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Abstract: When using vector autoregressive (VAR) models for approximating time series, a key step is
the selection of the lag length. Often this is performed using information criteria, even if a theoretical
justification is lacking in some cases. For stationary processes, the asymptotic properties of the
corresponding estimators are well documented in great generality in the book Hannan and Deistler
(1988). If the data-generating process is not a finite-order VAR, the selected lag length typically tends
to infinity as a function of the sample size. For invertible vector autoregressive moving average
(VARMA) processes, this typically happens roughly proportional to log T. The same approach for
lag length selection is also followed in practice for more general processes, for example, unit root
processes. In the I(1) case, the literature suggests that the behavior is analogous to the stationary case.
For I(2) processes, no such results are currently known. This note closes this gap, concluding that
information-criteria-based lag length selection for I(2) processes indeed shows similar properties to
in the stationary case.
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1. Introduction

The workhorse in empirical modeling of economic time series is still constituted by the
vector autoregressive (VAR) model. The VAR model explains the process (yt)t∈Z, yt ∈ Rp,
using the difference equation:

yt = A1yt−1 + · · ·+ Ahyt−h + ut, t ∈ Z (1)

where (ut)t∈Z is a white noise process. Under the stability assumption |A(z)| 6= 0, |z| ≤ 1
for A(z) = Ip − A1z− · · · − Ahzh, this equation has a unique stationary solution. Often,
prior to VAR modeling, deterministic components are extracted such as a constant, a linear
trend, and seasonal dummies.

Oftentimes, this model is seen as an approximation to the data-generating process. This
happens, for instance, if the data are generated by a vector autoregressive moving average
(VARMA) process, where ut = εt + B1εt−1 + · · ·+ Bgεt−g for white noise (εt)t∈Z with expec-
tation zero and variance Σ > 0. The VARMA system (A(z), B(z)), B(z) = Ip + B1z + . . . +
Bgzg (where the pair (A(z), B(z)) is left-coprime) is called invertible if |B(z)| 6= 0, |z| ≤ 1.
Under stability and invertibility, we obtain the VAR(∞) representation

yt =
∞

∑
j=1

Φjyt−j + εt.

Under invertibility, we have
‖Φj‖ ≤ Cρ

j
0 (2)
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where ρ−1
0 > 1 typically is the smallest modulus of the solutions of |B(z)| = 0. Thus, the coef-

ficients converge to zero, geometrically implying that a VAR approximation seems plausible.
When estimating a VAR model, one has to decide on the lag length, h. This choice of

the lag length is typically based on adding a penalty term to the estimation accuracy as
measured using the residual variance Σh for a range of potential lag lengths 0 ≤ h ≤ HT ,
resulting in so-called information criteria. Here, the residual variance Σh is estimated from
data as follows:1

Σ̂h = T−1
T

∑
t=h+1

ε̂t(h)ε̂t(h)′, ε̂t(h) = yt − Â1yt−1 − ...− Âhyt−h. (3)

If no structural restrictions apply, the matrices Â1, . . . , Âh are typically estimated using OLS
or the Yule–Walker equations (see, for example, Hannan and Deistler 1988, p. 211).2 In this
paper, we only consider OLS estimation.

Information criteria then are defined as

IC(h; CT) = log det Σ̂h +
CThp2

T
. (4)

Here, hp2 denotes the number of parameters estimated in the conditional mean equa-
tion, and CT is a penalty factor. The most prominent choices are AIC (CT = 2) and BIC
(CT = log T). The minimal integer ĥ minimizing IC is then the selected lag length.3

For the case of stationary invertible VARMA processes, the asymptotic properties
are well documented in section 6.6 of HD. Under appropriate assumptions on the noise
(see Theorem 6.6.3 of HD) and upper bounds HT for the lag length, for ĥBIC estimated
using BIC, we have ĥBIC/l(T) = 1 a.s. (Theorem 6.6.3 of HD), and the same limit holds for
ĥAIC in probability (Theorem 6.6.4 of HD), where l(T) = log T/(−2 log ρ0). Consequently,
ρ

l(T)
0 = exp(− log ρ0 log T/(2 log ρ0)) = T−1/2. Thus, in this case, asymptotically, the

approximation error (2) is of the order T−1/2.
Moreover, Theorem 7.4.7 of HD states that in a more general setting, if (yt)t∈Z is not

generated by a finite autoregression under the same assumptions on (εt)t∈Z, as above and
where ∑∞

j=1 j1/2‖Φj‖ < ∞, we have

IC(h; CT) = log det Σ̇T + L̃T(h)(1 + oP(1)), L̃T(h) =
hp2

T
(CT − 1) + tr[Σ−1(Σh − Σ)], (5)

uniformly in 0 ≤ h ≤ HT = o(
√

T/(log T)), if CT > 1. Here, Σ̇T = 1
T ∑T

t=1 εtε
′
t is

independent of h. Now impose the following assumption on the sequence Σh, h ∈ N:

