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Abstract: Time-varying volatility is common in macroeconomic data and has been incorporated
into macroeconomic models in recent work. Dynamic panel data models have become increasingly
popular in macroeconomics to study common relationships across countries or regions. This paper
estimates dynamic panel data models with stochastic volatility by maximizing an approximate
likelihood obtained via Rao-Blackwellized particle filters. Monte Carlo studies reveal the good
and stable performance of our particle filter-based estimator. When the volatility of volatility is
high, or when regressors are absent but stochastic volatility exists, our approach can be better than
the maximum likelihood estimator which neglects stochastic volatility and generalized method of
moments (GMM) estimators.
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1. Introduction

Dynamic panel data models characterize the dynamic adjustment processes which are common
in economic relationships. For estimation and inference, the literature has focused on the generalized
method of moments (GMM) approach (e.g., Arellano and Bond [1]; Blundell and Bond [2]) and
the likelihood approach (e.g., Hsiao, Pesaran, and Tahmiscioglu [3]; Hayakawa and Pesaran [4]).
In this paper, we estimate dynamic panel data models with stochastic volatility by particle filters in a
likelihood approach.

It has been well documented that there is time-varying volatility in macroeconomic data.
Kim and Nelson [5], McConnell and Perez-Quiros [6] and Blanchard and Simon [7], for instance,
studied the moderated volatility in the U.S. real GDP growth. Stock and Watson [8] found that the
decline in volatility was common among many U.S. macroeconomic time series. They argued that the
moderation was associated more with a decrease in the magnitude of unforecastable disturbances than
with the propagation mechanism of those disturbances. Fernández-Villaverde and Rubio-Ramírez [9]
provided an updated documentation of the great moderation in the U.S. economy. Besides,
they showed the presence of time-varying volatility of the Emerging Markets Bond Index+ spread
reported by J.P. Morgan [10]. Blanchard and Simon [7] and Stock and Watson [8] revealed
that the time variation in volatility also existed in other developed countries. Traditionally
homoscedasticity is assumed for the innovations of macroeconomic time series. Recently, motivated
by the studies mentioned above, some papers incorporated time-varying volatility in various models.
Fernández-Villaverde and Rubio-Ramírez [11] used the particle filter to estimate the DSGE models
with stochastic volatility on the structural shocks. Koop and Korobilis [12] discussed the time-varying
parameter vector autoregressive models with multivariate stochastic volatility. Hamilton [13] argued
that time-varying volatility should be considered even when the conditional mean is the direct object
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of interest in that statistical efficiency gains can be obtained by incorporating appropriate features of
time-varying volatility into estimation of the conditional mean.

Dynamic panel data models have become increasingly popular in macroeconomics to study
common relationships across countries or regions, such as growth convergence (e.g., Islam [14]),
purchasing power parity (e.g., Frankel and Rose [15]) and mean reversion of interest rates
( Wu and Chen [16]). One example of incorporating time-varying volatility into dynamic panel models
is the study of uncertainty shocks, which are often modeled as time variations in the volatility of
business conditions or policy rules and can influence individual firm’s decisions and macroeconomic
aggregates [17–19]. To study the impact of such shocks on employment, output and other economic
outcomes, one might use firm-level panel data in a standard model of the firm extended by introducing
time-varying volatility of demand and productivity [17]. The model’s solution involves estimating
a dynamic panel data model with time-varying volatility in the innovations, which might be
parameterized through stochastic volatility [11,20]. In the panel models with stochastic volatility,
there is no closed-form expression for the likelihood. Consequently, some simulation-based method is
required for efficient estimation.

Particle filters, also known as sequential Monte Carlo methods, are simulation-based techniques
to estimate the posterior density of state variables for nonlinear and non-Gaussian state space models.1

The methods approximate the continuous distribution by a discrete distribution made of weighted
draws called particles. There are various algorithms which differ mainly in the choices of the
incremental importance distribution and the resampling algorithm aimed to improve the level of
statistical efficiency in terms of Monte Carlo variation. We apply the Rao-Blackwellized particle filter
(e.g., Chen and Liu [22], Doucet, Godsill, and Andrieu [23], Andrieu and Doucet [24], Karlsson, Schon,
and Gustafsson [25]) in particular to the state-space representation of dynamic panel data models in
first differences and maximize the simulated likelihood using the approximation method in Olsson
and Rydén [26]. When estimating the coefficients in the panel equation, Monte Carlo studies show that
our estimator can be more precise than the maximum likelihood estimator which neglects stochastic
volatility [3] and GMM estimators (e.g., Arellano and Bond [1]; Blundell and Bond [2]) in the presence
of stochastic volatility especially in the case of high volatility of volatility. The advantage of the particle
filter-based estimator is larger in dynamic panel data models with no regressors.

