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Abstract: We develop a procedure for removing four major specification errors from the usual
formulation of binary choice models. The model that results from this procedure is different from the
conventional probit and logit models. This difference arises as a direct consequence of our relaxation
of the usual assumption that omitted regressors constituting the error term of a latent linear regression
model do not introduce omitted regressor biases into the coefficients of the included regressors.
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1. Introduction

It is well-known that binary choice models are subject to certain specification errors. It can
be shown that the usual approach of adding an error term to a mathematical function leads to a
model with nonunique coefficients and error term. In this model, the conditional expectation of the
dependent variable given the included regressors does not always exist. Even when it exists, its
functional form may be unknown. The nonunique error term is interpreted as representing the net
effect of omitted regressors on the dependent variable. Pratt and Schlaifer (1988, p. 34) [1] pointed
out that omitted regressors are not unique and as a result, the condition that the included regressors
be independent of “the” excluded variables themselves is “meaningless”. There are cases where the
correlation between the nonunique error term and the included regressors can be made to appear and
disappear at the whim of an arbitrary choice between two observationally equivalent models. To avoid
these problems, we specify models with unique coefficients and error terms without misspecifying
their correct functional forms. The unique error term of a model is a function of certain “sufficient
sets” of omitted regressors. We derive these sufficient sets for a binary choice model in this paper.
In the usual approach, omitted regressors constituting the error term of a model do not introduce
omitted-regressor biases into the coefficients of the included regressors. In our approach, they do so.
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Following the usual approach, Yatchew and Griliches (1984) [2]1 showed that if one of two
uncorrelated regressors included in a simple binary choice model is omitted, then the estimator of the
coefficient on the remaining regressor will be inconsistent. They also showed that, if the disturbances
in a latent regression model are heteroscedastic, then the maximum likelihood estimators that assume
homoscedasticity are inconsistent and the covariance matrix is inappropriate. In this paper, we show
that the use of a latent regression model with unique coefficients and error term changes their results.
Our binary choice model is different from those of such researchers as Yatchew and Griliches [2],
Cramer (2006) [5], and Wooldridge (2002, Chapter 15) [5]. The concept of unique coefficients and error
term is distinctive to our work. Specifically, we do not assume any incorrect functional form, and
we account for relevant omitted regressors, measurement errors, and correlations between excluded
and the included regressors. Our model features varying coefficients (VCs) in which we interpret the
VC on a continuous regressor as a function of three quantities: (i) bias-free partial derivative of the
dependent variable with respect to the continuous regressor; (ii) omitted-regressor biases; and (iii)
measurement-error biases. This interpretation of the VCs is unique to our work and allows us to focus
on the bias-free (i.e., partial derivatives) parts of the VCs.

The remainder of this paper is comprised of three sections. Section 2 summarizes a recent
derivation of Swamy, Mehta, Tavlas and Hall (2014) [6] of all the terms involved in a binary choice
model with unique coefficients and error term. The section also provides the conditions under which
such a model can be consistently estimated. Section 3 presents an empirical example. Section 4
concludes. An Appendix at the end of the paper has two sections. The first section compares the
relative generality of assumptions underlying different linear and nonlinear models. The second section
derives the information matrix for a binary choice model with unique coefficients and error term.

2. Methods of Correctly Specifying Binary Choice Models and Their Estimation

2.1. Model for a Cross-Section of Individuals

Greene (2012, pp. 681–683) [3] described various situations under which the use of discrete
choice models is called for. In what follows, we develop a discrete choice model that is free of several
specification errors. To explain, we begin with the following specification:

y˚i “ ψipx˚i1, ..., x˚iLi
q (1)

where i indexes n individuals, ψipx˚i1, ..., x˚iLi
q is a mathematical function, and its arguments are

mathematical variables. Let ψip.q be short hand for this function. We do not observe y˚i but view the
outcome of a discrete choice as a reflection of the underlying mathematical function in Equation (1).
We only observe whether a choice is made or not (see Greene (2012, p. 686) [3]).

Therefore, our observation is
yi “ 1 if y˚i ą 0 (2)

yi “ 0 if y˚i ď 0

where the choice “not made” is indicated by the value 0 and the choice “made” is indicated by the
value 1, i.e., yi takes either 0 or 1. An example of model (2), provided in Greene (2012, Example 17.1,
pp. 683–684) [3], is a situation involving labor force participation where a respondent either works or
seeks work (yi = 1) or does not (yi = 0) in the period in which a survey was taken.2

In Equation (1), x˚i “ px˚i1, ..., x˚i,Li
q1 is Li ˆ 1, Li denotes the total number of the arguments of

ψipx˚i1, ..., x˚i,Li
q “ ψip.q; there are no omitted arguments needing an error term. Equation (1) is a

1 See, also, Greene (2012, Chapter 17, p. 713) [3].
2 We will show below that the inconsistency problems Yatchew and Griliches (1984, p. 713) [2] pointed out with the probit

and logit models are eliminated by replacing these models by the model in (1) and (2).
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mathematical equation that holds exactly. Inexactness and stochastic error term enters into (1) when
we derive the appropriate error term and make distributional assumption about it. The reasons for
this are explained below. The number Li may depend on i. This dependence occurs when the number
of arguments of ψip.q is different for different individuals. For example, before deciding whether or
not to make a large purchase, each consumer makes a marginal benefit/marginal cost calculations
based on the utilities achieved by making the purchase and by not making the purchase, and by using
the available funds for the purchase of something else. The difference between benefit and cost as
an unobserved variable y˚i can vary across consumers if they have different utility functions with
different arguments. These variations can show up in the form of different arguments of ψip.q for
different consumers.

It should be noted that (1) represents our departure from the usual approach of adding a
nonunique error term to a mathematical function and making a “meaningless” assumption about the
error term. Pratt and Schlaifer (1988, p. 34) [1] severely criticized this approach. To avoid this criticism,
what we have done in (1) is that we have taken all the x-variables and the variables constituting the
error term ε in Cramer’s (2006) [4] (or e in Wooldridge’s (2002, p. 457) [5]) latent regression model, and
included them in ψip.q as its arguments. In addition, we also included in ψip.q all relevant pre-existing
conditions as its arguments.3.

The problem that researchers face is that of uncovering the correct functional form of ψip.q.4

However, any false relations can be shown to have been eliminated when we control for all relevant
pre-existing conditions. To make use of this observation due to Skyrms (1988, p. 59) [7], we incorporate
these pre-existing conditions into ψip.q by letting some of the elements of x˚i represent these conditions.5

Clearly, we have no way of knowing what these pre-existing conditions might be, how to measure
them (if we knew them), or how many there may be. To control for these conditions, we use the
following approach. We assume that all relevant pre-existing conditions appear as arguments of the
function ψip.q in Equation (1). This is a straightforward approach. Therefore, when we take the partial
derivatives of ψip.q with respect to x˚ij, a determinant of y˚i included in ψip.q as its argument, the values
of all pre-existing conditions are automatically held constant. This action is important because it sets
the partial derivative By˚i {Bx˚ij equal to zero whenever the relation of y˚i to x˚ij, an element x˚i , is false
(see Skyrms (1988, p. 59) [7]).

The function ψip.q in (1) is exact and mathematical in nature, without any relevant omitted
arguments. Moreover, its unknown functional form is not misspecified. Therefore, it does not require
an error term; indeed, it would be incorrect to add an error term to ψip.q. We refer to (1) as “a minimally
restricted mathematical equation,” the reason being that no restriction other than the normalization
rule, that the coefficient of y˚i is unity, is imposed on (1). Without this restriction, the function ψip.q
is difficult to identify. The reason why no other restriction is imposed on it is that we want (1) to be
a real-world relationship. With such a relationship we can estimate the causal effects of a treatment.
Basmann (1988, pp. 73, 99) [8] argued that causality is a property of the real world. We define
that real-world relations are those that are not misspecified. Causal relations are unique in the real
world. This is the reason why we insist that the coefficients and error term of our model be unique.
From Basmann’s (1988, p. 98) [8] definition it follows that (1) is free of the most serious objection, i.e.,
non-uniqueness, which occurs when stationarity producing transformation of observable variables are
used.6 We do not use such variables in (1).

