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Supplementary Materials: Nonparametric Regression
with Common Shocks
Eduardo A. Souza-Rodrigues

In this supplement document, we first present the kernel density estimator, the kernel regression
estimator and provide conditions to obtain their asymptotic results (Section A). We proceed with
the proofs of the asymptotic results (Section B). We then briefly discuss the choice of the bandwidth
(Section C). Finally, we present the probabilistic framework adapted from Andrews [1] that justifies
the approach taken in the paper (Section D).

Appendix A. Model, Assumptions and Estimators

In this section we first present the kernel density estimator and its asymptotic properties
(Subsection A.1). The asymptotic results for the kernel density are not in the main text. Then, we
present the kernel regression and its asymptotic properties (Subsection A.2). Proposition 2 here
corresponds to the Proposition 1 in the main text. We restate all the assumptions presented in the
paper for completeness.

Appendix A.1. Density Estimator

The Nadaraya-Watson kernel density estimator is

f̂ (x) =
1

nhk
n

n

∑
i=1

K
(

Xi − x
hn

)
. (1)

where k is the dimension of X. We assume the following conditions (presented in the main text):

Condition 1. Let K be the class of all Borel measurable nonnegative bounded real-valued functions K(u) such
that (i)

∫
K(u)du = 1; (ii)

∫
|K(u)| du < ∞; (iii) |K(u)| ‖u‖k → 0 as ‖u‖ → ∞; (iv) κ =

∫
K2(u)du < ∞;

(v) supu |K(u)| < ∞; and (vi) µ2 =
∫

u2K(u)du < ∞.

Condition 2. For Q-almost all c ∈ C, the conditional density f (x|c) is continuous at any point x0.

Condition 3. (i) hn → 0 as n→ ∞ and (ii) nhn → ∞ as n→ ∞.

Condition 4. For Q-almost all c, (i) f (x|c) is twice continuously differentiable with respect to x in some
neighborhood of x0, (ii) the second-order derivatives of f (x|c) with respect to x are bounded in this neighborhood.

Condition 5. For Q-almost all c, the point x0 is in the interior of the support of X conditional on {C = c},
and f (x0|c) ≥ ξ > 0, for some finite ξ.

To derive the asymptotic results for f̂ (x), we first show that the conditional Mean-Squared Error
(MSE) converges to zero in probability to obtain consistency. Next, we show that the rate of converge
here is the same as the rate of convergence without common shocks. Then we obtain the pointwise
asymptotic distribution using the Martingale Difference Sequence Central Limit Theorem (MDS CLT).

Proposition 1. 1. Under Assumptions 1, 2 and Conditions 1–3,

f̂ (x0)
p−→ f (x0|C) , as n→ ∞.
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2. Under Assumptions 1, 2, and Conditions 1–4,

f̂ (x0)− f (x0|C) = Op

(
n−

2
4+k

)
.

3. Let Assumptions 1, 2 and Conditions 1–3 hold. Suppose that
∫
|K(u)|2+δ du < ∞, for some δ > 0.

Then, (i) as n→ ∞√
nhk

n

(
f̂ (x0)− E

(
f̂ (x0) | C

))
d−→
(

f (x0|C)
∫

K2 (u) du
)

N (0, 1) ;

and (ii) if, in addition, Conditions 4–5 hold and
√

nhk
nh2

n → 0 as n→ ∞, then√
nhk

n

(
f̂ (x0)− f (x0|C)

)
d−→
(

f (x0|C)
∫

K2 (u) du
)

N (0, 1)

as n→ ∞.

Remark 1. The probability distribution of f (x|C) is the probability measure induced by the map f (x|C) :
C → R+ and by Q. I.e., for some a ∈ R, Pr { f (x|C) ≤ a} = Q {C ∈ C : f (x|C) ≤ a}, where
{C ∈ C : f (x|C) ≤ a} ∈ σ(C) ⊂ AN.

Note that if C (X) = ∑∞
j=1 Cjφj (X) ∈ L2 (X ), as in Remark 1 in the main text, then fX|C(·) =

fX|(C1,C2,...) and

Pr (X ≤ x| {C (·) = c}) =
∫ x

−∞
fX|(C1,C2,...) (x̃|c1, c2, ...) dx̃

takes values between zero and one. This conditional probability is different from

Pr (X ≤ x| {c (X) = a}) =
∫ x

−∞
fX|c(X) (x̃|a) dx̃,

which takes value zero or one if C (X) is invertible on X.

Remark 2. Although the condition
√

nhk
nh2

n → 0 eliminates the random bias E
(

f̂ (x) | C
)
− f (x|C) in

Proposition 1.3, the difference f (x|C) − f (x) does not die out when n → ∞. The difference can only be
eliminated when X and C are independent.

Appendix A.2. Regression Estimator

The kernel estimator is

m̂ (x) =
∑ n

i=1YiK
(

Xi−x
hn

)
∑n

i=1 K
(

Xi−x
hn

) .

In addition to Conditions 1–5, we impose the following (presented in the main text):

Condition 6. The kernel K is a symmetric function satisfying
∫

uK(u)du = 0.

Condition 7. (i) E [εi | Xi, σ (C)] = 0 a.s., and (ii) let σ2 (x, c) = E
(
ε2

i | Xi = x, C = c
)

and assume
σ2 (X, C) < ∞ a.s..

Condition 8. For Q-almost all c, the function m (x, c) is twice continuously differentiable with respect to x in
some neighborhood of x0.
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Next we obtain the asymptotic results for the kernel regression. Let E
[
·| X = {xi}n

i=1
]

denote
the conditional expectation given xi, i = 1, ..., n. The Proposition below is the same presented in the
main text.