The paper is organized as follows. Section 2 presents the dynamic panel data models with
stochastic volatility and the state-space representation. Section 3 introduces the particle filter-based
estimator. Section 4 reports some Monte Carlo simulations to study finite sample properties. Section 5
concludes the paper.

2. The Models and State Space Representation

In general, we study the dynamic panel data models with time-varying volatility given by

yit = B(L)yi,t−1 + γxit + µi + σtυit, (1)

where i = 1, ..., N and t = 1, ..., T; B(L) denotes a polynomial of lag operators; xit denotes a vector of
strictly exogenous regressors; µi is the individual-specific effect on which we impose no restriction
under the fixed effects specification; νit is independently, identically distributed (i.i.d.) across both
i and t and is independent of the volatility σt. We parameterize σ2

t through the stochastic volatility
process to model conditional heteroskedasticity. The standard specification is

log(σ2
t ) = (1− φ)κ + φlog(σ2

t−1) + ηt. (2)

1 See Creal [21] for a survey of particle filters for economic applications.



Econometrics 2016, 4, 39 3 of 13

Furthermore, νit and ηt follow a joint normal distribution(
υit
ηt

)
∼ N(0,

[
σ2

ν 0
0 θ2

]
), (3)

in which σ2
ν is set to 1 for identifiability reasons. Various extensions of the basic specification can be

made. For example, it is possible to incorporate dependence between νit and ηt, which is called the
leverage effect suggested by the evidence of stock returns; it is also possible to model error terms using
a fat-tailed distribution.

The focus of the paper is on estimation of the coefficients in (1)–(3) in a likelihood approach.
Because of stochastic volatility, the tractable expression for the exact likelihood function is unknown.
Consequently, we will compute the likelihood by simulation in the state space form of the transformed
model. For ease of exposition, we consider as the benchmark model the AR(1) dynamic panel model
with an exogenous regressor xit:

yit = βyi,t−1 + γxit + µi + σtυit. (4)

The state space form of the first difference of the model can be written as

∆yit =
[
1 1 0 ∆xit

]
αit (5)

αit =


β β 0 β∆xi,t−1
0 0 1 0
0 0 0 0
0 0 0 1

 αi,t−1 +


0
1
−1
0

 σtνit, (6)

where the state vector is αit =


β∆yi,t−1

σtνit − σt−1νi,t−1
−σtνit

γ

. (5) is the observation equation, while (2) and (6)

are the state equations. This form is not the only state space version of the model, but all versions have
the same joint likelihood of ∆yi = (∆yi2, . . . , ∆yiT) given ∆yi1 and ∆xi = (∆xi2, . . . , ∆xiT), which we
will use for parameter estimation. In the special case where there is no regressor, the state space form
is simplified to

∆yit =
[
1 1 0

]
α̃it

α̃it =

β β 0
0 0 1
0 0 0

 α̃i,t−1 +

 0
1
−1

 σtνit,

where the state vector is α̃it =

 β∆yi,t−1
σtνit − σt−1νi,t−1

−σtνit

.

3. Estimation by Particle Filters

We aim to estimate the model in a likelihood approach. Since both σt and υit are stochastic,
the model in first difference is non-Gaussian and a closed-form expression for the exact likelihood of
(∆y1, . . . , ∆yN) given (∆y11, . . . , ∆yN1) and (∆x1, . . . , ∆xN) does not exist. Conditional on the volatility
process {σt}, however, the resulting system including (3), (5) and (6) is a linear Gaussian state space
model. It follows that the likelihood of (∆y1, . . . , ∆yN) given (∆y11, . . . , ∆yN1), (∆x1, . . . , ∆xN) and
(σ2, . . . , σT) can be evaluated analytically by the Kalman filter. This constitutes the basic idea of
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Rao-Blackwellized particle filters, e.g., Chen and Liu [22], Doucet, Godsill, and Andrieu [23], Andrieu
and Doucet [24], Karlsson, Schon, and Gustafsson [25].

