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Abstract: Time-series data, which exhibit a low signal-to-noise ratio, non-stationarity, and non-
linearity, are commonly seen in high-frequency stock trading, where the objective is to increase the
likelihood of profit by taking advantage of tiny discrepancies in prices and trading on them quickly
and in huge quantities. For this purpose, it is essential to apply a trading method that is capable of
fast and accurate prediction from such time-series data. In this paper, we developed an online time
series forecasting method for high-frequency trading (HFT) by integrating three neural network deep
learning models, i.e., long short-term memory (LSTM), gated recurrent unit (GRU), and transformer;
and we abbreviate the new method to online LGT or O-LGT. The key innovation underlying our
method is its efficient storage management, which enables super-fast computing. Specifically, when
computing the forecast for the immediate future, we only use the output calculated from the previous
trading data (rather than the previous trading data themselves) together with the current trading
data. Thus, the computing only involves updating the current data into the process. We evaluated the
performance of O-LGT by analyzing high-frequency limit order book (LOB) data from the Chinese
market. It shows that, in most cases, our model achieves a similar speed with a much higher accuracy
than the conventional fast supervised learning models for HFT. However, with a slight sacrifice
in accuracy, O-LGT is approximately 12 to 64 times faster than the existing high-accuracy neural
network models for LOB data from the Chinese market.

Keywords: high-frequency; limit order book; online fast prediction; hybrid neural network

1. Introduction

More and more investment institutions have entered the trading practice as the finan-
cial markets have significantly grown in recent years. This has led to a rapid increase in
the amount of financial time-series data generated through high-frequency trading on the
financial markets, presenting both opportunities and challenges for researchers to tackle.
Our study in this paper focuses on analyzing the time-series data of limit order books
(LOBs) for high-frequency trading (HFT). LOBs are records of outstanding limit orders
maintained by the security specialists who work at the exchange. A limit order is a type
of order to buy or sell a security at a specific price or higher. LOBs can be regarded as
financial time series that reflect expected price levels for traders. By using a limit order
book, traders can specify the exact price at which they want to buy or sell a security, such
as an asset stock, so that the involved risk can be properly managed and the prospective
returns can be maximized. However, LOBs are characterized by a low signal-to-noise
ratio, non-stationarity, and non-linearity (Henrique et al. 2019), making it a challenge to
effectively and efficiently analyze them.

Stock (or more generally, security) price prediction is a key task in analyzing LOB
data, which helps investors develop trading strategies and select investment portfolios
that are more likely to produce high returns with low risks. Accurate forecasting of stock
prices requires a robust and efficient model. Despite the abundance of research in this field,
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the challenges associated with the speed of computing such models remain. The main
objective of our paper was to develop a fast online hybrid neural network model to predict
stock prices.

To prepare for this development, a brief review of the current methods for stock
price prediction is presented in the following. Overall, most of these methods fall into
three categories: statistical parametric models, machine learning techniques, and deep
learning approaches.

Regarding the statistical parametric models for stock price prediction, Cenesizoglu
et al. (2016) extracted the informative variables that characterize LOBs, so as to establish
a vector auto-regressive (VAR) model to analyze how various features of the LOBs affect
prices. Mondal et al. (2014) evaluated the accuracy and variability of stock price forecasts
using an auto-regressive integrated moving average (ARIMA) model. They employed the
model selection criterion AICc to estimate the optimum ARIMA model and also analyzed
the impact of altering the time frame of historical data on prediction accuracy. Tran et al.
(2017) employed multi-linear discriminant analysis (MDA) to forecast large-scale mid-
price movements through high-frequency limit order book data. Catania et al. (2022)
introduced a multi-variate model for discrete high-frequency stock price changes using
a hierarchical hidden Markov model based on the Skellam distribution, which accounts
for the large proportion of zero returns and the co-staleness phenomenon. Although
statistical parametric models are computationally efficient, they have limitations when
applied to complex stock prices data and may not yield the desired results due to their
strong dependence on assumptions that may not be met by these data.

A data-driven machine learning model is not typically constrained by assumptions.
Rather, it uses the data themselves to identify patterns and relationships that can inform
predictions. Yun et al. (2021) proposed a system for predicting the direction of stock
price movements that emphasizes an enhanced feature engineering process. The system
utilizes a hybrid of genetic algorithms and extreme gradient boosting (GA-XGBoost) to
optimize the selection of features used in the prediction. Kercheval and Zhang (2015) used a
multi-class support vector machine to capture the dynamics of high-frequency LOBs, which
automatically predicts mid-price movement and other indicators in real time. Previous
works in machine learning for stock price prediction have highlighted the importance of
extracting relevant features from the underpinning big data for prediction.

Deep learning is a branch of machine learning that uses neural networks, each with
multiple layers, to analyze data. These layers sequentially transform the raw data into
informative statistics, allowing the model to extract important features and patterns from
the raw data. A convolutional neural network (CNN) is a typical example. Tsantekidis
et al. (2017) applied a deep learning approach that forecasts stock price movements by
utilizing a CNN. Experiments show that the results of the CNN outperform many other
machine learning models such as support vector machines. However, compared to other
network structures, a CNN is relatively unsophisticated and underperforms in analyzing
high-frequency trading data.

Recurrent neural networks (RNNs), such as long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) and gated recurrent unit (GRU) (Cho et al. 2014), have been
widely used to predict stock prices. These architectures are well suited for time-series data,
such as stock data, because they have the ability to keep previous inputs in their memory,
which is important for incorporating the temporal dependencies from the inputs into the
prediction process. Chen and Zhou (2020) proposed a stock prediction model that combines
genetic algorithm feature selection with LSTM neural networks, demonstrating improved
performance over benchmark models. As the complexity of financial data increases, more
advanced neural network architectures have emerged to address these challenges. The
transformer (Vaswani et al. 2017) architecture, which utilizes a self-attention mechanism to
weigh the importance of various input sequences, has been particularly useful for stock
prediction, as it enables the model to weigh the importance of all financial indicators from
the past, such as previous stock prices and volumes. Ding et al. (2020) developed a novel
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transformer-based approach for stock movement prediction, introducing enhancements
such as multi-scale Gaussian prior, orthogonal regularization, and trading gap splitter.
These improvements increased locality, reduced redundant head learning in multi-head
self-attention, and captured hierarchical features in high-frequency financial data.