Proposition 2. Let Assumptions 1, 2 and Conditions 1–8 hold. Then

1. m̂ (x)
p−→ m (x, C) as n→ ∞.

2. m̂ (x)−m (x, C) = Op

(
n−

2
4+k

)
3. Suppose also that

∫
|K(u)|2+δ du < ∞ and E

[
|ε|2+δ

]
< ∞, for some δ > 0. Then, (i) as n→ ∞

√
nhk

n
(
m̂ (x)− E

[
m̂ (x) | X = {xi}n

i=1 , C
]) d−→

(
σ2 (x, C)
f (x|C)

∫
K2 (u) du

)
N (0, 1) ;

and (ii) if, in addition,
√

nhk
nh2

n → 0 as n→ ∞, then√
nhk

n (m̂ (x)−m (x, C)) d−→
(

σ2 (x, C)
f (x|C)

∫
K2 (u) du

)
N (0, 1)

as n→ ∞.

Appendix B. Proofs of the Propositions

First we present the proofs for the kernel density then, for the kernel regression.

Appendix B.1. Proofs for the Density Estimator

First, we need the following Lemma, which is a version of the Dominated Convergence Theorem:

Lemma 1. Under Assumptions 1, 2 and Conditions 1–3(i), we have for Q-almost all c ∈ C and for any r ≥ 0

1
hk

n
E
[

Kr
(

X− x0

hn

)
| C = c

]
=

1
hk

n

∫
Kr
(

x− x0

hn

)
f (x|c) dx

−→ f (x0|c)
∫

Kr (x) dx (2)

as n→ ∞.

Proof. The proof is similar to Corollary 2 in the Appendix A.2.6 in Pagan and Ullah [2], which is based
on their Lemma 1 in the same section. The only difference here is that we have to substitute their
density f (x) by the conditional density f (x|c).

Because Lemma 1 is valid for Q-almost all c, the almost-sure convergence implies convergence in
probability. Hence, we have the following Corollary:

Corollary 1. Under Assumptions 1, 2 and Conditions 1–3(i), we have for any r ≥ 0

E
[

1
hk

n
Kr
(

X− x0

hn

)
| C
]

p−→ f (x0|C)
∫

Kr (x) dx (3)

as n→ ∞, where both E
[

1
hk

n
Kr
(

X−x0
hn

)
| C
]

and f (x0|C) are σ(C)-measurable random variables.

Next, we prove Proposition 1.1–1.3.
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Proof of Proposition 1.1. By definition,

MSE
(

f̂ (x0) | C
)
=
[

E
(

f̂ (x) | C
)
− f (x|C)

]2
+ Var

(
f̂ (x0) | C

)
.

We start with the bias term. For Q-almost all c,

E
(

f̂ (x0) |C = c
)

=
1

nhk
n

n

∑
i=1

E
(

K
(

Xi − x0

hn

)
|C = c

)
=

1
hk

n
E
(

K
(

Xi − x0

hn

)
|C = c

)
−→ f (x0|c)

∫
K (u) du, as n→ ∞

= f (x0|c) ,

by Lemma 1 and Condition 1(i). The second equality above comes from Assumption 1 (conditional i.i.d.
observations). This Q-almost sure convergence implies the convergence in probability of E

(
f̂ (x0) |C

)
to f (x0|C) and, hence,

E
(

f̂ (x0) | C
)
− f (x0|C)

p−→ 0.

Next, we look at the variance term, Var
(

f̂ (x0) | C
)

. Again, for Q-almost all c,

Var
(

f̂ (x0) | C = c
)

=
1

nhk
n

∫
K2
(

x− x0

hn

)
f (x|c) dx

−
[

1
n

∫
K
(

x− x0

hn

)
f (x|c) dx

]2

−→ 0×
(

f (x0|c)
∫

K2 (u) du
)
− 0× [ f (x0|c)]2

= 0

as n→ ∞, by Lemma 1 and Conditions 1–3. Therefore, we have Var
(

f̂ (x0) | C
) p−→ 0 and, as a result

MSE
(

f̂ (x0) | C
) p−→ 0.

Now, for any ε > 0, define the event An =
{∣∣∣ f̂ (x0)− f (x0|C)

∣∣∣ > ε
}

. Then, by Markov inequality,

Pr (An | σ(C)) ≤
1
ε2 E

[(
f̂ (x0)− f (x0|C)

)2
| σ(C)

]
=

1
ε2 MSE

(
f̂ (x0) | C

) p−→ 0.

So, the σ(C)-measurable random variable Pr (An | σ(C)) is op(1). Moreover, Pr (An | σ(C)) ≤ 1
and

∫
C 1dQ (C) = 1. Hence, by the Dominated Convergence Theorem,

Pr (An) = EC [Pr (An | σ(C))] −→ 0,

where EC denotes the expectation taken over Q.