Particle filters can be regarded as the extension of the Kalman filter to address nonlinear and
non-Gaussian state space models in which the posterior density of state variables seldom has the
closed-form expression. They are simulation-based techniques to obtain filtered estimates of the states
as well as an unbiased estimate of the likelihood. Particle filters can be implemented in several ways,
which vary with the choices of the incremental importance distribution and the resampling algorithm.
The model containing (2), (3), (5) and (6) belongs to a class of models suitable for Rao-Blackwellized
particle filters, which integrate out a subset of state variables (αit in our case) in order to reduce the
Monte Carlo variation of the simulation-based estimators.

We apply the algorithm of Rao-Blackwellized particle filters to the panel data models. Although
we focus on the AR(1) dynamic panel model, the algorhtim can be adapted for a general model
straightforwardly. Let Iit denote the information set containing all observations of yit and xit up
to t. mit|t−1 = E(αit|Ii,t−1, σ2

t ) and Σit|t−1 = Var(αit|Ii,t−1, σ2
t ) represent prediction mean and variance

of αit, respectively. The algorithm produces M simulated state variables and corresponding weights
{σ2(j)

t , m(j)
it|t−1, Σ(j)

it|t−1, ŵ(j)
t|t−1}

M
j=1 for t = 2, . . . , T and i = 1, . . . , N. Given the values of parameters

ω = (β, γ, κ, φ, θ), the algorithm is:
(1) For j = 1, . . . , M, draw log(σ2(j)

2 ) from the stationary distribution

log(σ2(j)
2 ) ∼ N(κ,

θ2

1− φ2 ),

and for i = 1, ..., N, set the initial values of prediction means and variances equal to expectations and
variances respectively conditional on ∆yi1, σ

2(j)
1 and σ

2(j)
2 :2

m(j)
i2|1 =


β∆yi1

0
0
γ



Σ(j)
i2|1 =


0 0 0 0

0 2σ
2(j)
2 −σ

2(j)
2 0

0 −σ
2(j)
2 σ

2(j)
2 0

0 0 0 0

 .

Compute the conditional log-likelihood of (∆y12, . . . , ∆yN2) as l(j)
2 = ∑N

i=1 l(j)
i2 where

l(j)
i2 = −0.5log|V(j)

i2 | − 0.5v(j)
i2 (V(j)

i2 )−1v(j)
i2 ,

with the forecast error v(j)
i2 = ∆yi2 −

[
1 1 0 ∆xi2

]
m(j)

i2|1 and forecast variance

V(j)
i2 =

[
1 1 0 ∆xi2

]
Σ(j)

i2|1


1
1
0

∆xi2

.

The log importance weight is w(j)
2|1 = 0 and the normalized importance weight is ŵ(j)

2|1 = 1
M .

For t = 3, ..., T, i = 1, ..., N and j = 1, ..., M,

2 We assume σ2
1 ' σ2

2 , so var(σ2νi2 − σ1νi1|σ1, σ2) = σ2
1 + σ2

2 ' 2σ2
2 .
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(2) Update the weight by w(j)
t|t−1 = w(j)

t−1|t−2 + l(j)
t−1 to incorporate the new likelihood [27] and

ŵ(j)
t|t−1 =

exp(w(j)
t|t−1)

∑M
j=1 exp(w(j)

t|t−1)
.

(3) Draw
log(σ2(j)

t ) = (1− φ)κ + φlog(σ2(j)
t−1 ) + θη

(j)
t ,

where η
(j)
t ∼ N(0, 1) is serially independent.

(4) Run the Kalman filter to obtain m(j)
it|t−1 and Σ(j)

it|t−1. Let m(j)
it|t−1,2 denote the entry in the 2nd row

of m(j)
it|t−1 and Σ(j)

it|t−1,22 denote the entry in the 2nd row and 2nd column of Σ(j)
it|t−1. After some algebra