Assumption 1. For the sequence Σh, h ∈ N, there exists a twice continuously differentiable
function θ(h) with second derivative θ

′′
(h) such that limh→∞{tr[Σ−1(Σh − Σ)]}/θ(h) = 1 and

lim inf
h→∞

h2θ
′′
(h)/θ(h) > 0.

Under this assumption HD show that the optimal h (for IC(h; CT)) is close to a mini-

mizer l(T) of the deterministic function LT(h) =
hp2

T (CT − 1) + θ(h).
The limitation to stationary processes and autoregressive coefficients Φj declining fast

enough excludes persistent processes such as unit root processes that are often encountered
in economic time series. It is common practice, nevertheless, to select the lag length using
information criteria also in case of highly persistent processes. For integrated processes
of the I(1) kind, this is backed by some results in the literature, such as Ng and Perron
(1995), stating that lag length selection for VARMA models has properties analogous to the
stationary case. These results are generalized to a larger class of processes in Lütkepohl
and Saikkonen (1999).4
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However, in the literature, there are currently no results available for the I(2) case
of doubly integrated processes. This class of processes was introduced by Granger and
Lee (1989), who illustrated the main underlying idea using an example from inventory
processes: if the demand for a product (a flow variable) is modeled as an I(1) process (which
is realistic in a number of cases; see Granger and Lee 1989), then the stock of the product
at the producers will be I(2), as stock variables sum up the corresponding flow variables.
In a macroeconomic framework, I(2) processes have been investigated, for example, by
Johansen and Juselius and coworkers, who argue that I(2) processes play a role if the model
contains nominal quantities, as inflation often is found to be integrated. Since inflation
is the change rate of prices, it follows that prices must be I(2) then (see, for example,
Juselius 2006, chps. 16–18, or Johansen 1995, chp. 9).

While these models have been used in the literature, the corresponding inferential
methodology focuses on the case of autoregressions with a finite lag length. If the data-
generating process is more general, such models are often an approximation and must
involve the selection of the lag length. In practice, this is performed using information
criteria such as AIC or BIC also in this situation while a theoretical justification is missing.

This paper closes the following gap: we provide a general result for the asymptotic
behavior of lag length selection using information criteria for I(2) processes, linking the
performance for the I(2) processes to a related stationary process for which the results of
HD can be applied. The proof of this result can be found in the appendix. The result is
illustrated using a simulation study in Section 3.

2. Integrated Processes

The key to the results for integrated processes is the insight that the OLS residuals
of (1) and—for example—of the vector error correction equation

∆yt = Πyt−1 +
h−1

∑
j=1

Γj∆yt−j + ut, ∆yt = yt − yt−1, (6)

are identical. Since the information criteria are a function of Σ̂h (see (3)), they are invariant
to linear transformations of the regressors as well as to transformations of the dependent
variable by adding linear functions of the regressors.

If in (6) Π = 0, this defines a VAR(h− 1) process (∆yt)t∈Z for which stationary theory
applies under stability assumptions for Γ(z) = Ip−∑h−1

j=1 Γjzj. As in this case the estimation
of Π is superconsistent, one would suspect that the inclusion of yt−1 as a regressor does
not change the lag length selection substantially except for adding one lag to account for
the differencing. A similar reasoning applies in the case of reduced rank of Π.

Paulsen (1984) shows that for finite-order autoregressive I(1) processes, indeed, the re-
sults for the stationary case can be extended. Lütkepohl and Saikkonen (1999) extend some
of the results to VAR(∞) I(1) processes, rectifying earlier incorrect proofs in the literature.
Bauer and Wagner (2004) provide theory for the case of multifrequency I(1) processes such
as seasonally integrated processes by using the vector of seasons representation linking the
multifrequency I(1) case to the I(1) case.