Proof of Proposition 1.2. The argument follows the standard proof modified to consider the
conditional density function. Under the Assumptions 1, 2, and Conditions 1–4, by taking a (Q-almost
sure) Taylor expansion we obtain the conditional Mean Squared Errors:

MSE
(

f̂ (x0) | C
)
=

[
h4

n
4

µ2

([
D2

x f (x0|C)
]2
)
+ Op

(
h2

n

)]
+

[
κ

nhk
n
+ Op

(
1

nhk
n

)]
,
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where D2
x f (x|c) denotes the second derivative of f (x|c) with respect to x; µ2 =

∫
u2K(u)du; and

κ =
∫

K2(u)du. The bias term—the first term on the right hand side—is of order Op(h2
n) and the

variance term—the second term in the right hand side—is of order Op(1/nhk
n). Define for any ε > 0

the event
An =

{∣∣∣ f̂ (x0)− f (x0|C)
∣∣∣ > Mrn

}
,

where r2
n = max

{
h4

n,
(

nhk
n

)−1
}

. Then, by Chebychev inequality,

Pr (An | σ(C)) ≤
1

M2r2
n

E
[(

f̂ (x0)− f (x0|C)
)2
| σ(C)

]
=

1
M2r2

n
MSE

(
f̂ (x0) | C

) p−→ 0,

as M→ ∞. Hence, by the Dominated Convergence Theorem, Pr (An) = EC [Pr (An | σ(C))] −→ 0, as

M→ ∞. By choosing hn ∝ n−
1

k+4 , the desired result follows:

f̂ (x0)− f (x0|C) = Op

(
n−

2
4+k

)
.

Proof of Proposition 1.3. We apply the Corollary 3.1 of Hall and Heyde [3] (p. 59) using a conditional
Liapounov Condition in place of the conditional Lindeberg Condition to obtain the results. We prove
(i) first. Define

Sn =
f̂ (x0)− E

(
f̂ (x0) | C

)
[
Var

(
f̂ (x0) | C

)]1/2 = ∑
1≤i≤n

wi − E (wi | C)
[nVar (wi | C)]1/2 = ∑

1≤i≤n
Li,n,

where wi = h−k
n K

(
Xi−x0

hn

)
, and Li,n = wi−E(wi | C)

[nVar(wi | C)]1/2 . Note that Var (wi | C) > 0 almost surely because

Var (wi | C = c) > 0 for Q-almost all c.
For i ≥ 1, let Fi,n denote the σ-field generated by σ(C) and (X1, ..., Xi). Then {Li,n,Fi,n : i ≥ 1} is

a triangular array of Martingale Difference Sequence, because {wi : i ≥ 1} are i.i.d. conditional on σ(C),
and hence E (wi | Fi−1,n) = E (wi | σ(C)) = E (wi | C), Q-almost surely. Therefore E (Li,n | Fi−1,n) = 0,
Q-a.s.. Moreover,

1≤i≤nE
(

L2
i,n | Fi−1,n

)
= n−1 ∑

1≤i≤n
E

[ wi − E (wi | C)
[Var (wi | C)]1/2

]2

| Fi−1,n


= n−1 ∑

1≤i≤n
E

[ wi − E (wi | C)
[Var (wi | C)]1/2

]2

| σ(C)


= E

(
[wi − E (wi | C)]2

[Var (wi | C)]
| σ(C)

)
= 1,

where the first equality follows from the definition of Fi−1,n and the third follows from Assumption 1
(and all equalities hold Q-almost surely).
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A conditional Liapounov condition holds because

1≤i≤nE
(
|Li,n|2+δ | Fi−1,n

)
= ∑

1≤i≤n
E

∣∣∣∣∣ wi − E (wi | C)
[nVar (wi | C)]1/2

∣∣∣∣∣
2+δ

| σ (C)


= nE

∣∣∣∣∣ wi − E (wi | C)
[nVar (wi | C)]1/2

∣∣∣∣∣
2+δ

| σ (C)


= n

1

[nVar (wi | C)]1+δ/2 E
(
|wi − E (wi | C)|2+δ | σ (C)

)
≤ n

1

[nVar (wi | C)]1+δ/2 21+δE
(
|wi|2+δ | σ (C)

)
= n

21+δ

[nVar (wi | C)]1+δ/2 h−k(1+δ)
n

×E

(
h−k

n

∣∣∣∣K(Xi − x0

hn

)∣∣∣∣2+δ

| σ (C)

)

=
21+δ[

hk
nVar (wi | C)

]1+δ/2

(
nhk

n

)−δ/2

×E

(
h−k

n

∣∣∣∣K(Xi − x0

hn

)∣∣∣∣2+δ

| σ (C)

)
,

where all the equalities and inequalities hold Q-almost surely. The first equality comes from the
definition of Fi−1,n, and the second equality from the fact that {wi : i ≥ 1} are i.i.d. conditional on
σ(C). The inequality uses the fact E |a− Ea|2+δ ≤ 21+δE |a|2+δ.

Now note that (i)

hk
nVar (wi | C = c) = nhk

nVar
(

f̂ (x0) | C = c
)

→
(

f (x0|c)
∫

K2 (u) du
)
> 0, (4)

as n→ ∞ for Q-almost all c. Hence,
[

hk
nVar (wi | C)

]−1
= Op(1). Also, (ii) for Q-almost all c,

E

(
h−k

n

∣∣∣∣K(Xi − x0

hn

)∣∣∣∣2+δ

| C = c

)
→ f (x0|c)

∫
|K (x)|2+δ dx < ∞

as n → ∞, implying E
(

h−k
n

∣∣∣K (Xi−x0
hn

)∣∣∣2+δ
| σ (C)

)
= Op(1). And, finally, (iii)

(
nhk

n

)−δ/2
→ 0.

