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Abstract: In many microeconometric models we use distances. For instance, in modelling 

the individual behavior in labor economics or in health studies, the distance from a relevant 

point of interest (such as a hospital or a workplace) is often used as a predictor in a 

regression framework. However, in order to preserve confidentiality, spatial micro-data are 

often geo-masked, thus reducing their quality and dramatically distorting the inferential 

conclusions. In particular in this case, a measurement error is introduced in the independent 

variable which negatively affects the properties of the estimators. This paper studies these 

negative effects, discusses their consequences, and suggests possible interpretations and 

directions to data producers, end users, and practitioners. 
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1. Introduction 

In many microeconometric studies we often use distances. For instance in labor, in schooling, or in 

health studies, the distance between each observed individual and a conspicuous point (e.g., a hospital 

or the workplace or a school) is often used as a predictor in a regression model. Furthermore, if our 

aim is to take into account the interacting effects between individuals using econometrics methods [1], 

we often build up weight matrices based on some inverse-distance function, using the two by two 

distances between individuals as the basis for the calculation. When analyzing granular micro spatial 

data (like e.g., household surveys), in order to preserve confidentiality the coordinates of each 

individual are often displaced according to some random method. For instance some recent DHS 

surveys coordinates are first collected in the field using GPS receivers with an accuracy of less than  

15 m, but then, in order to ensure that respondent confidentiality is maintained, the observed points are 

geo-masked along a random distance and a random angle (see, e.g., [2]) using different maximum error 

distances in urban and rural areas (see [3–5] for details). A second method is the Gaussian  

geo-masking which consists in randomly reallocating the point in the neighborhood of the true 

location, with a probability described by a Gaussian bivariate density function centered on the true 

point. This paper’s contribution consists in analyzing the problems induced by geo-masking in 

econometric models as a problem of measurement error. In Section 2 we will consider the 

measurement error induced by geo-masking in case the distance is used as a predictor in a regression 

model. Section 3 concludes with some practical comments and directions to assist the statistics 

producers to calibrate the geo-masking procedures before delivering the data to the public. 

2. Effects of Geo-Masking When We Use the Distance as a Predictor in a Regression 

2.1. Generalities 

Let us consider the case of the estimation of a linear regression when the true individuals’ 

coordinates are not disclosed for confidentiality and a distance from a relevant point is used as a 

predictor. For instance, in health economics it is common practice to postulate a relationship between a 

health outcome for each individual (such as the effect of a health policy), say y, and the individual’s 

distance (say d) from a clinic or a hospital. To illustrate the essence of the problem we will restrict 

ourselves to the case, admittedly unrealistic, of a simple regression without any further predictors. 

Furthermore, to simplify the algebra without compromising the generality of the results, we will 

postulate a relationship between the health outcome and the squared distance from a relevant point. 

When data are geo-masked, the distance between each individual and a conspicuous point will be 

upward biased (as shown, e.g., by Arbia et al., 2015 [5] and Elkies, et al., 2015 [6]). This paper shows 

that, when the masking procedure is disclosed, this information can be taken into account for the 

benefit of the analysis. 

To start with, let us recall that the classical error measurement theory (e.g., [7]) defines the true 

model as: 
2

ij ij ijy d v= α + β +  (1)
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for each individual observed in the point of coordinates (i,j), with ijd  the distance between point (i,j) 

and the point of interest and 2. . .(0, )ij vv n i d≈ σ . The distance is observed with an error due to  

geo-masking and the measurement error is defined as: 
22
ijijij ddu −=  

with 2
ijd  the squared distance observed after geo-masking. Following the classical theory, as it is 

known, uij should be assumed to be such that: 0)( =ijuE , 2( )ij uVar u = σ =  constant, and uij independent 

of vij and of 2
ijd . Normality of u is also often assumed. In these conditions, having called β̂  the OLS 

estimator of β, such estimator will be still unbiased, but less efficient, since its variance can now be 

expressed as: 

2 2

2 2 2 2

2 2
ˆ( ) u v v

d d

Var
n n

β σ + σ σβ = >
σ σ

 (2)

The estimator will also be inconsistent with a downward asymptotic bias towards zero (called 

attenuation) quantified by the expression [7]: 

2

2

2

2 2
ˆlim d

u d

p
 σ

β = β < β  σ + σ 
 (3)

with 2
2dσ  the variance of the squared uncontaminated distances. 