(see the Appendix A), we have

m(j)
it|t−1 =


β∆yi,t−1

m(j)
it|t−1,2

0
γ

 , (7)

and

Σ(j)
it|t−1 =


0 0 0 0

0 Σ(j)
it|t−1,22 −σ

2(j)
t 0

0 −σ
2(j)
t σ

2(j)
t 0

0 0 0 0

 , (8)

such that

m(j)
it|t−1,2 = −

σ
2(j)
t−1

Σ(j)
i,t−1|t−2,22

(∆yi,t−1 − β∆yi,t−2 − γ∆xi,t−1 −m(j)
i,t−1|t−2,2), (9)

and

Σ(j)
it|t−1,22 = σ

2(j)
t + σ

2(j)
t−1 −

σ
4(j)
t−1

Σ(j)
i,t−1|t−2,22

. (10)

(5) Compute the conditional log-likelihood of (∆y1t, . . . , ∆yNt) by l(j)
t = ∑N

i=1 l(j)
it such that

l(j)
it = −0.5log|V(j)

it | − 0.5v(j)
it (V(j)

it )−1v(j)
it ,

where v(j)
it = ∆yit −

[
1 1 0 ∆xit

]
m(j)

it|t−1 and V(j)
it =

[
1 1 0 ∆xit

]
Σ(j)

it|t−1


1
1
0

∆xit

.

(6) Resample with replacement (discussed later) M particles σ
2(j)
t−1 , σ

2(j)
t , m(j)

it|t−1 and Σ(j)
it|t−1 with

the weight ŵ(j)
t|t−1 every three increments.3 Then reset w(j)

t|t−1 = 0 and ŵ(j)
t|t−1 = 1

M .
The simulation-based estimate of the joint log-likelihood of (∆y1, . . . , ∆yN) given (∆y11, . . . , ∆yN1)

and (∆x1, . . . , ∆xN) is

3 It is an ad-hoc choice for stability of the algorithm, see Shephard [27].
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l̂(ω) =
N

∑
i=1

T

∑
t=2

log[
M

∑
j=1

ŵ(j)
t|t−1exp(l(j)

it )]. (11)

Note that this algorithm is appropriate when xit is strictly exogenous. If it is predetermined or
endogenous, the likelihood function would have a different form rather than the one given above,
because the conditioning set assuming strict exogeneity includes all values of xit from t = 1 to T.

In practice, one particle’s normalized importance weight converges to one while the others
converge to zero over time. In other words, the discrete distribution made of weighted draws would
become degenerate. Resampling is crucial to stabilize the algorithm by eliminating the particles
which have low importance weights and multiplying the heavily weighted particles. The simplest
unbiased algorithm is multinomial resampling introduced in Gordon et al. [28]. It draws new particles
{σ̃2(j)

t−1 , σ̃
2(j)
t , m̃(j)

it|t−1, Σ̃(j)
it|t−1}

M
j=1 from the point mass distribution {σ2(j)

t−1 , σ
2(j)
t , m(j)

it|t−1, Σ(j)
it|t−1, ŵ(j)

t|t−1}
M
j=1.

We employ multinomial resampling as it is a requirement for good asymptotic performance of the
approximation method in Olsson and Rydén [26] used later.

Although (11) is an unbiased estimator of the exact log-likelihood under some regularity
conditions, direct maximization for parameter estimation suffers from discontinuity induced from
the generalized inverse operation at the resampling stage, which makes invalid the common
gradient-based optimization methods. Olsson and Rydén [26] approximated the likelihood by means
of step functions or B-spline interpolation and maximized the approximate likelihood. They showed
consistency and asymptotic normality of the estimators under some assumptions. This seems the only
work that studies asymptotic properties of parameter estimators in the particle filter literature. One of
the assumptions requires a compact state space which is obviously not true in our case. We however
still use this method for two reasons. One is that the compactness assumption can be potentially
released given new results of uniform convergence properties in time dimension, although the full
proof of the extension is beyond the scope of this paper; the other reason is the good finite sample
performance shown below.

Specifically, Olsson and Rydén [26] discretized the parameter space Ω by a grid Ω̄ = {ωg}G
g=1 ⊆ Ω.

Let [ω] denote the closest point in the grid to ω ∈Ω.4 The grid-based approximation of the likelihood
using piecewise constant functions is given by

l̂(ω) ' l̂([ω]). (12)

The approximation can also be made via spline interpolation, which is more efficient than
piecewise constant functions but suffers from higher computational costs as the dimension of parameter
space grows. Consequently, we maximize (12) to obtain the parameter estimates.