By collecting (i)–(iii), we obtain

1≤i≤nE
(
|Li,n|2+δ | Fi−1,n

) p−→ 0

Hence all the conditions for the MSD CLT are satisfied. Therefore, we obtain

Sn =
f̂ (x0)− E

(
f̂ (x0) | C

)
[
Var

(
f̂ (x0) | C

)]1/2
d−→ N (0, 1)
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Moreover, we note that

(
nhk

n

)1/2 f̂ (x0)− E
(

f̂ (x0) | C
)

[ f (x0|C)
∫

K2 (u) du]1/2 =
f̂ (x0)− E

(
f̂ (x0) | C

)
[
Var

(
f̂ (x0) | C

)]1/2

×
(

nhk
n

)1/2

[
Var

(
f̂ (x0) | C

)]1/2

[ f (x0|C)
∫

K2 (u) du]1/2 .

And, by Equation (4), for Q-almost all c,

lim
n→∞

[(
nhk

n

)
Var

(
f̂ (x0) | C = c

)]
= f (x0|c)

∫
K2 (u) du,

implying, (
nhk

n

)1/2

[
Var

(
f̂ (x0) | C

)]1/2

[ f (x0|C)
∫

K2 (u) du]1/2
p−→ 1,

as n→ ∞. And so (
nhk

n

)1/2 f̂ (x0)− E
(

f̂ (x0) | C
)

[ f (x0|C)
∫

K2 (u) du]1/2
d−→ N (0, 1) .

To prove (ii) we eliminate the bias term using (nhn)
1/2 h2

n → 0, since, from the usual Taylor
expansion (again, conditioned on the event {C = c} and using Q-almost sure results to obtain
“in-probability” results), the bias term is of order op(h2

nn).

Appendix B.2. Proofs for the Regression Estimator

Define Dj
xm (x, c) to be the j-th partial derivative of m (x, c) with respect to x. Define also

σ2 (x, c) = E
(
ε2

i | Xi = x, C = c
)
, and let E

[
·| X = {xi}n

i=1
]

denote the conditional expectation given
xi, i = 1, ..., n. Let µ2 =

∫
u2K(u)du and κ =

∫
K2(u)du. In order to obtain the results of this section,

we use Lemmas 2 and 3 presented below.

Lemma 2. Suppose Assumptions 1 and 2 and Conditions 1–8 hold. Then, for Q-almost all c,

E (ĝ (x) |C = c) = m (x, c) f (x|c) + h2
n

2
µ2

×
[

f (x|c) D2
xm (x, c) + m (x, c) D2

x f (x|c) + 2Dxm (x, c) Dx f (x|c)
]

+o(h2
n),

Var (ĝ (x) |C = c) =
(
m2 (x, c) + σ2 (x, c)

)
nhk

n
f (x|c)

(∫
K2(u)du

)
+ O

(
1
n

)
and

Cov
(

ĝ (x) , f̂ (x) |C = c
)
=

m (x, c) f (x|c)
nhk

n

(∫
K2(u)du

)
+ O

(
1
n

)
Proof. The proof is similar to Lemma 3.1 in Pagan and Ullah [2], except that (i) whenever Pagan
and Ullah take the expectation E (·), we take the conditional E (·|C = c); (ii) whenever they take the
conditional E

[
·| X = {xi}n

i=1
]
, we take E

[
·| X = {xi}n

i=1 , C
]

(and similarly for Var(·)); and (iii) we
substitute m(x), f (x) and σ(x) in their proof by m(x, c), f (x|c) and σ(x, c), respectively. Then, every
step in their proof goes through for Q-almost all c and the desired result follows.



Econometrics 2016, 4, 36; doi:10.3390/econometrics4030036 S8 of S16

From Lemma 2 above we obtain the approximated bias and variance of m̂ (x).

Lemma 3. Suppose Assumptions 1 and 2 and Conditions 1–8 hold. Then,

E (m̂ (x) |C)−m (x, C) = µ2

[
f (x|C) D2

xm (x, C) + 2Dxm (x, C) Dx f (x|C)
]

2 f (x|C) h2
n

+Op

(
1

nhn

)
+ op(h2

n)

and

Var (m̂ (x) |C) = σ2 (x, C)
nhk

n f (x|C)

(∫
K2(u)du

)
+ op

(
1

nhk
n

)
Proof. Once more, the proof is similar to Theorem 3.2 in Pagan and Ullah [2]. We first mimic their proof
obtaining the approximation bias and variance by substituting the unconditional terms by the proper
conditional versions (i.e., conditional on {C = c}, for Q-almost all c), and obtaining the corresponding
expressions for E (m̂ (x) |C = c)−m (x, c) and Var (m̂ (x) |C = c). Since the result holds for Q-almost
all c, we can obtain the "in-probability" version of the result for the σ(C)-measurable random variables
E (m̂ (x) |C)−m (x, C) and Var (m̂ (x) |C).

Next we prove Proposition 2.1–2.3.

Proof of Proposition 2.1. As usual, we write the kernel estimator as

m̂ (x) =
1

nhk
n

∑ n
i=1YiK

(
Xi−x

hn

)
1

nhk
n

∑n
i=1 K

(
Xi−x

hn

) =
ĝ (x)
f̂ (x)

. (5)

Define g (x, c) ≡ m (x, c) f (x|c). It is enough to show that ĝ (x)→p g (x, C), because

m̂ (x) =
ĝ (x)
f̂ (x)

p−→ g (x, C)
f (x|C) = m (x, C) .

We adopt an approach similar to the proof of Proposition 1.1. For Q-almost all c,

E (ĝ (x) |C = c) = E
(
E
[
ĝ (x) | X = {xi}n

i=1 , C
]
| C = c

)
= E

(
E
[

1
nhk

n
Σn

i=1YiK
(

Xi − x
hn

)
| X = {xi}n

i=1 , C
]
| C = c

)
.

