of the
test were observed. Chesher [11] and Lancaster [12] demonstrated how the calculation of the third
derivatives of the log-likelihood function could be avoided for the full IMT, but the effectiveness of
their approach was shown in some cases to exhibit unacceptable performance in logistic regression
and linear regression [13–18].

1.2. Recent Developments in Information Matrix Test Theory

An advance in the theory of information matrix testing was provided by Presnell and Boos [19]
(also see, [20–22]), who introduced an IOS (in and out of sample) directional IMT and showed that
it was effective in a variety of important situations through both theoretical analyses and simulation
studies. More recently, Golden et al. [23] introduced a general unified theory for model specification
testing based upon a nonlinear extension of White’s [1] approach to specification testing. The new
IMTs developed within the framework of Golden et al. [23] are called Generalized Information Matrix
Tests (GIMT).

In particular, Golden et al. [23] discussed the problem of testing the null hypothesis that
a smooth nonlinear GIMT hypothesis function s : Rk×k ×Rk×k → Rr of the Hessian and OPG inverse
asymptotic covariance matrices is equal to an r-dimensional vector of zeros. That is, a GIMT tests
the null hypothesis Ho : s (A∗, B∗) = 0r. Golden et al. [23] emphasized that different choices of



Econometrics 2016, 4, 46 3 of 24

GIMT hypothesis function yield different types of directional and non-directional GIMT hypotheses.
Although Golden et al. [23] did not provide explicit regularity conditions and a detailed analysis of
their proposed general class of GIMTs, Golden et al. [23] introduced key formal definitions, provided
an informal discussion of relevant theoretical results, and reported the results of a comprehensive
simulation study of a realistic epidemiological analysis problem using logistic regression for six new
GIMTs that exhibited appealing level and power performance. This approach for the detection of model
misspecification has now been used in observational and randomized controlled trial studies [7–10].

Since the publication of Golden et al. [23], Cho and White [24] described an important class of
non-directional GIMTs and showed that each of their three test statistics for model misspecification
was asymptotically distributed as a squared Gaussian random variable under the null hypothesis.
In addition, Cho and White [24] provided analyses of the power of their test statistics under local and
global alternatives. Zhou et al. [25] proposed a non-directional GIMT statistic for the large important
class of regression models where the distribution of the response variable conditioned upon the
covariates is a member of the linear exponential family. Like Cho and White [24], they showed their
misspecification test statistic has only a single degree of freedom and is asymptotically distributed
as a squared Gaussian random variable under the null hypothesis. Huang and Prokhorov [26] also
showed how the information matrix testing framework is useful for investigating goodness-of-fit using
non-directional GIMT statistics for semi-parametric probability models that are specified by copulas.
All of this previous work on GIMTs can be interpreted as special cases or variants of special cases of
the general framework of Golden et al. [23] for finite-dimensional smooth probability models.

This paper provides a unified framework for addressing the detection of model misspecification
using a variety of GIMT statistics for a large class of finite-dimensional smooth probability models.
By presenting the details of the GIMT framework and explicitly presenting the relevant regularity
assumptions, it establishes the foundation for supporting research into the further development of
a large class of GIMTs as well as assisting in understanding the similarities and differences between
different GIMTs in the existing published statistical literature.

Our paper is organized in the following manner. In Section 2, we provide the assumptions of
the GIMT framework. In Section 3, we characterize the asymptotic distribution of a large family of
GIMTs for a large class of finite-dimensional smooth probability models under the assumptions and
definitions in Section 2. In Section 4, we investigate the performance of new GIMTs using simulation
studies developed with respect to a particular logistic regression model intended to be representative
of a commonly encountered problem of model misspecification detection. Conclusions are provided in
Section 5.

2. GIMT Theoretical Framework: Definitions and Assumptions

In this section, we introduce the definitions and assumptions of our formal mathematical theory
of Generalized Information Matrix Tests. In most practical applications, these assumptions are
often satisfied for thrice continuously differentiable probability models with a fixed number of free
parameters that have locally unique solutions. Throughout, it is assumed that observations are
independent and identically distributed.

2.1. Data Generating Process

Let B
(
Rd
)

be the Borel σ-field generated by the open subsets ofRd.

Assumption 1. Data Generating Process (DGP). Let Xi, i = 1, 2, ... be a sequence of independent and
identically distributed (i.i.d) random vectors where Xi has a common probability measure P on the measurable
space

(
Rd,B

(
Rd
))

with completion
(
Rd,F0, P0

)
.

Let the triplet (Ω,Fo,Po) be the probability space for the Data Generating Process (DGP).
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In regression modeling applications, the first element of the d-dimensional real vector xi

(a realization of Xi) may be a particular value of the outcome (dependent) variable for a regression
model associated with the ith data record, the second element of xi may be the number 1 for the
purpose of introducing an intercept parameter, and the remaining elements of xi may be particular
values for the predictor variables associated with the ith data record, i = 1, . . . , n.

Although Assumption 1 assumes that the observed data Xi, i = 1, 2, . . . are i.i.d., the theory
presented here is also applicable to panel data analyses. For example, consider a situation where data
are collected in a longitudinal study on a group of individuals over a period of time. Assume the
observations across participants are assumed to be i.i.d., but the observations for a particular participant
are neither necessarily identically distributed nor independent. Let Xit denote the observation
associated with the measurement of the ith participant in the study at time index t for t = 1, . . . ,T (where
T is a fixed finite number) and i = 1, . . . , n. The theory described in this article is applicable to evaluating
the degree to which a probability model can account for the observed data Xi ≡

[
Xi,1 . . . Xi,T

]
,

i = 1, . . . , n.
The following assumption of absolute continuity is now introduced to permit alternative

representations of P0 in order to represent, construct, and manipulate probability densities for data
generating processes involving data samples containing combinations of discrete and continuous
random variables.

Assumption 2. Absolute Continuity. Let νj
(
xj
)

be a σ-finite measure on the measurable space

(R,B (R)) , j = 1, . . . , d. Let ν ≡
d
⊗

j=1
νj
(

xj
)

be a σ-finite product measure on the measurable space(
Rd,B

(
Rd
))

. Assume P0 is absolutely continuous with respect to ν.

By the Radon-Nikodým Theorem, Assumption 2 guarantees the joint distribution of Xi, P0, may
be represented using a Radon-Nikodým density function. The Radon-Nikodým density px ≡ dP0/dν is
common to the i.i.d. random variables Xi, i = 1, . . . , n on the measurable space

(
Rd,B

(
Rd
))

.
Assumption 2 allows the theoretical results developed here to be applicable to random vectors

that contain both discrete and absolutely continuous components. If a random vector is a discrete
random vector or an absolutely continuous random vector, then the Radon-Nikodým density becomes
a probability mass function or an absolutely continuous probability density function and the associated
measure theory notation may be avoided.

2.2. Probability Model

Let supp X denote the support of X.

Assumption 3. Parametric Densities. (i) Let Θ be a compact and non-empty subset of Rk, k ∈ N;
(ii) Let f : Rd ×Θ→ [0, ∞) . For each θ in Θ, f (·;θ) is a density with respect to v and f (x; ·) is continuous
on Θ for each x ∈ supp X; (iii) log f (x; ·) is continuously differentiable on Θ for each x ∈ supp X;
(iv) log f (x; ·) is twice continuously differentiable on Θ for each x ∈ supp X; (v) log f (x; ·) is thrice continuously
differentiable on Θ for each x ∈ supp X.

Definition. Probability Model. Let f be defined as in Assumption 3(i) and Assumption 3(ii).
Let F : Rd ×Θ→ [0, 1] be defined such that for each θ in Θ, F (·;θ) : Rd → [0, 1] is the probability
distribution for X specified by density f (·;θ) . The set M ≡

{
F (·;θ) : Rd → [0, 1]|θ ∈ Θ

}
is the

probability model on Θ specified by f .

Definition. Misspecified Model. The probability modelM is misspecified when P0 /∈ M, otherwise
M is correctly specified.
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2.3. Hypothesis Function

Definition. GIMT Hypothesis Function. Let Υ be a compact and non-empty subset of Rk×k, k ∈ N.
A Generalized Information Matrix Test (GIMT) Hypothesis function s : Υ×Υ→ Rr has the property
that if A = B, then s (A, B) = 0r for every symmetric positive definite matrix A ∈ Υ and for every
symmetric positive definite matrix B ∈ Υ.