In more detail, let, in the I(1) case, Π = αβ′, where β ∈ Rp×r, β′β = Ir and5 β⊥ ∈
Rp×(p−r), β′β⊥ = 0, β′⊥β⊥ = Ip−r denote matrices such that B = [β, β⊥] is orthonormal.
Let ỹt = B′yt = (ỹ′1,t, ỹ′2,t)

′, ỹ1,t ∈ Rr. Then assume that(
ỹ1,t

∆ỹ2,t

)
= ut =

(
u1,t
u2,t

)
= c̃•(L)εt, (7)
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where |c̃•(z)| 6= 0, |z| ≤ 1, c̃•(z) = ∑∞
j=0 c̃•,jzj and where it is assumed that ∑∞

j=0 j3/2‖c̃•,j‖ <
∞. Under these assumptions, it follows that we obtain the VAR(∞) representation
Φ̃(L)ut = εt where Φ̃(z) = c̃−1

• (z), implying the VAR(∞) representation

Φ̃(L)ut = [Φ̃(L)diag(Ir, ∆Ip−r)B′]yt = εt

for the I(1) process (yt)t∈Z. Furthermore, the triangular representation (7) implies that the
process (ỹ2,t)t∈Z is integrated and not cointegrated; compare, for example, Saikkonen and
Lütkepohl (1996), sct. 2.

The corresponding VAR(h) approximation is given as yt = ∑h
j=1 Ajyt−j + et(h). Pre-

multiplying with B′ and using that (for h > 1), the set of regressors yt−1, yt−2, . . . , yt−h (of
dimension hp) can be linearly transformed into the set of regressors ut−1, . . . , ut−h+1 (of
dimension p(h− 1)) plus ỹ2,t−1 ∈ Rp−r, u1,t−h = ỹ1,t−h ∈ Rr, we obtain (for appropriate
coefficient matrices)

ỹt = Φ̃1,2ỹ2,t−1 +
h−1

∑
j=1

Φ̃jut−j + Ah,1u1,t−h + ẽt(h)

where ẽt(h) = B′et(h). Using (7) then leads to

ut = Φ1,2ỹ2,t−1 +
h−1

∑
j=1

Φ̃jut−j + Ah,1u1,t−h + ẽt(h).

Here, all variables are stationary except for ỹ2,t−1, which is I(1) and not cointegrated by
design. Consequently, Φ1,2 = 0 has to hold (compare equation (A.2) in Saikkonen and
Lütkepohl 1996). Omitting this regressor, the approximation almost equals a VAR(h)
approximation of (ut)t∈Z except for the inclusion of u1,t−h instead of the full vector ut−h.
We have Σh−1 ≥ Σu

h−1 ≥ Σh ≥ Σu
h for each h > 1 where Σu

h denotes the residual variance in
a VAR(h) approximation for (ut)t∈Z. This shows that the residual variance of (yt)t∈Z and
the one of (ut)t∈Z are closely related.

Thus, the essential step in linking the asymptotic properties of the lag length selection
in the I(1) case (obtained from inclusion of ỹ2,t−1) to the ones in the stationary case (assum-
ing that ỹ2,t−1 is left out, which is infeasible in practice as the matrix β is not known prior
to estimation) lies in establishing that the inclusion of ỹ2,t−1 has negligible effects.

For the I(2) case, the same route can be taken. To this end, consider processes according
to the following assumptions:

Assumption 2. Let (yt)t∈Z be an I(2) process (not generated by a finite-order autoregression)
obtained as a solution to the equation (with deterministic values y0, y1, and y2)

∆2yt = αβ′yt−1 + Γ∆yt−1 +
∞

∑
j=1

Πj∆2yt−j + εt, t ∈ Z,

where

• α, β ∈ Rp×r, 0 ≤ r < p are full column rank matrices;
• The function Π(z) = (1 − z)2 Ip − αβ′z − Γ(1 − z)z − ∑∞

j=1(1 − z)2Πjzj (converging
absolutely for |z| < 1 + δ, δ > 0) fulfills that |Π(z)| = 0 implies that |z| > 1 or z = 1;

• With β2 = β⊥η⊥, α2 = α⊥ξ⊥ (where α′⊥Γβ⊥ = ξη′, η, ξ ∈ R(p−r)×s are of full column
rank s < p− r) the matrix

α′2(Ip + Γβ(β′β)−1(α′α)−1α′Γ−
∞

∑
j=1

Πj)β2 (8)

is nonsingular.
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Furthermore, the process (εt)t∈Z is independent identically distributed (iid) with mean zero,
variance Σ > 0, and with E(ε4

t,j log+ |εt,j|) < ∞, j = 1, . . . , p.