Now, note that

E
[

1
nhk

n
Σn

i=1YiK
(

Xi − x
hn

)
| X = {xi}n

i=1 , C
]

=
1

nhk
n

Σn
i=1E

[
YiK

(
Xi − x

hn

)
| X = {xi}n

i=1 , C
]

=
1

nhk
n

Σn
i=1

[
m (xi, C)K

(
xi − x

hn

)]
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where the second equality follows from the Law of Iterated Expectation. And, so,

E (ĝ (x) |C = c) = E
(

1
nhk

n
Σn

i=1

[
m (xi, C)K

(
xi − x

hn

)]
| C = c

)
= E

(
1
hk

n
m (xi, C)K

(
xi − x

hn

)
| C = c

)
=

1
hk

n

∫
K
(

x1 − x
hn

)
m (x1, c) f (x1|c) dx1

→ [m (x, c) f (x|c)]
∫

K
(

x1 − x
hn

)
dx1

= [m (x, c) f (x|c)]
= g (x, c)

as n → ∞, by Lemma 1. The second equality above comes from Assumption 1 (conditional i.i.d.
observations) and the fourth equality from Condition 1(i). As usual, this Q-almost sure convergence
implies the convergence in probability of E (ĝ (x) |C) to g (x, C) and, hence,

E (ĝ (x) | C)− g (x, C)
p−→ 0.

Similarly, from Lemma 2 above, we have for Q-almost all c(
nhk

n

)
Var (ĝ (x) | C = c) =

[
σ2 (x, c) + m2 (x, c)

]
f (x|c)

×
∫

K2
(

x1 − x
hn

)
dx1 + o(hk

n)

where σ2 (x, c) = E
(
ε2

i | Xi = x, C = c
)
. Hence, Var (ĝ (x) | C = c)→ 0 as n→ ∞, for Q-almost all c,

which implies Var (ĝ (x) | C)
p−→ 0 as n→ ∞. Using the Markov inequality conditioned on σ (C) and,

then, the Dominated Convergence Theorem in the same way we did in the proof of Proposition 1.1,
the desired result follows

ĝ (x)− g (x, C)
p−→ 0, as n→ ∞.

Proof of Proposition 2.2. The results follow directly from Lemmas 2 and 3. Similarly to Proposition 1.1,
define for any ε > 0 the event

An = {|m̂ (x)−m (x, C)| > Mrn} ,

where r2
n = max

{
h4

n,
(

nhk
n

)−1
}

. Then, by Chebychev inequality,

Pr (An | σ(C)) ≤
1

M2r2
n

E
[
(m̂ (x)−m (x, C))2 | σ(C)

]
=

1
M2r2

n
MSE (m̂ (x) | C)

p−→ 0,

as M→ ∞. The limit follows from Lemma 3. Hence, by the Dominated Convergence Theorem,

Pr (An) = EC [Pr (An | σ(C))] −→ 0, as M→ ∞.
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By choosing hn ∝ n−
1

k+4 , we obtain

m̂ (x)−m (x, C) = Op

(
n−

2
k+4

)
.

Proof of Proposition 2.3. Again, we apply the Corollary 3.1 of Hall and Heyde [3] (p. 59) using a
conditional Liapounov Condition in place of the conditional Lindeberg Condition. We prove (i) first.
Note that

m̂ (x) =
1

f̂ (x)

(
1

nhk
n

Σn
i=1K

(
xi − x

hn

)
[m (xi, C) + εi]

)
where m (xi, C) = E [Y | X = xi, C], since E [εi | X, C] = 0 a.s.. Also,

E
[
m̂ (x) | X = {xi}n

i=1 , C
]
=

1

f̂ (x)

(
1

nhk
n

Σn
i=1K

(
xi − x

hn

)
m (xi, C)

)
.

As a consequence, (
nhk

n

)1/2 (
m̂ (x)− E

[
m̂ (x) | X = {xi}n

i=1 , C
])

=
1

f̂ (x)

[(
nhk

n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
εi

]

=
1

f̂ (x)

[
∑

1≤i≤n
Li,n

]

where we define Li,n = (nhnn)
−1/2 Kiεi, with Ki = K

(
xi−x

hn

)
. Because f̂ (x)− f (x|C) = op(1), we

concentrate on the second term above.
For i ≥ 1, let Fi,n denote the σ-field generated by σ(C) and (Z1, ..., Zi), where Zi = (Yi, Xi).

Then {Li,n,Fi,n : i ≥ 1} is a triangular array of Martingale Difference Sequence, because

{Kiεi : i ≥ 1} =
{

K
(

Xi − x
hn

)
[Yi −m(Xi, C)] : i ≥ 1

}
are i.i.d. conditional on σ(C) by Assumption 1, and hence

E (Kiεi | Fi−1,n) = E (Kiεi | σ(C))
= E

(
KiE

[
εi | X = {xi}n

i=1 , C
]
| σ(C)

)
= 0.