Hybrid neural networks, which combine different types of neural networks, can have
better overall performance in stock prediction because they take advantage of the strengths
of their respective architectures. Zhang et al. (2019) proposed deep convolutional neural
networks for limit order books (DeepLOB). Three building blocks make up the network
architecture of DeepLOB: convolutional layers, parallel inception layers, and an LSTM
layer. Zhang and Zohren (2021) proposed DeepAcc for LOBs, which combines DeepLOB
with a hardware acceleration mechanism for performing stock prediction. Both DeepLOB
and DeepAcc utilize a CNN model as the encoder, which transforms the stock data into a
vector. This is followed by a decoder that produces the final output.

While the accuracy of price prediction is undoubtedly a key performance indicator, the
issue of computing speed by these deep learning methods is largely ignored in assessing the
methods’ performance in the literature. In fact, in high-frequency trading, speed is crucial
to a number of strategies, e.g., cross-market arbitrage and market making. Baron et al.
(2019) discovered that variations in the relative latency can have a significant impact on
the trading performance of HFT firms when they investigated the competition among
these firms. Therefore, it is necessary to improve the prediction speed of their methods for
investors to obtain more profits without undue risks.

Motivated by the above review and discussion, we propose an online hybrid neural
network method for predicting stock prices based on high-frequency LOB time-series
data, where we focus on achieving optimal computing speed while maintaining a high
prediction accuracy and feasible computing memory. Our proposed method was developed
by integrating the three neural network deep learning models LSTM, GRU, and transformer
into an online architecture; hence, it is named online LGT or O-LGT. The key innovation
underlying O-LGT is its efficient storage management, enabling super-fast computing.
Specifically, when computing the stock forecast for the immediate future, we only use the
output calculated from the previous trading data (rather than the previous trading data
themselves) together with the current trading data. Thus, the computing only involves
updating the current data in the process. Details of the method are presented in Section 3.

Comparisons of our proposed method with the currently available stock price pre-
diction methods reviewed above are also presented in this paper. For the Chinese stock
market LOB data that are used in this paper, we found the best of the reviewed methods
typically took at least 2.21 ms of computing time to reach the level of accuracy achieved by
the O-LGT method. On the other hand, on the same computer with the same computing
power, it typically took O-LGT 0.0579 ms of computing time to reach the same level of
accuracy, approximately 40 times faster than the best reviewed method. More details of
the comparison are presented in Section 4. The improvement of the computing speed has
significant implications for the traders in HFT, because it gives them more time to make
decisions and execute orders than their competitors.

This paper is structured as follows. In Section 2, we describe the LOB data used in
our work in this paper. Next, we present the development of the methods in Section 3,
including the problem statement, the methods of RNN, LSTM, GRU, and transformer, and
the framework of our O-LGT method. Section 4 presents the details and results of our
experiments. Finally, we conclude the paper with a summary in Section 5.

2. Data and Materials
2.1. High-Frequency Limit Order Book Data

As introduced in Gould et al. (2013), more than 50% of the global financial markets use
limit order books (LOBs) to match sellers and buyers. First, we present some definitions
of a limit order book (LOB). A limit order is a contract to buy or sell a limited quantity
of shares at a specific price (Gould et al. 2013). Specifically, a sell limit order ensures that
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the seller sells a specified amount of shares of a stock at a price no less than the specified
ask price. Contrarily, a buy limit order ensures that the buyer buys a specified amount of
shares of a stock for no more than the specified bid price. Accordingly, orders in an LOB
can either be ask orders or bid orders.

At a given time t, let pask(t) and vask(t) represent the column vectors of prices and
volumes of all the ask orders, and let pbid(t) and vbid(t) represent the column vectors of
prices and volumes of all the bid orders. In addition, let p(1)ask(t) be the lowest available sell

price in the ask orders and p(1)bid(t) be the highest available buy price in the bid orders. When

p(1)ask(t) < p(1)bid(t), the orders are executed and the traded assets are exchanged between the
investors on a first-come, first served basis.

Figure 1 gives an illustration of LOBs in trading at a given time stamp, where the five
best-priced buy LOB bars and the five best-priced sell LOB bars are sorted according to the
price, and the height of each bar represents the volume of the associated LOB. Here, the
highest bid price p(1)bid(t) is greater than the lowest ask price p(1)ask(t), thus a transaction of
size equal to the volume of the lowest sell limit order is immediately completed between
the lowest sell limit order and the highest buy limit order. Thereafter, the highest buy limit
order still has some volume left to be executed because its volume is greater than that of the
lowest sell limit order. In cases when multiple sell and buy limit orders partially match, the
transactions will be carried out on the first-come, first served basis until no more matches
exist in the market.

price

sell limit ordervolume

buy limit order

match

Figure 1. An illustration of LOBs in trading at a given time stamp, where the bid and ask orders
are sorted by price. When a bid order is priced higher than an ask order, the two are automatically
matched and put into execution.

In HFT markets, the LOBs are traded electronically at high frequency, in large numbers,
and at a huge volume. To facilitate investors to receive large profits with low risks from
HFT, it is important to continuously provide them with timely information of accurate
stock price predictions. Thus, a key task in HFT of LOBs is developing an online stock price
prediction model based on the LOB data.

2.2. LOBs in the Chinese Market

The LOB data to be analyzed in this paper came from the CSI Smallcap 500 Index in
the Chinese market. The observed data include trading records of 100 stocks. These records
were updated every 3 s for a total of 22 trading days in November 2021. Each trading day
comprises 3 h and 57 min of active trading time, resulting in a total of 4740 records per day.