From these assumptions, it follows that the process (yt)t∈Z is I(2) with cointegration
and potentially multi-cointegration occurring. The structure of the process is best seen in
the triangular representation of the process, which is equivalent to the one used above (see,
for example, Li and Bauer 2020): assume that the stationary process (ut)t∈Z is generated
according to ut = c̃•(L)εt (for suitable assumptions on c̃•(z) including |c̃•(1)| 6= 0) and
related to the process (yt)t∈Z via ỹ1,t − A∆ỹ3,t

∆ỹ2,t
∆2ỹ3,t

 = ut, ỹt =

 ỹ1,t
ỹ2,t
ỹ3,t

 =

 β′

β′1
β′2

yt,

where β, β1, and β2 are as in Assumption 2. Then, clearly, (ỹ3,t)t∈Z = β′2(yt)t∈Z is I(2) and
not cointegrated, (ỹ2,t)t∈Z = β′1(yt)t∈Z is I(1) and not cointegrated, and (ỹ1,t)t∈Z = β′(yt)t∈Z
is I(1) and cointegrates with ∆ỹ3,t to stationarity for nonzero A. If A = 0, it is stationary.6 The
cointegrating relations ỹ1,t − A∆ỹ3,t between an I(1) and a differenced I(2) process are termed
multi-cointegration by Granger and Lee (1989).

It follows that (using u3,t = ∆2ỹ3,t = ∆ỹ3,t − ∆ỹ3,t−1)

∆2ỹt =

 ∆2ỹ1,t
∆2ỹ2,t

∆2ỹ3,t

 =

 ỹ1,t − ỹ1,t−1 − ∆ỹ1,t−1

∆ỹ2,t − ∆ỹ2,t−1

∆2ỹ3,t

 = ut +

 A∆ỹ3,t − ỹ1,t−1 − ∆ỹ1,t−1

−∆ỹ2,t−1

0


=

 −I 0 0
0 0 0
0 0 0

ỹt−1 +

 −I 0 A
0 −I 0
0 0 0

∆ỹt−1 +

 I 0 A
0 I 0
0 0 I


︸ ︷︷ ︸

A

ut.

Denoting Aut = c•(L)εt and using c−1
• (L) = c−1

• (1) + c∗•(1)∆ + c∗∗• (L)∆2, we obtain from
premultiplying the above equation with c−1

• (L):

c−1
• (L)∆2ỹt = εt − c−1

• (1)

 I
0
0

β′yt−1

+

c∗•(1)

 −I
0
0

β′ + c−1
• (1)

 −β′ + Aβ′2
−β′1

0

∆yt−1 + c̃(L)∆2ỹt−1.

Noting that c•(0) = A such that BAc−1
• (0)B′ = I, it follows that

Γ = BA

c∗•(1)

 −I
0
0

β′ + c−1
• (1)

 −β′ + Aβ′2
−β′1

0


and thus

α = −BAc−1
• (1)

 I
0
0

, α′⊥ = −
(

0 I 0
0 0 I

)
c•(1)A−1B′, α′⊥Γβ⊥ =

(
I 0
0 0

)
.

This confirms the low rank decompositions αβ′ and α′⊥Γβ⊥ = ζη′ as well as the rank of
these matrices. The VAR(∞) representation then follows from calculating the coefficients
of c̃(L) and c•(L)−1. Therefore, the triangular representation immediately shows that
the process (yt)t∈Z is I(2) and not integrated of higher order, but leaves the dynamics
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contained in c•(z) unspecified. The VAR(∞) representation, on the other hand, focuses on
the dynamics, but makes the derivation of the properties of the processes defined by the
difference equation less immediate.

To illustrate the function of the constraint (8) to exclude higher order of integration in
the solutions process, assume for the moment that the process (yt)t∈Z is I(2) and consider
α′2∆2yt:

α′2∆2yt = α′2Γ∆yt−1 + α′2
∞

∑
j=1

Πj∆2yt−j + α′2εt.