However, in the case of a measurement error induced by geo-masking, the results are quite different 

from the classical, as we will illustrate in the next sections. 

2.2. Gaussian Geo-Masking within a Circle 

Let us start considering the effect of geo-masking when using a distance as a regressor in  

an econometric model, in the case of Gaussian geo-masking, that is when the true individuals’ location 

is perturbated with a bivariate Gaussian distribution centered on the true point. More formally let us 

consider the point of coordinates (i,j) and let us geo-mask this point by disclosing, instead, the 
coordinates ii i= + ε  and jj j= + ε  with 2. . .(0, )i n i d εε ≈ σ . Let us further consider, for each individual 

point, its distance from a conspicuous point that, without loss of generalities, we can allocate at the 

origin of the Cartesian system. In this case the true squared distance of the point of coordinates (i,j) 
from the conspicuous point is given by: 

222 jidij +=  

while, after geo-masking we observe instead 
2 2 2 2 2 2 2( ) 2( )ij ij i j i j ij ijd i j d i j d u= + = + ε + ε + ε + ε = +  (4)

because of our definitions. 

So the term u defines the measurement error on the independent variable of the model as in the 

classical theory. However, in contrast with the classical theory, in this case we have: 
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2( ) 2 0    ,ijE u i jε= σ ≠ ∀  (5)

and 

( )2 2 2( ) 4ij ijVar u dε ε= σ σ +  (6)

Thus the measurement error has non-zero mean and non-constant variances. (See Appendix A for  

the proof). The non-zero mean does not affect the point estimate of the parameter β, but only the 

constant term. Equation (6) shows that the procedure of geo-masking also induces heteroscedasticity. 

Furthermore from Equation (4) we have: 

( ) ( )2 22 2 2
ij ij ij i j iju d d i j d= − = + ε + + ε −  (7)

As a consequence (since 2
ijd , i and j are constant terms and 2. . .(0, )i n i d εε ≈ σ ) 2

2 ( )u ≈ χ λ  is  

a non-central Chi-squared with 2 degrees of freedom and non-centrality parameter 
2

2

ijd

ε

λ =
σ

. The proof 

is left to Appendix B. 

Following the classical theory, the OLS estimator will be less efficient and inconsistent recalling 

Equations (2) and (3). In particular, in the case of Gaussian geo-masking, the variance of the OLS 

estimator will be: 

( )
2 2

2 2 2 2 2 2

2 2

4
ˆ( )

ij v v
ij

d d

d
Var

n n
ε εβ σ σ + + σ σβ = >

σ σ
 (8)

Thus, the larger are 2
εσ  and the larger the distance from the conspicuous point is, the lower the 

precision of the estimate will be. The precision also depends on the square of the true value of β. 

Furthermore, using Equation (6) to evaluate the attenuation, we have: 

( )
2 2

2 2

2 2

2 2 2 2 2 2
ˆlim

4
d d

u ijd d

p
dε ε

  σ σ
 β = β = β    σ + σ σ σ + + σ   

 (9)

which shows that the attenuation effect on the OLS estimator is greater in the presence of a larger  

geo-masking variance of higher distances. 