3 We explain in the next paragraph why we have included these conditions.
4 Some researchers may believe that there is no such thing as the true functional form of (1). Whenever we talk of the correct

functional form of (1), we mean the functional form of (1) that is appropriate to the particular binary choice in (2).
5 Here we are using Skyrms’ (1988, p. 59) [7] definition of the term “all relevant pre-existing conditions.”
6 This is Basmann’s (1988, pp. 73, 99) [8] statement.
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2.2. Unique Coefficients and Error Terms of Models

2.2.1. Causal Relations

Basmann (1988, pp. 73, 99) [8] emphasized that the word “causality” designates a property of the
real world. Hence we work only with appropriate real-world relationships to evaluate causal effects.

We define that the real-world relationships are those that are not subject to any specification errors.
It is possible to avoid some of those errors, as we show below. The real-world relationships and their
properties are always true and unique. Such relationships cannot be found, however, by imposing
severe restrictions because they can be false. Examples of these restrictions are given in the Appendix
to the paper. For example, certain separability conditions are imposed on (1) to obtain (A1) in the
Appendix. These conditions are so severe that their truth is doubtful. For this reason, (A1) may not be
a real-world relationship and may not possess the causality property. Again in the Appendix, (A2) is a
general condition of statistical independence which is very strong. Model (A5) of the Appendix with a
linear functional form could be misspecified.7

2.2.2. Derivation of a Model from (1) without Committing a Single Specification Error

To avoid misspecifications of the unknown correct functional form of (1), we change the problem
of estimating (1) to the problem of estimating some of its partial derivatives in

y˚i “ α˚i0 ` x˚i1α˚i1 ` ¨ ¨ ¨ ` x˚iLi
α˚iLi

(3)

where, for ` “ 1, . . . , Li, α˚i` “
Bψip.q
Bx˚i`

if x˚i` is continuous and = ∆ψip.q
∆x˚i`

with the right sign if x˚i` is

discrete having zero as one of its possible values, ∆ is the first-difference operator, and the intercept
α˚i0 “ y˚i ´

řLi
`“1 x˚i`α

˚
i`. In words, this intercept is the error of approximation due to approximating y˚it

by (
řLi

`“1 x˚i`α
˚
i`). Therefore, model (3) with zero intercept does not misspecify the unknown functional

form of (1) if the error of approximation is truly zero and model (3) with nonzero intercept is the
same as (1) with no misspecifications of its functional form, since y˚i ´

řLi
`“1 x˚i`α

˚
i` `

řLi
`“1 x˚i`α

˚
i` “ y˚i .

This is how we deal with the problem of the unknown functional form of (1). Note that no separability
conditions need to be imposed on (1) to write it in the form of (3). This is the advantage of (3) over (A1).

Note that in the above definition of the partial derivative (α˚i`), the values of all the arguments of
ψit p.q (including all relevant pre-existing conditions) other than x˚i` are held constant. These partial
derivatives are different from those that can be derived from (A1) with εi suppressed. This is because
in taking the latter derivatives the values of x˚i,K`1, ..., x˚iLt

are not held constant.
Equation (3) is not a false relationship, since we held the values of all relevant pre-exiting

conditions constant in deriving its coefficients. The regression in (3) has the minimally restricted
equation in (1) as its basis. The coefficients of (3) are constants if (1) is linear and are variables
otherwise. In the latter case, the coefficients of (3) can be the functions of all of the arguments of
ψit p.q. Any function of the form (1) with unknown functional form can be written as linear in variables
and nonlinear in coefficients, as in (3). We have already established that this linear-in-variables and
nonlinear-in-coefficients model has the correct functional form if its intercept is zero and is the same as
(1) otherwise. In either case, (3) does not have a misspecified functional form. In this paper, we take
advantage of this procedure.

Not all elements of x˚i are measured; suppose that the first K of them are measured.
This assumption needs the restriction that minpL1, ..., Lnq ą K. Even these measurements may contain
errors so that the observed argument xij is equal to the sum of the true value x˚ij and a measurement

7 Cramer (2006, p. 2) [4] and Wooldridge (2002, p. 457) [5] assume that their latent regression models are linear. This is a usual
assumption. We are simply justifying our unusual assumptions without criticizing the usual assumptions.
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error, denoted by ν˚ij .
8 The arguments, x˚ig, g = K + 1, . . . , Li, for which no data are available, are

treated as regressors omitted from (3).9 These are of two types: (i) unobserved determinants of y˚i and
(ii) all relevant pre-existing conditions. We know nothing of these two types of variables. With these
variables being present in (3), we cannot estimate it. Again without misspecifying (1) these variables
should be eliminated from (3). To do so, we consider the “auxiliary” relations of each x˚ig to x˚i1, ..., x˚iK.
Such relations are: For g = K + 1, . . . , Li,

x˚ig “ λ˚ig0 ` x˚i1λ˚ig1 ` ¨ ¨ ¨ ` x˚iKλ˚igK (4)

where λ˚igj “
Bx˚ig
Bx˚ij

if x˚ij is continuous holding the values of all the regressors of (A8) other than that of

x˚ij constant and =
∆x˚ig
∆x˚ij

with the right sign if x˚ij is discrete taking zero as one of its possible values and

λ˚ig0 “ x˚ig ´
řK

j“1 x˚tjλ
˚
igj. This intercept is the portion of x˚ig remaining after the effect (

řK
j“1 x˚ijλ

˚
igj) of

x˚i1, ..., x˚iK on x˚ig has been subtracted from it.
In (4), there are Li ´ K relationships. The intercept λ˚ig0 is the error due to approximating

the relationship between the gth omitted regressor and all the included regressors (“the correct
relationship”) by

řK
j“1 x˚tjλ

˚
igj. If this error of approximation is truly zero, then Equation (4) with

zero intercept has the same functional form as the correct relationship. In the alternative case
where the error of approximation is not zero, (4) is the same as the correct relationship, i.e.,
x˚ig ´

řK
j“1 x˚tjλ

˚
igj `

řK
j“1 x˚tjλ

˚
igj. In either case (4) does not misspecify the correct functional form.

According to Pratt and Schlaifer (1988, p. 34) [1], the condition that the included regressors be
independent of “the” omitted regressors themselves is meaningless. This statement supports (4) but
not the usual assumption that the error term of a latent regression model is uncorrelated with or
independent of the included regressors.10 The problem is that omitted regressors are not unique, as
Pratt and Schlaifer (1988, p. 34) [1] proved.

2.2.3. A Latent Regression Model with Unique Coefficients and Error Terms

Substituting the right-hand side of Equation (4) for x˚ig in (3) gives

y˚i “ α˚i0 `

Li
ÿ

g“K`1

λ˚tg0α˚ig `
K
ÿ

j“1

x˚ijpα
˚
ij `

Li
ÿ

g“K`1

λ˚igjα
˚
igq (5)

The error term, the intercept, and the coefficients of the nonconstant regressors of this model are
řLit

g“K`1 λ˚ig0α˚ig, α˚i0, and pα˚ij `
řLi

g“K`1 λ˚igjα
˚
igq, j = 1, . . . ,K, respectively.

Bias-free partial derivatives:

α˚ij “
Bψip.q
Bx˚ij

or “
∆ψip.q
∆x˚ij

, j “ 1, . . . , K (6)

These partial derivatives have the correct functional form if the x˚ij’s are continuous.
“Sufficient” sets of omitted regressors: The regressors, x˚i,K`1, ..., x˚iLi

, are called “omitted
regressors” because they are included in (3) but not in Equation (5). The regressors x˚i1, ..., x˚iK are
called “the included regressors.” It can be seen from (5) that the portions λ˚i,K`1,0, ..., λ˚iLi0

of omitted
regressors, x˚i,K`1, ..., x˚iLi

, respectively, in conjunction with the included regressors x˚i1, ..., x˚iK are
sufficient to determine the value of y˚i exactly. For this reason, Pratt and Schlaifer (1988, p. 34) [1] called

8 We postpone making stochastic assumptions about measurement errors.
9 The label “omitted” means that we would remove them from (3).
10 Cramer (2006, p. 4) [4] and Wooldridge (2002, p. 457) [5] make the usual assumption.
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λ˚i,K`1,0, ..., λ˚i,Li ,0
“certain “sufficient sets” of omitted regressors.” The second term (

řLi
g“K`1 λ˚tg0α˚ig) on

the right-hand side of (5) is called “a function of these sufficient sets of omitted regressors x˚i,K`1, ..., x˚iLi
”

Pratt and Schlaifer (1988, 1984) [1,9] pointed out that this function can be taken as the error term of (5).
It remains as a mathematical function until we make a distributional assumption about it. Note that
the problem with the error terms of the usual latent regression models including those of (A1), Karlsen,
Myklebust and Tjøstheim’s (2007) [10] and White’s (1980, 1982) [11,12] models is that they are not the
appropriate functions of the sufficient sets of omitted regressors and hence are not unique and/or
are arbitrary.11

Deterministic omitted-regressors bias: The term
řLi

g“K`1 λ˚igjα
˚
ig contained in the coefficient of

x˚tj in (5) measures such a bias.