Definition. Nondirectional and directional GIMT Hypothesis Functions. Let Υ be a compact and
non-empty subset ofRk×k, k ∈ N. A nondirectional GIMT hypothesis function s : Υ×Υ→ Rr has the
property A = B if and only if s (A, B) = 0r for all (A, B) ∈ Υ× Υ. A directional GIMT hypothesis
function is a GIMT hypothesis function that is not nondirectional.

When A : Rm×n → Rq×r , let dA
dB ≡ dvec(AT)

dvec(BT)
when it exists (e.g., [27]; also see [28,29]).

Let ∇s : Υ×Υ→ Rr×2k2
be defined such that for all A, B ∈ Υ: ∇s (A, B) ≡

[
∂s(·,B)
∂vec(A)

∂s(A,·)
∂vec(B)

]
when it exists.

Assumption 4. Hypothesis Function Regularity Conditions. (i) Let Υ be a compact and non-empty subset
of Rk×k, k ∈ N. Let s : Υ×Υ→ Rr be continuous on Υ×Υ; (ii) A∗ and B∗ are in the interior of Υ ⊆ Rk×k;
(iii) ∇s exists and is continuous on Υ×Υ; (iv) ∇s∗ has full row rank r on Υ×Υ.

In practice, Assumption 4 provides a procedure for checking if the theory described here can be
applied to a proposed GIMT hypothesis function.

Definition. Antisymmetric GIMT Hypothesis Function. Let s : Υ×Υ→ Rr be a GIMT hypothesis
function satisfying Assumption 4(i), Assumption 4(ii), and Assumption 4(iii). If, in addition,
s (A, B) = −s (B, A) for all (A, B) ∈ Υ×Υ, then s : Υ×Υ→ Rr is called an antisymmetric GIMT
hypothesis function.

2.4. Notation

Let g (x;θ) ≡ −∇log f (x;θ). Let gn (θ) ≡ (1/n)
n
∑

i=1
g (Xi;θ). Let ĝn ≡ gn

(
θ̂n

)
.

Let An (θ) ≡ −(1/n)
n
∑

i=1
∇2log f (Xi;θ). Let A (θ) ≡ ∇2l (θ).

Let Bn (θ) ≡ (1/n)
n
∑

i=1
g (Xi;θ) (g (Xi;θ))T .

Let B (θ) ≡
∫

g (x;θ) (g (x;θ))T px (x) dνx (x). Let Ân ≡ An

(
θ̂n

)
. Let B̂n ≡ Bn

(
θ̂n

)
.

Let A∗ = A (θ∗). Let B∗ = B (θ∗). Let dx,θ (x;θ) ≡

 −vech
(
∇2log f (x;θ)

)
vech

(
g (x;θ) (g (x;θ))T

) .

Let dn (θ) = (1/n)
n
∑

i=1
dx,θ (Xi;θ). Let d̂n ≡ dn

(
θ̂n

)
. Let d

∗
n ≡ dn (θ∗).

Let d (θ) ≡
[

vech (A (θ))

vech (B (θ))

]
. Let d∗ ≡ d (θ∗).

Let the notation Ik denote a k-dimensional identity matrix.
Let the duplication matrix Dk : Rk(k+1)/2 → Rk2

be defined such that: Dkvech(A) = vec(A) and
the inverse duplication matrix D†

k : Rk2 → Rk(k+1)/2 be defined such that: D†
k vec(A) = vech(A).

Let D⊗k ≡ I2 ⊗Dk and let D⊗†
k ≡ I2 ⊗D†

k .

Let ∇d : Θ→ Rk(k+1) where ∇d ≡
[

dvech(A)
dθ

dvech(B)
dθ

]
= D⊗†

k

[
dA
dθ
dB
dθ

]
.
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Let ∇dn (θ) ≡ (1/n)
n
∑

i=1
∇dx,θ (Xi;θ). Let ∇d̂n ≡ ∇dn

(
θ̂n

)
. Let ∇d∗ ≡ ∇d (θ∗).

2.5. Regularity Conditions

The following Assumption 5 uses a matrix version of the standard definition of dominated by
an integrable function (see Appendix A).

Assumption 5. Domination Conditions

(i)(a) log f (x;θ) is dominated on Θ with respect to px;
(i)(b) dlog f (x;θ)

dθ is dominated on Θ with respect to px;
(i)(c) g (x;θ) (g (x;θ))T is dominated on Θ with respect to px;

(i)(d) d2log f (x;θ)

dθ2 is dominated on Θ with respect to px;

(ii)(a) d(dx,θ(x;θ))
dθ is dominated on Θ with respect to px;

(ii)(b) dx,θ (x;θ) (dx,θ (x;θ))T is dominated on Θ with respect to px;
(ii)(c) g (x;θ) (dx,θ (x;θ))T is dominated on Θ with respect to px;
(iii) There exists a finite positive number K such that for all x ∈ supp X and for all θ ∈ Θ :

∣∣∣ f (x;θ)
px(x)

∣∣∣ ≤ K.
Assumption 5 identifies specific regularity conditions that are used here to ensure that relevant

expectations exist, that integral and differentiation operators can be interchanged, and that relevant
laws of large numbers are applicable.

Assumption 5(i) is used to ensure that the conclusions of Theorems 2, 3, 4, 5, 6, and 7 hold.
These theorems characterize the asymptotic distribution of the quasi-maximum likelihood estimator.
Assumption 5(ii) is also required to ensure that the conclusions of Theorems 6 and 7 hold which
characterize the asymptotic distribution of s

(
Ân, B̂n

)
.

A sufficient but not necessary condition for both Assumption 5(i) and Assumption 5(ii) to
hold is that log f is thrice continuously differentiable on the compact set Θ, measurable in its first
argument (e.g., piecewise continuous), and the support of X is bounded. The assumption that the
support of X is bounded is satisfied, for example, by observational data consisting of discrete random
variables. Assumptions 5(i) and Assumption 5(ii) more generally are satisfied for many commonly
used finite-dimensional parametric smooth probability models for observational data modeled as
combinations of both discrete and absolutely continuous random variables.

Assumption 5(iii) in conjunction with Assumptions 5(i) and Assumption 5(ii) is used in
Theorem 4 to ensure that: (1) when A∗ 6= B∗ this corresponds to the case of model misspecification; and
(2) the correctly specified probability model implies that A∗ = B∗. Thus, Assumption 5(iii) is important
for ensuring the proper semantic interpretation of a GIMT result (see Proposition 1 and Theorem 4).
In addition, Assumption 5(iii) in conjunction with Assumption 5(i) and Assumption 5(ii) is also used
to ensure that the Lancaster-Chesher approximation holds (see Theorem 8), which provides a method
for constructing GIMTs without computing the third derivative of the negative log-likelihood function.

Assumption 5(iii) can be interpreted as stating that the density f (x;θ) in the probability model
and the data generating process density px (x) cannot be too dissimilar. A sufficient but not necessary
condition for satisfying Assumption 5(iii) would be that there exists two finite positive numbers K1

and K2 such that for all θ ∈ Θ and for all x ∈ supp X: f (x;θ) < K1 and px (x) > K2. Although
Assumption 5(iii) could be formulated in a slightly more general manner, we use this more specialized
version for expository reasons.

The negative average log-likelihood is defined as:

ln (θ) ≡ −n−1
n

∑
i=1

log f (Xi;θ).

When it exists, the unique global minimizer of ln (θ) is called the quasi-maximum likelihood estimate
θ̂n rather than a maximum likelihood estimate to allow for the possibility that f may be misspecified [1].
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The negative expected log-likelihood is defined as:

l (θ) ≡ −
w

px (x) log f (x;θ) dν (x).

A global minimizer of l (θ) is called the pseudo-true parameter value θ∗ because of the possibility
that f may be misspecified. If there exists a θo such that f (·;θ0) = px ν (x) almost everywhere,
then θo is called a true parameter value.

Assumption 6. Uniqueness. (i) For some θ∗ ∈ Θ, l has a unique minimum at θ∗; (ii) θ∗ is interior to Θ.

Let H0 : s (A∗, B∗) = 0r be a particular GIMT null hypothesis specified by a given GIMT
hypothesis function s. Our ultimate goal is to construct a statistical test for testing the GIMT
null hypothesis H0 : s (A∗, B∗) = 0r by characterizing the asymptotic behavior of the test statistic
ŝn ≡ s

(
Ân, B̂n

)
. Note that the GIMT hypothesis function test statistic ŝn ≡ s

(
Ân, B̂n

)
is an estimator

of s∗ ≡ s (A∗, B∗) (see Theorem 6).
Let ∇s∗ ≡ ∇s (A∗, B∗). Let ∇ŝn ≡ ∇s

(
Ân, B̂n

)
.