This paper uses 27 features to summarize each trading record, as described in Table 1.
Among them, the first 26 features serve as inputs, while the last is the percentage change in
stock price over a 5-min period, which serves as the output. Specifically, these input features
include the highest five prices bid p(1)bid(t), · · · , p(5)bid(t) and the corresponding LOB volumes

v(1)bid(t), · · · , v(5)bid(t); the lowest five ask prices p(1)ask(t), · · · , p(5)ask(t) and the corresponding
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LOB volumes v(1)ask(t), · · · , v(5)ask(t); the average transaction price over the last three seconds

pavg
tra (t); the total ask volumes v(all)

ask (t); the total bid volumes v(all)
bid (t); the average ask price

pavg
ask (t); the average bid price pavg

bid (t); the latest transaction price plast(t).

Table 1. Description of the features.

Features Description

p(1)bid(t), · · · , p(5)bid(t) Highest five prices bid at time t

v(1)bid(t), · · · , v(5)bid(t)
Corresponding LOB bid volumes of the highest

five prices bid at time t
p(1)ask(t), · · · , p(5)ask(t) Lowest five ask prices at time t

v(1)ask(t), · · · , v(5)ask(t)
Corresponding LOB ask volumes of the lowest

five ask prices at time t
vask(t) Total ask volumes at time t
vbid(t) Total bid volumes at time t
pavg(t) Average transaction price over the last 3 s
pask(t) Average ask price over the last 3 s
pbid(t) Average bid price over the last 3 s
plast(t) Latest transaction price at time t

p(t) A stock price at time t

3. Methods
3.1. Problem Statement

The problem tackled in this paper relates to developing an online hybrid neural
network model for continuous prediction of stock prices based on high-frequency LOB
data. Let p(T) be the price of a stock at time T, with T = 1, 2, · · · denoting the number
of time units passed from the beginning of trading on each day. For the Chinese LOB
data, the time unit is 3 s. Predicting p(T) is equivalent to predicting the target variable yT ,
defined as yT = p(T)−p(T−h)

p(T−h) , which represents the percentage change in the stock price
between time T and h units of time earlier. In the Chinese HFT market, one typically
predicts yT+h at time T with h = 100, i.e., predicts the price 5 min forward. If xt is denoted
as the J = 26 features of the Chinese LOB data recorded at time t as defined in Section 2.2,
then the prediction ŷT of yT by the LOB features recorded in the previous s time steps can
be generically formulated as the following:

ŷT = F̂(xT−1, xT−2, · · · , xT−s) (1)

where F(·) denotes a generic neural network and F̂(·) is an estimate of F(·) obtained from
the training data. The best predictions ŷT across all values of T are to be computed by
minimizing D(y, ŷ), where D(·, ·) is a customized discrepancy function that measures the
proximity of an estimate to its actual value.

We developed an online hybrid neural network method to formulate and optimally
estimate F(·). This method is named O-LGT since it is in the form of a general recurrent
neural network (RNN) containing multiple latent layers, which are specified by the long
short-term memory (LSTM) model, the gated recurrent unit (GRU) model, and the trans-
former model in that sequence. In addition, the method is implemented in an online way,
i.e., it is updated once the time moves forward by one unit. In order to give a detailed
description of O-LGT, we first review all of its layers in the following.

3.2. Recurrent Neural Network (RNN)

First, recall that recurrent neural networks (RNNs) are a type of neural network that
are designed to process sequential data, such as time-series data. An RNN contains a
hidden compartment that inputs information on the data from both the previous and the
current time steps, and outputs predictions for future time steps. This hidden compartment
is updated once at each new time step, by passing the input through to generate the output.
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The structure of an RNN is cyclical, meaning that the same computation is performed
at each step using the same parameters, which is why it is called recurrent. The architecture
of RNNs can be unrolled to show the sequence of computations that occur over time.

Figure 2 is a typical RNN structure diagram, where ht, the output vector of the hidden
layer at time t, depends not only on the input vector xt at time t, but also on ht−1. The ht is
calculated using an activation function f (·) as follows:

ht = f (Uxt + Wht−1) (2)

where U is the input layer weight matrix and W represents the hidden layer weight matrix.
The RNN is initialized at time t = 1 with

h1 = f (Ux1 + Wh0) and y1 = g(Vh1) (3)

where g(·) is the activation function for the output layer and V is the associated weight
matrix. It then proceeds with the following operations at each time stamp t = 2, 3, · · · :

ht = f (Uxt + Wht−1) and yt = g(V, ht) = g(Vht) (4)

�

�

�

�t−1

�t−1

�t−1

�t

�t

�t

Expand by

timeline

U

VV

f

U

f

�t+1

�t+1

�t+1

V

W f

U

V

U

f W W

Figure 2. The structure of a recurrent neural network. xt is the input at time t; ht denotes the output
of hidden layer at time t; yt is final output at time t; U represents the input layer weight matrix; W
represents the hidden layer weight matrix; V represents the output layer weight matrix; f (·) is the
activation function.

3.3. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

Hochreiter and Schmidhuber (1997) introduced the long short-term memory (LSTM)
architecture to address the problem of vanishing gradients in traditional recurrent neural
networks (RNNs) when trying to model long-term dependencies in sequential data.

The core of LSTM is a cell consisting of an input gate it, a forget gate ft, a candidate
state c̃t, and an output gate ot, normally in the form of column vectors, as shown in the left
panel of Figure 3. The forget gate ft determines the information to be directly passed to the
cell state output ct, the input gate it determines the information to be further used in the
cell together with the candidate state c̃t, and the output gate ot together with the cell state
output ct gives the hidden layer output ut.

The “long” in LSTM stands for the capability of the model to retain information for a
long period of time. The memory cells in LSTMs, which can keep information for multiple
time steps, enable the model to effectively identify long-term dependencies in sequential
data. The “short” in LSTM stands for the model’s ability to discard irrelevant information
promptly. An LSTM model uses the forget gate and input gate to appropriately store and
retrieve selected information from the memory cells.