4. Monte Carlo Studies

In this section, we investigate the finite sample performance of particle filter-based estimators.
The baseline data generating process in our Monte Carlo studies is an AR(1) dynamic panel model
with an exogenous regressor

yit = βyi,t−1 + γxit + (1− β)µi + σtυit

xit = bxi,t−1 + λεit

µi =
√

τ(
qi − 1√

2
)ςi

4 If there is more than one point having the smallest distance from ω, the point with lowest index g will be chosen.
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log(σ2
t ) = (1− φ)log(µ) + φlog(σ2

t−1) + ηt,

where qi ∼ χ2
1; υit, εit, ςi ∼ N(0, 1) and ηt ∼ N(0, θ2); qi, υit, εit, ςi and ηt are all i.i.d. within series

and independent of each other.5 We experiment with β = 0.8, γ = 0.7, b = 0.5, λ = 2 and τ = 1.
N = 50, 100 and T = 50, 100 are typical in macroeconomic applications. According to the empirical
results of Fernández-Villaverde and Rubio-Ramírez [11], we consider µ = 0.002, φ = 0.99 and θ = 0.5.
We also check the performance of the estimators in the absence of stochastic volatility (φ = θ = 0)
as well as in the case of higher volatility of volatility (φ = 0.99, θ = 1). We set yi0 = 0 and discard
the first 100 observations of simulated data in order that the series is long enough to eliminate the
initial effect. The number of the particles is set to 400, as we experimented with more particles up to
1000 but found few extra benefits. We carry out 1000 replications for each experiment. The quality of
the estimators are evaluated by biases and root mean square errors (RMSE).

When estimating β and γ, we compare our estimator (PF) with some popular estimators in
the literature, including the maximum likelihood estimator based on the model in first differences
(FDML) [3], GMM [1] and system GMM (SGMM) [2]. Let εit denote the disturbance in the level
equation. GMM exploits a set of linear orthogonality conditions E(yi,t−s∆εit) = 0 (t ≥ 2; s ≥ 2)
and E(xis∆εit) = 0(t ≥ 2; s ≥ 1) (strict exogeneity) for the equation in first differences. We select
a subset of these conditions often used in practice to improve the finite sample performance [4].
That is, E(yi,t−s−2∆εit) = 0 for t = 2, s = 0 and t ≥ 3, s = 0, 1. SGMM uses extra moment conditions
E(∆yi,t−1((1− β)µi + εit)) = 0 (t ≥ 2) and E(∆xit((1− β)µi + εit) = 0(t ≥ 2) for the level equation.
We use one-step GMM instead of two-step GMM for its better finite sample performance. We use
the pattern search method in Matlab to find the maximum of the approximate likelihood function.
PF is implemented at a quite low computational cost, although still slower than the other methods
considered here.

Table 1 lists the estimation results for β and γ. The results seem quite mixed and no single method
is dominant in all designs. While FDML or GMM is most precise when stochastic volatility is absent,
PF can be preferred in the presence of stochastic volatility especially when the volatility of volatility is
high. As the volatility of volatility grows, FDML, GMM and SGMM become much worse at estimating
γ. This is not surprising as they neglect the information contained in stochastic volatility. Table 2
reports the estimates of φ, θ and µ in the stochastic volatility equation. The estimator φ̂ in the models
without stochastic volatility has large bias. The results also show that the bias of µ̂ increases in the
volatility of volatility. We also estimate an AR(1) panel model with no exogenous regressor xit (the data
generating processes for the other variables are same as above). The estimates of β are listed in Table 3.
The absence of the regressor makes PF favoured when stochastic volatility exists. The estimates of φ,
θ and µ in the model with no regressors reported in Table 4 are similar to those in Table 2. In sum,
as PF takes correct specification into account, its performance is generally good in finite samples and
relatively stable across designs.

5 τ, which measures the degree of cross-section to time-series variation, can influence the finite sample properties of
GMM-type estimators.
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Table 1. Estimates of β and γ. In each design, the upper two rows give the biases and root mean square
errors (RMSE) (in brackets) of β̂, while the lower two rows give those of γ̂. Numbers in bold font
indicate the smallest biases and RMSE.