Let δ∗ (Xi) ≡ ∇s∗D⊗k
(

dx,θ (Xi;θ∗)−∇d∗ (A∗)−1 g (Xi;θ∗)− d∗
)

.
Given appropriate regularity conditions, it will be shown (see Theorems 6 and 7) that the

asymptotic covariance matrix of n1/2 (ŝn − s∗) is the GIMT asymptotic covariance matrix

Σ∗s ≡
w
δ∗ (xi) (δ∗ (xi))

T px (xi) dν (xi), (1)

which may be estimated by

Σ̂n
s ≡ (1/n)

n

∑
i=1

δ̂n (Xi)
(
δ̂n (Xi)

)T , (2)

where δ̂n (Xi) ≡ ∇ŝnD⊗k
(

dx,θ

(
Xi; θ̂n

)
−∇d̂n

(
Ân
)−1 g

(
Xi; θ̂n

)
− d̂n

)
.

Assumption 7. Positive Definiteness. (i) A∗ is positive definite; (ii) B∗ is positive definite; and (iii) ∑∗s is
positive definite.

Assumption 7(i) is a sufficient but not necessary condition for the quasi-maximum likelihood
estimate to be a strict local minimizer. Assumption 7(ii) is used in order to apply the Multivariate
Central Limit Theorem to characterize the asymptotic distribution of the quasi-maximum likelihood
estimates. Assumption 7(iii) is used in order to apply the Multivariate Central Limit Theorem to obtain
the asymptotic distribution of the GIMT statistic ŝn. Violation of Assumption 7 is analogous to the
presence of multicollinearity in classical linear regression modeling.

Assumptions 6, 7(i), and 7(ii) are often checked in practice by checking if the infinity norm
of ĝn is sufficiently small and that the condition numbers of Ân and B̂n are not excessively large.
In addition, it is necessary to check that the condition number of an estimator of ∑∗s denoted by ∑̂

n
s

(see Equation (2)) is not excessively large. Note that Assumption 4(iv) is a necessary condition for
∑∗s to be positive definite. If the magnitude of the asymptotic covariance matrix of the selection test
statistic ŝn ≡ s

(
Ân, B̂n

)
, ∑∗s , is not finite or ∑∗s is singular, then Assumption 7(iii) fails.

3. GIMT Theoretical Framework: Theorems and Formulas

In this section, a brief review of relevant results from classical asymptotic theory is provided
(Theorems 1, 2, 3, 4, 5, 8) in conjunction with our new results in Theorems 6 and 7. Proofs of all
theorems and propositions are provided in the Appendix A.
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3.1. Classical Results

Theorem 1. Estimator Measurability ([30], Lemma 2). Assume that Assumptions 1, 2, 3(i), and 3(ii) hold.
Let Pn

0 be the joint distribution of X1, ..., Xn. Then for each n = 1, 2, . . . , there exists a measurable function

θ̂n : Rdn → Θ and an element, Bn, of
(
B
(
Rd
))n

with Pn
0 (Bn) = 1 such that for all {x1, . . . , xn} ∈ Bn:

ln

(
θ̂n ({x1, . . . , xn})

)
= min

θ∈Θ
ln (θ).

Theorem 2. Estimator Consistency ([31], Theorem 2.1). Assume Assumptions 1, 2, 3(i), 3(ii), 5(i)a, and 6
hold. Then as n→ ∞ , θ̂n → θ∗ with probability one.

Theorem 3. Estimator Asymptotic Distribution ([1], Theorem 3.2; also see [32]). Assume Assumptions
1, 2, 3(i), 3(ii), 3(iii), 3(iv), 5(i), 6, 7(i), and 7(ii) hold. As n→ ∞,

√
n
(
θ̂n − θ∗

)
converges in distribution to

a zero-mean Gaussian random vector with non-singular covariance matrix C∗ ≡ (A∗)−1 B∗ (A∗)−1.

Theorem 4. Contrapositive Information Matrix Equality ([1], Theorem 3.3). Assume Assumptions
1, 2, 3(i), 3(ii), 3(iii), 3(iv), 5, and 6 hold. If A∗ 6= B∗, then the probability model
M≡

{
F (·;θ) : Rd → [0, 1] |θ ∈ Θ

}
is misspecified.

Theorem 4 is the contrapositive statement of the familiar information matrix equality that states
that if a smooth regular probability model is correctly specified, then A∗ = B∗. The contrapositive
statement implies that a difference between A∗ and B∗ indicates the presence of model misspecification.

Moreover, if the information matrix equality is violated (i.e., A∗ 6= B∗), then the asymptotic
distribution of the quasi-maximum likelihood estimator is still Gaussian centered at θ∗ but its
asymptotic covariance matrix is C∗ ≡ (A∗)−1 B∗ (A∗)−1. In this case, the standard formulas for
estimating the asymptotic covariance matrix of the maximum likelihood estimators based upon
estimating either (A∗)−1 or (B∗)−1 are not appropriate. Thus, detecting that A∗ 6= B∗ is not only useful
for detecting model misspecification but also detects situations where the sandwich covariance matrix
estimator Ĉn ≡

(
Ân
)−1 B̂n

(
Ân
)−1 should be used to ensure an asymptotically unbiased estimate of

C∗ ≡ (A∗)−1 B∗ (A∗)−1 is obtained. This is important in applications when one encounters predictive,
yet misspecified, models. For example, a linear regression model may have small residual errors yet
the residual error term is not Gaussian.

Let Cn (θ) ≡
(
An
)−1 Bn (θ)

(
An (θ)

)−1. Let Ĉn ≡ Cn

(
θ̂n

)
.

Theorem 5. Consistent QMLE Covariance Matrix Estimators (e.g., [1]). Assume Assumptions 1,
2, 3(i), 3(ii), 3(iii), 3(iv), 5(i), 6, 7(i) and 7(ii) hold. Then, with probability one as n→ ∞ : B̂n → B∗ ,(

B̂n
)−1 → (B∗)−1 , Ân → A∗ ,

(
Ân
)−1 → (A∗)−1 , Ĉn → C∗ , and

(
Ĉn
)−1 → (C∗)−1 .

3.2. GIMT Statistic Asymptotic Behavior

Theorem 6. GIMT Statistic Consistency. Assume Assumptions 1, 2, 3, 4(i), 4(ii), 4(iii), 5(i), and 6 hold.
Then as n→ ∞ , ŝn → s∗ with probability one. If, in addition, Assumptions 5(ii) and 7(iii) hold, then with

probability one ∑̂
n
s → ∑∗s and

(
∑̂

n
s

)−1
→ (∑∗s )−1 as n→ ∞ .

The asymptotic distribution of ŝn ≡ s
(
Ân, B̂n

)
is described in the next theorem. Strategies for

estimating ∑∗s are discussed at the end of this section.
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Theorem 7. Generalized Information Matrix Wald Test. Assume Assumptions 1, 2, 3, 4, 5(i), 5(ii),
6, 7 hold with respect to a GIMT hypothesis function s : Υ×Υ→ Rr and probability model M. Let

Ŵn ≡ n (ŝn)T
(

∑̂
n
s

)−1
(ŝn). If H0 : s∗ = 0r, then Ŵn

d→ χ2
r as n→ ∞ . If H0 : s∗ = 0r is false,

then Ŵn → ∞ as n→ ∞ w.p.1.

Using a Wald test approach, Theorem 7 establishes that the GIMT p-value will be consistently
estimated under the null hypothesis H0 : s∗ = 0r thus allowing us to bound Type 1 errors by chosen
significance levels. Under the alternative hypothesis Ha : s∗ 6= 0r, Theorem 7 ensures that the Type 2
error goes to zero as the sample size increases with probability one.

From Theorem 4 and the definition of a GIMT Hypothesis Function s : Υ×Υ→ Rr , it follows
that s (A∗, B∗) 6= 0r implies the presence of model misspecification. This statement follows immediately
from the definition of a GIMT hypothesis function and the conclusion of Theorem 4. It is formally
presented because of its semantic importance.

Proposition 1. Interpretation of GIMT Null and Alternative Hypotheses. Suppose the Assumptions of
Theorem 4 hold. Let s be a GIMT hypothesis function. (i) If M is correctly specified, then H0 : s∗ = 0r;
(ii) If H0 : s∗ = 0r is false, thenM is misspecified.