Therefore E (Li,n | Fi−1,n) = 0. Moreover,

1≤i≤nE
(

L2
i,n | Fi−1,n

)
= ∑

1≤i≤n
E

([(
nhk

n

)−1/2
Kiεi

]2
| σ(C)

)
= E

(
h−k

n K2
i ε2

i | σ(C)
)

=
1
hk

n
E
(

K2
i E
[
ε2

i | X = {xi}n
i=1 , C

]
| σ(C)

)
=

1
hk

n
E
(

K2
i σ2 (xi, C) | σ(C)

)
.
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Note that, for Q-almost all c,

1
hk

n
E
(

K2
i σ2 (xi, C) | C = c

)
=

1
hk

n

∫
K2
(

x1 − x
hn

)
σ2 (x1, c) f (x1|c) dx1

−→
[
σ2 (x, c) f (x|c)

] ∫
K2 (u) du

as n→ ∞, by Lemma 1. Hence, we have the convergence in probability result

1≤i≤nE
(

L2
i,n | Fi−1,n

) p−→
[
σ2 (x, C) f (x|C)

] ∫
K2 (u) du.

A conditional Liapounov condition holds because

1≤i≤nE
(
|Li,n|2+δ | Fi−1,n

)
= nE

(
|Li,n|2+δ | σ (C)

)
= nE

(∣∣∣∣(nhk
n

)−1/2
Kiεi

∣∣∣∣2+δ

| σ (C)

)

=
(

nhk
n

)−δ/2
h−k

n E
(
|Kiεi|2+δ | σ (C)

)
≤

(
nhk

n

)−δ/2
E
(
|εi|2+δ | σ (C)

)
h−k

n E
(
|Ki|2+δ | σ (C)

)
where the first equality comes from the definition of Fi−1,n, and the fact that {Li,n : i ≥ 1} are i.i.d.
conditional on σ(C).

Now note that (i)
(

nhk
n

)−δ/2
→ 0; and (ii) E

(
|εi|2+δ

)
< ∞, implying

E
(
|εi|2+δ | σ (C)

)
< ∞, Q-a.s..

Hence E
(
|εi|2+δ | σ (C)

)
= Oas(1). And finally, (iii) for Q-almost all c,

E

(
h−k

n

∣∣∣∣K(Xi − x
hn

)∣∣∣∣2+δ

| C = c

)
→ f (x|c)

∫
|K (x)|2+δ dx < ∞

as n→ ∞, implying E
(

h−k
n K2+δ

(
Xi−x0

hn

)
| σ (C)

)
= Oas(1). Therefore, by collecting (i)–(iii), we obtain

1≤i≤nE
(
|Li,n|2+δ | Fi−1,n

)
as−→ 0.

Hence all the conditions for the MSD CLT are satisfied. And so,

∑
1≤i≤n

Li,n
d−→ N

(
0,
(

σ2 (x, C) f (x|C)
)(∫

K2 (u) du
))

.

Moreover, since f̂ (x)
p−→ f (x | C), then,

1

f̂ (x)
∑

1≤i≤n
Li,n

d−→ N
(

0,
(

σ2 (x, C)
f (x|C)

∫
K2 (u) du

))
.

To prove (ii) we need to show that if
(

nhk
n

)1/2
h2

n → 0 as n→ ∞, then

(
nhk

n

)1/2 (
E
[
m̂ (x) | X = {xi}n

i=1 , C
]
−m (x, C)

) p−→ 0.
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First of all, note that

(nhnn)
1/2 (E [m̂ (x) | X = {xi}n

i=1 , C
]
−m (x, C)

)
=

1

f̂ (x)

[(
nhk

n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
[m (xi, C)−m (x, C)]

]
(6)

and, again, because f̂ (x)− f (x|C) = op(1), we only need to prove that the second term of (6) is op(1).
We first note that for Q-almost all c

E

[(
nhk

n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
[m (xi, C)−m (x, C)] | C = c

]

=
(

nhk
n

)1/2
E
[

h−k
n K

(
xi − x

hn

)
[m (xi, C)−m (x, C)] | C = c

]
=

(
nhk

n

)1/2
[

h−k
n

∫
K
(

x1 − x
hn

)
[m (x1, c)−m (x, c)] f (x1|c) dx1

]
.

Using a changing-in-variable argument and a Taylor expansion of [m (x1, c)−m (x, c)] f (x1|c)
with respect to x1 about x we obtain:

h−k
n

∫
K
(

x1 − x
hn

)
[m (x1, c)−m (x, c)] f (x1|c) dx1

=
∫

K (x + hnu) [m (x + hnu, c)−m (x, c)] f (x + hnu|c) du

=
h2

n
2

(
f (x|c) D2

xm (x, c) + Dxm (x, c) Dx f (x|c)
)(∫

u2K (u) du
)

+o(h2
n)

implying (
nhk

n

)1/2
[

h−k
n

∫
K
(

x1 − x
hn

)
[m (x1, c)−m (x, c)] f (x1|c) dx1

]
=

(
nhk

n

) [h2
n

2

(
f (x|c) D2

xm (x, c) + Dxm (x, c) Dx f (x|c)
)(∫

u2K (u) du
)
+ o(h2

n)

]
=

(
nhk

n

)
h2

n

(
f (x|c) D2

xm (x, c) + Dxm (x, c) Dx f (x|c)
)

2

(∫
u2K (u) du

)
+ o

((
nhk

n

)
h2

n

)
→ 0

as n→ ∞. Therefore,

E

[(
nhk

n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
[m (xi, C)−m (x, C)] | C

]
as−→ 0.
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Next, look at the conditional variance of the term in the brackets in (6)

Var

[(
nhk

n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
[m (xi, C)−m (x, C)] | C = c

]

=
(

nhk
n

)−1
∑

1≤i≤n
E
[
K2

i [m (xi, C)−m (x, C)]2 | C = c
]