Here, α′2Γβ⊥ = 0 (as α′2 denotes the second block row of α′⊥) such that α′2Γ∆yt−1 =
α′2Γβ(β′β)−1β′∆yt−1. Now, using the first difference of the model equation, we see that

(α′α)−1α′∆3yt = β′∆yt−1 + (α′α)−1(α′Γ∆2yt−1 + α′
∞

∑
j=1

Πj∆3yt−j + α′∆εt)

such that β′∆yt−1 = −(α′α)−1α′Γ∆2yt−1 + ∆vt for some stationary process (vt)t∈Z.
Combining these facts, we see that

α′2∆2yt = −α′2Γβ(β′β)−1(α′α)−1α′Γ∆2yt−1 + α′2
∞

∑
j=1

Πj∆2yt−j + α′2εt + γ∆vt

for some matrix γ. Thus (the last equation defines ã(L)),

α′2∆2yt + α′2Γβ(β′β)−1(α′α)−1α′Γ∆2yt−1 − α′2
∞

∑
j=1

Πj∆2yt−j = ã(L)∆2yt = α′2εt + γ∆vt.

Consequently,

ã(L)β2β′2∆2yt = ã(L)∆2yt − ã(L)[ββ′ + β1β′1]∆
2yt = α′2εt + γ∆vt − ã(L)[ββ′ + β1β′1]∆

2yt.

The right hand side process is a stationary process with nonsingular spectrum at z = 1 as
it equals α′2εt + ∆ṽt for stationary process (ṽt)t∈Z. This shows that for the properties of
β′2∆2yt, the square matrix

ã(1)β2 = α′2

(
Ip + Γβ(β′β)−1(α′α)−1α′Γ−

∞

∑
j=1

Πj

)
β2

is of major importance: if it is nonsingular, then β′2∆2(yt)t∈Z is stationary. If it is singular
such that the process still contains a unit root, then β′2∆2(yt)t∈Z is an integrated process.
Hence, the nonsingularity of (8) ascertains that the solution process (yt)t∈Z is I(2) and not
I(3) (or integrated of even higher order).

For simplicity of presentation, no deterministic terms are included in the model
formulation. Then, the corresponding result for I(2) processes is the main result of this note:

Theorem 1. Let (yt)t∈Z be generated according to Assumption 2. Let the lag length selection
be performed by minimizing the information criterion IC(h; CT) with penalty term CT ≥ c > 1,
CT/T → 0 over the integers 0 ≤ h ≤ HT = o(T1/3). Let the minimal minimizing argument be
denoted as ĥ(CT). Then,

(i) P(ĥ(CT) ≤ M)→ 0 for each constant 0 < M.
(ii) If Assumption 1 holds for Σh with function θ(h), then ĥ(CT)/h∗T → 1 in probability, where

h∗T minimizes the function LT(h; CT) = hp2(CT − 1)/T + θ(h).
(iii) If (yt)t∈Z is an I(2) invertible VARMA process corresponding to the left-coprime pair (A(z), B(z)),

then−2ĥ(CT) log ρ0/ log T → 1 in probability, where ρ−1
0 = min{|z| : z ∈ C, |B(z)| = 0}.

The same results hold if the process is demeaned and/or detrended before estimation.
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The result shows that the lag length selection essentially follows the minima of the
function LT(h; CT) analogously to the stationary case. In the VARMA situation, we obtain a
lag length that is proportional to log T and depends on the location of the zero closest to the
unit circle. Otherwise, the minima of LT(h; CT) will increase for increasing sample size as the
penalty term hp2(CT − 1)/T tends to zero for T → ∞ while θ(h) decreases monotonously.

The assumptions here are stronger than needed in almost all aspects. Convergence of
Π(z) on |z| < 1 + δ can be weakened to ∑∞

j=1 ja‖Πj‖ < ∞ for suitable a > 0. In addition,
the iid assumption for (εt)t∈Z can be weakened to martingale difference type assumptions
as in HD. I here use the stronger assumptions in order to stay in line with Li and Bauer
(2020) (in the following LB) on which the proof (to be found in Appendix A) is based.7

Note that Assumption 2 excludes the finite lag length case in which (yt)t∈Z is generated
by an autoregression of, say, order h0. In this case, we have Σh = Σ, h ≥ h0. It follows that,
asymptotically, ĥ(CT) ≥ h0 with probability one if CT/T → 0, CT ≥ c > 1. Furthermore,
the probability of ĥ(CT) > h0 tends to zero for CT → ∞ as a function of T as the penalty then
dominates the estimation error for Σ̂h. This demonstrates that BIC is (weakly) consistent
for VAR(h0) processes.