Proposition 1 states that for either a directional or nondirectional GIMT, evidence supporting
the rejection of the null hypothesis H0 : s∗ = 0r is also evidence supporting the presence of model
misspecification. Note, however, the assertion that H0 : s∗ = 0r is true does not necessarily imply
correct model specification.

3.3. GIMT Covariance Matrix Estimators

A non-directional GIMT covariance matrix estimator
..
Σ

n
s is defined as an estimator with the following

two properties: (i)
..
Σ

n
s → Σ∗s as n→ ∞ with probability one when A∗ = B∗; and (ii)

..
Σ

n
s converges to

a positive definite matrix as n→ ∞ with probability one regardless of whether the probability model
is correctly specified. Property (ii) is analogous to Assumption 7(iii) and can be empirically checked by

examining the condition number of the GIMT covariance matrix estimator
..
Σ

n
s .

Let the Lancaster-Chesher 3rd Derivative Formula
..
∇d : Θ→ Rk(k+1)×k be defined such that:

..
∇dn (θ) = D⊗†

k

 dBn(θ)
dθ + n−1

n
∑

i=1
vec (A (Xi;θ)− B (Xi;θ)) (g (Xi;θ))T

dBn(θ)
dθ

, (3)

where
dBn (θ)

dθ
= n−1

n

∑
i=1

[(A (Xi;θ)⊗ g (Xi;θ)) + (g (Xi;θ)⊗A (Xi; θ))]. (4)

The formulas for the GIMT covariance matrix estimator require computation of both the second
and third derivatives of the negative log-likelihood function, which are represented in Equations (1) and
(2) by the formula∇d∗. Theorem 8 shows that the formula

..
∇d̂n ≡

..
∇dn

(
θ̂n

)
, which uses only first and

second derivatives of the negative average log-likelihood, may be used to asymptotically approximate
∇d∗ for the purpose of avoiding calculation of negative average log-likelihood third derivatives.

Theorem 8. Lancaster-Chesher Estimator (see [12]). Assume Assumptions 1, 2, 3, 5(i)a, 5(i)c, 5(i)d, 5(ii)a,
5(ii)c, 5(iii), and 6 hold with respect to a GIMT hypothesis function s : Υ×Υ→ Rr and probability model
M. If M is correctly specified, then with probability one

..
∇dn

(
θ̂n

)
→ ∇d∗ as n→ ∞ .

Theorem 8 provides an additional mechanism for constructing alternative and possibly
computationally convenient covariance matrix estimators for estimating Σ∗s when the null hypothesis
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that the model is correctly specified holds. In particular, the formula
..
∇dn

(
θ̂n

)
is substituted for

∇d̂n in Equation (2) to obtain a real symmetric matrix with non-negative eigenvalues called the
Lancaster-Chesher covariance matrix estimator. If the null hypothesis that the model is correctly specified
is false, then the Lancaster-Chesher covariance matrix estimator simply needs to converge to any finite
positive definite matrix. This latter assumption can be empirically checked by examining the condition
number of the Lancaster-Chesher covariance matrix estimator.

We now provide formulas for a variety of different types of non-directional GIMT covariance
matrix estimators. First note that when the probability model is correctly specified, the contrapositive
of Theorem 4 in conjunction with Theorem 5 implies that Â−1 = B̂−1 = Ĉ. Thus, one can use either
the OPG inverse Hessian estimator B̂−1 or the sandwich inverse Hessian estimator Ĉn as alternative
estimators for the inverse Hessian estimator Â−1 in (2). Second, if the GIMT selection function s is
anti-symmetric and A∗ = B∗, then it follows that the term (∇s∗)D⊗k d∗ = 0r so that the centering term
d∗ in (1) can be set equal to 0r. Thus, an alternative estimator of d∗ that can be used instead of the
centering term estimator d̂n in (2) is simply a vector of zeros. These two methods yield six different
non-directional GIMT covariance matrix estimators.

Six additional GIMT covariance matrix estimators can be obtained by using the Lancaster-Chesher
estimator

..
∇d̂n (defined above) as an alternative estimator for the third derivative negative average

log-likelihood estimator∇d̂n. The Lancaster-Chesher estimator
..
∇d̂n has the computational advantage

relative to ∇d̂n that only the first and second derivatives of the negative log-likelihood are used.
However, previous empirical studies have suggested that the use of the Lancaster-Chesher estimator
..
∇d̂n instead of the third-derivative negative average log-likelihood estimator ∇d̂n may degrade
performance in some cases (e.g., [13,15–18]).

3.4. Adjusted GIMT Hypothesis Functions

Assumption 7(iii) requires that Σ∗s is a positive definite matrix. The GIMT selection function s
may have the property that the r-dimensional matrix Σ∗s is singular with rank g where g < r so that
Assumption 7(iii) fails. However, it is often possible to replace the original GIMT hypothesis function
s : Υ×Υ→ Rr with an alternative “adjusted” GIMT hypothesis function s′ : Υ×Υ→ Rg that tests
a similar null hypothesis yet has the properties that: (i) the resulting asymptotic covariance matrix of
n1/2s′n is nonsingular; and (ii) rejection of H0 : s′(A∗, B∗) = 0r implies rejection of H0 : s(A∗, B∗) = 0r.

Proposition 2. Adjusted GIMT Hypothesis Function Properties. Let Σ∗s be an r-dimensional GIMT
asymptotic covariance matrix for GIMT hypothesis function s : Υ×Υ→ Rr such that Assumption 7(iii)
holds. Let the g rows of the rank g matrix T ∈ Rg×r be r-dimensional orthonormal eigenvectors of Σ∗s
(r > g ≥ 1) for GIMT hypothesis function s. Define an alternative GIMT hypothesis function s′ ≡ Ts whose
respective g-dimensional GIMT asymptotic covariance matrix is Σ∗T = TΣ∗s TT . (i) If H0 : s′ (A∗, B∗) = 0g is
false, then H0 : s (A∗, B∗) = 0r is false; (ii) The g-dimensional GIMT asymptotic covariance matrix, Σ∗T , for s′

is finite and positive definite.

The matrix T in Proposition 1 is called the adjusted GIMT hypothesis projection matrix. The proof of
Proposition 2(i) follows from the observation that if |s|2 = 0r, then |s′|2 = 0g. Proposition 2(ii) follows
from the observation that Σ∗T = TΣ∗s TT is non-singular by the construction of T and Assumption 7(iii).

4. Simulation Studies

As discussed, some previously published information matrix tests for model misspecification
have demonstrated good level and power performance (e.g., [19,23,24]). These tests may be viewed
with respect to the GIMT framework presented here. The theoretical framework presented in Sections 2
and 3 provides an important perspective in understanding the similarities and differences among
existing misspecification tests within a unified framework. Further, these prior published empirical
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studies support the value of the GIMT framework by showing that GIMTs with good level and power
performance can be constructed.

However, the GIMT framework in Sections 2 and 3 is also valuable for developing entirely
new GIMTs for a large class of probability models in a straightforward manner through the use of
Theorems 6 and 7. To illustrate our approach to the construction and evaluation of such GIMTs,
we show how Theorems 6 and 7 can be used to derive five new GIMTs. Although an important goal of
these derivations was an interest in developing useful tests for model misspecification, a major reason
for deriving five additional GIMTs was to demonstrate the flexibility and generality of the unified
GIMT theory developed in Sections 2 and 3 .

Next, simulation studies of the level and power performance of the new GIMTs are provided to
examine the performance of the GIMTs for some specific empirical examples. This particular logistic
regression modeling problem is intended to be representative of a commonly encountered situation
where a relevant predictor in a regression model is not properly recoded and an irrelevant predictor is
included. The simulation studies were not intended to be comprehensive but rather were designed
to empirically demonstrate how the general GIMT theory (Sections 2 and 3) can be used to develop
a wide range of misspecification tests. For comparison purposes, the Adjusted Classical GIMT
originally proposed by Golden et al. [23] was included as a sixth GIMT in the simulation studies.