−
(

nhk
n

)−1
(

∑
1≤i≤n

E [Ki [m (xi, C)−m (x, C)] | C = c]

)2

= h−k
n E

[
K2

i [m (xi, C)−m (x, C)]2 | C = c
]
− nh−k

n (E [Ki [m (xi, C)−m (x, C)] | C = c])2

by Assumption 1 (i.i.d. data conditional on σ(C)). Now, from Lemma 1 again, the first term above is
such that, for Q-almost all c,

h−k
n E

[
K2

i [m (xi, C)−m (x, C)]2 | C = c
]
→
(
[m (x, c)−m (x, c)]2 f (x|c)

) ∫
K2 (u) du = 0

as n→ ∞, and, from previous argument, the second term is such that, for Q-almost all c,

nh−k
n (E [Ki [m (xi, C)−m (x, C)] | C = c])2

= nhk
n

(
E
[

h−k
n Ki [m (xi, C)−m (x, C)] | C = c

])2

= nhk
n

[
h2

n

(
f (x|c) D2

xm (x, c) + Dxm (x, c) Dx f (x|c)
)

2

(∫
u2K (u) du

)
+ o(h2

n)

]2

→ 0

as n→ ∞. Therefore, for Q-almost all c,

Var

[(
nhk

n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
[m (xi, C)−m (x, C)] | C = c

]
= o(1)

and, so, both the conditional (on {C = c}) bias and variance of the term in the brackets in (6) converge
to zero Q-almost surely. Markov inequality and the Dominated Convergence Theorem then imply(

nhk
n

)−1/2
∑

1≤i≤n
K
(

xi − x
hn

)
[m (xi, C)−m (x, C)]

p−→ 0.

Therefore, (
nhk

n

)1/2 (
E
[
m̂ (x) | X = {xi}n

i=1 , C
]
−m (x, C)

) p−→ 0.

And, hence, (
nhk

n

)1/2
(m̂ (x)−m (x, C)) d−→

(
σ2 (x, C)
f (x|C)

∫
K2 (u) du

)
N (0, 1) .

Appendix C. The Choice of the Bandwidth

The conditional Approximated Mean Integrated Squared Errors (CAMISE) for the kernel density
estimator is:

CAMISE
(

f̂ | C
)
=

[
h4

n
4

µ2

(∫ [
D2

x f (x|C)
]2

dx
)]

+

[
κ

nhk
n

]
.
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The unconditional Approximated Mean Integrated Squared Errors (AMISE) is:

AMISE
(

f̂
)
=

[
h4

n
4

µ2

(∫ [
D2

x f (x|C)
]2

dxdQ
)]

+

[
κ

nhk
n

]
.

Provided
(∫ [

D2
x f (x|C)

]2 dxdQ
)
> 0, the choice of hn that minimizes AMISE is

hn =

 κ

µ2

(∫
[D2

x f (x|C)]2 dxdQ
)
− 1

4+k

n−
1

4+k .

Such a choice of hn is unfeasible however. A plug-in estimator would require estimating both
D2

x f (x|C) for various C and the distribution of C using a single cross-sectional data. Cross-validation
methods also would not estimate hn by the same reason kernel density does not estimate f (x) in the
presence of common shocks.

On the other hand, the choice of hn that minimizes the CAMISE is feasible. It is the
σ(C)-measurable random variable

hn (C) = h (C) n−
1

4+k

where

h (C) =

µ2

(∫ [
D2

x f (x|C)
]2 dx

)
κ


1

4+k

Provided D2
x f (x|c) is finite for almost all (x, c), we have that h (C) = Op (1) and, so,

hn (C) = Op

(
n−

1
4+k

)
. One should expect that both a plug-in estimator (using, e.g., D2

x f̂ ) and a
cross-validation method would estimate the random bandwidth hn (C). Usual concerns in the literature
about how to select the (conditional version of) hn are present here, but for brevity we do not investigate
the topic further.

The same reasoning applies to the kernel regression estimator. But in this case the conditional
AMISE is

CAMISE (m̂| C) = h4
n

4
µ2

(∫
φ2 (x, C) dx

)
+

κ

nhk
n

(∫
σ2 (x, C)
f (x|C) dx

)
where

φ (x, C) =
f (x|C) D2

xm (x, C) + 2Dxm (x, C) Dx f (x|C)
f (x|C) .

The corresponding choice of hn is

hn (C) = h (C) n−
1

k+4

where

h (C) =

 kµ2
(∫

φ2 (x, C) dx
)

4κ
(∫ σ2(x,C)

f (x|C) dx
)
 1

k+4

.

We have that h (C) = Op (1) provided that f (x|c) , Dx f (x|c) , Dxm (x, c) and D2
xm (x, c) are finite

for almost all (x, c); and that both f (x|c) and σ2 (x, c) are strictly positive for almost all (x, c).

Appendix D. Probabilistic Framework

This section is based on Section 7 of Andrews [1]. Let γ denote some unit in the population and
let Γ be the set of all units in the population. Assume Γ is an arbitrary topological space.
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For each unit γ ∈ Γ, Y (γ) ∈ Y (⊆ R) is the regression dependent variable, X (γ) ∈ X (⊆ Rk) is a
vector of regressors, S (γ) ∈ S (⊆ Rds , with ds ∈ N) is the vector of supplementary variables that may
include other characteristics of the population unit γ, and C (γ) = C ∈ C is the common shock across
units. Define the vector W (γ) = (Y (γ) , X (γ) , S (γ) , C) ∈ W , whereW ⊆ Y ×X × S × C.