Inspecting the proof, it is obvious that analogous results also hold for the I(1) and the
multifrequency I(1) case. Moreover, often, not only is the lag length selected uniformly
for all component processes, but different lag lengths are selected for each component. In
addition, in this case, the proof in the appendix can be adapted to show that the asymptotic
properties in the integrated case are analogous to the ones in the stationary case obtained
by suitably differencing the process.

Such an extension also pertains to VARX models. In this situation, it is also possible
to be more general such that the exogenous process does not need to possess a VAR(∞)
representation with sufficiently fast decreasing coefficients, but may show (stationary or
integrated) long memory if the number of lags to be included is subject to an upper bound.
The bottom line in all such cases is that the integration properties of the process are of less
concern, if differencing leads to stationarity with sufficiently fast decaying impulse responses.

Finally, note that similar results appear possible for processes of higher order of integration.

3. Simulations

In this section, the theory is illustrated with a simulation exercise involving MA(1)
processes of the form:

ut = εt − θεt−1.

for standard Gaussian white noise process (εt)t∈Z. These processes are stationary and
invertible for θ being a stable matrix. In the scalar case, the smallest zero of the process
equals ρ0 = |θ|. Therefore, the required number of lags in an autoregressive approximation
is controlled via θ and is expected to grow similar to log T/(−2 log ρ0) as a function of the
sample size.

A total of M = 1000 realizations of the process with sample size T = 100, 200, 400, and
T = 800 are simulated, and one parameter θ = −0.9,−0.7, . . . , 0.9 is varied on a regular grid.

We thus investigate the increase of the average selected lag length for univariate
MA(1) processes as a function of the sample size as well as the location of the zero closest
to the unit circle. This is performed for the stationary process as well as for a doubly
integrated MA(1) process obtained via double summation of the stationary process. The
double integration is expected to add two lags compared to the lag length required for the
stationary process (ut)t∈Z as ∆2yt = ut. Furthermore, the double integration potentially
also adds a deterministic quadratic trend. Thus, lag length selection is performed on the
corresponding detrended process in the I(2) case.

Figure 1 shows the resulting average lag lengths selected using BIC. The main effects
contained in the theorem are clearly visible: the selected lag length increases with sample
size. The logarithmic scale on the x-axis for plot (a) shows8 the roughly linear increase
in log T. In addition, larger absolute values of θ result in larger lag lengths. The average
selected lag lengths with BIC are very similar to the optimal values h∗T (corresponding to
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the stationary process (ut)t∈Z). The doubly integrated processes (yt)t∈Z require roughly
two more lags in all cases compared to the stationary process ∆2(yt)t∈Z except close to
θ = 0.9 (which is close to a pole zero cancellation), where only one additional lag results in
the lag length selection on average.

(a) (b)

Figure 1. Average selected lag length for the stationary processes (blue) and the I(2) processes (black,
dashed). Red stars denote the optimizers h∗T. (a) For θ = −0.9 over sample sizes T = 100, 200, 400, 800.
(b) For sample size T = 800 over different values of θ.

4. Conclusions

In this paper, we investigate the properties of the commonly used lag length selection
using information criteria for VAR approximations of I(2) processes. The discussion shows
that the asymptotic properties of the lag length selection criteria are analogous to the
properties according to the standard stationary setting, but typically require two extra lags
to account for the double integration.

In the invertible VARMA case, this implies that the lag lengths selected using AIC or
BIC tend to infinity as a function of the sample size proportional to log T. The proportional-
ity constant depends on the location of the zero closest to the unit circle. This is identical to
the stationary case. The proof of the result indicates that this property is robust for a great
number of unit roots being present in the data-generating process.
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Appendix A. Proof of Theorem 1

Proof. As in Johansen (1995), sct. 4.3, it follows that the process

ut =

 ỹ1,t − A∆ỹ3,t
∆ỹ2,t
∆2ỹ3,t

 = c•(L)εt, ỹt =

 ỹ1,t
ỹ2,t
ỹ3,t

 =

 β′

β′1
β′2

yt,

is stationary for A = ᾱ′Γβ2 and β1 = β⊥η for appropriate choice of initial conditions
y0, y1, and y2. The MA representation, as in Johansen (1995), Theorem 4.6, shows that the
difference for different values of y0, y1, and y2 amounts to the addition of deterministic
terms, which are easily dealt with.
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The properties of c•(z) follow from the usual arguments, as in Johansen (1995), sct. 4.3
(see Theorem 4.6 on p. 58) noting that derivatives of absolutely convergent power series have
the same radius of convergence as the original function.