T = 50 T = 100

N φ θ FDML GMM SGMM PF N φ θ FDML GMM SGMM PF

50 0 0 0.000 0.000 0.001 0.003 50 0 0 −0.000 0.000 0.002 0.003
(0.000) (0.001) (0.002) (0.003) (0.000) (0.000) (0.002) (0.003)

−0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.003
(0.000) (0.000) (0.001) (0.003) (0.000) (0.000) (0.001) (0.003)

0.99 0.5 −0.003 −0.002 0.000 0.002 0.99 0.5 −0.001 −0.002 −0.000 0.003
(0.009) (0.012) (0.012) (0.007) (0.005) (0.009) (0.010) (0.005)

0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.004
(0.017) (0.017) (0.016) (0.013) (0.009) (0.013) (0.013) (0.011)

0.99 1 −0.011 −0.007 −0.002 0.000 0.99 1 −0.006 −0.006 −0.002 0.002
(0.022) (0.035) (0.023) (0.037) (0.015) (0.023) (0.023) (0.029)

0.078 0.002 −0.037 −0.008 −0.010 −0.042 −0.062 −0.001
(1.444) (0.983) (1.909) (0.106) (1.664) (1.800) (2.418) (0.082)

100 0 0 0.016 0.000 0.001 0.003 100 0 0 −0.000 0.000 0.001 0.003
(0.028) (0.000) (0.001) (0.003) (0.000) (0.000) (0.001) (0.003)

−0.007 0.000 −0.000 0.003 0.000 −0.000 −0.000 0.003
(0.012) (0.000) (0.001) (0.003) (0.000) (0.000) (0.000) (0.003)

0.99 0.5 0.016 −0.001 −0.000 0.002 0.99 0.5 −0.001 −0.001 0.000 0.003
(0.033) (0.008) (0.008) (0.016) (0.004) (0.006) (0.006) (0.004)

−0.007 0.001 0.001 0.003 0.001 0.000 0.000 0.003
(0.018) (0.017) (0.017) (0.027) (0.017) (0.010) (0.008) (0.018)

0.99 1 0.009 −0.004 −0.002 −0.002 0.99 1 −0.007 −0.003 −0.001 0.003
(0.039) (0.024) (0.019) (0.048) (0.013) (0.019) (0.017) (0.037)

0.050 −0.054 −0.057 −0.007 0.004 0.007 −0.005 −0.008
(1.134) (2.978) (3.046) (0.103) (0.942) (1.510) (1.591) (0.103)

Table 2. Estimates of φ, θ and µ. In each circumstance, the first row gives the bias and the second row
gives RMSE in brackets.

T = 50 T = 100

N φ θ φ̂ θ̂ µ̂ N φ θ φ̂ θ̂ µ̂

50 0 0 0.968 0.242 0.077 50 0 0 0.969 0.160 0.019
(0.968) (0.275) (0.172) (0.969) (0.167) (0.055)

0.99 0.5 −0.052 0.082 0.254 0.99 0.5 −0.029 0.063 0.233
(0.080) (0.184) (0.383) (0.038) (0.149) (0.366)

0.99 1 −0.058 −0.091 0.447 0.99 1 −0.040 −0.086 0.454
(0.091) (0.186) (0.571) (0.062) (0.185) (0.576)

100 0 0 0.968 0.317 0.155 100 0 0 0.968 0.182 0.054
(0.969) (0.357) (0.266) (0.968) (0.204) (0.149)

0.99 0.5 −0.051 0.112 0.324 0.99 0.5 −0.031 0.076 0.261
(0.081) (0.208) (0.441) (0.042) (0.164) (0.381)

0.99 1 −0.060 −0.096 0.476 0.99 1 −0.046 −0.089 0.505
(0.091) (0.191) (0.588) (0.066) (0.181) (0.609)
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Table 3. Estimates of β in an AR(1) panel with no regressors. In each design, the first row gives the
biases and the second row gives the RMSE in brackets. Numbers in bold font indicate the smallest
biases and RMSE.