Throughout this section, let (Ω,F ,P) denote a probability space and ω ∈ Ω. For each unit γ ∈ Γ,
the vector W (γ) is a random element defined on the (common) probability space (Ω,F ,P). In other
words, W (γ, ω) is an F -measurable function mapping from (Ω,F ) to (W ,A), where A is assumed to
be the (product) Borel sigma-field. Define PW(γ) as the probability measure defined on A induced by
P and W (γ, ω). I.e., PW(γ) is the probability distribution of W (γ).

Samples are obtained by drawing indices of units {γi : i ≥ 1} randomly from Γ according to
some conditional distribution PΓ on Γ. The indices {γi : i ≥ 1} are defined on (Ω,F ,P) the same
probability space as {W (γ) : γ ∈ Γ}. Following Andrews [1] we assume

Assumption A.1. {γi : i ≥ 1} are i.i.d. indices independent of {W (γ): γ ∈ Γ}.

Assumption A.1 allows for proportional sampling by taking the distribution PΓ to be uniform
on Γ. But some units can be over-sampled when these distribution is not uniform. Still, the crucial
restriction of Assumption A.1 is to not allow the sampling scheme to depend on the characteristics of
the unit. In this sense, there is no sample selection in this framework.

Define Wi = W (γi), and note that {Wi : i ≥ 1} is a subordinated stochastic process (i.e.,
subordinated to {W (γ) : γ ∈ Γ} via the directing process {γi : i ≥ 1}). This process {Wi : i ≥ 1}
is defined on the probability space

(
WN,AN,PN), where WN is the product space, AN is the

product Borel sigma-field on WN and PN is the probability measure on
(
WN,AN) induced by P ,

{W (γ) : γ ∈ Γ} and {γi : i ≥ 1}.
Given the sampling scheme specified in Assumption A.1, the random elements {Wi : i = 1, 2, ...}

are exchangeable. That is,
(

Wπ(1), ..., Wπ(n)

)
has the same distribution as (W1, ..., Wn) for every finite

permutation π of (1, ..., n) for all n ≥ 2. As a consequence, we can apply de Finetti’s theorem and
conclude that {Wi : i ≥ 1} is i.i.d. given a sub-sigma field ofAN. But before presenting this well-known
result, we need to introduce more notation.

Based on Meyer [4] (Chapter VIII) and Pollard [5], define the following sub-σ-fields onWN:

i. Denote Jn the collection of all sets in AN whose indicator functions are n-symmetric. Then Jn

is a σ-field, the sequence {Jn : n ≥ 1} forms a decreasing filtration on AN and J = ∩n≥1Jn is
called the symmetric σ-field.

ii. Denote An = σ (W1, W2, ..., Wn), the σ-field generated by the random elements (W1, W2, ..., Wn).
Then {An : n ≥ 1} forms an increasing filtration on AN and AN = ∪n≥1An.

iii. Denote Gn = σ (Wn+1, Wn+2, ...), the σ-field generated by the random elements (Wn+1, Wn+2, ...).
Then {Gn : n ≥ 1} forms a decreasing filtration on AN and G = ∩n≥1Gn is called the tail σ-field.

The de Finetti’s theorem implies the following Lemma (for a proof, see Meyer [4] (Theorem
VIII-T5, p. 151), or Pollard [5] (Theorem 52, p.161))

Lemma 4. Suppose Assumption A.1 holds. Then (i) {Wi : i = 1, 2, ...} are exchangeable and are i.i.d.
conditional on the symmetric sub-σ-field J ⊂ AN.

This Lemma states that, for all sets Ai ∈ A, and for every m ∈ N,

PN (w1 ∈ A1, ..., wm ∈ Am|J ) = PN (w1 ∈ A1|J )× ...×PN (wm ∈ Am|J ) (7)

PN-almost surely, where PN (·|J ) is the conditional expectation given the sub-sigma-field J ⊂ AN.
We want to obtain Assumption 1 stated in the main text instead, i.e., we want the sequence

{Wi : i ≥ 1} to be i.i.d. conditional on the σ-field σ (C) ⊂ AN. It is simple to show that this is
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indeed the case under Assumption A.1 by two steps. First, we note that Lemma 4 also holds
for the tail sub-σ-field G = ∩n≥1Gn. Then, we note that G = σ (C), because, by definition,
G = ∩n≥1Gn = ∩n≥1σ (Wn+1, Wn+2, ...) which equals the sub-sigma-field generated by the common
elements of (Wn+1, Wn+2, ...) for all n ≥ 1. I.e., ∩n≥1σ (Wn+1, Wn+2, ...) = σ (C).

The first step is a well-known result and can be obtained by applying Meyer’s [4] Lemma VIII-T2
and Theorem VIII-T3 (p. 150).

Theorem 1. (i) The tail σ-field G is contained in the symmetric σ-field J .
(ii) If A ∈ J , then there exists an element B ∈ G such that A = B almost surely.

As a result, despite the fact G ( J , we can always find for any J -measurable element, a
corresponding G-measurable element that equals the former almost surely. Therefore, Equation (7)
holds almost surely when substituting the J -measurable elements by the corresponding G-measurable
elements.

Given that (i) Lemma 4 holds for G in place of J , by Theorem 1, and that (ii) σ (C) = G, we
obtain the following result:

Claim 1. Suppose Assumption A.1 holds. Then {Wi : i = 1, 2, ...} are exchangeable and are i.i.d. conditional
on the σ-field σ (C) ⊂ AN.
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