4.1. Generalized Information Matrix Tests

4.1.1. Adjusted Classical GIMT (Directional) [23]

Suppose one desires to test the classical full Information Matrix Test hypothesis H0 : A∗ = B∗.
Let Σ∗s be the r-dimensional GIMT asymptotic covariance matrix associated with this GIMT. Note
that r = k (k + 1) /2 may be relatively large. Assume, however, that Σ∗s only has rank g where g < r.
Because Σ∗s is not of full rank, the asymptotic theory developed here cannot be directly applied since
Assumption 7(iii) is violated. However, following the discussion in Proposition 1, let T ∈ Rg×r be
a matrix with full row rank defined such that the g rows of T are r-dimensional orthonormal
eigenvectors of Σ∗s (r > g ≥ 1). Then, instead of testing the null hypothesis H0 : A∗ = B∗

associated with the classical full non-directional Information Matrix Test [1], the null hypothesis
H0 : Tvech(A∗) = Tvech(B∗) is tested using the GIMT hypothesis function s defined such that:
s (A∗, B∗) = Tvech (A∗ − B∗). The GIMT associated with this hypothesis function is called the Adjusted
Classical GIMT (Directional). Golden et al. [23] provided further discussion of this GIMT and showed
that it had good level and power properties using simulation studies of a realistic epidemiological data
analysis problem.

4.1.2. Fisher Spectra GIMT (Directional)

The Fisher Spectra GIMT (Directional) is a new k-degree of freedom test specified by the GIMT
hypothesis function s defined such that:

s (A∗, B∗) = diag
(

(A∗)−1 B∗
)
− 1k,

which tests the null hypothesis Ho : s (A∗, B∗) = 0k. The notation 1k denotes a k-dimensional column
vector of ones. The diag : Rk×k → Rk is defined such that diag

(
(A∗)−1 B∗

)
is a column vector of the

on-diagonal elements of (A∗)−1 B∗. The degrees of freedom of this test are equal to the number of free
parameters in the model. When the Information Matrix Equality holds, then (A∗)−1 B∗ will be the
identity matrix and this GIMT tests the null hypothesis that the k on-diagonal elements of (A∗)−1 B∗

are all equal to one. Note that the Fisher Spectra GIMT tests that the eigenvalues of the two matrices
are the same but does not test the null hypothesis that the two matrices have the same eigenvectors.
The Fisher Spectra GIMT presented here is similar to the Copula Eigenvalue Test [33]; however, the test
statistic is different because the Fisher Spectra GIMT was not developed within a copula framework.
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4.1.3. Robust Log GAIC GIMT (Directional)

The Robust Log GAIC GIMT (Directional) is a new 1-degree of freedom test specified by the GIMT
hypothesis function s defined such that:

s (A∗, B∗) = log
((

1
k

)
trace

(
(A∗)−1 B∗

))
,

which tests the null hypothesis Ho : s (A∗, B∗) = 0. If the null hypothesis of this test is
rejected, then not only does it indicate the presence of model misspecification, it mandates that
one uses misspecification-robust estimation methods such as the sandwich estimator [1,32] and
misspecification-robust model selection criteria such as the Generalized Akaike Information Criterion
(GAIC) [34–36]. The GAIC that is defined by the formula: GAIC = 2nl̂n + 2trace

(
(A∗)−1 B∗

)
is an

unbiased estimator of the expected value of the log-likelihood measure 2nl̂n (e.g., see Appendix of [35]).
Note that the Log GAIC GIMT tests the same null hypothesis as the IOS IMT described by Presnell
and Boos [19] (also see [20–22]); however, the test statistic is the logarithm of the IOS IMT statistic.

4.1.4. Robust Log GAIC Ratio GIMT (Directional)

The 1-degree of freedom Composite Log GAIC Ratio GIMT is specified by the GIMT hypothesis
function s is defined such that:

s (A∗, B∗) = log

 trace
(

(A∗)−1 B∗
)

trace
(

(B∗)−1 A∗
)
,

which tests the null hypothesis Ho : s (A∗, B∗) = 0. The Robust Log GAIC Ratio GIMT (Directional)
tests a null hypothesis similar to the null hypotheses associated with the group of non-directional
1 degree of freedom GIMTs discussed by Cho and Phillips [37] that compares the arithmetic mean and
harmonic mean of the eigenvalues of the matrix (A∗)−1 B∗. It is also closely related to the IOS IMT
discussed by Presnell and Boos [19] (also see [20–22]).

4.1.5. Composite Log GAIC GIMT (Nondirectional)

Lemma 1 of [37] shows that A∗ = B∗ if and only if trace
(

(A∗)−1B∗
)

= k and

trace
(

(B∗)−1A∗
)

= k. This result provides a justification for a new type of GIMT called the 2-degree
of freedom Composite Log GAIC GIMT (Non-Directional). The Composite Log GAIC GIMT specified by
the GIMT hypothesis function s is defined such that:

s (A∗, B∗) =

 log
((

1
k

)
trace

(
(A∗)−1 B∗

))
log
((

1
k

)
trace

(
(B∗)−1 A∗

)) ,

which tests the null hypothesis Ho : s (A∗, B∗) = 02. The Composite Log GAIC GIMT (Non-Directional)
tests a null hypothesis similar to the null hypotheses associated with the group of non-directional
1 degree of freedom GIMTs discussed by Cho and Phillips [37] that compare the arithmetic mean and
harmonic mean of the eigenvalues of the matrix (A∗)−1 B∗.
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4.1.6. Composite GAIC GIMT (Non-Directional)

The Composite GAIC GIMT (Non-Directional) tests exactly the same null hypothesis as the
Composite Log GAIC GIMT but does not include the log transformation. The Composite GAIC
GIMT specified by the GIMT hypothesis function s is defined such that:

s (A∗, B∗) =

 (
1
k

)
trace

(
(A∗)−1 B∗

)
− 1(

1
k

)
trace

(
(B∗)−1 A∗

)
− 1

,

which tests the null hypothesis Ho : s (A∗, B∗) = 02. Cho and Phillips [37] have proposed the
magnitude of the Composite Log GAIC GIMT as a 1-degree of freedom non-directional GIMT.
Note that this GIMT is also closely related to the IOS test of [19].

4.2. Methods

4.2.1. Simulated Data Generating Processes

The level and power performance of the six GIMTs are tested using simulation methods described
in [23]. First, five data samples, consisting of 1000, 2000, 4000, 8000, and 16,000 exemplars respectively,
were created by random sampling a value x1 from a uniform density on the interval [−1, 1] and
sampling a value of x2 from a binomial density. A response variable for each exemplar was randomly
generated from the predictor x1 using the “true” data generating process specified by the logistic
regression model:

log
(

p (y = 1)

p (y = 0)

)
= β0 + β1x1 + β2x1

2 + β3x1
3, (5)

defined by the true coefficient values: β0 = −1.98, β1 = 4.03, β2 = 1.73, β3 = 1.15.
The response variable y is assigned to a value of one if the computed probability is greater than

0.5, and zero otherwise. Note that the four-parameter regression model in (5) is thus called the correctly
specified model, and is used to re-estimate the true coefficient values using the “true” data generating
process that is generated using (5).

We also modeled the same binary response variable in the simulated datasets using
an “incorrectly” specified model specified by Equation (6):

log
(

p (y = 1)

p (y = 0)

)
= β0 + β1x1

3 + β2

√
|x1|+ β3x2. (6)

Notice that the parametric forms for the correctly (Equation (5)) and incorrectly (Equation (6))
specified models are the same, except that the incorrectly specified model (Equation (6)) omits x1 and
x2

1, and includes an “irrelevant predictor”, x2, and an incorrect transformation,
√
|x1|.

Assume a large dataset is constructed by sampling from the data generating process specified by
the model in (5). In the correctly specified case when the parameters of the model in (5) are estimated
using the dataset generated by the model in (5), the resulting estimators for Ân and B̂n are very
similar in magnitude, indicating a lack of evidence of misspecification. On the other hand, in the
misspecified case when the parameters of the model in (6) are estimated using the dataset generated by
the model in (5), the resulting estimators for Ân and B̂n are quite different, evidencing misspecification
(see Theorem 4 of this paper).

In practice, researchers often choose the model that best fits the observed data using in-sample
(training data) and out-of-sample (test data) log-likelihood based measures. Two models, however,
can have equivalent fits to the observed data using either in-sample (2nl̂n) or out-of-sample (GAIC)
model fit measures, yet one of the models can be correctly specified while the other model is not. The
data generating process and models used in the simulation studies described here are designed to
illustrate this important situation.
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The model in (5) when fitted to the dataset generated by (5) had approximately the same in-sample
fit (2nl̂n = 9295.69) as the in-sample fit (2nl̂n = 9295.94) obtained when model (6) was fitted to the
dataset generated by (5). Further, the Discrepancy Risk Model Selection Test [38–43] did not show
a significant difference in the model fits for the models in (5) and (6) (Z = 0.003, p = 0.997).