At each time t, an LSTM model with a hidden layer dimension qL loads the J × 1
feature vector xt, the qL × 1 hidden layer output vector ut−1 at the previous time stamp,
and the qL × 1 cell state vector ct−1 at the previous time stamp as the input. It then uses
certain activation functions to generate [ft, it, c̃t, ot], which is a qL × 4 matrix. Finally, it
outputs the updates ut and ct. An update in LSTM at time t can be expressed as follows:
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it = σ

(
Wi

[
xt

ut−1

]
+ bi

)
c̃t = tanh

(
Wc

[
xt

ut−1

]
+ bc

)
ft = σ

(
W f

[
xt

ut−1

]
+ b f

)
ot = σ

(
Wo

[
xt

ut−1

]
+ bo

)
ct = it � c̃t + ft � ct−1

ut = ot � tanh(ct)

(5)

where Wi, W f , Wo, and Wc are the qL × (J + qL) weight matrices of the input gate, the forget
gate, the output gate, and the cell state, respectively; bi, b f , bo, and bc are the qL × 1 bias
vector parameters of the input gate, the forget gate, the output gate, and the cell state,
respectively. In addition, � is the Hadamard product operation. Moreover, σ(·) and tanh(·)
are activation functions defined as

σ(x) =
1

1 + exp(−x)
and tanh(x) =

exp(x)− exp(−x)
exp(x) + exp(−x)

(6)

The GRU model is a simplified version of the LSTM model and was introduced by
Cho et al. (2014). Compared with LSTM, the GRU has fewer parameters and is computation-
ally less expensive to train, while still being capable of capturing long-term dependencies
in sequential data and robust against overfitting. The main difference between LSTM and
the GRU is that the GRU combines the omission and input gates of LSTMs into a single
update gate zt. The GRU structure is depicted in the right panel of Figure 3. The core of the
GRU is a cell consisting of a reset gate rt, an update gate zt, and an output ṽt.

＋

tanh

tanhσ σσ

xt

ft
it ot

�t

�t

�t−1

�t−1

�t

ut

＋

σσ tanh

ztrt �t

�t

�t−1·
· · ·

·

·
1－

Figure 3. The left panel shows the structure of long short-term memory, and the right panel shows
the structure of the gated recurrent unit.

The “Gated” in GRU refers to the use of gates to control the flow of information in and
out of the hidden layer. “Recurrent” refers to the fact that the GRU is a type of recurrent
neural network (RNN) that processes sequential data by passing information from one
time step to the next.

At each time t, a GRU model with a hidden layer dimension qG loads the qL × 1 LTSM
hidden layer output ut and the qG × 1 GRU output vector vt−1 at the previous time stamp
as the input. It then uses the activation functions σ(·) and tanh(·) to compute [rt, zt, ṽt],
which is a qG × 3 matrix. Finally, it generates the updated GRU output vector vt. An update
in the GRU at time t can be expressed as follows:
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vt = (1− zt)� ṽt + zt � vt−1

ṽt = tanh
(

Wv

[
ut

rt � vt−1

]
+ bv

)
rt = σ

(
Wr

[
ut

vt−1

]
+ br

)
zt = σ

(
Wz

[
ut

vt−1

]
+ bz

)
(7)

where Wv, Wz, and Wr are the qG × (qL + qG) weight matrices of the GRU output, the
update gate, and the reset gate, respectively; and bv, br, and bz are the qG × 1 bias vector
parameters of the GRU output, the reset gate, and the update gate, respectively.

Note that the reset gate rt is used to control the extent to which the output information
of the previous time moment is ignored. Typically, the smaller the value of the reset gate,
the more likely it is ignored. In addition, a larger value of the update gate zt indicates that
the neural unit at the current time moment is less influenced by the output information of
the neural unit from the previous time moment.

3.4. Transformer

After being processed by LSTM and GRU, the multi-headed transformer aids in extract-
ing useful information regarding the interactions in outputs between various time steps.

There are significant differences between the transformer (Vaswani et al. 2017) and
the traditional RNN model, in that the attention mechanism in the former completely
determines the structure of the entire network. Attention allows the model to focus on
specific parts of the input by assigning different weights to different positions in the input
sequence. This is in contrast to the traditional RNNs, which use the same weights for all
positions in the input sequence.

The transformer model uses the encoder–decoder architecture that is most commonly
used in Neuro-linguistic programming. This architecture provides an effective way to han-
dle long sequence data (Bahdanau et al. 2014). In the transformer model, the encoder has
four layers: The first layer uses a multi-head attention mechanism (multi-head attention) to
assign multiple sets of different attention weights to the model for extending the model’s
ability to focus on different locations, thus capturing richer information than otherwise. The
second layer is the summation and normalization layer, where the summation, also named
the residual connection, adds the interim output of the layer to its input before being nor-
malized to produce the layer’s final output. The second layer passes the information from
the previous layer to the next layer without differences to solve the gradient disappearance
problem more quickly. The third layer is a feed forward neural network (FNN) layer. The
fourth layer then goes through another summation and normalization layer to generate the
intermediate semantic coding vector and transmit it to the decoder. The decoder has six
layers, similar to the encoder structure, but the first layer is a multi-headed attention layer
with a MASK (masking) operation, because at output time t, the information at time t + 1
is not available, so the output of the decoder needs to be shifted right and the subsequent
items are masked for prediction. Finally, the decoder goes through linear regression and
the Softmax layer to output the final prediction result. Figure 4 displays the block diagram
for the transformer model.
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Add & Norm

Feed Forward

Add & Norm

Positional Encoding

Input embedding

Multi-head 
attention

M×

Encoder Encoder Output Decoder

Encoder Input

Linear

�T

Add & Norm

Feed Forward

Add & Norm

Multi-head 
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Add & Norm

Multi-head 
attention
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�1 �2 … �T−1

Decoder Input

×M

 Output

�1 �2 … �T−1

Positional Encoding

Figure 4. Illustration of a transformer. The dimension of vi is the input dimension of the transformer
and the dimension of wi is the hidden layer dimension of the transformer.

3.5. Online LGT (O-LGT)

In this section, we present the details of our developed stock price prediction method,
O-LGT, having reviewed the necessary RNNs. We will first provide a brief description
of the sweep matrix operator, which serves as the core computing engine for O-LGT. We
will then describe the framework of O-LGT and its practical implementation. Finally, we
will discuss the standardization and transformation of input data before using them in
O-LGT execution.