The rest of the proof uses such a triangular representation. Then

ỹ1,t = A∆ỹ3,t + u1,t,

∆ỹ2,t = u2,t,

∆2ỹ3,t = u3,t,

where c̃•(L)−1ut = εt is a VAR(∞) process. Note, however, that the triangular representa-
tion requires knowledge of β, β1, β2 and hence is not operational in general. We use it here
only as a technical device in the proof in order to separate processes of different order of
integration. In particular, the representation above in conjunction with the nonsingularity
of the spectrum of (ut)t∈Z at z = 1 directly implies that ỹ3,t is I(2) and not cointegrated, ỹ2,t
is I(1) and not cointegrated, and ỹ1,t is I(1) or I(0) and cointegrated with ∆ỹ3,t.

Using this notation (A.2) of LB states that9

∆2yt = Φ2ỹ2,t−1 + Φ3ỹ3,t−1 + Θ∆ỹ3,t−1 + ∑h
j=1 Ξjut−j + Ξh+1,1:2

(
u1,t−h−1
u2,t−h−1

)
+Ξh+2,1(u1,t−h−2 − Au3,t−h−1) + et(h + 2).

The regressors on the right hand side are a linear transformation of the regressors in
the VAR(h + 2) approximation in levels. Φ2, Φ3, and Θ subsume all nonstationary direc-
tions of the regressors. Since these are not cointegrated—as follows from the triangular
representation—and all other quantities in the equation are stationary, their coefficients
need to be zero, that is, Φ2 = 0, Φ3 = 0, Θ = 0.

We rewrite the equation as ∆2yt = Ψuzt + ΞhUt−1,h + et(h + 2), where

zt = (ỹ′2,t−1, ∆ỹ′3,t−1, ỹ′3,t−1)
′

and Ut−1,h collects all stationary regressors. Denoting 〈at, bt〉 = T−1 ∑T
t=h+1 atb′t and

Wt = [z′t, U′t−1,h]
′, we obtain, from the Frisch–Waugh–Lovell theorem,

Σ̂h+2 = 〈∆2yt, ∆2yt〉 − 〈∆2yt, Wt〉〈Wt, Wt〉−1〈Wt, ∆2yt〉
= 〈∆2yt, ∆2yt〉 − 〈∆2yt, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1〈Ut−1,h, ∆2yt〉
−〈∆2yt, zπ

t 〉〈zπ
t , zπ

t 〉−1〈zπ
t , ∆2yt〉

where zπ
t = zt − 〈zt, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1Ut−1,h. We introduce the scaling matrix

DT = diag(T−1/2 Ir+s, T−3/2 Is). Then, DT〈zt, zt〉DT
d→ W for some random, almost surely

positive, definite matrix W ∈ R(r+2s)×(r+2s). Moreover,

‖DT〈zt, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1〈Ut−1,h, zt〉DT‖ ≤ ‖DT〈zt, Ut−1,h〉‖2‖〈Ut−1,h, Ut−1,h〉)−1‖.

The theory for stationary processes implies that the second factor is OP(1). The expec-
tation of the first factor is O(h/T) = o(1) (compare LB, p. 17). Thus, the whole term is
OP(h/T) = op(1) uniformly in h ≤ HT, implying that (DT〈zπ

t , zπ
t 〉DT)

−1 = (DT〈zt, zt〉DT)
−1

(1 + oP(1)) = OP(1).
Similarly,

〈∆2yt, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1〈Ut−1,h, zt〉DT = OP(T−1/2)



Econometrics 2023, 11, 11 10 of 11

since ‖〈∆2yt, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1 −Ψh‖ = OP(
√

h/T), according to Theorem 7.4.5. of
HD, where 〈ΨhUt−1,h, zt〉DT = OP(T−1/2). Since 〈∆2yt, zt〉DT = OP(T−1/2), we obtain
〈∆2yt, zπ

t 〉DT = OP(T−1/2). Thus,

〈∆2yt, zπ
t 〉〈zπ

t , zπ
t 〉−1〈zπ

t , ∆2yt〉 = (〈∆2yt, zπ
t 〉DT)(DT〈zπ

t , zπ
t 〉DT)

−1DT〈zπ
t , ∆2yt〉

= OP(T−1/2)OP(1)OP(T−1/2) = OP(1/T).