In practical cases, to communicate with practitioners, it is useful to introduce the Gaussian  

geo-masking mechanism with reference to a maximum displacement distance which is easier  

to interpret than a variance for non-specialists. Since in a Gaussian distribution 
( 3 3 ) 0.9973P x− σ ≤ ≤ σ = , with a probability close to 1 we can assume that the maximum 

displacement distance is 3σ. If we call θ* such maximum distance, we have that 3σ = θ*. So the 

expected measurement error is 2 *22
( ) 2

9
E u ε= σ = θ  and the bias can be seen as a fraction of the 

maximum squared displacement distance. Furthermore its variance can be expressed as 
*4 *2 24 8

( )
81 9 ijVar u d= θ + θ  which shows that uncertainty increases with the maximum displacement 

distance and with the absolute position of the individual with respect to the conspicuous point. By 

using this alternative expression, the variance of the OLS estimator can be expressed as: 
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2

2 *4 *2 2 2

2

4 4
81 9ˆ( )

ij v

ij
d

d
Var

n

 β θ + θ + σ 
 β =

σ
 (10)

and the attenuation effect as: 

2 2

2
2

2 2

2 2
*4 *2 2 2

ˆlim
4 4

81 9

d d

u d ij d

p
d

 
 σ σ 

β = β = β    σ + σ    θ + θ + σ
 

 (11)

which shows more intuitively the negative effects of geo-masking on the OLS estimates. The greater  

the maximum displacement distance is, the larger both the loss in efficiency and the attenuation effect 

will be. 

2.3. Uniform Geo-Masking within a Circle 

Let us now turn to analyze the effects of a uniform geo-masking (such as the one employed, e.g.,  

by DHS, 2013 [4]), that is a mechanism which transforms the coordinates displacing them along a 

random angle (say δ) and a random distance (say θ) both obeying a uniform probability law. The 

mechanism can be formally expressed through the following hypotheses: 

HP1: *(0, )
iid

Uθ θ≈  and (0,360 )
iid

Uδ °≈ , with θ* the maximum distance error, and 

HP2: θ and δ are independent. 

Assuming again, without loss of generality, that the conspicuous point is located in the origin, the true 

squared distance between point of coordinates (i,j) and the conspicuous point before geo-masking is 
measured by )( 222 jidij += , while, after geo-masking, it can be expressed, using the polar coordinates, as: 

2 2 2( ) ( )ijd i Cos j Sin= + θ δ + + θ δ  (12)

Expanding Equation (12) we obtain: 
2 2 2 2 2 2 2( 2 2 )ijd i i Cos Cos j j Sin Sin= + θ δ + θ δ + + θ δ + θ δ  

so that we can now express the measurement error as: 

( ) ( )2 2 2 2 22ij ij iju d d iCos jSin Cos Sin= − = θ δ + δ + θ δ + δ  (13)

Similarly to the Gaussian case we have a non-zero mean and a non-constant variance, given by: 

0
3

)(
*

≠= θ
ijuE  (14)

and 

*4 *2 217 2
( )

180 3ij ijVar u d= θ + θ  (15)

Again the proofs are left to the appendices, specifically to Appendix C. 
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So, consistently with the results obtained with a Gaussian geo-masking and according with the 

intuition, the measurement error increases its variance as the maximum displacement distance θ* 

increases and as we move away from the conspicuous point. 

If we use this result again to provide an explicit expression to the estimation variance and to the 

attenuation effect, we have, respectively: 

2

2 *4 *2 2 2

2

17 2
180 3ˆ( )

ij v

ij
d

d
Var

n

 β θ + θ + σ 
 β =

σ
 (16)

and 

2 2

2
2

2 2

2 2
*4 *2 2 2

ˆlim
17 2
180 3

d d

u d ij d

p
d

 
 σ σ 

β = β = β    σ + σ    θ + θ + σ
 

 (17)

which lead to very similar conclusions to those found for the Gaussian geo-masking (see Equations (10) 

and (11)). The greater the maximum displacement distance is, the lower the precision and the larger 

the attenuation effects are. 