3.5.1. Sweep Operator

Computations involved in all neural network layers in O-LGT are essential for solving
weighted regression normal equations XTWXβ̂ = XTWy. The sweep matrix operator
(Beaton 1964) provides a very efficient method to solve these normal equations. Following
Goodnight (1979), a square matrix M = (mij) is said to have been swept on the kth row
and column (or kth pivotal element) when it has been transformed into a matrix N = (nij),
such that

nkk = 1/mkk

nik = −mik/mkk i 6= k

nkj = mkj/mkk j 6= k

nij = mij −mikmkj/mkk i, j 6= k.

(8)
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Via a sweep operation on each pivotal element of M, each element of M is updated,
essentially by one division operation. By applying sweep operations on all pivotal ele-
ments of XTWX, the normal equation XTWXβ̂ = XTWy can be solved in approximately
O(2||XTWX||20) divisions, with ||XTWX||0 being the number of elements in matrix XTWX,
which is the same computing complexity as that involved in the classical Gauss–Jordan
elimination operator. However, when an extra column of data is augmented to X, the resul-
tant new normal equation can be solved by updating the process of solving the previous
normal equation by applying just one more sweep operation on the new pivotal element,
which only takes O(||XTWX||0) extra divisions. This suggests the sweep operation is a
much faster algorithm than the classical Gauss–Jordan elimination algorithm in online
computing where the new data feeds into the process sequentially. This is the major reason
our proposed O-LGT method uses the sweep operator in its core computing engine.

3.5.2. O-LGT Framework

The O-LGT model combines LSTM, GRU, and transformer as three sequential layers
into a composite RNN to predict stock prices in high-frequency trading (HFT). The LSTM
layer is for capturing important information from the input data to return an accurate
LSTM output. The GRU layer takes the LSTM output as the input, which is then processed
in a condensed way to prevent overfitting. Then, the transformer layer takes the GRU
layer output as the input, which is processed in such a way that the interaction effects
between different time steps are incorporated into the output at a more granular level.
Finally, the predictions are made by concatenating the transformer output with its time
length information and feeding the result through a linear regression layer.

We used the instrument PyTorch to implement the O-LGT model, with the parameters
and hyper-parameters being those presented in the paper. The detailed implementation
steps are as follows:

1. Pre-process the data, ensuring there are no None values in the input data, and then
transfer the input data into tensors using torch.as_Tensor();

2. Create a class inherited from torch.nn.Module; initialize it with the GRU, LSTM, and
transformer layers; write the forward function according to Figure 5;

3. Initialize the PyTorch optimizer and scheduler according to Table 2;
Choose the loss function nn.MSELoss() and finalize the training.

Table 2. Tuning-parameter specification of the experiments.

Item Tuning-Parameter

Optimization Adam
Initial Learning Rate 0.001

Exponential Linear Decay 0.95
Epoch Number 100

The notation in Figure 5 corresponds to the notation in Sections 3.3 and 3.4, and the
modeling principles for each layer are shown in Sections 3.3 and 3.4. We used PyTorch
to integrate each layer into the final hybrid model. The model architecture schematic of
O-LGT is displayed in Figure 5 and is explained in the following.

In the initial step, the model inputs XT , the matrix of observed features of the LOB
data for the previous T moments, into an LSTM layer, and the output of this layer, UT , is
stored. This output is then input into the next layer, a GRU layer, and the output of this
layer, VT , is stored. The output of the GRU layer is then fed into a transformer layer, and
the output, wT , is stored. This output and time length information are concatenated into
the final linear regression layer to make the final predictions.

1. Input layer: XT (matrix of observed LOB features for the previous T moments);
2. LSTM layer: output UT (capture important information from the input data);
3. GRU layer: output VT (process in a condensed way to prevent overfitting);
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4. Transformer layer: output wT (incorporating interaction effects between different
time steps);

5. Concatenation: combine transformer output with time length information;
6. Linear regression layer: make final predictions yT .

In the acceleration steps, the O-LGT model uses a similar process but with the added
input of the previous moment’s output for each layer.

1. Input layer: xT (vector of observed LOB features at time T) and ut−1 (previous LSTM
layer output);

2. LSTM layer: output ut (updated LSTM output);
3. GRU layer: output vt (updated GRU output), using ut and previous GRU layer

output, vt−1;
4. Transformer layer: output wt (updated transformer output), using vt and previous

transformer layer output, wt−1;
5. Concatenation: combine updated transformer output with time length information;
6. Linear regression layer: make latest prediction yt.

LSTM Layer
[J, qL]

{UT}
(T×qL)

GRU Layer
[qL, qG]

{VT}
(T×qG)

Transformer Layer
[qG, qT]

{�T}
(qT×1)

Concatenated with time 
length information

Linear Layer
[qT+1, 1]

Output {yT}
（1×1）

Input XT
(T×J)

LSTM Layer
[J, qL]

{�t}
(qL×1)

{�t−1}
(qG×1)

GRU Layer
[qL, qG]

{�t}
(qG×1)

{�t−1}
(qL×1)

Transformer Layer
[qG, qT]

{�t}
(qT×1)

Concatenated with time 
length information

Linear Layer
[qT+1, 1]

Output {yt}
（1×1）

{�t−1}
(qL×1)

Input �t
(J×1)

Initial step Acceleration steps 

Figure 5. Schematic of O-LGT model architecture. The left panel shows the details of the prediction
steps for yT at initial step and the right panel shows the details of the prediction steps for yt at
acceleration steps. T represents the length of time for the input in the initial step; J represents
the input dimension; qL, qG, qT represent the hidden layer dimensions of the LSTM, GRU, and
transformer, respectively. The values of [·, ·] represent input dimensions and output dimensions. The
values of (· × ·) represent dimensions of a matrix and a vector.
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Our innovative implementation setting for O-LGT was shown to have the capacity to
accelerate the computation of O-LGT without compromising its accuracy. In addition, the
structure of each neural network layer in O-LGT is easy to understand, train, and compute
on its own.