Comparing with the expression for Σ̂h+2 from above, we obtain

Σ̂h+2 = 〈∆2yt, ∆2yt〉 − 〈∆2yt, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1〈Ut−1,h, ∆2yt〉+ OP(1/T).

Now

∆2ỹt =

 ∆2u1,t + A∆u3,t
∆u2,t
u3,t

 =

 Ir 0 A
0 Is 0
0 0 Ip−r−s

ut +

 −2u1,t−1 + u1,t−2 − Au3,t−1
−u2,t−1

0


implies

|Σ̂h+2| = |Σ̃u
h |+ OP(1/T), Σ̃u

h := 〈ut, ut〉 − 〈ut, Ut−1,h〉〈Ut−1,h, Ut−1,h〉−1〈Ut−1,h, ut〉.

Thus, |Σ̂u
h | ≥ |Σ̃

u
h | ≥ |Σ̂

u
h+2| and |Σ̂h+2| − |Σ̃u

h | = OP(T−1) uniformly in 0 < h < HT , where
Σ̂u

h denotes the estimated residual variance of a long VAR approximation of (ut)t∈Z using
lag length h.

This is sufficient for the results, as can be seen as follows: divergence to infinity for
ĥ(CT) is obvious since the error term is at most of the same order as the penalty term.

To establish (ii), consider the case CT → ∞ first. Note that the order OP(T−1) together
with CT → ∞ implies that IC(h; CT) = ICu(h; CT)(1 + oP(1)), where ICu denotes the
criterion for (ut)t∈Z. This is the prerequisite for (ii) and (iii) according to the arguments
in HD on pp. 332–34 following Theorem 7.4.7. (ii): Let h∗T denote the minimizer over h of
LT(h) (for h ∈ R+). Then, a mean value expansion around h∗T leads to

LT(ĥT ; CT)− LT(h∗T ; CT) =
1
2

θ
′′
(h̄T)(ĥT − h∗T)

2 =
θ
′′
(h̄T)(h∗T)

2

2θ(h∗T)

(
(

ĥT
h∗T
− 1)2θ(h∗T)

)
≥ 0

where h̄T is an intermediate value. Now IC(h; CT) is minimized at ĥT , where IC(h; CT)−
Σ̇T − LT(h; CT) = OP(T−1) + oP(θ(h)) uniformly in h, according to the above in combina-
tion with (7.4.22) of HD. This implies that either ĥT/h∗T → 1 or θ(h∗T) = OP(T−1) such that
the positive right hand side of the above can be reversed by the estimation error to obtain
IC(ĥT ; CT) ≤ IC(h∗T ; CT).

However, θ(h∗T) = OP(T−1) is a contradiction to h∗T , minimizing LT(h; CT) = hp2(CT−
1)/T + θ(h): in that case, h∗T − 1 reduces LT by p2(CT − 1)/T plus a smaller error term due
to CT → ∞. This leads to ĥT/h∗T → 1.

For h→ ∞, the order IC(h; CT) = ICu(h; CT)(1+ oP(1)) also holds with CT remaining
finite, as in AIC. Since the lag length estimated for finite CT is at least as large as the one
selected using BIC, ĥT → ∞ follows, again implying the results.

All statements above also hold for demeaned and/or detrended processes.

Notes
1 Other variants exist, for example, using the same time points in the summation for all models; compare with Kilian and

Lütkepohl (2017).
2 Hannan and Deistler (1988) will, in the following, be abbreviated as HD.
3 In the unlikely case of draws, the smallest integer h achieving the minimum is selected.
4 Lütkepohl and Saikkonen (1999) also correct an argument contained in Ng and Perron (1995).



Econometrics 2023, 11, 11 11 of 11

5 Here and below we use the notation X⊥ for a full column rank matrix whose columns span the orthonormal complement of the
column space of a full column rank matrix X.

6 Since we fix the values y0, y1, and y2, the processes will only be stationary for appropriate choices of the values, otherwise it is the
sum of a stationary process and the effects of the initial values.

7 As pointed out by a reviewer (for which I am grateful), the moment condition in HD is slightly stronger than assuming finite
fourth moment as used in LB.

8 Note that the optima h∗T correspond to log T/(−2 log ρ0) rounded to the nearest integer.
9 LB uses the lag length h + 2 instead of h.
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