Swamy et al. (2014, pp. 197, 199, 217–219) [6] proved that the coefficients pα˚ij `
řLit

g“K`1 λ˚igjα
˚
igq

and the error term
řLi

g“K`1 λ˚ig0α˚ig of (5) are unique in the following sense:
Uniqueness: The coefficients and error term of model (5) are unique if they are invariant under

the addition and subtraction of the coefficient of any regressor omitted from (5) times any regressor
included in (5) on the right-hand side of (3) (see Swamy et al. 2014, pp. 199, 219) [6].

The equations in (4) play a crucial role in Swamy et al.’s (2014) [6] proof of the uniqueness of
the coefficients and error term of (5). If we had taken the sum x˚i,K`1α˚i,K`1 + ¨ ¨ ¨ + x˚iLi

α˚iLi
of the

last Li ´ K terms on the right-hand side of (3) as its error term, then we would have obtained a
nonunique error term. The reason why this would have happened is that omitted regressors are not
unique. What (4) has done is that it has split each gth omitted regressor into a “sufficient set” and an
included-regressors’ effect. This sufficient set times the coefficient of the gth omitted regressor has
become a term in the (unique) error term of (5) and the included-regressors’ effect times the coefficient
of the gth omitted regressor has become a term in omitted-regressor biases of the coefficients of (5).
This is not the usual procedure where the whole of each omitted regressor goes into the formation of
an error term and no part of it becomes a term in omitted-regressor biases. The usual procedure leads
to nonunique coefficients and error term. In the YG procedure, only some of the included regressors
which, when omitted, introduce omitted-regressor biases into the (nonunique) coefficients on the
remaining included regressors. Yatchew and Griliches (1984) [2], Wooldridge (2002) [5], and Cramer
(2006) [4] followed the usual procedure. Without using (4) it is not possible to derive a model with
unique coefficients and error term.

2.2.4. A Correctly Specified Latent Regression Model

Substituting the terms on the right-hand sides of equations x˚ij “ xij ´ ν˚ij ,
j = 1, . . . ,K, for x˚ij, j = 1, . . . ,K, respectively, in (5) gives a model of the form

y˚i “ γi0 ` xi1γi1 ` ¨ ¨ ¨ ` xiKγiK (7)

where the intercept is defined as

γi0 “ α˚i0 `

Li
ÿ

g“K`1

λ˚ig0α˚ig ´
ÿ

ν˚ij PS2

ν˚ijpα
˚
ij `

Li
ÿ

g“K`1

λ˚igjα
˚
igq (8)

and the other terms are defined as

xijγij “ xijp1´
ν˚ij
xij
qpα˚ij `

Li
ř

g“K`1
λ˚igjα

˚
igq if xij P S1

“ xijpα
˚
ij `

Li
ř

g“K`1
λ˚igjα

˚
igq if xij P S2

(9)

11 Cramer (2006, p. 4) [4] and Wooldridge (2002, p. 457) [5] adopt the usual latent regression models with nonunique
coefficients and error terms.
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where the set S1 contains all the regressors of Equation (7) that are continuous, the set S2 contains

all the regressors of (7) that can take the value zero with positive probability, the ratio of p1´
ν˚ij
xij
q in

the first line of Equation (9) comes from the equation x˚ij “ xij ´ ν˚ij “ p1´
ν˚ij
xij
qxij, and this ratio does

not appear in the second line of Equation (9) because xij P S2 can take the value zero with positive
probability.

Equation (7) implies that a model is correctly specified if it is derived by inserting measurement
errors at the appropriate places in a model with unique coefficients and error term (see Swamy et al.
(2014, p. 199) [6]).

Deterministic measurement-error biases: The formula ´
ř

ν˚ij PS2

ν˚ijpα
˚
ij `

Li
ř

g“K`1
λ˚igjα

˚
igq in (8)

measures the sum of measurement-error biases in the coefficients of xij P S2 and the formula

p´
ν˚ij
xij
qpα˚ij `

Li
ř

g“K`1
λ˚igjα

˚
igq in the first line of (9) measures such a bias in the coefficient γij of xij P S1.

Under our approach, measurement errors do not become random variables until distributional
assumptions are made about them.

2.2.5. What Specification Errors Are (3)–(8) Free from?

(i) The unknown functional form of (1) is not allowed to become the source of a specification
error in (3); (ii) The uniqueness of the coefficients and error term of (5) eliminates the specification
error resulting from non-unique coefficients and error term; (iii) Pratt and Schlaifer (1988, p. 34) [1]
pointed out that the requirement that the included regressors be independent of the excluded
regressors themselves is “meaningless”. The specification error introduced by making this meaningless
assumption is avoided by taking a correct function of certain “sufficient sets” of omitted regressors as
the error term of (5); (iv) The specification error of ignoring measurement errors when they are present
is avoided by placing them at the appropriate places in (5). It should be noted that when we affirm that
(7) is free of specification errors, we mean that it is free of specification-errors (i)–(iv). Using (3)–(6)
we have derived a real-world relationship in (7) that is free of specification-errors (i)–(iv). Thus, our
approach affirms that any relationship suffering from anyone of these specification errors is definitely
not a real-world relationship.

2.3. Comparison of (7) with the Yatchew and Griliches (1985) [2], Wooldridge (2002) [5], and Cramer (2006) [4]
Latent Regression Models

In Section 2.2.3, we have seen that the relationships between each omitted regressor and the
included regressors in (4) introduce omitted-regressor biases into the coefficients on the regressors
of (5). We have pointed out in the last paragraph of that section that this is not how Yatchew and
Griliches (YG) derived omitted-regressor biases. They work with models in which the coefficients and
error terms do not satisfy our definition of uniqueness. YG considered a simple binary choice model
and omitted one of its two included regressors. According to YG, this omission introduces omitted
regressor bias into the coefficient on the regressor that is allowed to remain. The results proved by
YG are: (i) even if the omitted regressor is uncorrelated with the remaining included regressor, the
coefficient on the latter regressor will be inconsistent; (ii) If the errors in the underlying regression
are heteroscedastic, then the maximum likelihood estimators that ignore the heteroscedasticity are
inconsistent and the covariance matrix is inappropriate (see also Greene (2012, p. 713) [3]). We do not
omit any of the included regressors from (5) to generate omitted-regressor biases. For YG, omitted
regressors in (4) are those that generate the error term in their latent regression model. Equation (5)’s
error term is a function of those variables that satisfy Pratt and Schlaifer’s definition of “sufficient
sets” of our omitted regressors. Thus, YG’ concepts of omitted-regressors, included regressors, and
error terms are different from ours. Their model is subject to specification errors (i)–(iv) listed in the
previous section. YG’s assumptions about the error term of their model are questionable because
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of its non-uniqueness. Unless its coefficients and error term are unique no model can represent any
real-world relationship which is unique. According to YG, Wooldridge, and Cramer, the regressors
constituting the error term of a latent regression model do not produce omitted-regressors biases.
Their omitted-regressor bias is not the same as those in (5). YG’s results cannot be obtained from our
model (7). Their nonunique heteroscedastic error term is different from our unique heteroscedastic
error term in (7). It can be shown that the results of YG arose as a direct consequence of ignoring
our omitted-regressor and measurement-error biases in (9). Omitted regressors constituting the YG
model’s (non-unique) error term also introduce omitted-regressor biases in our sense but not in their
sense. Furthermore, the YG model suffers from all the four specification errors (i)–(iv) which equations
(3)–(5), (7)–(9) avoid.