3.5.3. Experimental Design for Implementation

In an HFT market, the LOB data arrives at a very high frequency (every 3 s in the
case of the Chinese HFT market). It is both computationally and logistically impractical
to predict stock prices for the time steps immediately after the current time step when
the latest LOB data arrives. Thus, we propose to predict the prices (in terms of price
percentage change) using O-LGT for time step T + h when standing at the current time
step T, where h = 100 (i.e., 5 min) was chosen for our Chinese market case study. On the
other hand, there is no need to use the LOB data from all past time steps until the current
time step T to predict the prices for time step T + h, because the stock price dynamics
manifest an LSTM behavior. This behavior is fully utilized by our O-LGT framework in
that, when the current time step is between T and T + b (inclusive), we only use the LOB
data from time step T back to time step T − s to make predictions for time steps T + h
until T + h + b. In this way, the required feature input data for processing O-LGT at a time
step between T and T + b is of a time length not more than s + b + 1. It, thus, requires a
very limited amount of computer memory, resulting in a significant acceleration of the
predicting process with O-LGT. We term the implementation procedure just described
for O-LGT the moving window-based prediction technique, with the back, current, and
future window sizes being s, b, and h, respectively. For the Chinese HFT market case study,
we chose s = 99 (4 min 57 s), b = 19 (57 s), and h = 100 (5 min). This moving window
technique is illustrated in Figure 6, where the blue box represents the input features of the
model and the red box represents the output of the model.

XT-s XT-s+1 … XT-s+19 XT-s+20 … XT−1 XT XT+1 … XT+19 XT+20 XT+21 … XT+39 … YT+h YT+h+1 … YT+h+19YT+h+20YT+h+21 …

XT-s XT-s+1 … XT-s+19 XT-s+20 … XT−1 XT XT+1 … … XT+39 … YT+h YT+h+1 … YT+h+19YT+h+20YT+h+21 …

XT-s XT-s+1 … XT-s+19 XT-s+20 … XT−1 XT XT+1 … XT+19 XT+20 XT+21 … XT+39 … YT+h YT+h+1 … YT+h+19YT+h+20YT+h+21 …

……

…

…

YT+h+39

YT+h+39

YT+h+39 …

XT+19 XT+21XT+20

XT-s XT-s+1 … XT-s+19 XT-s+20 … XT−1 XT XT+1 … XT+19 XT+20 XT+21 … XT+39 … YT+h YT+h+1 … YT+h+19YT+h+20YT+h+21 …

XT-s XT-s+1 … XT-s+19 XT-s+20 … XT−1 XT XT+1 … … XT+39 … YT+h YT+h+1 … YT+h+19YT+h+20YT+h+21 …

XT-s XT-s+1 … XT-s+19 XT-s+20 … XT−1 XT XT+1 … XT+19 XT+20 XT+21 … XT+39 … YT+h YT+h+1 … YT+h+19YT+h+20YT+h+21 …

……

…

…

YT+h+39

YT+h+39

YT+h+39 …

XT+21

……

XT+19 XT+20

initial step

acceleration
steps 

initial step

acceleration
steps 

Figure 6. The adjusted moving window method process. Here, s = 99, b = 19, and h = 100.
Observations of LOB data are updated every 3 s. The operation in the dashed box is updated every
20 time units (1 min). The dashed box indicates an acceleration process, where xt indicates the feature
information at time t and yT+h represents the predicted stock price percentage change at time T + h.
The first line in the first dashed box indicates that the stock price prediction yT+h at time T + h is
obtained using the feature information from time T − s to time T. The last line in the first dashed
box indicates that the stock price prediction yT+h+19 at time T + h + 19 is obtained using the feature
information from time T − s to time T + 19.

Our O-LGT method also ensures a higher prediction accuracy than the other RNN
methods. Denote xc:d as the sequence of the input feature data from time c to time d for
a stock. Given x1:T of arbitrary time length T and the future window size h, the online
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sequential way that the target variable yT+h is predicted by the O-LGT model suggests yT
can be formulated as follows:

yT+h = F
(

x(T−s):T , x̃T−s

)
, (9)

where F(·, ·) is a generic function, x̃T−s is the summary information obtained from executing
O-LGT at time T − s, and s is the back window size. Here, the back window size s cannot
be too small, otherwise, the result is easy to underfit, and s cannot be too large, otherwise,
there is not enough space for storage. Typically, we selected the appropriate s according
to the performance of the training data. It can be observed that the O-LGT processing of
the input data sequence follows a Markov dependence pattern. Only the latest input data
block x(T−s):T at time T and the previously aggregated information x̃T−s are related to the
prediction yT+h at the current time moment T. Hence, it is reasonable to conclude that an
optimal value of s can be found based on the training data so that the O-LGT algorithm with
this optimal s value will produce highly accurate predictions. However, we acknowledge
that the optimal s value determined this way may be too large to impact the computing
complexity and speed. Fine-tuning the back window size s based on trader’s experience is
still important and even necessary.

3.5.4. Data Standardization and Transformation

Recall that an RNN is characterized by the fact that all the data at different moments
share the same structure and coefficient specifications. Therefore, when the model inputs
are of the same length, the data will follow the same distribution at T = 1, 2, · · · . However,
for some variables with cumulative effects over time, such as current prices, the cumulative
effects result in different variances. For example, the price at moment t = 95 is different
from that at moment t = 120. Therefore, for variables with cumulative time effects,
we transform the input from the absolute value to the percentage change of the current
moment with respect to the previous moment. Therefore, the transformed variable will
follow exactly the same distribution regardless of the time length. This treatment is more
consistent with RNNs sharing the same network structure at different time lengths.

4. Experiment

In this paper, several experiments are presented on the CSI Smallcap 500 Index
(CSI-500) in China to demonstrate the performance of the O-LGT model in stock mar-
ket forecasting.