3. Discussion and Conclusions 

In this paper we examined the measurement error on distances introduced by the procedure of  

geo-masking the individuals’ true location to protect their confidentiality, when such distances are 

used as predictors in a linear regression. The formal expressions that we derived for the loss in 

efficiency and for the attenuation in the case of Gaussian and uniform geo-masking, are very important 

under the practical point of view. In fact, the true location of each of the observed individuals is known 

to the producer of the official statistics before the displacement is introduced and so it is the variance 
term 2

2

d
σ . So, in principle, the data producers could calculate the appropriate expression before  

geo-masking the data when choosing the maximum location error (θ*) so as to limit the negative 

consequences on the subsequent analysis. Furthermore, the data producer could disclose to the end users 

and to the practitioners the level of attenuation which is expected given the chosen geo-masking procedure. 

In fact, for any given dataset, Expressions (11) and (17) are just functions of the maximum displacement 

distance θ*. 

To illustrate this point, suppose, for instance, that n = 100 individuals have been observed in a 

unitary squared study area as it is shown in Figure 1. 
Taking these points as given we have that 2

ijd  = 0.520151 (considering for operational reasons the 

mean of all squared distances from the origin) and 2

2

d
σ  = 0.1592879. Figure 2 reports the behavior of 

the attenuation effect for Gaussian and uniform geo-masking for the values of the maximum 

displacement distance θ* ranging between 0 and 1.44 (1.44 being the theoretical maximum possible 

distance in a unitary square). 

Two features emerge from the inspection of the graph. First, the attenuation increases dramatically 

already at small levels of θ*. Secondly, the Gaussian geo-masking, other things being constant, 
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produces more severe consequences on the estimation of β than the uniform geo-masking. This graph 

could be used by the data producers to calibrate the optimal value of θ* and to communicate to the 

practitioners the resulting level of attenuation they should expect from a regression analysis. 

 

Figure 1. Spatial coordinates of n = 100 individuals located in a unitary square. 

 

Figure 2. Attenuation effect in the presence of geo-masking as a function of the maximum 

displacement distance θ*. Gaussian geo-masking (red line). Uniform geo-masking  

(green line). 
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Appendix A 

Proof: Expression (5) in the text can be proved as follows. First of all, consider that: 

2 2 2 2( ) ( ) 2( ) 2 ( ) 2 ( )( ) 2 ( )ij i j i jE u E i j E E i j E = ε + ε + ε + ε = ε + ε + = ε   

since ( )iE ε  = 0. Furthermore, ( )2 2 2( )Var E εε = ε = σ  

Q.E.D. 

Similarly Equation (6) can be proved by considering that: 

2 2 2 2 2 2 2 2( ) ( ) 2( ) 2 ( ) 4 ( )( ) 2 ( ) 4i j i j i ijVar u Var i j Var Var i j Var dε = ε + ε + ε + ε = ε + ε + = ε + σ   

due to independence. For the term )( 2εVar  in this expression, consider that, since 2. . .(0, )i n i d εε ≈ σ , 

. . .(0,1)n i d
ε

ε ≈
σ

, and 
2

2
12

ε

ε ≈ χ
σ

. So 
2

2
2Var

ε

 ε = σ 
 and, hence, ( )2 42Var εε = σ  which substituted in the 

previous expression, proves the result. 

Q.E.D. 

Appendix B 

Proof: To prove that the distribution of the measurement error is a non-central Chi square, in 
Expression (7) consider that, if we divide both terms by 2

εσ  we have: 

2 2 2 22 2

2 2 2

ij ij iju d di j i j

ε ε ε ε ε ε ε ε ε

       + ε + ε ε ε= + − = + + + −       σ σ σ σ σ σ σ σ σ       
 

The last term in this expression is a constant while each of the term in the brackets is 
1

;1N
ε

 
 σ 

. 

Hence u is the sum of two independent squared normal distributions with non-zero mean and, as  

a consequence, it is distributed as a non-central Chi-squared with 2 degrees of freedom and  

non-centrality parameter 
2 2 2

2 2 2

i j d

ε ε ε

 
λ = + = σ σ σ 

. 