To recapitulate, misspecifications of the correct functional form of (1) are avoided by expressing

it in the form of Equation (3). If the sum,
Li
ř

g“K`1
x˚igα˚ig, of the last Li ´ K terms on the right-hand

side of (3) is treated as its error term, then this error term is not unique (see Swamy et al. (2014,
p. 197) [6]). Suppose that the coefficients of (3) are constants. Then the correlation between the
nonunique error term and the first K regressors of (3) can be made uncertain and certain, at the whim
of an arbitrary choice between two observationally equivalent forms of (3), as shown by Swamy et al.
(2014, pp. 217–218) [6]. To eliminate this difficulty, a model with unique coefficients and error term
is derived by substituting the right-hand side of Equation (4) for the omitted regressor, x˚ig, in (3) for
every g “ K` 1, ..., Li. Equation (7) shows how the terms of an equation look like if this equation is
made free of specification errors (i)–(iv). For each continuous xij with j > 0 in (7), its coefficient contains

the bias-free partial derivative (Bψip.q
Bx˚ij

) and omitted-regressor and measurement-error biases.

Parameterization of Model (7)

The partial derivative (By˚i {Bx˚ij) components of the coefficients (γij, j = 1, . . . , K) of (7) are the
objects of our estimation. For this purpose, we parameterize (7) using our knowledge of the probability
model governing the observations in (7). We assume that for j = 0, 1, . . . , K:

γij “ zi0πj0 ` zi1πj1 ` ¨ ¨ ¨ ` zipπjp ` εij (10)

where zi0 ” 1, the π’s are fixed parameters, the z’s drive the coefficients of (7) and are, therefore, called
“coefficient drivers.” These drivers are observed. We will explain below how to select these drivers.
The errors (εij’s) are included in Equation (10) because the p + 1 drivers may not be able to explain all
variation in γij.

Admissible drivers: For j = 0, 1, . . . , K, the vector Zi “
 

Zi0 ” 1, Zi1, ..., Zip
(1 in (10) is an

admissible set of coefficient drivers if given Zi, the value that the vector of the coefficients of (7) would
take in unit i had Xi “ t1, Xi1, ..., XiKu

1 been xi “ p1, xi1, ..., xiKq
1 is independent of Xi for all i.12

We use the following matrix notation: xi “ p1, xi1, ..., xiKq 1 is pK` 1q ˆ 1, zi “
`

1, zi1, ..., zip
˘

1 is
pp` 1q ˆ 1, π1 j “

`

πj0, πj1, ..., πjp
˘

is 1ˆ pp` 1q, γij “ π1 jzi is a scalar, Π is the (K + 1) ˆ (p + 1) matrix
having π1 j as its jth row, and εi “ pεi0, ..., εiKq 1 is pK` 1q ˆ 1. Substituting the right-hand side of (10)
for γij in (7) gives

y˚i “ x1iΠzi ` x1iεi (11)

Assumption 1. The regressors of Equation (7) are conditionally independent of their coefficients given
the coefficient drivers.

12 A similar admissibility condition for covariates is given in Pearl (2000, p. 79) [13]. Pearl (2000, p. 99) [13] also gives an
equation that forms a connection between the opaque phrase “the value that the coefficient vector of (3) would take in unit i,
had Xi “ pXi1, ..., XiKq

1 been xi “ pxi1, ..., xiKq
1” and the physical processes that transfer changes in Xi into changes in y˚i .
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Assumption 2. For all i, let g pxi, ziq be a Borel function of pxi, ziq , E
ˇ

ˇy˚i
ˇ

ˇă 8 , and E
ˇ

ˇy˚i g pxi, ziq
ˇ

ˇă 8 .
Assumption 3. For i, i1 = 1, . . . ,n, E pεi|xi, ziq “ 0, E

`

εiε
1
i
ˇ

ˇxi, zi
˘

“ σ2
ε∆ε, and E

`

εiε
1
i1
ˇ

ˇxi, zi
˘

“ 0 if
i ‰ i1.

In terms of homoscedastic error term, Equation (11) can be written as

y˚i {σε

a

x1i∆εxi “ x1iΠzi{σε

a

x1i∆εxi ` x1iεi{σε

a

x1i∆εxi (12)

where ∆ε is positive definite.
Under Assumptions 1–3, the conditional expectation

E py˚i | xi, ziq “ x1iΠzi (13)

exists (see Rao (1973, p. 97) [14].

2.4. Derivation of the Likelihood Function for (11)

The parameters of model (11) to be estimated are Π and σ2
ε∆ε. Due to the lack of observations on

the dependent variable y˚i not all of these parameters are identified. Therefore, we need to impose
some restrictions. The following two restrictions are imposed on model (11):

(i) The σ2
ε in σ2

ε ∆ε cannot be estimated, since there is no information about it in the data. To solve
this problem, we set σ2

ε equal to 1.
(ii) From (2) it follows that the conditional probability that yi = 1 (or y˚i > 0) given xi and zi is

Prob py˚i ą 0|xi, ziq “ Prob
`

x1iεi ą ´x1iΠzi
ˇ

ˇxi, zi
˘

(14)

where the information about the constant term is contained in the proportion of observations for which
the dependent variable is equal to 1.

For symmetric distributions like normal,

Prob py˚i ą 0|xi, ziq “ Prob
`

x1iεi ă x1iΠzi
ˇ

ˇxi, zi
˘

“ F
´

x1iΠzi{
a

x1i∆εxi

ˇ

ˇ

ˇ
xi, zi

¯

(15)

where F(.|.) is the conditional distribution function of x1iεi. The conditional probability that yi “ 0
(or y˚i ď 0) given xi and zi is 1´ F

´

x1iΠzi{
a

x1i∆εxi

ˇ

ˇ

ˇ
xi, zi

¯

. The conditional probability that yi “ 1

(or y˚i ą 0) given xi and zi is F
´

x1iΠzi{
a

x1i∆εxi

ˇ

ˇ

ˇ
xi, zi

¯

. F(.|.) in (15) denotes the conditional normal

distribution function of the random variable x1iεi{
a

x1i∆εxi with mean zero and unit variance; fi
is the density function of the standard normal. Let δε be the column stack of ∆ε. To exploit the
symmetry property of ∆ε, we add together the two elements of

`

x1i b x1i
˘

corresponding to the (j, j1)
and (j1, j) elements of ∆ε in x1i∆εxi and eliminate the (j1, j) element of ∆ε from δε for j = 0, 1, . . . , K .
These operations change the (1ˆ (K + 1)2) vector

`

x1i b x1i
˘

to the (1ˆ (K + 1)(K + 2)/2) vector, denoted

by
´

x1i b x1i
¯

, and change the (K + 1)2 ˆ 1 vector δε to the [(K + 1)(K + 2)/2] ˆ 1 vector, denoted by δε.
The maximum likelihood (ML) method is used to estimate the elements of Π and ∆ε. To do so,

each observation is treated as a single draw from a binomial distribution. The model with success
probability F

´

x1iΠzi{
a

x1i∆εxi

ˇ

ˇ

ˇ
xi, zi

¯

and independent observations leads to the likelihood function,

ProbpY1 “ y1, Y2 “ y2, ..., Yn “ yn|xi, ziq “
ś

y“0
r1´Fpx1iΠzi{

a

x1i∆εxi|xi, ziqs
ś

y“1
F

px1iΠzi{
a

x1i∆εxi|xi, ziq
(16)
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The likelihood function for a sample of n observations can be written as

LpΠ, ∆ε|dataq “
n
ź

i“1

rFpx1iΠzi{

b

x1i∆εxi|xi, ziqs
yi r1´ Fpx1iΠzi{

b

x1i∆εxi|xi, ziqs
1´yi (17)

This equation gives

ln L “
n
ÿ

i“1

$

’

’

&

’

’

%

yiln F

¨

˚

˚

˝

`

z1i b x1i
˘

πLong
c

´

x1i b x1i
¯

δε

˛

‹

‹

‚

` p1´ yiqln

»

—

—

–

1´ F

¨

˚

˚

˝

`

z1i b x1i
˘

πLong
c

´

x1i b x1i
¯

δε

˛

‹

‹

‚

fi

ffi

ffi

fl

,

/

/

.

/

/

-

(18)

where b is a Kronecker product and πLong is the column stack of Π.

Unconstrained and Constrained Maximum Likelihood Estimation

In the case where ∆ε is identified, then its positive definite estimate may not be obtained
unless the log likelihood function in (18) is maximized subject to the restriction that ∆ε is positive
definite. Furthermore, these constrained estimates of πLong and δε do not satisfy the following
likelihood equations.