4.1. Data Pre-Processing for CSI-500

The dataset and the involved features are described in Section 2. Since stock prices are
influenced by various factors that are not known to us, the collected data appear to contain
a large amount of noise and fluctuations that are actually determined by these unknown
factors. If the original stock data are directly entered into the modeling and analysis process
without data pre-processing, it may reduce the accuracy of the results significantly. To
increase the prediction accuracy, an appropriate data pre-processing step is necessary, as
shown below.

P̃(t) =
p(t)− p(t− 1)

p(t− 1)
(10)

p̃ask(k)(t) = p(k)ask (t)− p(t), k = 1, 2, . . . , 5 (11)

p̃bid(k)(t) = p(k)bid (t)− p(t), k = 1, 2, . . . 5 (12)

ṽask(t) =
vask(t)

v0
(13)
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ṽbid(t) =
vbid(t)

v0
(14)

To prevent excessive data volatility, Equations (10)–(14) were also processed, with v0
denoting the day’s opening volume on the stock market. This keeps the data regularized
and maintains the same distribution for the same variable.

4.2. Setting and Specification

In the experiments, computations by the O-LGT model were performed under the
Python environment and the PyTorch framework. The Adam optimization method was
used with a learning rate of 0.001 and an exponential linear decay of 0.95 after each epoch.
The model’s parameters were updated based on the gradients of the mean square error loss
function, and the model was trained for 100 epochs using the training dataset. Table 2 lists
the values of the tuning-parameters used in the model, while Table 3 lists the software and
hardware configurations used for the experiments.

Table 3. Hardware and software configurations used in the experiments.

Item Configuration

Python Version Python 3.9
Pytoch Version 1.10.2

CPU i7-7500U 2.70 GHz
RAM 16 G

4.3. Prediction Error Evaluation

The best prediction for stock prices was achieved by minimizing the loss function,
which calculates the total differences between the predicted and the true price values. The
resultant minimum loss provides a measure of prediction accuracy. Commonly used loss
functions include mean squared error (MSE) and mean absolute error (MAE), which are
defined below.

• Mean Squared Error (MSE):

Lmse =
1
N

N

∑
i=1

n

∑
t=1

(yit − ŷit)
2 (15)

• Mean Absolute Error (MAE):

Lmae =
1
N

N

∑
i=1

n

∑
t=1
|yit − ŷit| (16)

where ŷit denotes the predicted return of rate for stock i at time t; yit denotes the true return
of rate for stock i at time t; N is the number of stocks; n is the number of time steps. It is
easy to see that a small MSE or MAE value corresponds to a high accuracy prediction.

4.4. Implementation Details

In this section, we present details of applying the O-LGT approach for analyzing the
Chinese LOB data. The dataset includes 100 stocks from the CSI Smallcap 500 Index market
for a total of one month. As per Section 3.1, we set yT = p(T)−p(T−h)

p(T−h) , where h = 100 and
p(T) represents the price of a stock at time T. In addition, recall that {xt, t = 1, · · · , T} is
a J-dimensional vector time series of the LOB features with xt =

{
x1t, x2t, · · · , xJt

}> and
J = 26.
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The left panel of Figure 7 gives a flow chart of the modeling and prediction process for
yT at time T for the initial step. The right panel is for the acceleration steps, where the back,
current, and future window size of the associated moving window method are s = 99,
b = 19, and h = 100, respectively.

LSTM Layer
[26, 20]

{UT}
(100×20)

GRU Layer
[20, 20]

{VT}
(100×20)

Transformer Layer
[20, 20]

{�T}
(20×1)

Concatenated with time 
length information

Linear Layer
[21, 1]

Output {yT}
（1×1）

Input XT
(100×26)

LSTM Layer
[26, 20]

{�t}
(20×1)

{�t−1}
(20×1)

GRU Layer
[20, 20]

{�t}
(20×1)

{�t−1}
(20×1)

Transformer Layer
[20, 20]

{�t}
(20×1)

Concatenated with time 
length information

Linear Layer
[21, 1]
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（1×1）

{�t−1}
(20×1)

Input �t
(26×1)

Initial step Acceleration steps 

Figure 7. Schematic of the O-LGT structure for analyzing the Chinese LOB data. The left panel shows
the details of the prediction steps for yT in the initial step and the right panel shows the details of the
prediction steps for yt in the acceleration steps.

This demonstrates that, in the initial step, when time is at T, XT = [xT−99, · · · , xT ]
>—a

100× 26 matrix of feature observations in all previous 100 time moments—is the input data
we need for O-LGT. The input and output of the LSTM layer are both 20 dimensional. The
GRU layer and the multi-head attention transformer layer are also 20 dimensional for both
their input and output. The output of the transformer layer wT and the information with
the length of time are concatenated together, i.e., 21 dimensional. This is then loaded as the
input into the linear layer. The final output is the prediction of the stock price percentage
change value yT+100.

In the acceleration steps when T < t < T + 20, xt has J = 26 features in time t; ut−1,
vt−1, and wt−1 are 20× 1 vectors at time t− 1; ut, vt, and wt are 20× 1 vectors at time t.
The dimensions of the inputs and outputs are the same for each layer and the final output
is the prediction of the stock price percentage change value yt+100.

Regarding the input of O-LGT, recall that we have 4740 time steps for each stock
every trading day and there were 22 trading days in November 2021 in the Chinese HFT
market. LOB information from every segment of 100 (i.e., s = 99) plus up to 19 (i.e., b = 19)
consecutive time steps is used as a single input, and the rate of return after 5 min (i.e.,
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h = 100) is the corresponding output. For prediction in each time step t ∈ [T, T + b],
the feature data x(T−s):t is used as the input, where T is a sharp minute time step (e.g.,
9 h:50 m:00 s:am sharp), b = 19 (57 s), and s = 99 (4 min 57 s). Thus, we have around
4610 consecutive and overlapping segments of input data of the form x(T−s):t on every
trading day. Instead of testing the performance of O-LGT on all these 4610 segments of
input data on each trading day (which is referred to as fixed testing), we were able to do it
on a stratified random sample from these 4610 segments. For example, one such random
sample could be obtained by first partitioning the 4610 segments into 461 consecutive
sections and then randomly choosing a segment from each section. This testing, based on
random sampling, is referred to as random testing. A possible advantage of using random
testing is the reduced auto-correlations in the random sample. Instead of using a fixed back
window size s for training the model, one could use a randomly selected s value at each
updating step for the training. For example, s could be randomly selected from the interval
[89, 109]. Selecting s at random is referred to as random training.