Q.E.D. 

Appendix C 

Proof: The result reported in Equation (14) can be proved as follows. Consider that Expression (13) 

can be written as: 

2 2 2( ) 2 ( ) ( )ijE u E iCos jSin Cos Sin = θ δ + δ + θ δ + δ   

and, due to Hp2: 
2 2 2( ) 2 ( ) ( ) 2 ( ) ( ) ( ) ( )ijE u iE E Cos jE E Sin E E Cos Sin= θ δ + θ δ + θ δ + δ  
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Furthermore, we have that due to HP1: 

[ ]
360 360

360

0
0 0

1 1
( ) ( ) ( ) ( ) 0 ( )

360 360
E Cos Cos f d Cos d Sin E Sinδ = δ δ δ = δ δ = δ = = δ   

We also have that: 
2 2 2 2( ) ( ) ( )E E Cos Sin E θ δ + δ = θ   

from the Pythagorean identity. 

Finally, since, from HP1, *(0, )
iid

Uθ θ≈ , then 
*

( )
2

E θθ =  and 
*2

( )
12

Var θθ = , so that 

*2 *2 *2
2 2( ) ( ) ( )

12 4 3
E Var E θ θ θθ = θ + θ = + =  which proves Expression (11). 

Q.E.D. 

Similarly, to prove Expression (15) consider that: 

)( ijuVar  2 2 2 2 2 24 ( ) ( ) 4 ( ) ( )i Var Cos Var Cos j Var Sin Var Sin= θ δ + θ δ + θ δ + θ δ  

since all cross terms have zero expectation. 

Let us examine the various terms in this expression. First of all, we have that:  
2 2 2( ) ( ) ( )Var Cos E Cos E Cosθ δ = θ δ − θ δ  

and, due to Hp2: 

)( δθCosVar 2 2 2 2( ) ( ) ( ) ( )E E Cos E E Cos= θ δ − θ δ = )()( 22 δθ CosEE  

because ( )E Cosδ  = 0: 

Furthermore: 
360360 360

2 2 2

00 0

1 1 360 360 360 0 0 1
( ) ( ) ( ) ( )

360 360 2 2 2

Cos Sin Cos SinE Cos Cos f d Cos d − δ = δ δ δ = δ δ = + =     

and, as already seen 
*2

2( )
3

E θθ = . So, eventually: 

*2

( )
6

Var Cos θθ δ =  = ( )Var Sinθ δ . 

Secondly, we have that  

2 2 4 4 2 2 2( ) ( ) ( )Var Cos E Cos E Cosθ δ = θ δ − θ δ =  4 4 2 2 2( ) ( ) ( ) ( )E E Cos E E Cosθ δ − θ δ  

In this expression we have that: 
** * 5 *5 *4

4 4 4
* * *

0 0 0

1 1 1
( ) ( )

5 5 5
E f d d

θθ θ  θ θ θθ = θ θ θ = θ θ = = = θ θ θ 
  , 

360 360
3604 4 3 2

0 0

360
2

0

1 3
( ) cos ( ) cos sin cos

360 4

1 3 1 3 360 3
cos

360 4 360 4 2 8

o
E Cos f d d

d

 
 δ = δ δ δ = δ δ + δ δ =  
 

   = δ δ = =   
  

 


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and, as already seen: 

2 1
( )

2
E Cos δ =  

As a consequence we have: 

*4 *4
2 2 *4 2 23 1 17

( ) ( )
5 8 9 4 360

Var Cos Var Sinθ θθ δ = − = θ = θ δ  

So eventually: 
2 *2 2 *2

*44 4 34
( )

6 6 360

i jVar u θ θ= + + θ  

*2
2 2 *42 17

( )
3 180

i jθ= + + θ  

and finally 

*2
2 *42 17

( )
3 180

Var u dθ= + θ  

Q.E.D. 
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