Bln L
BπLong “

n
ÿ

i“1

„

fi pyi ´ Fiq

Fi p1´ Fiq



pzi b xiq
b

px1i b x1iqδε

“ 0 (19)

Bln L
Bδε

“

n
ÿ

i“1

„

fipyi ´ Fiq

Fi p1´ Fiq



pz1i b x1iqπLongp´
1
2
q

„

1
px1i b x1iqδε


3
2
px1i b x1iq1 “ 0 (20)

where Fi stands for F

˜

pz1ibx1iqπLong
b

px1ibx1iqδε

¸

and fi is the derivative of Fi.

We now show that ∆ε is not identified. The log likelihood function in (18) has the property that it
does not change when πLong is multiplied by a positive constant κ and δε inside the square root by κ2.
This can be seen clearly from

ln L “
n
ÿ

i“1

$

’

’

&

’

’

%

yi lnF

¨

˚

˚

˝

`

z1i b x1i
˘ `

κπLong˘

c

`

x1i b x1i
˘

´

κ2δε

¯

˛

‹

‹

‚

` p1´ yiqln

»

—

—

–

1´ F

¨

˚

˚

˝

`

z1i b x1i
˘ `

κπLong˘

c

´

x1i b x1i
¯´

κ2δε

¯

˛

‹

‹

‚

fi

ffi

ffi

fl

,

/

/

.

/

/

-

(21)

An implication of this property is that if ln L in (18) attains a maximum value at pπ̂Long1, δ̂
1

εq
1, then

pπ̂Long1κ, δ̂
1

εκ
2q1 yields another point at which ln L attains its maximum value. Consequently, solving

Equations (19) and (20) for πLong and δε gives an infinity of solutions, respectively. None of these
solutions is consistent because ∆ε is not identified. For this reason we set ∆ε = I. After inserting this
value in Equation (19), it is solved for πLong. This solution is taken as the maximum likelihood estimate
of πLong.

The information matrix, denoted by I
`

πLong˘, is

E

«

´
B2ln L

BπLongB
`

πLong
˘1

ff

(22)

where the elements of this matrix are given in Equation (A8) with ∆ε = I.
Suppose that ∆ε = I. Then the positive definiteness of (22) is a necessary condition for πLong to be

identifiable on the basis of the observed variables in (17). If the likelihood equations in (19) have a
unique solution, then the inverse of the information matrix in (22) will give the covariance matrix of
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the limiting distribution of the ML estimator of πLong . Suppose that the solution of (19) is not unique.
In this case, if Lehmann and Casella’s (1998, p. 467, (5.5)) [15] method of solving (19) for πLong is
followed, then the square roots of the diagonal elements of (22) when evaluated at Lehmann and
Casella’s solutions of (19), give the large sample standard errors of the estimate of πLong .

2.5. Estimation of the Components of the Coefficients of (7)

The estimates of the coefficients of (7) are obtained by replacing the π’s and εij of (10) by their
maximum likelihood estimates and the mean value zero, respectively. We do not get the correct
estimates of the components of γij in (9) from its estimate unless its two different functional forms in
(8) and (9) and (10) are reconciled. For a continuous xij with j > 0, we recognize that its coefficient γij
in (9) and γij in (10) are the same. Therefore, the sum zi0πj0 ` zi1πj1 ` ¨ ¨ ¨ ` zipπjp ` εij in (10) is equal

to the function p1´
ν˚ij
xij
qpα˚ij `

Li
ř

g“K`1
λ˚igjα

˚
igq in (9). We have already shown that α˚ij is equal to Bψip.q

Bx˚ij

and the sum of omitted-regressor and measurement-error biases (ORMEB) is equal to t
Li
ř

g“K`1
λ˚igjα

˚
ig ´

v˚ij
xij
pα˚ij `

Li
ř

g“K`1
λ˚igjα

˚
igqu.

Equation (9) has the form
γij “ p1´DijqpAij ` Bijq (23)

where Dij “ p
v˚ij
xij
q, Aij “ α˚ij, Bij “

Li
ř

g“K`1
λ˚igjα

˚
ig.

Equations (9) and (10) imply that

π̂j0 `

p
ÿ

h“1

zihπ̂jh “ p1´ D̂ijqpÂij ` B̂ijq (24)

where the π̂’s are the ML estimates of the π’s derived in Section 2.4. We do not know how to predict
εij and, therefore, we set it equal to its mean value which is equal to zero. Equation (24) reconciles
the discrepancies between the functional forms of (9) and (10). We have the ML estimates of all the
unknown parameters on the left-hand side of Equation (24). From these estimates, it can be determined
that for individual i and regressors xij, j = 1, . . . , K:

The estimate of the partial derivative

pα˚ijq “ Âij “ p1´ D̂ij
˘´1

pπ̂j0 `
ÿ

hPG1

zihπ̂jh

¯

(25)

The estimate of omitted-regressor bias

p

Li
ÿ

g“K`1

λ˚igjα
˚
igq “ B̂ij “ p1´ D̂ijq

´1
p
ÿ

hPG2

zihπ̂jhq (26)

The estimate of measurement-error bias

r´ p
ν˚ij

xij
qpα˚ij `

Li
ÿ

g“K`1

λ˚igjα
˚
igqs “ ´D̂ijpÂij ` B̂ijq (27)

where the p + 1 coefficient drivers are allocated either to a group, denoted by G1, or to a group, denoted
by G2; G2 “ p ` 1´ G1. The unknowns in formulas (25)–(27) are D̂ij and G1. We discuss how to
determine these unknowns below.
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The type of data Greene (2012, pp. 244–246, Example 8.9) [3] used can tell us about D̂ij. Which of

the terms in π̂j0`
p
ř

h“1
zihπ̂jh, should go into pπ̂j0`

ř

hPG1

zihπ̂jhq, can be decided after examining the sign

and magnitude of each term in π̂j0 `
p
ř

h“1
zihπ̂jh If we are not sure of any particular value of G1, then

we can present the estimated kernel functions for α˚ij, i = 1, . . . , n, for various values of G1.
Regarding Dij we can make the following assumption:

Assumption 4. For all i and j: (i) The measurement error v˚ij forms a negligible proportion p
v˚ij
xij
q of xij.

Alternatively, the percentage point p
v˚ij
xij
q ˆ 100 can be specified if we have the type of data Greene

(2012, pp. 244–246, Example 8.9) [3] had. If such data are not available, then we can make Assumption 4.
Under this assumption, p1´ D̂ijq

´1 in (25) and (26) gets equated to 1 and the number of unknown
quantities in formulas (25) and (26) is reduced to 1.

Under these assumptions, we can obtain the estimates of Âij and their standard errors.
These standard errors are based on those of π̂’s involved in Âij. If the estimate of Aij given by
formula (25) is accurate, then our estimate of the partial derivative α˚ij is free of omitted-regressor and
measurement-error biases, and also of specification errors (i)–(iv) listed in Section 2.2.5.

2.5.1. How to Select the Regressors and Coefficient Drivers Appearing in (11)?

The choice of the dependent variable and regressors to be included in (7) is entirely dictated by

the partial derivatives we want to learn. The learning of a partial derivative, say α˚ij “
By˚i
Bx˚ij

, requires

(i) the use of y˚i and x˚ij as the dependent variable and a regressor of (7), respectively; (ii) the use of
z’s in (25) and (26) as the coefficient drivers in (10); and (iii) the use of the values of G1 and Dij in (25).
These requirements show that the learning about one partial derivative is more straightforward than
learning about more than one partial derivative. Therefore, in our practical work we will include in
our basic model (7) only one non-constant regressor besides the intercept.

It should be remembered that the coefficient drivers in (10) are different from the regressors in (7).
There are also certain requirements that the coefficient drivers should satisfy. They explain variations
in the components of the coefficients of (7), as is clear from Equations (25) and (26). After deciding that

we want to learn about α˚ij “
By˚i
Bx˚ij

and knowing from (23) that this α˚ij is only a part of the coefficient γij

of the regressor x˚ij in the (y˚i , x˚ij )-relationship, we need to include in (10) those coefficient drivers that
facilitate accurate evaluation of the formulas (25)–(27). Initially, we do not know what such coefficient
drivers are. We have decided to use as coefficient drivers those variables that economists include in
their models of the (y˚i , x˚ij)-relationship as additional explanatory variables. Specifically, instead of

using them as additional regressors we use them as coefficient drivers in (10).13,14 It follows from
Equations (25) and (26) that among all the coefficient drivers included in (10) there should be one
subset of G1 coefficient drivers that is highly correlated with the bias-free partial derivative part and
another subset of G2 coefficient drivers that is highly correlated with the omitted-regressor bias of the
jth coefficient of (7).15

If G1 and Dij are unknown, as they usually are, then we should make alternative assumptions
about them and compare the results obtained under these alternative assumptions.