In addition, using the GAIC [35,36,44] which estimates the out-sample (test data) model fit, the
model in (5) when fitted to the dataset generated by (5) had approximately the same out-of-sample fit
(GAIC = 9303.6) as the out-sample fit (GAIC = 9305.6) of model (6) to the data set generated by (5).
The Discrepancy Risk Model Selection Test [38–43] showed no significant difference in GAIC model
fits (Z = 0.028, p = 0.98). Thus, despite the presence of model misspecification, both the misspecified
model and the correctly specified model provide observationally equivalent fits to the observed data,
underscoring the importance of checking for model misspecification.

4.2.2. Estimation of Type 1 and Type 2 Error Rates

To evaluate the level and power performance of the six GIMTs, we estimate the percentage of times
that each GIMT incorrectly rejected the null hypothesis in the correctly specified case (or GIMT level),
and correctly rejected the null hypothesis in the misspecified case (GIMT power). Since the data were
simulated from a known data generating process, the computation of these statistics is straightforward.

Throughout these simulation studies, a MLE was defined as a set of parameter values such that
the sup norm of the gradient of the negative average log-likelihood evaluated at the MLE was less
than 1 × 10−8. Further, we avoided fitting models to degenerate simulated data by omitting samples
with condition numbers greater than 4.5 × 1014 to insure numerical stability. The condition number is
defined as the maximum eigenvalue divided by the minimum eigenvalue of the inverse of the Hessian
covariance matrix estimator. Each simulation was run until m = 10,000 simulated data samples of size
n was reached. The sample sizes n for the simulated data represented 6.25%, 12.5%, 25%, 50%, and
100% of the original 16,000-member sample.

4.3. Results and Discussion

4.3.1. Type 1 Error Performance

Tables 1 and 2 provide estimated Type 1 errors (i.e., estimated p-values using Theorem 7 and
Equation (2)) computed using 10,000 simulated data samples for a sample size of n = 16,000. Empirical
level (observed Type 1 error rates) are for pre-specified (nominal) significance levels: 0.01, 0.025, 0.05,
and 0.10. The average number of times the null hypothesis was incorrectly rejected by a GIMT in
a simulation run was used to estimate the Type 1 error rate. The standard error of the number of times
the null hypothesis was incorrectly rejected was defined as the bootstrap sampling error. The average
number of times the null hypothesis was incorrectly accepted by a GIMT in a simulation run was used
to estimate the Type 2 error rate.

The p-values estimated in Table 1 are based upon the exact formula for the GIMT test statistic
provided in Equation (2), which uses the third derivative of the log-likelihood function. Table 2 provides
estimates of the Type 1 error rate using formulas that do not require the use of third derivatives
of the log-likelihood function by using the Lancaster-Chesher third derivative approximation
(see Theorem 8) for the Hessian covariance matrix estimator obtained by substituting the formula

..
∇d̂n

as defined in Equations (3) and (4) for ∇d̂n in Equation (2).
Level performance in Tables 1 and 2 was evaluated using the Mean Absolute Deviation

(MAD), which is defined as the average absolute deviation between an estimated p-value
and its theoretical expected asymptotic value. Directional GIMTs showed better performance
(MAD = 0.013) than non-directional GIMTs (MAD = 0.44). In addition, the Lancaster-Chesher third
derivative approximation method (Table 2) showed better performance (MAD = 0.034) than the analytic
third derivative method (Table 1) (MAD = 0.055) for non-directional GIMTs. Level performance
for directional GIMTs derived using the Lancaster-Chesher third derivative approximation method



Econometrics 2016, 4, 46 15 of 24

(MAD = 0.017) were comparable to directional GIMTs derived using the analytic third derivative
method (MAD = 0.0084).

Table 1. Type 1 error performance of GIMTs using the analytic third derivative formula for pre-specified
(nominal) significance levels: 0.01, 0.025, 0.05, and 0.10. Level performance for the directional GIMTs
was better than level performance for the non-directional GIMTs. Bootstrap simulation standard errors
are shown in parentheses. Computed values are for 10,000 simulated data samples for sample size
n = 16,000. df = degrees of freedom.

Generalized Information
Matrix Test (GIMT) Test Type p = 0.01 p = 0.025 p = 0.05 p = 0.10

Adjusted Classical (≤10 df) Directional
0.0136 0.0308 0.0550 0.1059

(0.0012) (0.0017) (0.0023) (0.0031)

Composite GAIC (2 df) Non-Directional
0.0830 0.1014 0.1225 0.1546

(0.0027) (0.0030) (0.0032) (0.0036)

Composite Log GAIC (2 df) Non-Directional
0.0564 0.0742 0.0930 0.1219

(0.0023) (0.0026) (0.0029) (0.0032)

Fisher Spectra (4 df) Directional
0.0205 0.0337 0.0584 0.1035

(0.0014) (0.0018) (0.0023) (0.0030)

Robust Log GAIC (1 df) Directional
0.0185 0.0360 0.0618 0.1144

(0.0013) (0.0018) (0.0024) (0.0031)

Robust Log GAIC Ratio (1 df) Directional
0.0158 0.0335 0.0590 0.1135

(0.0012) (0.0018) (0.0023) (0.0031)

Table 2. Type 1 error performance of GIMTs using the Lancaster-Chesher third derivative
approximation for pre-specified (nominal) significance levels: 0.01, 0.025, 0.05, and 0.10. Like the
third derivative method in Table 1, level performance for the directional GIMTs was better than level
performance for the non-directional GIMTs. Further, for non-directional GIMTs, level performance
of the Lancaster-Chesher third derivative approximation for the non-directional GIMTs was better
than using third derivative GIMTs. Bootstrap simulation standard errors are shown in parentheses.
Computed values are for 10,000 simulated data samples for sample size n = 16,000. df = degrees
of freedom.

Generalized Information
Matrix Test (GIMT) Test Type p = 0.01 p = 0.025 p = 0.05 p = 0.10

Adjusted Classical (≤10 df) Directional
0.0085 0.0195 0.0409 0.0916

(0.0009) (0.0014) (0.0020) (0.0029)

Composite GAIC (2 df) Non-Directional
0.0662 0.0821 0.1006 0.1259

(0.0024) (0.0026) (0.0029) (0.0032)

Composite Log GAIC (2 df) Non-Directional
0.0403 0.0498 0.0646 0.0884

(0.0019) (0.0021) (0.0023) (0.0027)

Fisher Spectra (4 df) Directional
0.0071 0.0161 0.0264 0.0535

(0.0008) (0.0012) (0.0015) (0.0021)

Robust Log GAIC (1 df) Directional
0.0045 0.0138 0.0236 0.0622

(0.0006) (0.0011) (0.0014) (0.0023)

Robust Log GAIC Ratio (1 df) Directional
0.0032 0.0097 0.0285 0.0588

(0.0005) (0.0009) (0.0016) (0.0022)

The improved Type 1 error estimation performance of the directional GIMTs may be due to the
fact that the directional GIMT statistics had fewer degrees of freedom and thus reduced variance.
One possible explanation for the good level performance of the Lancaster-Chesher third derivative
approximation method is that this method uses assumptions that hold under the null hypothesis
to derive an alternative GIMT covariance matrix estimator without calculating third derivatives.
In simulation studies where the null hypothesis of correct model specification holds, key large
sample assumptions of the Lancaster-Chesher third derivative approximation method are satisfied
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by construction. This suggests that, in some cases, for the purpose of estimating Type 1 errors, the
Lancaster-Chesher method may be appropriate for large sample sizes. On the other hand, Taylor [18]
has provided examples where the size properties of the Lancaster-Chesher method are poor.

4.3.2. Level-Power Analyses

The level-power performance of the new GIMTs were investigated by examining how the
estimated Type 1 and Type 2 errors varied as a function of test significance level. In particular,
for a range of possible significance levels, the estimated power (i.e., percent correct rejections) and
estimated Type 1 error (i.e., percent incorrect rejections) can be calculated to obtain a Receiver Operating
Characteristic (ROC) curve [14,45–47]. The Area under the ROC (AUROC) is measure of discrimination
performance. An AUROC = 1.0 indicates perfect discrimination performance and an AUROC = 0.5
indicates chance discrimination performance [45–47]. Although discrimination performance can
vary dramatically as a function of test problem difficulty, this paradigm is useful for comparing
discrimination performance of different GIMT statistics with respect to a particular test problem.