T = 50 T = 100

N φ θ FDML GMM SGMM PF N φ θ FDML GMM SGMM PF

50 0 0 −0.002 −0.090 0.183 −0.035 50 0 0 0.000 −0.038 0.181 −0.011
(0.015) (0.123) (0.184) (0.042) (0.009) (0.053) (0.182) (0.014)

0.99 0.5 0.020 −0.057 0.085 −0.028 0.99 0.5 0.026 −0.032 0.076 −0.008
(0.059) (0.110) (0.121) (0.042) (0.066) (0.066) (0.111) (0.022)

0.99 1 0.030 −0.068 0.065 −0.009 0.99 1 0.035 −0.034 0.048 0.004
(0.090) (0.280) (0.115) (0.060) (0.089) (0.084) (0.099) (0.054)

100 0 0 −0.001 −0.058 0.178 −0.033 100 0 0 0.000 −0.021 0.173 −0.009
(0.010) (0.083) (0.179) (0.041) (0.007) (0.032) (0.174) (0.016)

0.99 0.5 0.025 −0.038 0.079 −0.021 0.99 0.5 0.033 −0.021 0.076 −0.003
(0.063) (0.083) (0.112) (0.040) (0.074) (0.053) (0.109) (0.030)

0.99 1 0.036 −0.037 0.061 −0.001 0.99 1 0.045 −0.028 0.053 0.009
(0.093) (0.096) (0.107) (0.073) (0.097) (0.081) (0.098) (0.059)

Table 4. Estimates of φ, θ and µ in an AR(1) panel with no regressors. In each circumstance, the first
row gives the bias and the second row gives RMSE in brackets.

T = 50 T = 100

N φ θ φ̂ θ̂ µ̂ N φ θ φ̂ θ̂ µ̂

50 0 0 0.955 0.292 0.022 50 0 0 0.968 0.176 0.014
(0.956) (0.367) (0.034) (0.968) (0.197) (0.022)

0.99 0.5 −0.109 0.227 0.167 0.99 0.5 −0.073 0.211 0.151
(0.136) (0.303) (0.309) (0.089) (0.280) (0.278)

0.99 1 −0.092 −0.012 0.321 0.99 1 −0.067 0.007 0.353
(0.123) (0.101) (0.488) (0.086) (0.082) (0.512)

100 0 0 0.935 0.431 0.033 100 0 0 0.960 0.231 0.021
(0.936) (0.530) (0.047) (0.960) (0.303) (0.032)

0.99 0.5 −0.128 0.251 0.151 0.99 0.5 −0.084 0.273 0.149
(0.165) (0.316) (0.279) (0.104) (0.328) (0.272)

0.99 1 −0.104 −0.022 0.313 0.99 1 −0.075 0.001 0.330
(0.137) (0.109) (0.476) (0.098) (0.090) (0.497)

5. Conclusions

Motivated by time-varying volatility in macroeconomic data and the growing popularity of
dynamic panel data models in macroeconomics, we propose a particle filter-based method to estimate
the dynamic panel data models with stochastic volatility. Specifically, we represent the transformed
model in the state space form and compute the simulated likelihood by Rao-Blackwellized particle
filters. The parameter estimates are obtained by maximizing the likelihood approximated by piecewise
constant functions. Monte Carlo results show that our estimator is relatively stable across scenarios
and has good performance in finite samples, especially when the volatility of volatility is high or when
regressors are absent.
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Appendix A. Deriving the Equations (7)–(10)

For ease of notations, we omit the superscript (j). We apply the standard Kalman filter recursive
equations (see e.g., Durbin and Koopman [29]) to our model:

mi,t+1|t,1
mi,t+1|t,2
mi,t+1|t,3
mi,t+1|t,4

 =


β β 0 β∆xit
0 0 1 0
0 0 0 0
0 0 0 1




mit|t−1,1
mit|t−1,2
mit|t−1,3
mit|t−1,4



+


Kt,1
Kt,2
Kt,3
Kt,4

 (∆yit −mit|t−1,1 −mit|t−1,2 −4xitmit|t−1,4)


Σi,t+1|t,11 Σi,t+1|t,12 Σi,t+1|t,13 Σi,t+1|t,14
Σi,t+1|t,21 Σi,t+1|t,22 Σi,t+1|t,23 Σi,t+1|t,24
Σi,t+1|t,31 Σi,t+1|t,32 Σi,t+1|t,33 Σi,t+1|t,34
Σi,t+1|t,41 Σi,t+1|t,42 Σi,t+1|t,43 Σi,t+1|t,44



=


β β 0 β∆xit
0 0 1 0
0 0 0 0
0 0 0 1




Σit|t−1,11 Σit|t−1,12 Σit|t−1,13 Σit|t−1,14
Σit|t−1,21 Σit|t−1,22 Σit|t−1,23 Σit|t−1,24
Σit|t−1,31 Σit|t−1,32 Σit|t−1,33 Σit|t−1,34
Σit|t−1,41 Σit|t−1,42 Σit|t−1,43 Σit|t−1,44