13 We illustrate this procedure in Section 3 below.
14 Pratt and Schlaifer (1988) [1] consider what they call “concomitants” that absorb “proxy effects” and include them as

additional regressors in their model. The result in (9) calls for Equation (10) which justifies our label for its right-hand
side variables.

15 An important difference between coefficient drivers and instrumental variables is that a valid instrument is one that is
uncorrelated with the error term, which often proves difficult to find, particularly when the error term is nonunique. For a
valid driver we need variables which should satisfy Equations (25) and (26). On the problems with instrumental variables,
see Swamy, Tavlas, and Hall (2015) [16].
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2.5.2. Impure Marginal Effects

The marginal effect of any one of the included regressors on the probability that yi “ 1 is

BProb pyi “ 1|x, z1q

Bxi
“ fipx1iΠzi{

a

x1i∆εxi |xi, ziq

˜

z1iΠ1

px1i∆εxiq
p1{2q

´
x1iΠzi p∆εxiq

px1i∆εxiq
p3{2q

¸

(28)

where we set ∆ε = I.
These effects are impure because they involve omitted-regressor and measurement-error biases.

It is not easy to integrate omitted-regressor and measurement-error biases out of the probability
in (15).16

3. Earnings and Education Relationship

This section is designed to give some specific empirical examples on the type of misspecification
that usually found in actual data sets. Several authors studied this relationship. We are also interested
in learning about the partial derivative of earnings with respect to education of individuals. For this
purpose, we set up the model

y˚i “ γi0 ` x˚i1γi1 (29)

where y˚i denotes unobserved earnings, x˚i1 denotes unobserved education, and the components of
γi0 and γi1 are given in (8) and (9), respectively. Equation (29) is derived in the same way that (7) is
derived. Like (7), Equation (29) is devoid of four specification errors. In our empirical work, we use
xi1 = years of schooling as a proxy for education.

Greene (2012, p. 14) [3] used model (29) after changing it to a fixed coefficient model with added
error term, in which the dependent variable is the log of earnings (hourly wage times hours worked).
He pointed out that this model neglects the fact that most people have higher incomes when they
are older than when they are young, regardless of their education. Therefore, Greene argued that
the coefficient on education will overstate the marginal impact of education on earnings. He further
pointed out that if age and education are positively correlated, then his regression model will associate
all the observed increases in income with increases in education. Greene concluded that a better
specification would account for the effect of age. He also pointed out that income tends to rise less
rapidly in the later earning years than in the early ones. To accommodate this phenomena and the age
effect, Greene (2012, p. 14) [3] included in his model the variables age and age2.

Recognizing the difficulties in measuring education pointed out by Greene (2012, p. 221) [3], we
measure education as hours of schooling plus measurement error. Another problem Greene discussed
is that of the endogeneity of education. We handle this problem by making Assumptions II and III.
Under these assumptions, the conditional expectation E

`

y˚i
ˇ

ˇxi, zi
˘

“ x1iΠzi exists. Other regressors
Greene (2012, p. 708) [3] included in his labor supply model include kids, husband’s age, husband’s
education and family income.

The question that arises is the following: How should we handle the variables mentioned in
the previous two paragraphs? Researchers who studied earnings-education relationship have often
included these variables as additional explanatory variables in earnings and education equation with
fixed coefficients. Greene (2012, p. 699) [3] also included the interaction between age and education as
an additional explanatory variable. Previous studies, however, have dealt with fixed coefficient models
and did not have anything to do with VCs of the type in (29). The coefficients of the earnings-education
relationship in (29) have unwanted omitted-regressor and measurement-error biases as their portions.
We need to separate them from the corresponding partial derivatives, as shown in (7) and (9). How do

16 These biases are not involved in Wooldridge’s marginal effects because according to that researcher omitted regressors
constituting his model’s error term do not introduce omitted-regressor biases into the coefficients of the included regressors.
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we perform this separation? Based on the above derivation in (1)–(9), we use the variables identified in
the previous two paragraphs as the coefficient drivers.

When these coefficient drivers are included, the following two equations get added to
Equation (29):

γij “ zi0πj0 ` zi1πj1 ` ¨ ¨ ¨ ` zi6πj6 ` εij j “ 0, 1 (30)

where zi0 = 1 for all i, zi1 = Wife’s Age, zi2 = Wife’s Age2, zi3 = Kids, zi4 = Husband’s age,
zi5 = Husband’s education, and zi6 = Family income.

It can be seen from (11) that Equation (30) with j = 0 makes the coefficient drivers act as additional
regressors in (29) and Equation (30) with j = 1 introduces the interactions between education and
each of the coefficient drivers. Greene (2012, p. 699) [3] informed us that binary choice models with
interaction terms received considerable attention in recent applications. Note that for j = 1, h = 1, . . . ,

6, πjh should not be equated to B2y˚i
Bx˚i1Bzih

because γi1 is not equal to By˚i
Bx˚i1

.

Appendix Table F5.1 of Greene (2012) [3] contains 753 observations used in the Mroz study of the
labor supply behavior of married women. We use these data in this section. Of the 753 married women
in the sample, 428 were participants and the remaining 325 were nonparticipants in the formal labor
market. This means that yi = 1 for 428 observations and yi = 0 for 325 observations. The data on xi1
and the z’s for these 753 married women are obtained from Greene’s Appendix Table F5.1. Using these
data and applying an iteratively rescaled generalized least squares method to (29) and (30) we obtain

γ̂i0 “ 27.6573
p81.0820q

` 0.1316
p3.9504q

zi1 ´ 0.0049
p0.0441q

zi2 ´ 11.9494
p7.0849q

zi3 ´ 0.4414
p0.6261q

zi4

´1.4708
p0.7910q

zi5 ` 0.0003
p0.0002q

zi6
(31)

γ̂i1 “ ´4.2328
p6.9397q

` 0.1696
p0.3405q

zi1 ´ 0.0019
p0.0038q

zi2 ` 0.5168
p0.6076q

zi3 ` 0.0261
p0.0550q

zi4

`0.0702
p0.0676q

zi5 ´ 0.000013
p0.000019q

zi6
(32)

From these equations we have computed the estimates of γi0 and γi1 and their standard errors.
To conserve space, Table 1 below is restricted to contain these quantities only for five married women.

Table 1. Estimates of γi0 and γi1 with their standard errors for five married women17.

γ̂i0 (Standard Error) γ̂i1 (Standard Error)

´13.280 1.2811
(6.5787) (0.5535)

´5.2539 0.7930
(9.1608) (0.7830)

´15.221 1.5029
(4.9202) (0.4197)

´21.577 1.8393
(11.213) (0.9942)

´9.2086 1.0386
(7.8416) (0.6504)

From (23) we obtain
γ̂i1 “

`

1´ D̂i1Âi1 ` B̂i1
˘

(33)

Our interest is in the partial derivative Âi1 “ α˚i1 “
By˚i
Bx˚i1

which is the bias-free portion of γ̂i1. This partial

derivative measures the “impact” of the ith married woman’s education on her earnings. Our prior

17 The standard errors of estimates are given in parentheses below the estimates for five married women. The estimates and
their standard errors for other married women are available from the authors upon request
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belief is that the right sign for this bias-free portion is positive. Now it is appropriate to use the formula

pα˚i1q “ Âi1 “ p1´ D̂i1q
´1
pπ̂10 `

ř

hPG1

zihπ̂1hq in (25) with j = 1 to estimateα˚i1 “
By˚i
Bx˚i1

. We assume that

D̂i1 is negligible. We need to choose the terms in the sum pπ̂10 `
ř

hPG1

zihπ̂1hq from the terms on the

right-hand side of Equation (32). It can be seen from this equation that if we retain the estimate
π̂10 = ´4.2328

p6.9397q
in the sum pπ̂10 `

ř

hPG1

zihπ̂1hq, then this sum does not give positive estimate of α˚i1 for

any combination of the six coefficient drivers in (32). Therefore, we remove π̂10 from pπ̂10`
ř

hPG1

zihπ̂1hq.