Figure 1 shows the Level-power for GIMTs using the analytic 3rd derivative for the inverse
Hessian matrix estimator by sample size. With respect to the chosen test problem described in the
text, these GIMTs obtain nearly perfect performance in correct rejection of the null hypothesis and
correct acceptance of the null hypothesis when the sample size in this simulation study exceeds
4000 exemplars.
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Figure 1. Level-power for GIMTs using the analytic 3rd derivative formula is characterized by Area
Under the Receiver Operating Characteristic curve (AUROC) as a function of sample size. With respect
to the chosen test problem, these GIMTs obtain nearly perfect performance in correct rejection of the
null hypothesis and correct acceptance of the null hypothesis when the sample size in this simulation
study exceeds 4000 exemplars. Each data point in the above graph was generated from 10,000 bootstrap
data samples.

Figure 2 shows the Level-power for GIMTs using the Lancaster-Chesher 3rd derivative
approximation. With respect to the chosen test problem these GIMTs obtain excellent performance
in correct rejection of the null hypothesis and correct acceptance of the null hypothesis when the
sample size in this simulation study is near 16,000 exemplars. However, while the Adjusted Classical
GIMT evidences excellent performance across sample sizes in all cases, the other GIMTs show
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poor Level-Power performance below 15,000 exemplars with the Lancaster-Chesher 3rd derivative
approximation. In addition, with the exception of the Adjusted Classical GIMT, there is not
a clear difference in performance between the directional and non-directional tests. These results are
consistent with the observations of previous investigators regarding the power performance of the
Lancaster-Chesher method (e.g., [14,15,17,18]).Econometrics 2016, 4, 46  19 of 26 
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Figure 2. Level-power for GIMTs using the Lancaster-Chesher 3rd derivative approximation is
characterized by Area Under the Receiver Operating Characteristic curve (AUROC) as a function
of sample size. With respect to the chosen test problem these GIMTs obtain excellent performance in
correct rejection of the null hypothesis and correct acceptance of the null hypothesis when the sample
size in this simulation study is near 16,000 exemplars. While the Adjusted Classical GIMT evidences
excellent performance across sample sizes, the other GIMTs show poor Level-Power performance
below 15,000 exemplars. Each data point in the above graph was generated from 10,000 bootstrap
data samples.

5. Conclusions

This paper formally introduces a unified framework for specification testing that is applicable
to a wide range of smooth probability models including, for example, the class of generalized linear
models (e.g., [48–50]), linear and nonlinear regression (e.g., [51,52]), structural equation models with
or without latent variables (e.g., [53,54]), and hierarchical linear models (e.g., [55]). The essential idea
is based upon the Contrapositive of the Information Matrix Equality (Theorem 4), which asserts that
observed differences between the inverse Hessian covariance matrix estimator Ân and the inverse
OPG covariance matrix estimator B̂n are indicators of the presence of model misspecification.

Theorem 6 provided explicit conditions for ensuring that ŝn converges with probability one to
s (A∗, B∗) as n→ ∞ . Theorem 7 provided explicit conditions for showing that if the null hypothesis
H0 : s (A∗, B∗) = 0r holds, then a Wald test statistic can be constructed that has an asymptotic
chi-squared distribution with r degrees of freedom. If, however, the null hypothesis H0 : s (A∗, B∗) = 0r

is false, then that same Wald test statistic asymptotically converges to infinity with probability one.
Proposition 1 asserts that: (1) if the probability model is correctly specified then H0 : s (A∗, B∗) = 0r,
and (2) if H0 : s (A∗, B∗) = 0r is false then the probability model is misspecified.

In the simulation studies, each of the new directional and non-directional GIMTs exhibited
excellent level-power performance using the third derivative formulas for the GIMT covariance matrix
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estimator. However, performance in estimating the Type 1 error rate varied for different GIMTs,
indicating the importance of simulation studies for characterizing the performance of new GIMTs
derived within the GIMT framework. In fact, the performance of the directional GIMTs was better than
the non-directional GIMTs. The simulation studies also showed that the level-power performance of the
GIMTs declined with smaller sample sizes for the Lancaster-Chesher third derivative approximation
formula. In addition, the appealing level-power performance of the Adjusted Classical GIMT for
both the true third derivative and Lancaster-Chesher third derivative approximation suggests that
additional research into the development of GIMTs with adjusted covariance matrices as described in
Proposition 2 is merited. It is also important to emphasize that the alternative model used in the above
power analyses was chosen such that its fit to the observed data was comparable to the fit of the “true”
model that generated the data.

In summary, the simulation studies illustrate a general methodology for using the GIMT
framework to derive and evaluate new model misspecification tests. We showed that it is possible
for an incorrectly specified model to appear to fit the data well, while testing positive for model
misspecification (i.e., reject the null hypothesis that the model is correctly specified). To reach proper
statistical inferences when interpreting estimates of the parameters to a fitted model, it is critical to
consider both model fit and model specification.

In conclusion, a unified GIMT framework has been presented for identifying, classifying,
and developing information matrix type statistical tests for the detection of model misspecification
for smooth finite-dimensional probability models. This GIMT framework provides a practical and
powerful methodology for the development of both directional and non-directional GIMTs for a wide
range of smooth probability models. Furthermore, unlike some existing methods for specification
testing in logistic regression modeling, the degrees of freedom of the GIMT test statistic do not increase
as a function of the number of distinct patterns of predictor variable values, suggesting that GIMTs
will have good level and power performance [51,56–58]. In the real world, it is inevitable that model
misspecification will manifest itself in different ways for different probability models and in different
situations. Accordingly, it is desirable to have a variety of tests for assessing model misspecification as
some tests may be more appropriate than others in detecting the presence of model misspecification in
different situations.
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Appendix A. Proofs of Theorems and Propositions

The following matrix definition of dominated by an integrable function is used in the statement
and proofs of the theorems in this paper. It is provided for completeness.

Definition. Dominated by an Integrable Function. Let X be a random d-dimensional real vector
defined on a complete probability space (Ω,=, P), where P has Radon-Nikodým density p with respect
to a σ-finite measure νx. Let Θ ⊂ Rr be a compact set, r ∈ N. Let Q : Rd ×Θ→ Rm×n be a function
defined such that each element of Q(x, ·) is continuous on Θ for all x ∈ supp X, and each element
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of Q(·,θ) is measurable for all θ ∈ Θ. Suppose there exists a function K : Rd → R+ such that each
element, qij of Q:

∣∣qij(x,θ)
∣∣ ≤ K(x) for all θ ∈ Θ and for all x ∈ supp X. Also assume that the expected

value of K(X) with respect to p is finite. Then Q is dominated by an integrable function K on Θ with respect
to p.

In some cases, we will abbreviate the statement “dominated by an integrable function K on Θ
with respect to p” to the statement “dominated on Θ with respect to p”.

In addition, the Dominated Convergence Theorem (e.g., [30], Theorem 2; [2], Theorem A.2.1),
Slutsky’s Theorem (e.g., [59], p. 19), Mean Value Theorem (e.g., [60], p. 80), Uniform Law of Large
Numbers (e.g., [2], Theorem A.2.2), and Multivariate Central Limit Theorem (e.g., [59], Theorem B,
p. 28) are used throughout the following discussion.

Proof of Theorem 1. See Lemma 2 of [30]. Q.E.D.

Proof of Theorem 2. See Theorem 2.1 of [61]. Q.E.D.

Proof of Theorem 3. See Theorem 3.2. of [1]. Q.E.D.

Proof of Theorem 4. See Theorem 3.3. of [1]. Q.E.D.

Proof of Theorem 5. See proof of Theorem 3.3 of [31]. Q.E.D.

Proof of Theorem 6. The proof follows the approach to the proof of Theorem 4.1 in [1].
Let s∗n =

(
An (θ∗) , Bn (θ∗)

)
.

Using Assumptions 3, 4(i), 4(ii), 4(iii), and the Mean Value Theorem:

s∗n = s∗ +∇..
snD⊗k

(
dn (θ∗)− d∗

)
, (A1)

where ∇..
sn is a matrix defined such that the mth row of ∇s is evaluated at:

( ..
An,

..
Bn

)(m)
≡

λm
(
An (θ∗) , Bn (θ∗)

)
+ (1− λm) (A∗, B∗) for some λm ∈ (0, 1), m = 1, . . . , r.