4.5. Experiment Results

In this section, we report the results of experiments to demonstrate the performance
of our O-LGT model. We performed experimental studies for the CSI-500 dataset under
three setups: Setting I, Setting II, and Setting III. Setting I simulated three comparative
experiments specified by the fixed/random training/testing combinations. Setting II
simulated a missing value scenario, under which O-LGT was compared with LGT and the
linear model. Setting III was a scenario with no missing values in the input data, under
which O-LGT was compared with XGBoost, DeepLOB, and DeepAcc, in addition to the
linear model and LGT.

First, to confirm the validity of the experimental design, we carried out three compari-
son experiments in Setting I:

• The moving window for model training had a fixed back section size s = 99. The
model testing was performed on all 4610 input segments;

• The moving window for model training had a fixed back section size s = 99, while the
model testing was performed on a stratified random sample of 461 input segments;

• The moving window for model training had its back section size s, which was chosen
from [89, 109] at random, while the model testing was performed on a stratified
random sample of 461 input segments.

Table 4 demonstrates that the performances of the O-LGT method were similar to
each other under the three experiments, verifying the validity of our design. There was no
significant difference in MSE and MAE when the input lengths of both the training and test
sets were randomized compared to when the input lengths of both the training and test
sets were fixed.

Table 4. Results of the three comparison experiments to verify the validity of the model design.
Values in () represent standard errors. ↑means the higher the value, the better the model performs.
↓means the lower the value, the better the model performs.

Methods 100× RMSE ↓ 100×MAE ↓
Training fixed -> Test fixed 0.171 (0.0466) 0.0943 (0.00454)

Training fixed -> Test random 0.174 (0.0487) 0.0955 (0.00471)
Training random -> Test random 0.171 (0.0486) 0.0948 (0.00468)

Next, we considered the scenario with missing values in Setting II. Specifically, values
at five time steps in each segment of input data were removed at random. Table 5 shows
that when there were missing values, the prediction performance of LGT and O-LGT was
much better than that of the linear model. Comparing LGT and O-LGT, we found no
significant difference between MSE and MAE. The superiority of O-LGT in the presence of
missing values was determined by its design features, as it was more flexible in the choice
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of input length, meaning the prediction accuracy was unaffected even in the presence of
missing values.

In the absence of missing values in Setting III, we compared the O-LGT with not only
the traditional models mentioned above, i.e., the linear model and GRU, but also with the
DeepLOB and DeepAcc models reviewed in Section 1, which are two powerful hybrid
models with a superior overall performance. Table 6 demonstrates that O-LGT and LGT
had clear advantages over the other comparative models in terms of prediction accuracy.
In terms of the computing time, O-LGT was about 38 times faster than LGT, about 64 times
faster than DeepLOB, and about 12 times faster than DeepAcc. This shows that our O-LGT
model can significantly speed up prediction while maintaining prediction accuracy, which
is very beneficial for early risk assessment in the stock market.

Table 5. Benchmark models comparison in missing value scenarios. Values in () represent standard
errors. ↑ means the higher the value, the better the model performs. ↓ means the lower the value, the
better the model performs.

Methods 100× RMSE ↓ 100×MAE ↓
Linear 0.352 (0.1300) 0.2290 (0.12900)
LGT 0.171 (0.0467) 0.0944 (0.00454)

O-LGT 0.171 (0.0486) 0.0948 (0.00468)

Table 6. Performance comparison of different models with no missing values. Values in () represent
standard errors. ↑ means the higher the value, the better the model performs. ↓ means the lower the
value, the better the model performs.

Methods 100× RMSE ↓ 100×MAE ↓ Time (Millisecond)

Linear 0.330 (0.1160) 0.2030 (0.01180) 0.0352
XGBoost 0.259 (0.0880) 0.1530 (0.00754) 0.704
DeepLOB 0.173 (0.0468) 0.0945 (0.00457) 3.68
DeepAcc 0.178 (0.0466) 0.0930 (0.00454) 0.695

LGT 0.171 (0.0465) 0.0943 (0.00454) 2.21
O-LGT 0.171 (0.0486) 0.0948 (0.00468) 0.0579

In summary, our O-LGT model has the capacity to quickly and accurately predict
stock price in high-frequency trading markets. The results confirm the validity of the
experimental design and demonstrate the superior performance of O-LGT in terms of both
prediction accuracy and computational speed compared to other models.

5. Conclusions

In this study, we developed O-LGT, an online hybrid recurrent neural network model
tailored for analyzing LOB data and predicting stock price fluctuations in a high-frequency
trading (HFT) environment. The O-LGT model combines LSTM, GRU, and transformer
layers, and features efficient storage management, enabling rapid computation while
maintaining high prediction accuracy and feasible memory usage. Our experimental
results on the CSI-500 dataset confirmed the validity of our experimental design and
demonstrated the superior performance of O-LGT in terms of both prediction accuracy
and computational speed in comparison with other network integration models, such as
LGT, DeepLOB, and DeepAcc. We addressed the often-overlooked aspect of computation
speed in high-frequency trading, providing traders with a significant advantage in HFT
environments by enabling faster decision-making and order execution. Specifically, it
shows that, in most cases, our model achieves a similar speed but with a much higher
accuracy than the conventional fast supervised learning models for HFT. On the other hand,
with a slight sacrifice in accuracy, O-LGT is approximately 12 to 64 times faster than the
existing high-accuracy neural network models for the LOB data in the Chinese market.



Econometrics 2023, 11, 13 18 of 19

Future work can focus on further improving O-LGT’s performance and generalizability,
and exploring its applications in other financial markets with high-frequency data and its
performance in predicting other financial instruments.
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