We expect the impact of education on earnings to be small. To obtain the smallest possible positive
estimate of α˚i1, we choose the smallest positive term on the right-hand side of (32). This term is
+ 0.0702
p0.0676q

zi5. Hence we set the z’s other than zi5 in
ř

hPG1

zihπ̂1h equal to zero. Thus, we obtain G1 = 1

and α̂˚i1 = + 0.0702
p0.0676q

zi5. The value of zi5 times 0.0702 gives the estimate of the impact of the ith married

woman’s education on her earnings.
To conserve space, we present the values of α̂˚i1 = + 0.0702

p0.0676q
zi5 only for only i = 1, . . . , 5 in Table 2.

The impact estimates for all 753 married women are presented in the form of a histogram or a kernel
density function in Figure 1 below. We interpret the estimate 0.0702

p0.0676q
zi5 to imply that an additional year

of schooling is associated with a 0.0702
p0.0676q

zi5 ˆ 100 percent increase in earnings. This impact of education

on earnings is different for different married women. The impact of a wife’s education on her earnings
is 0.0702 times her husband’s education.18 Our results in Table 2 and Figure 1 below show that the
greater are the years of schooling of a husband, the larger is the impact of his wife’s education on her
earnings. However, the estimates of α˚i1 appear to be high at least for some married women whose
husbands had larger years of schooling. Therefore, they may contain some omitted-regressor biases.Econometrics 2016, 4, 26 18 of 24 
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Figure 1. Estimates of the “impacts” of education on the earnings for 753 married women.

18 According to Geene (2012, p, 708) [3], it would be natural to assume that all the determinants of a wife’s labor force
participation would be correlated with the husband’s hours which is defined as a linear stochastic function of the husband’s
age and education and the family income. Our inclusion of husband’s variables in (32) is consistent with this assumption.
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Table 2. Estimates of the bias-free portion of γi1 for five married women19.

0.0702zi5

0.8419
(0.8110)

0.6314
(0.6083)

0.8419
(0.8110)

0.7016
(0.6758)

0.8419
(0.8110)

.
A histogram and a kernel density function presented in Figure 1 are much more revealing than a

table containing the values, 0.0702zi5, i = 1, . . . , 753, and their standard errors would. Also, such a
table occupies a lot of space without telling us mush. We are using Figure 1 as a descriptive device.
The kernel function in Figure 1 is multimodal. All the estimates in this figure have the correct signs.

Greene’s (2012, p. 708) [3] estimate 0.0904 of the coefficient of education in his estimated labor
supply model is not comparable to the estimates in Figure 1 because (i) his model is different from our
model; (ii) the dependent variable of his labor supply model in Greene (2012, p. 683) [3] is the log of

the dependent variable of our model (29); and (iii) our definition of By˚i
Bx˚i1

in (3) is different from Greene’s

(2012, p. 14) [3] definition of Byi
Bxi1

. Greene’s estimate is some kind of average estimate applicable to all
753 married women. It is unreasonable to expect his average estimate to be close to the estimate for
each married women. We will now show that given the 6 coefficient drivers in (32), it is not possible
to reduce the magnitudes of all the estimates in Figure 1 without changing the positive sign of some
of these estimates in the left tail end of Figure 1 to the negative sign. This is what has happened in

Figure 2. To reduce the magnitudes of the estimates of bias-free parts Âi1 “ α˚i1 “
By˚i
Bx˚i1
q of the γ̂i1’s

given in Figure 1 for all i, we use the alternative estimates, 0.0702zi5 ´ 0.000013zi6 of the bias-free parts
of the γ̂i1’s called “modified Âi1, i = 1 , . . . , 753.” The histogram and kernel density function for the
modified Âi1 is given in Figure 2 below.

Five of the estimates in the left-tail end of this figure have the wrong (negative) sign. More number
of wrong signs will occur if we try to further reduce the magnitudes of the modified estimates.
The kernel density function of the modified estimates is unimodal unlike the kernel density function
in Figure 1. The range of the modified estimates is smaller than that of the estimates in Figure 1.

From these results it is incorrect to conclude that the conventional discrete choice models and
their method of estimation give better and unambiguous results than the latent regression model in
(11) and (14) and formula (25). The reasons for this circumstance are the following: (i) The conventional
models including discrete choice models suffer from four specification errors listed in Section 2.2.5 and
the model in (11) and (14) is free of these errors; (ii) The conventional latent regression models have
nonunique coefficients and error terms and the model in (11) and (14) is based on model (5) which
has unique coefficients and error term. How can a model with nonunique coefficients and error term
give unambiguous results? (iii) The conventional method of estimating the discrete choice models
appears to be simple because these models are based on the assumption that “the” omitted regressors

19 The standard errors of estimates are given in parentheses below the estimates for five married women. These estimates and
standards errors for other married women are available from I-Lok Chang upon request.
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constituting their error terms do not introduce omitted-regressor biases into the coefficients of their
included regressors. The model in (11) and (14) is not based on any such assumption; (iv) Pratt and
Schlaifer pointed out that in the conventional model the condition that its regressors be independent
of “the” omitted regressors constituting its error term is meaningless. The error terms of the model in
(11) and (14) are not the functions of “the” omitted-regressors.Econometrics 2016, 4, 26 19 of 24 
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4. Conclusions

We have removed four major specification errors from the conventional formulation of probit
and logit models. A reformulation of Yatchew and Griliches’ probit model so that it is devoid of these
specification errors changes their results. We also find that their model has nonunique coefficients and
error term. YG make the assumption that omitted regressors constituting the error term of their model
do not introduce omitted-regressor biases into the coefficients of the included regressors. We have
developed a method of calculating the bias-free partial derivative portions of the coefficients of a
correctly specified probit model.
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Appendix

In this Appendix, we show that any of the models estimated in the econometric literature is
more restrictive than (1). We also show that these restrictions, when imposed on (1), lead to several
specification errors.

A. Derivation of Linear and Nonlinear Regressions with Additive Error Terms

A.1. Nonunique Coefficients and Error Terms

A.1.1. Beginning Problems—Rigorous Derivation of Models with Additive Error Terms

It is widely assumed that the error term in an econometric model arises because of omitted
regressors influencing the dependent variable. We can use appropriate Felipe and Fisher’s (2003) [17]
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separability and other conditions to separate the included regressors, x˚i1, ..., x˚iK, from omitted
regressors, x˚i,K`1, ..., x˚iLi

, so that (1) can be written as

y˚i “ ψi1px˚i1, ..., x˚iKq ` ψi2px˚i,K`1, ..., x˚i,Li
q “ ψi1px˚i1, ..., x˚iK; β1, ..., βpq ` εi (A1)

where εi = ψi2px˚i,K`1, ..., x˚i,Li
q is a function of omitted regressors. Let εi be the random error term and

let ψi1px˚i1, ..., x˚iKq be equal to ψi1px˚i1, ..., x˚iK; β1, ..., βpq which is an unknown function of x˚i1, ..., x˚iK
20.

Let β1, ..., βp be the fixed parameters representing the constant features of model (A1). From the above
derivation we know what type of conditions which, when imposed on (1), give exactly the model in
Greene (2012, p. 181, (7-3)) [3].

The separability conditions used to rewrite (1) in the form of (A1) are very restrictive, as shown
by Felipe and Fisher (2003) [17]. Furthermore, in his scrutiny of the Rotterdam School demand models,
Goldberger (1987) [19] pointed out that the treatment of any features of (1) as constant parameters such
as β1, ..., βp may be questioned and these parameters are not unique21. Use of non-unique parameters
is a specification error. Therefore, the functional form of (A1) is most probably misspecified.

Skyrms (1988, p. 59) [7] made the important point that spurious correlations disappear when we
control for all relevant pre-existing conditions22. Even though some of the regressors, x˚t,K`1, ..., x˚t,Lt

,
represent all relevant pre-existing conditions in our formulation of (A1), they cannot be controlled for,
as we should to eliminate false (spurious) correlations, since they are included in the error term of (A1).
Therefore, in (A1), the correlations between y˚t and some of x˚t1, ..., x˚tK can be spurious.