Using Assumptions 3, 4(i), 4(ii), and 4(iii), and the Mean Value Theorem:

ŝn = s∗n +∇_
s nD⊗k ∇

_
dn

(
θ̂n − θ∗

)
, (A2)

where ∇_
s nD⊗k ∇

_
dn is a matrix constructed by evaluating the mth row of the matrix-valued function

∇snD⊗k ∇dn ≡
[
∇s
(
An (θ) , Bn (θ)

)]T D⊗k ∇dn (θ) at
_
θn ≡ γmθ̂n + (1− γm)θ∗ for some γm ∈ (0, 1),

m = 1, . . . , r.
Substituting (A1) into (A2) gives:

ŝn − s∗ = ∇..
snD⊗k

(
dn (θ∗)− d∗

)
+∇_

s nD⊗k ∇
_
dn

(
θ̂n − θ∗

)
. (A3)

In addition, ∇_
s n = ∇s∗ + op (1) because ∇s is continuous by Assumptions 4(i), 4(ii), 4(iii) and

Ãn → A∗ w.p.1 and B̃n → B∗ w.p.1 using Theorem 5. By Assumptions 3, 4, 5, and the Uniform Law

of Large Numbers, ∇_
s nD⊗k ∇

_
dn = ∇s∗D⊗k ∇d∗ + op (1). Thus, (A3) can be rewritten as:

ŝn − s∗ = ∇s∗D⊗k
(

dn (θ∗)− d∗
)

+∇s∗D⊗k ∇d∗
(
θ̂n − θ∗

)
+op (1)

(
dn (θ∗)− d∗

)
+ op (1)

(
θ̂n − θ∗

) . (A4)
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Assumptions 1, 2, 3(i), 3(ii), 5(i)a, and 6 with Theorem 2 imply that θ̂n → θ∗ and Assumptions 1,
2, 3(i), 3(ii), 3(iii), 3(iv), and 5(i) with the Law of Large Numbers imply that dn (θ∗)→ d∗ as n→ ∞
with probability one. Thus, the right-hand side of (A4) approaches zero as n→ ∞ with probability one.

The last part of Theorem 6 asserts that ∑̂
n
s → ∑∗s and

(
∑̂

n
s

)−1
→ (∑∗s )−1 with probability one, which

follows from Assumptions 1, 2, 3, 4, 5(i), 5(ii), 6, 7 and the Uniform Law of Large Numbers. Q.E.D.

Proof of Theorem 7. The proof follows the approach to the proof of Theorem 4.1 in [1]. Using

Assumptions 3(i), 3(ii), 3(iii), 3(iv) and expand: n−1
n
∑

i=1
g (Xi;θ) about θ∗ and evaluate at θ̂n using the

Mean Value Theorem to obtain:

ĝn = n−1
n

∑
i=1

g (Xi;θ∗) + An

( ..
θn

) [
θ̂n − θ∗

]
(A5)

where
..
θn lies on the chord connecting θ̂n and θ∗. By Assumptions 1, 2, 3(i), 3(ii), 5(i)(a), and 6,

and Theorem 2: θ̂n → θ∗ with probability one as n→ ∞ which implies with the Uniform Law of

Large Numbers: ĝn → 0q with probability one using Assumption 5(i)(b) and An

(
_
θn

)
→ A∗ using

with probability one where A∗ is positive definite by Assumption 7(i). By Slutsky’s Theorem, (A5),
rearranging terms, and multiplying by n1/2 we then have:

n1/2
(
θ̂n − θ∗

)
= −n1/2 (A∗)−1

(
n−1

n

∑
i=1

g (Xi;θ∗)

)
+ op(1). (A6)

Multiplying (13) by n1/2 and substituting (A6) into Equation (A4) gives:

n1/2 (ŝn − s∗) = ∇s∗D⊗k

(
n1/2

(
dn (θ∗)− d∗

)
−∇d∗n1/2 (A∗)−1

(
n−1

n
∑

i=1
g (Xi;θ∗)

))
−∇s∗D⊗k ∇d∗op (1) + op (1) n1/2

(
dn (θ∗)− d∗

)
+ op (1) n1/2

(
θ̂n − θ∗

) . (A7)

Assumptions 1, 2, 3(i), 3(ii), 3(iii), 3(iv), 5(i), 6, 7(i), and 7(ii) with Theorem 3 imply that
n1/2

(
θ̂n − θ∗

)
= Op (1). Assumptions 1, 2, 3(i), 3(ii), 3(iii), 3(iv), 5(i)c, 5(i)d, and 5(ii)b in

conjunction with the Dominated Convergence Theorem imply that the variance of |dx,θ (Xi,θ∗)− d∗|,
VAR {|dx,θ (Xi,θ∗)− d∗|}, is finite. Thus, by the Markov Inequality,

∣∣∣n1/2
(

dn (θ∗)− d∗
)∣∣∣ = Op (1).

Thus, the last three terms on the right-hand side of (A7) converge to zero with probability one.
Pre-multiplying (A7) by the positive definite matrix (Σ∗s )−1/2 gives:

n1/2 (Σ∗s )−1/2 (ŝn − s∗) =

n1/2 (Σ∗s )−1/2∇s∗D⊗k n−1
n
∑

i=1

(
dx,θ (Xi;θ∗)−∇d∗ (A∗)−1 g (Xi;θ∗)− d∗

)
+ op(1)

. (A8)

From the definition of Σ∗s and the assumption that Σ∗s is positive definite (see Assumption 7(iii)),
the assumption that ∇s∗ has full row rank (see Assumption 4), and the Multivariate Central Limit
Theorem, it follows that the first term on the right-hand side of (A8) converges in distribution to a zero
mean r-dimensional multivariate Gaussian random vector Zr with an identity covariance matrix. By
Slutsky’s theorem, the right-hand side of (A8) also converges to Zr in distribution and is thus bounded
in probability.

If s∗ = 0r, then by (A8) Ŵ∗n ≡ n (ŝn)T (∑∗s )−1 (ŝn) converges in distribution to the sum
of the squares of r asymptotically normally distributed random variables (e.g., [59], p. 4) and
thus has an asymptotic chi-square distribution with r degrees of freedom. If s∗ 6= 0r, then
Ŵ∗n → n (s∗)T (∑∗s )−1 (s∗) with probability one and thus Ŵ∗n → ∞ with probability one.
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Finally, note that since from (A8) n1/2 (ŝn − s∗) converges in distribution and thus is bounded in
probability, and since from Theorem 6 ∑∗s −∑̂

n
s = op (1) we have

Ŵn = Ŵ∗n + n (ŝn − s∗)T op (1) (ŝn − s∗) = Ŵ∗n + op (1)
∣∣∣n1/2 (ŝn − s∗)

∣∣∣2 = Ŵ∗n + op (1) Op (1),

it follows from Slutsky’s Theorem that Ŵ∗n and Ŵn have the same asymptotic distribution. Q.E.D.

Proof of Theorem 8. The proof follows the approach of [12].

d
dθ [

r
A (x;θ) f (x;θ)dν(x)] =

r [ dA(x;θ)
dθ f (x;θ) + vec (A (x;θ))

(
dlog f (x;θ)

dθ

)
f (x;θ)

]
dν(x)

(A9)

d
dθ [

r
B (x;θ) f (x;θ)dν(x)] =

r [ dB(x;θ)
dθ f (x;θ) + vec (B (x;θ))

(
dlog f (x;θ)

dθ

)
f (x;θ)

]
dν(x)

(A10)

Differentiation under the integral operator is permitted by Assumptions 3 and 5, and the
Dominated Convergence Theorem. Differentiate both sides of

r
f (x;θ) dν(x) = 1 three times and use

(A9) and (A10) to obtain:

r dA(x;θ)
dθ f (x;θ) dν(x) =

r dB(x;θ)
dθ f (x;θ) dν(x)−

r
vec (A (x;θ)− B (x;θ))

(
dlog f (x;θ)

dθ

)
f (x;θ) dν(x)

(A11)

where
dB (x;θ)

dθ
=

d
dθ

g (x;θ) g (x;θ)T = (A (x;θ)⊗ g (x;θ)) + (g (x;θ)⊗A (x;θ)) (A12)

If the probability model is correctly specified there exists a θ∗ such that for all x ∈ supp X:

f (x;θ∗) = px (x) ν (x)-almost everywhere. Let
..
∇d (θ) ≡

[ r dvech(A(x;θ))
dθ f (x;θ) dν(x)

r dvech(B(x;θ))
dθ f (x;θ) dν(x)

]
.

Substituting θ∗ into (A11) and (A12) gives the result that ∇d∗ =
..
∇d (θ∗) when the probability

model is correctly specified. The result
..
∇dn →

..
∇d as n→ ∞ with probability one then follows from

using the Uniform Law of Large Numbers. The result
..
∇dn

(
θ̂n

)
→

..
∇d (θ∗) follows from dn →

..
∇d

and the result of Theorem 2, which is θ̂n → θ∗ with probability one. Q.E.D.
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