(


β 0 0 0
β 0 0 0
0 1 0 0

β∆xit 0 0 1

−


1
1
0

∆xit

 [Kt,1 Kt,2 Kt,3 Kt,4

]
)

+


0 0 0 0
0 σ2

t+1 −σ2
t+1 0

0 −σ2
t+1 σ2

t+1 0
0 0 0 0

 , (A1)

where


Kt,1
Kt,2
Kt,3
Kt,4

 =


β β 0 β∆xit
0 0 1 0
0 0 0 0
0 0 0 1




Σit|t−1,11 Σit|t−1,12 Σit|t−1,13 Σit|t−1,14
Σit|t−1,21 Σit|t−1,22 Σit|t−1,23 Σit|t−1,24
Σit|t−1,31 Σit|t−1,32 Σit|t−1,33 Σit|t−1,34
Σit|t−1,41 Σit|t−1,42 Σit|t−1,43 Σit|t−1,44




1
1
0
4xit



[
[
1 1 0 4xit

] 
Σit|t−1,11 Σit|t−1,12 Σit|t−1,13 Σit|t−1,14
Σit|t−1,21 Σit|t−1,22 Σit|t−1,23 Σit|t−1,24
Σit|t−1,31 Σit|t−1,32 Σit|t−1,33 Σit|t−1,34
Σit|t−1,41 Σit|t−1,42 Σit|t−1,43 Σit|t−1,44




1
1
0
4xit

]−1.
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If 
Σit|t−1,11 Σit|t−1,12 Σit|t−1,13 Σit|t−1,14
Σit|t−1,21 Σit|t−1,22 Σit|t−1,23 Σit|t−1,24
Σit|t−1,31 Σit|t−1,32 Σit|t−1,33 Σit|t−1,34
Σit|t−1,41 Σit|t−1,42 Σit|t−1,43 Σit|t−1,44

 =


0 0 0 0
0 Σit|t−1,22 −σ2

t 0
0 −σ2

t σ2
t 0

0 0 0 0

 ,

such as when t = 2,

Σi2|1 =


0 0 0 0
0 2σ2

2 −σ2
2 0

0 −σ2
2 σ2

2 0
0 0 0 0

 ,

then


Kt,1
Kt,2
Kt,3
Kt,4

 =


β β 0 β∆xit
0 0 1 0
0 0 0 0
0 0 0 1




0 0 0 0
0 Σit|t−1,22 −σ2

t 0
0 −σ2

t σ2
t 0

0 0 0 0




1
1
0
4xit



[
[
1 1 0 4xit

] 
0 0 0 0
0 Σit|t−1,22 −σ2

t 0
0 −σ2

t σ2
t 0

0 0 0 0




1
1
0
4xit

]−1

=


β

−σ2
t /Σit|t−1,22

0
0

 . (A2)

Substituting (A2) into (A1) yields
Σi,t+1|t,11 Σi,t+1|t,12 Σi,t+1|t,13 Σi,t+1|t,14
Σi,t+1|t,21 Σi,t+1|t,22 Σi,t+1|t,23 Σi,t+1|t,24
Σi,t+1|t,31 Σi,t+1|t,32 Σi,t+1|t,33 Σi,t+1|t,34
Σi,t+1|t,41 Σi,t+1|t,42 Σi,t+1|t,43 Σi,t+1|t,44

 =


0 0 0 0
0 σ2

t+1 + σ2
t − σ4

t /Σit|t−1,22 −σ2
t+1 0

0 −σ2
t+1 σ2

t+1 0
0 0 0 0

 ,

which implies (8) and (10).
Further, if 

mit|t−1,1
mit|t−1,2
mit|t−1,3
mit|t−1,4

 =


β∆yi,t−1
mit|t−1,2

0
γ

 ,

such as when t = 2,

mi2|1 =


β∆yi1

0
0
γ

 ,
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then we will have
mi,t+1|t,1
mi,t+1|t,2
mi,t+1|t,3
mi,t+1|t,4

 =


β∆yit

−σ2
t (∆yit − β∆yi,t−1 −mit|t−1,2 −4xitγ)/Σit|t−1,22

0
γ

 ,

which implies (7) and (9).
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