Karlsen, Myklebust and Tjøstheim (KMT) (2007) [10] considered a model of the type (A1) for
time series data. They assumed that tεtu is an unobserved stationary process and

 

X˚t1, ..., X˚tK
(

and
tY˚t u are both observed nonstationary processes and are of unit-root type. White (1980, 1982) [11,12]
also considered (A1) for time-series data and assumed that the εt’s are serially independent and are
distributed with mean zero and constant variance. He also assumed that εt is uncorrelated with
 

X˚t1, ..., X˚tK
(

for all t. Pratt and Schlaifer (1988, 1984) [1,9] criticized that these assumptions are
meaningless because they are about εt which is not unique and is composed of variables of which we
know nothing. Any distributional assumption about a nonunique error term is arbitrary.

A.1.2. Full Independence and the Existence of Conditional Expectations

Consider (A1) again. Let X = ψi1
`

x˚i1, ..., x˚iK
˘

, Y = y˚i and M = εi, be three random variables.
Then X and M are statistically independent if their joint distribution can be expressed as the product of
their marginal distributions. It is not possible to verify this condition.

Let H(X) and K(M) be the functions of X and εi, respectively. As Whittle (1976) [20] pointed out,
we must live with the idea that, for the given random variables like M and X, we may be only able to
assert the validity of the condition

ErHpXqKpMqs “ ErHpXqsErKpMqs (A2)

where the functions H and K are such that E[H(X)] <8 and E[K(M)] <8. If condition (A2) holds only
for certain functions, H and K, then we cannot say that X and M are independent. Suppose that
Equation (A2) holds only for linear K, so that E[H(X)M] = E(M)E[H(X)] for any H for which
E[H(X)] < 8. This equation is equivalent to E pεi|xq “ E pεiq which shows that the disturbance at

20 Another widely cited work that utilized a set of separability conditions is that of Heckman and Schmierer (2010) [18].
These authors postulated a threshold crossing model which assumes separability between observables Z that affect choice
and an unobservable V. They used a function of Z as an instrument and used the distribution of V to define a fundamental
treatment parameter known as the marginal treatment effect.

21 The “uniqueness” is defined in Section2.2.3.
22 We have been using the cross-sectional subscript i so far. We change this subscript to the time subscript t wherever the topic

under discussion requires the use of the latter subscript.
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observation i is mean independent of x at i. This may be true for all i in the sample. This mean
independence implies Greene’s (2012, p. 183) [3] assumption (3).

Let us now drop condition (A2) and let us assume instead that

HpXq be a Borel function of X, (A2.1)

E|Y| ă 8, (A2.2)

E|YHpXq| ă 8. (A2.3)

Using these assumptions, Rao (1973, p. 97) [14] proved that

ErHpXqY |X “ xs “ HpxqEpY |xq (A3)

EtHpXqrY ´ EpY |Xqsu “ 0 (A4)

Equations (A3) and (A4) prove that under conditions (A2.1)–(A2.3), E (Y |x) exists23.

A.1.3. Linear Conditional Means and Variances

Under the necessary and sufficient conditions of Kagan, Linnik and Rao’s (KLR’s) (1973,
pp. 11–12) [22] lemma (reproduced in Swamy and von zur Muehlen (1988, pp. 114–115) [23]), the
following two equations hold almost certainly:

EpY˚i |x
˚
i1, ..., x˚iKq “

K
ÿ

j“0

x˚ijβ j with x˚i0 ” 1 for i “ 1, ..., n (A5)

and
Var pY˚i |x

˚
i1, ..., x˚iKq “ σ2

ε , a finite, positive constant for all i “ 1, . . . , n (A6)

If the conditions of KLR’s lemma are not satisfied, then (A5) and (A6) are not the correct first and
second conditional moments of Y˚i . The problem is that we cannot know a priori whether or not these
conditions are satisfied. The conditions of KLR’s Lemma are not satisfied if

 

x˚t1, ..., x˚tK
(

and ty˚t u are
integrated series24. Furthermore, ty˚t u cannot be made stationary by first differencing it once or more
than once because of the nonlinearity of ψt1

`

x˚t1, ..., x˚tK
˘

. In these cases, we can use, as Berenguer-Rico
and Gonzalo (2013) [24] do, the concepts of summability, cosummability and balanced relationship to
analyze model (A1). Clearly the conditions of KLR’s lemma are stronger than White’s assumptions
which, in turn, are stronger than KMT’s (2007) [10] assumptions. It is clear that KMT’s assumptions
are not always satisfied.

B. Derivation of the Information Matrix for (10)

Consider the log likelihood function in (18). For this function,

B2lnL
BπLongBpπLongq1

“ B

BpπLongq1

n
ř

i“1

”

yi fi
Fi
´
p1´yiq fi
p1´Fiq

ı

pzibxiq
b

px1 ibx1 iqδε

“
n
ř

i“1

„

yip
f 1 i
Fi
´

f 2
i

F2
i
q ´ p1´ yiqp

f 1 i
p1´Fiq

`
f 2
i

p1´Fiq
2 qs

pzibxiqpz1 ibx1 iq
px1 ibx1 iqδε

(A7)

23 This proof is relevant to Heckman’s interpretation that in any of his models, the error term is the deviation of the dependent
variable from its conditional expectation (see Heckman and Vytlacil (2005) [21]. Conditions (A2.1)–(A2.3) do not always
hold and hence this conditional expectation does not always exist.

24 A nonstationary series is integrated of order d if it becomes stationary after being first differenced d times (see Greene (2012,
p. 943) [3]). If

 

y˚t
(

in (A1) is a nonstationary series of this type, then it cannot be made stationary by first differencing it
once or more than once if ψt1

`

x˚t1, ..., x˚tK
˘

is nonlinear. Basmann (1988, p. 98) [8] acknowledged that a model representation
is not free of the most serious objection, i.e., nonuniqueness, if stationarity producing transformations of its observable
dependent variable are used.
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where f 1i is the partial derivative of fi with respect to πLong.
E pyiq “ 1ˆ Fi ` 0ˆ p1´ Fiq “ Fi. Using this result in (A7) gives

E
„

´
B2lnL

BπLongBpπLongq1



“

n
ÿ

i“1

f 2
i

Fi p1´ Fiq

pzi b xiq
`

z1i b x1i
˘

´

x1i b x1i
¯

δε

(A8)

where the condition that n > (K + 1)(p + 1) is needed for the matrix on the right-hand side of this
equation to be positive definite.

B2ln L
BπLongBδ1ε

“ B

Bδ1ε

n
ř

i“1

pzibxiq
b

px1ibx1iqδε

”

yi fi
Fi
´
p1´yiq fi
p1´Fiq

ı

“
n
ř

i“1

pzibxiq
b

px1ibx1iqδε

„

yip
f 1i
Fi
´

f2
i

F2
i
q ´ p1´ yiqp

f 1i
p1´Fiq

`
f2
i

p1´Fiq
2 q



ˆp´ 1
2 q
pz1ibx1iqπLong

´

x1ibx1i
¯

´´

x1ibx1i
¯

δε

¯3{2 `
n
ř

i“1

”

yi fi
Fi
´
p1´yiq fi
p1´Fiq

ı

p´ 1
2 q
pzibxiq

´

x1ibx1i
¯

´´

x1ibx1i
¯

δε

¯3{2

(A9)

E
„

´
B2ln L

BπLongBδ1ε



“

n
ÿ

i“1

f2
i

Fi p1´ Fiq

pzi b xiq
c

´

x1i b x1i
¯

δε

p´
1
2
q

`

z1i b x1i
˘

πLong
´

x1i b x1i
¯

´´

x1i b x1i
¯

δε

¯3{2
(A10)

B2ln L
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4 q

„

1
px1 ibx1 iqδε

3
px1i b x1iq1px1i b x1iq

`
n
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(A11)

Taking the expectation of both sides of Equation (A11) gives

E
„

´
B2ln L
BδεBδ1ε



“

n
ÿ

i“1

f2
i

Fi p1´ Fiq
p

1
4
q

“`

z1i b x1i
˘

πLong‰2

”´

x1i b xi
1
¯

δε

ı3 px1i b x1iq1px1i b x1iq (A12)

where the condition that n > (K + 1)(K + 1) is needed for the matrix on the right-hand side of this
equation to be positive definite.
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